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Three-Dimensional Brain–Computer Interface
Control Through Simultaneous Overt Spatial

Attentional and Motor Imagery Tasks
Jianjun Meng , Taylor Streitz, Nicholas Gulachek, Daniel Suma , and Bin He , Fellow, IEEE

Abstract—Objective: While noninvasive electroenceph-
alography (EEG) based brain-computer interfacing (BCI)
has been successfully demonstrated in two-dimensional
(2-D) control tasks, little work has been published regard-
ing its extension to practical three-dimensional (3-D) con-
trol. Methods: In this study, we developed a new BCI ap-
proach for 3-D control by combining a novel form of en-
dogenous visuospatial attentional modulation, defined as
overt spatial attention (OSA), and motor imagery (MI). Re-
sults: OSA modulation was shown to provide comparable
control to conventional MI modulation in both 1-D and 2-
D tasks. Furthermore, this paper provides evidence for the
functional independence of traditional MI and OSA, as well
as an investigation into the simultaneous use of both. Us-
ing this newly proposed BCI paradigm, 16 participants suc-
cessfully completed a 3-D eight-target control task. Nine of
these subjects further demonstrated robust 3-D control in a
12-target task, significantly outperforming the information
transfer rate achieved in the 1-D and 2-D control tasks (29.7
± 1.6 b/min). Conclusion: These results strongly support
the hypothesis that noninvasive EEG-based BCI can pro-
vide robust 3-D control through endogenous neural modu-
lation in broader populations with limited training. Signifi-
cance: Through the combination of the two strategies (MI
and OSA), a substantial portion of the recruited subjects
were capable of robustly controlling a virtual cursor in 3-
D space. The proposed novel approach could broaden the
dimensionality of BCI control and shorten the training time.

Index Terms—Brain-computer interface, three-dimensio-
nal control, overt spatial attention, motor imagery, continu-
ous feedback.

I. INTRODUCTION

B
RAIN-COMPUTER interfacing (BCI) is a promising

method for providing alternative connections between the

brain and the outside world in concert with natural connections

or as replacements for natural links potentially disrupted by dis-

ease or injury [1], [2]. One of the ultimate goals of BCI is to
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establish and restore natural limb movement in prosthesis,

robotic substitutes, and natural limbs. While invasive BCI re-

search has shown promise in demonstrating the control of pros-

thesis [3]–[6] and restoring function in limbs through electrical

stimulation [7], the invasive nature of these approaches poses

risks to the patients, often requiring surgeries, the implantation

of cortical electrodes, and the management of post-implantation

complications and maintenance [8]. Efforts have been made

to develop noninvasive BCI techniques that offer alternatives

to invasive technology. While there are a few studies which

have tried to use noninvasive electrophysiological signals for

advanced control, such as the one-dimensional (1D) control of

a prosthetic limb [9], [10] or the pseudo three-dimensional (3D)

control of a robotic arm [11] through the sequential combina-

tion of two-dimensional (2D) and 1D control signals, there still

exists a noticeable gap, especially in noninvasive BCI, between

the tasks involved in experimentation and those of daily-life.

Electroencephalography (EEG) is particularly suitable for

BCI due to its portability, safety and relatively low cost for

researchers and end users [12]. Furthermore, the development

of dry electrodes [13], [14] and the wireless transmission of

EEG signals, allows for the creation of more practical BCI

applications in daily life, including drowsiness detection [15]

and wearable robotics [16]. There are effectively three different

kinds of BCI systems based on noninvasive EEG: BCI based

on endogenous modulation [2], [17], [18], exogenous stimula-

tion presentation, such as P300 [19] and steady state evoked

potential (SSVEP) [20], [21], and a mixture of the different

modalities [22]–[24]. BCI based on the endogenous modulation

of brain rhythms is particularly suitable for real world contin-

uous control in 3 or lower dimensional space because it does

not require stimulus targets, which would have to be displayed

in pre-designated locations. Although the motor imagery (MI)

based modulation of brain rhythms has successfully demon-

strated robust performance in various continuous control appli-

cations [2], [11], [18], [25]–[29], the number of independent MI

induced signals is fairly restricted, due to EEG’s limited spatial

resolution. The most common, reproducible brain patterns used

in MI BCI consist of combinations of imagery involving both

hands and feet [25], [30]. Unfortunately, as there is high vari-

ability in individual aptitude, a large portion of subjects find the

immediate control of MI BCI (without training) difficult [31].

Furthermore, tasks become much more challenging when sev-

eral different motor imaginations, such as hands and feet, are
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combined for high dimensional control in a non-intuitive fash-

ion. So much so that outside of this work there exists a singular

noninvasive continuous 3D control study in which only four

subjects demonstrated proficiency [32]. As endogenous mod-

ulation provides a control strategy with high agency, and has

been previously demonstrated as suitable for continuous con-

trol, a feature not-defined in exogenous control strategies, it is

essential to explore novel strategies for endogenous modulation,

further expanding the number of independent control signals and

facilitating the 3D control of BCI in a wider population.

In this study, we introduce a BCI control strategy based on the

endogenous modulation of overt spatial attention (OSA). Pre-

vious studies have demonstrated abundant evidence that human

subjects can covertly deploy their attention to different spatial

locations [33]–[36] although the underlying mechanism and the

relationship between neuronal modulation and behavioral out-

come are still largely unknown [37], [38]. Traditionally, covert

spatial attention (CSA) induces a distinct spatial and temporal

modulation of alpha rhythms, which are hypothesized to be func-

tionally correlated with the enhancement and or suppression of

neuronal activity associated with attended and unattended tar-

gets [36], [38], [39]. Previous studies have demonstrated the

viability of using CSA to classify the subjects’ spatial locus

of attention through offline analysis [40]–[42] or online binary

classification [43]. However, no control utilizing continuous

feedback, which is critical for its natural application [25]–[29],

has been shown. Noting that the direction of gaze and the direc-

tion of attention are usually aligned [37], we hypothesized that

the modulation of visuospatial attention might be significantly

increased if subjects are allowed to shift their gaze voluntarily.

Additionally, attention might have to be dynamically deployed

for the natural control of a robotic or prosthetic arm in practical,

interactive scenarios. Therefore, we propose OSA (Fig. 1(A)) as

a strategy to perform BCI control. In this work, we investigated

(hypothesis I) whether subjects are able to gain BCI control via

the newly proposed OSA modulation strategy and if said control

was comparable to conventional MI modulation (Fig. 1(A)), and

(hypothesis II) whether the concurrent modulation of the newly

proposed OSA and established MI allows for 3D control.

With the research questions in mind, twenty-three healthy

subjects were recruited to participate in multiple sessions of ex-

periments. They were randomly assigned into one of two groups

for the first three screening sessions in order to compare the

performance between the OSA and MI modulation tasks (hy-

pothesis I). After which, a subset of the subjects who exceeded

a specified performance threshold was asked to participate in

several sessions of 3D control (hypothesis II).

The paper is organized as follows. The experimental design,

online signal processing and offline evaluation criterions are de-

scribed in Section II. The experimental results and neurophysio-

logical analyses are presented in Section III with the discussion

and conclusion following in Sections IV and V, respectively.

II. MATERIALS AND METHODS

A. Subjects and Experimental Setup

Twenty-three healthy subjects (9 females; 1 left handed;

average age 26.1 ± 8.9; range: 19–55; 5 subjects had BCI

Fig. 1. (A) Overall experimental strategy for control via OSA and MI.
Subjects overtly attend to either the left or right side according to the task
cue, directing the cursor’s movement to either the left or right; subjects
imagine the repeated movement of their left or right hand, according to
the task cue, directing the movement of the cursor to the left or right
during MI modulation. (B) Overall study design. Each participant was
randomly assigned to one of two groups and completed three screening
sessions. In group one, OSA was performed first, followed by MI; while
group two performed the reverse. A subset of the subjects whose per-
formance was higher than the pre-determined threshold was invited to
complete three sessions of 3D 8 target tasks with further subsection of
those subjects participating in two additional sessions of 3D 12 target
tasks.

experience with the MI task, none had experience using OSA

for BCI) participated in the study of online cursor control BCI.

Each subject was requested to participate in 3 screening ses-

sions, 3 sessions of 3D 8 target cursor control and 2 sessions

of 3D 12 target cursor control. Twenty-one out of 23 subjects

completed all 3 screening sessions, with 2 subjects dropping

due to scheduling conflicts. Sixteen subjects passed the screen-

ing sessions and finished the three sessions of 3D 8 target tasks,

while 9 subjects completed the two additional sessions of 3D

12 target tasks. All procedures and protocols were approved by

the Institutional Review Boards of the University of Minnesota

and Carnegie Mellon University. Informed consent was obtained

from all subjects prior to their participation in the experiment.

Sixty-four channels of EEG were acquired at a sampling

frequency of 1 kHz using a Neuroscan SymAmps RT system

(Neuroscan Inc, Charlotte, NC). A bandpass filter encompassing

0.5 to 200 Hz as well as a notch filter at 60 Hz were applied

to the raw EEG signals. During all recordings, the vertex was
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used as the reference while the forehead served as the ground.

The impedances of all electrodes were kept below 5 kΩ at the

beginning of the experiment. Impedance was not checked during

the active portion of the experiment in order to avoid interrupting

both the experiment and the subject. However, the impedance

was checked at the conclusion of each session with 97% of

electrodes remaining below 5 kΩ.

An eye tracker (Gazepoint GP3) was used to track the eye

movement during each session, and the data were recorded and

synchronized with BCI2000 key events through a customized

MATLAB script.

B. Experimental Design and Protocol

For each session, subjects were randomly assigned to one of

two groups (see Fig. 1(B)). The number and types of trials were

consistent across groups, but shuffled to diminish potential

confounds introduced through subject exhaustion. Subjects

either performed OSA before MI (Group One) or the converse

(Group Two).

Each session is composed of a fixed number of runs, with each

run consisting of 25 trials. During each trial of the OSA modu-

lation task, the subjects were instructed to focus their attention

on the highlighted target bar (corresponding to the directions of

left, right, up and down) and to minimize their gaze movements

away from the target (try their best to avoid saccades induced

by cursor movement, See Fig. 1(A)). The eye tracker was used

to record their gaze points during the whole experiment and to

make sure that the subjects followed the instructions properly.

The operator would provide a gentle reminder if the subjects did

not follow the instructions. They were instructed to move the

cursor towards the designated target through their spatial atten-

tion. During each trial of the MI modulation task, the subjects

were instructed to imagine the repeated movement of either their

left or right hand, in order to move the cursor left or right respec-

tively, both hands to move the cursor up and to relax to move the

cursor down [11]. Note that the subjects also felt comfortable

moving the cursor forward and backward by imagining either

both of their hands or relaxing, during the 3D control task.

Each trial started with a black screen for 2 seconds. During

these initial seconds the subject was instructed to stay relaxed

and still. Following the initial two seconds a highlighted yellow

bar appeared at either the top, bottom, left, or right edge of the

screen in 2D cases, depending on the task and target, or at the

edges of the unit cube in the 3D 8 and 12 target tasks. To allow for

subject preparation, the highlighted yellow bar was shown to the

subjects for 1.5 seconds prior to allowing control. A pink cursor

appeared at the center of the screen at second 3.5 and the subjects

were allowed to move the cursor through the modulation of

their brain waves. Subjects were given a maximum of 9 seconds

in each trial to hit the correct target while avoiding the other

targets. Under this paradigm each trial could result in a hit,

miss (incorrect target), or abort (no target reached). During a

one second period following feedback the cursor remained on-

screen, frozen in place. Then a new trial began under the same

procedure. In all experimentation, the movement of the cursor

was presented in the software BCI2000 [44].

In the first session, group one performed the OSA tasks first,

which consisted of two runs of left versus right (LR) control

without feedback followed by two runs of LR control with feed-

back. This procedure was then repeated with the up versus down

task (UD). Each run was followed by a short break, about 1–

3 minutes, with the length depending on a subject’s willingness

to proceed. Following the completion of the OSA tasks in group

one, the same series of experiments were performed using MI

for control instead of OSA. So that the influence of feedback on

these modulations could be determined, control tasks consist-

ing of no feedback (either LR or UD) were always presented

to the subject prior to the corresponding task containing feed-

back. As mentioned previously, group two performed the MI

tasks first, followed by the OSA tasks (See Fig. 1(B), 1st col-

umn). In the second session, group one performed four runs of

LR and UD control with feedback using MI first followed by

OSA, while group two performed the same tasks utilizing OSA

for control first (Fig. 1(B), 2nd column). In the third session,

both groups performed two runs of LR control, followed by two

runs of UD control, and 4 runs of 2D control. As before, group

one performed OSA before MI, with group two performing the

converse (Fig. 1(B), 3rd column). For all experimentation, each

subject underwent a maximum of one session per day.

Subjects with Percent Valid Correct (PVC) [11], [45] higher

than 70% in any two of the consecutive runs of LR control,

as well as UD control and PVC higher than 40% in any two

consecutive runs of 2D control [46] were considered eligible for

participation in the subsequent 3D control experiments. This

criterion was set to exclude subjects who could not gain mean-

ingful BCI control during their limited exposure. For each of

the participants, an optimal combination of MI and OSA mod-

ulation was customized for subject specific 3D control. If the

OSA performance was higher than the MI performance for a

particular subject, then OSA modulation was used to control

the movement in the frontal plane, while MI modulation was

chosen for the control of the 3rd dimension, i.e., depth control

(see Fig. 1(B), top panel of the right column). On the other hand,

if the MI performance was stronger, then MI modulation was

selected to control the movement in the 2D horizontal plane

while OSA modulation was chosen for control of the 3rd di-

mension, i.e., the UD control (see Fig. 1(B), bottom panel at

the right column). Each of the three sessions of 3D control was

performed on a different day. During these sessions, 8 runs of 8

target 3D BCI control were performed with the targets located

on the edges of the front and back faces of a cube centered on

the cursor’s starting position. Subjects who demonstrated suffi-

cient 3D control were asked to subsequently participate in two

additional sessions of 12 target 3D BCI, in which the targets

were placed on all edges of a cubic workspace, centered on the

starting position.

C. Online Signal Processing

For online cursor control, the channels which cover the sen-

sorimotor and parietal-occipital regions were selected (22 elec-

trodes in total). Higher alpha band (10–14 Hz) power was

extracted using an autoregressive (AR) approach, previously
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described [11], from the C3 and C4 electrodes located over the

bilateral sensorimotor areas for MI control, and the P3, P4, Pz

and Poz electrodes located over the parietal-occipital areas for

OSA control. Previous studies have verified that during MI mod-

ulation the higher alpha rhythm is functionally dissociated from

the lower alpha rhythms and has a more focal and movement-

specific topography [47], [48]. We adopted a similar idea for

OSA modulation here, and used the higher alpha power for on-

line control. A small Laplacian filter [49] was used to filter out

common sources of local electrical activity, and was applied to

each of the electrodes prior to calculating the alpha power. A

weighted sum of the alpha power in either C3 and C4 or P3,

P4, Pz and Poz was used for instantaneous cursor control in

the MI and OSA tasks respectively. The weights for each elec-

trode were fit to the data collected during the appropriate task

without feedback by maximizing the discrimination accuracy

and/or adjusting the results based on prior electrophysiological

knowledge and experience [11], [45]. The instantaneous con-

trol signals for each dimension were stored in an online buffer

and were normalized to zero mean and unit variance to control

the cursor’s speed, effectively smoothing out cursor movement

and correcting for large transient artifacts in the non-stationary

EEG signals. Besides the filtering previously mentioned, no

artifact removal algorithm was utilized during online signal

processing.

D. Evaluation of Behavioral Performance and

Electrophysiology

The behavioral performance of online BCI control was eval-

uated in terms of Percent Valid Correct (PVC) [41] and infor-

mation transfer rate (ITR) [46]. PVC and ITR are both widely

adopted metrics [19]–[24] in various BCI applications for the

evaluation of online continuous BCI control. PVC is calculated

as the number of hits divided by the sum of the number of hits

and misses (valid trials) [11], [45]. ITR measures the informa-

tion content of the BCI decisions, measured in bits per run, and

depends on both the accuracy of the task as well as how fast and

how many hits can be performed in each run [50]. The statistical

analysis was performed using custom scripts in R by compar-

ing the group average performance among different modulation

conditions, e.g., the OSA tasks and MI tasks, 1D control, 2D

control and 3D control. When applicable, results were expressed

as mean ± SEM (standard error of the mean), unless otherwise

stated. Mixed repeated measures ANOVAs, linear mixed effect

models (lme, a function included in an R package ‘nlme’) and

paired T-tests were employed to evaluate the statistical signifi-

cance of group performance (across sessions) or group average

R-values among different modulation conditions. The level of

significance testing was set to p < 0.05. When appropriate, a post

hoc Tukey’s test was used to correct for multiple comparisons.

In addition to the evaluation of behavioral performance,

the examination of neural electrophysiology could help dis-

cern characteristics of the modulation due to the OSA and MI

tasks. R-values are frequently used to quantify how strongly

the means of two distributions, e.g., the band power of left and

right hand imagination or attentional modulation, differ relative

to their variance [2], [51]. R-values can be calculated at each

electrode, according to their definition, with the correspond-

ing R-value topography showing how strongly the band-power

of electrodes correlates with the task. In the offline analysis,

R-values were calculated based on all trials and a subset of

trials in which the correct targets were hit, separately, in the

alpha frequency band previously used for online control. As

all subjects performed the instructed tasks first without any on-

line neuronal feedback, and then with online feedback, which

consisted of the cursor movements generated from decoded

EEG signals, this dataset offers a unique opportunity to inves-

tigate the role of neuronal feedback on electrophysiology. The

R-values were calculated for all subjects and sessions indepen-

dently, with an R-value topography grand average over sub-

jects and sessions during different conditions being derived and

compared.

III. RESULTS

A. BCI Behavioral Performance of 1-D, 2-D Control

Across Sessions

The behavioral performance of the OSA and MI modulation

was compared in the conditions of LR control (Fig. 2(A)), UD

control (Fig. 2(B)) and 2D control (Fig. 2(C)), separately (N

= 21). No statistically significant differences were found be-

tween the PVC of the OSA and MI modulation tasks (L/R or

U/D) across all three sessions. The group average performance

and the standard error of the mean (SEM) across all three ses-

sions of OSA and MI modulation for LR and UD control were

73.5 ± 3.9% and 84.0 ± 4.2% (LR), and 80.0 ± 3.2% and

77.6 ± 4.2% (UD), respectively. A mixed repeated measures

ANOVA was used to determine whether the two methods pro-

duced different BCI performance over the three sessions. For

the LR control task, the main effect of the method is F (1, 40)

= 3.36, p = 0.07, n2 = 0.07 (generalized Eta-Squared measure

of effect size); the main effect of session is F (2, 80) = 0.77, p

= 0.47, n2
< 0.01; interaction effect of method and session is F

(2, 80) = 0.21, p = 0.81, n2
< 0.01. For the UD control task,

the main effect of the method is F(1, 40) = 0.52, p = 0.47, n2

= 0.01; the main effect of session is F (2, 80) = 0.22, p = 0.80,

n2
< 0.01; the interaction effect of method and session is F (2,

80) = 0.05, p = 0.95, n2
< 0.01. In the 2D control task, indi-

vidual performance was displayed on the left side of the dashed

line while the group average was shown on the right. The group

averages of the OSA and MI modulation for 2D control were

48.0 ± 3.7% and 55.0 ± 5.5%, respectively, with no significant

difference between OSA and MI being found, using a paired

t-test (p = 0.30). Although there were no statistically significant

group level differences between the control achieved by OSA

and MI, a large portion of individuals did demonstrate different

performances, which can be clearly seen in Fig. 2(C).

B. BCI Behavioral Performance of 3-D Control Across

Sessions

Sixteen of the twenty-one subjects qualified to participate in

the 3 sessions of 8 target 3D BCI control (Fig. 3(A)). Of these
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Fig. 2. BCI behavioral performance of online cursor control via the OSA
modulation and the MI modulation in terms of PVC. The performance
accuracies of OSA are shown in solid bars and those for MI tasks are
shown in striped bars. (A) Comparison of accuracy for left vs right 1-D
control task. (B) Comparison of accuracy for up vs down 1D control task.
(C) Comparison of accuracy for 2-D control task. In the bottom panel,
the individual performance for each subject is shown on the left side
of the dashed line and the group average performance for each task is
displayed on the right side of the dashed line. Subject IDs are sorted
according to the difference in performance between the two tasks and
are color coded; the color bar shows the percentage difference between
OSA and MI.

sixteen subjects, five demonstrated that OSA modulation was

suitable for controlling movement in the frontal plane while con-

currently using MI for the 3rd dimensional control (Group One),

while the remaining eleven subjects demonstrated UD control

via OSA and horizontal plane control via MI (Group Two).

Both paradigms performed control in an identical workspace,

where targets were placed on the frontal and rear planes of

a unit cube centered on the cursor’s starting position. The

group average performances for each session of 3D Group One

(N = 5) were 47.5 ± 5.0%, 46.5 ± 4.8% and 58.4 ± 7.1%,

and (N = 11) 52.5 ± 7.1%, 60.0 ± 5.9% and 59.1 ± 5.6%

in 3D Group Two. The average of the two groups in the total

of sixteen subjects for the 8 target 3D control task is shown in

Fig. 3(C). The average performance and SEM for each session

were 50.9 ± 5.3%, 55.8 ± 4.8% and 58.9 ± 4.8%, with random

chance being 12.5%. A linear mixed effect model was applied

to determine the effect of training across sessions. Statistical

analysis revealed that there was a significant improvement in

accuracy from session one to session three (p = 0.048) after

Tukey’s correction for multiple comparison. Nine out of the six-

teen subjects (1/5 3D Group One, 8/11 3D Group Two) were

able to finish two additional sessions of 3D control in 12 target

tasks (Fig. 3(B)). Their average performance and SEM for the

Fig. 3. BCI behavioral performance for online 3-D cursor control
via the combination of OSA and MI modulation in terms of PVC. (A)
A scene of the 8 target 3-D cursor control task. The highlighted bar in-
dicated the target to hit. (B) A scene of the 12 target 3-D cursor control
task where the highlighted bar indicated the target to hit. (C) BCI accu-
racy of 3-D control across the three sessions with the dashed green line
indicating random chance (12.5%). (D) BCI accuracy of 3-D control in
the 12 target task across the two sessions with the dashed green line
indicating random chance (8.3%).

two sessions were 51.5 ± 6.9% and 50.5 ± 7.1%, respectively

(Fig. 3(D)). No significant difference of accuracy was found

between the two sessions. Note that with the increase in the

number of targets in the 12 target task, the random chance level

fell to 8.3%.

C. Comparison of ITR among 1-D, 2-D, and 3-D Control

The classification accuracy revealed that subjects succeeded

in each modalities individually and in combination, although

overall classification accuracy decreased with increased task

complexity (2D and 3D control). Besides the apparent flexibil-

ity the subjects gained through higher degrees of freedom, i.e.,

2D and 3D control, the efficiency of 2D and 3D control was

examined through the calculation of ITR. The group averaged

ITR of the subset of nine subjects who completed all tasks can

be seen in Fig. 4(A). The highest group average ITR across one

and two dimensional control was achieved via MI (1D control

15.1 ± 1.7 (SEM) bits/min 2D control 21.2 ± 3.4 bits/min). The

group average ITR and SEM of 3D control for the 8 target and

12 target tasks were 24.1± 1.5 bits/min and 29.7± 1.6 bits/min,

respectively. A linear mixed effect model was applied to eval-

uate both the effects of the control strategy and the number of

dimensions on the ITR. The statistical analysis (after correction

for multiple comparisons) in Fig. 4(B) showed that there was a

significantly higher ITR for the complex 3D control task (8 tar-

get and 12 target) compared to both the 1D and 2D tasks. There

was no significant difference in ITR between the 3D 8 target

task and the 12 target task, although the ITR was on average

higher in the 3D 12 target task.



2422 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 65, NO. 11, NOVEMBER 2018

Fig. 4. Comparison of ITR in a subset of nine subjects for all of the
experimental conditions. The group average of ITR for each condition
is displayed by the height of the bar with the SEM being overlaid. The
p-values for statistical analysis by a linear mixed effect model are shown
in the subplot at the bottom. A post hoc Tukey’s test was used to correct
for multiple comparisons.

D. Comparison of Electrophysiology With and Without

Neuronal Feedback

The R-value topography can be used to measure the task-

related modulation and is calculated by regressing the EEG

alpha power during the control task against the target la-

bels/locations, allowing us to analyze the underlying electro-

physiology of the paired control tasks with and without neuronal

feedback. The analysis for LR control (first row of Fig. 5(A)

and Fig. 5(B)) and UD control (second row of Fig. 5(A) and

Fig. 5(B)) was performed for the OSA modulation (left column

of Fig. 5(A) and Fig. 5(B)) and the MI modulation (right col-

umn of Fig. 5(A) and Fig. 5(B)) separately. All of the trials were

included in the calculation of the R-values shown in Fig. 5.

The topography of R-values before receiving any feedback

is displayed in Fig. 5(A) and its counterpart after feedback is

shown in Fig. 5(B). There were obvious focal regions of mod-

ulation across electrodes covering the parietal-occipital cortical

regions for OSA modulation and bilateral motor cortical re-

gions for MI modulation. An apparent difference of modulation

strength was also observed before and after the feedback was

given. Quantitative comparisons of the electrodes used for con-

trol (OSA: P3, P4, Pz and Poz; MI: C3, C4) were performed for

both control dimensions during the corresponding modulation

strategy. Paired t-tests were used to evaluate whether there exists

a change in modulation at each relevant electrode between the

two conditions, before and after the feedback was given. There

was a significant difference in the P3 (p = 9.3 × 10−4), but not

P4 electrodes (p = 0.1) between conditions with and without

feedback for LR control via OSA modulation (see Fig. 5(C));

there were significant differences in the PZ (p = 8.8 × 10−6)

Fig. 5. The R topography map of OSA modulation (the first column of
each panel) versus MI modulation (the second column of each panel)
without feedback in subfigure (A) and with feedback in subfigure (B). R
values were calculated using all trials. The first row of each subfigure
displays the R topography of the left versus right control task; the second
row of each subfigure shows the R topography for the up versus down
control task. The statistical comparison of R-values (C) at the P3 and P4
electrodes during left versus right control via OSA modulation, (D) at the
C3 and C4 electrodes during left versus right control via MI modulation,
(E) at the Pz and Poz electrodes during up versus down control via OSA,
and (F) at the C3 and C4 electrodes during the up versus down control
via MI modulation.

and POZ (p = 5.5 × 10−6) electrodes between the with and

without feedback conditions for the UD control task during

OSA modulation (see Fig. 5(E)). In contrast, statistical analysis

revealed that during MI there were no significant differences

in the C3 (p = 0.60) and C4 (p = 0.18) electrodes between

the with and without feedback conditions for LR control (see

Fig. 5(D)) and that there were significant differences in the C3

(p = 0.1 × 10−3) and C4 (p = 0.1 × 10−3) electrodes between

the with and without feedback conditions for the UD control

task (see Fig. 5(F)).

A subset of the trials in which correct targets were hit was

used in the calculation of the R-values in Fig. 6, and demon-

strated similar results to Fig. 5. Quantitative comparisons in the

P3, P4, Pz and Poz electrodes were performed for both con-

trol dimensions during OSA modulation, since these electrodes

were used for the online cursor control. Similarly, quantitative

analysis of the C3 and C4 electrodes was performed for both the

LR and UD control conditions during MI modulation. Note that

the topography shown in Fig. 6 is similar to the topography in

Fig. 5, with much stronger R-values being found when only

hit trials were used, compared to the use of all trials in Fig. 5.
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Fig. 6. R topography map of the OSA modulation (the first column of
each panel) versus the MI modulation (the second column of each panel)
without any feedback in subfigure (A) and with feedback in subfigure (B).
Calculation is based on the subset of the trials in which targets were
correctly hit. The first row of each subfigure displays the R topography of
left versus right control task; the second row of each subfigure shows the
R topography of the up versus down control task. Statistical comparison
of R-value (C) at the P3 and P4 electrodes of OSA modulation during the
left versus right control, (D) at the C3 and C4 electrodes of MI modulation
during the left versus right control, (E) at the Pz and Poz electrodes of
OSA modulation during the up versus down control, and (F) at the C3
and C4 electrodes of MI modulation during the up versus down control.

There was a significant difference in the P3 (p = 4.8 × 10−4)

and P4 electrodes (p = 3.9 × 10−4) between conditions with

and without feedback for the LR control via OSA modulation

(see Fig. 6(C)). There was a significant difference in the PZ

(p = 1.7 × 10−12) and POZ (p = 2.9 × 10−13) electrodes be-

tween conditions with and without feedback for the UD control

via OSA modulation (see Fig. 6(E)). Similarly, the statistical

analysis revealed that there was a significant difference in the C4

(p = 8.0 × 10−3) electrode but not the C3 electrode between the

conditions with and without feedback for the LR control via MI

modulation (see Fig. 6(D)) and that there was a significant differ-

ence in both the C3 (p = 5.3 × 10−8) and C4 (p = 1.8 × 10−8)

electrodes between the conditions with and without feedback

for the UD control via MI modulation (see Fig. 6(F)).

E. Confusion Matrices of Different Strategies for the 3-D

Control Tasks

The confusion matrices for the two groups using differ-

ent strategies (illustrated in Fig. 7(A)–7(B)) were calculated

Fig. 7. Confusion matrices for the 3-D control tasks. (A) The target
location and the control strategy for the 5 subjects who preferred to
use OSA modulation to move the cursor in the frontal plane (parallel
to the screen) and MI modulation to move the cursor in and out of the
vertical plane. The workspace was rotated for the sake of visualiza-
tion and subjects viewed the workspace from the top down perspective.
(B) The target location and the control strategy for the 11 subjects who
preferred to use the MI modulation to move the cursor in the horizontal
plane and the OSA modulation to move the cursor along the vertical
axis. A similar rotation was applied for visualization with the subjects
also viewing the workspace from the top down perspective. (C) Group
level confusion matrices (colorbar unit: percentage) for the 5 subjects
who use the strategy illustrated in (A). (D) Group level confusion matri-
ces for the 11 subjects who use the strategy displayed in (B). The true
target is indicated by the row and the predicted target by the column. (E)
Standard deviation of confusion matrices for the 5 subjects. (F) Standard
deviation of confusion matrices for the 11 subjects.

separately in order to determine if both strategies were effective

in producing 3D control (Fig. 7). The group level confusion

matrices for group one and group two were displayed in Fig.

7(C)–7(D), respectively and the corresponding standard devi-

ation of the confusion matrices is shown in Fig. 7(E)–7(F),

respectively, for group one and group two. These group level

confusion matrices provide details regarding the occurrence of

false positives and negatives for each target type. This analy-

sis was performed in order to rule out the possibility of highly

proficient 2D control being the underlying mechanism of the be-

havioral results. Instead, the results demonstrate that there were

no global preferences to individual planes, given a control strat-

egy, and that both strategies were suitable for 3D control. Six

representative individual confusion matrices (4/11 from group

one, 2/5 from group two) are displayed in Fig. 8. While no clear

patterns of group level target preference were found between

or within control strategies (Fig. 7(C)–7(F)), individual subjects

demonstrated notable preferences (Fig. 8). These notable differ-

ences in subject specific preference highly influence the global

map, leading to non-obvious or easily interpreted patterns. We

suspect that these patterns arise from the high variance in our
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Fig. 8. Individual confusion matrices (color bar unit: percentage) for the
3D control tasks. (A)–(D) Four examples of individual confusion matrices
among the 11 subjects who use the strategies in the Fig. 7(B). (E) and
(F) Two examples of individual confusion matrices among the 5 subjects
who use the strategies in the Fig. 7(A).

Fig. 9. Average cursor movement trajectories for a particular subject.
The virtual cubic workspace was rotated for easier visualization of all
of the trajectories. The colored bars show the targets in the workspace
and the ellipsoids display the estimated distribution of the end points of
cursor during all of the hit trials. The movement path was derived by
averaging all of the hit trials.

measurements, due to low sample numbers, and the innate vari-

ability [31] of BCI (Fig. 7(E)–7(F)).

F. Average Cursor Trajectory

An example of the average cursor movement trajectories for

a particular subject was shown in Fig. 9. This example corre-

sponds to the subject in Fig. 8(A), one of the better 3D control

performers. The average trajectories showed a relatively linear

path from the starting point (origin) to the middle point of the

targets. Note that the cursor is a sphere with a diameter of 10%

of the workspace, thus the ellipsoids which display the estimated

distribution of the cursor center’s endpoint may not be in con-

tact with the targets. The average trajectories of this particular

example demonstrated that online cursor control was performed

in three dimensions continuously, and was not the product of

sequential 2D and 1D manipulations.

IV. DISSCUSSION

A. Comparison of Performance Between Conventional

Paradigms and the Proposed OSA

In the current study, we demonstrated a new modulation

modality, OSA modulation, which produces a similar perfor-

mance level in terms of the classification accuracy compared

to conventional MI modulation. Compared to previous studies

using covert (visuo)spatial attention (CSA), our online classifi-

cation accuracy results were marginally higher than the average

offline results of both 69% for 1D and 41% for 2D tasks in

a group of 15 subjects [40] and were comparable or higher

than other studies [41]–[43]. It is important to note that most

of the studies previously reported only include offline analy-

sis, and none demonstrated online 2D control. Although a valid

form of analysis, performing classification offline allows the

researchers ample opportunity to potentially fit their data in a

non-generalizable fashion, and to employ resources or methods

which are not accessible during rapid online decoding. In our

current iteration of the OSA modality, subjects were allowed to

shift their gaze towards targets as well as covertly pay attention

to the movement of the cursor, in order to hit the correct target.

This is slightly different than the previous CSA studies, where

subjects were instructed to focus on the center while covertly

attending to a peripheral target. The flexibility of overtly shifting

their gaze allows subjects to naturally and comfortably deploy

their spatial attention along with the attended direction. Through

this flexible shifting, subjects were capable of easily combining

OSA and MI modulation. There were shown to be no group

level statistical differences between 1D and 2D control using

either modality, although some individuals demonstrated supe-

rior modulation abilities in a specific modality. As an estimated

15%–30% of the population is incapable of producing the con-

ventional MI based BCI control signal [52], the introduction of

OSA modulation potentially provides an effective alternative for

BCI control. Moreover, OSA modulation utilizes the parietal-

occipital cortex, unlike MI’s use of the sensorimotor cortex,

providing the possibility to extend BCI control beyond 2D.

B. 3-D Control Strategy was Individualized According to

Subjects’ Performance Preference but no Difference was

Found Between Strategies

In the 3D experiments, a combination of OSA and MI modu-

lation was used for online control. We found that two particular

combinations worked best and were accepted by the partici-

pants. Subjects with superior performance using MI, compared

to OSA, preferred to use MI and OSA for the horizontal plane

and vertical axes respectively. While subjects who demonstrated
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superior performance via OSA, compared to MI modulation,

preferred to use OSA to control the cursor in the frontal

(parallel to the screen) plane and MI (both hands versus relax)

to control the cursor’s depth (in/out of the frontal plane). We

utilized identical target positions for both groups, regardless

of the control strategy being employed. By using consistent

target locations, we were able to further demonstrate the lack

of preferred control dimensions within either control strategy

in the same experiment. This is further exemplified in the

confusion matrices, which reveal that on average both strategies

used in this study produced successful 3D control. Although

the group level averages were similar, there were noticeable in-

dividual differences among the subjects’ control abilities. Some

subjects, like the example in Fig. 8(A), demonstrated superior

performance for all target locations, while others preferred

specific axes. Although both the MI and OSA modulations con-

sume attention resources, the 3D control results revealed that

subjects could effectively deploy their attentional resources si-

multaneously and properly in order to successfully complete the

tasks. This simultaneous deployment of attentional resources

corroborates our previous study, in which we explored cognitive

flexibility through simultaneous SSVEP and MI modulation

for BCI control [53].

More recently, wearable BCI systems have become more

readily available due to the rapid improvement of dry EEG elec-

trodes [13], [14] and wireless, compact EEG systems. These

wearable BCI systems have been used in a diverse set of appli-

cations, ranging from the evaluation of driver vigilance [54] to

robotic exoskeletons [16]. The 3D control paradigm proposed

in this study uses a sparse electrode configuration for online

control, an advantage that allows for its simple implementation

within wearable BCI systems. Not only can previously estab-

lished algorithms, such as the one presented here, be imple-

mented in wearable systems, given the increased comfort and

mobility offered to BCI users by these systems, there is no doubt

that they will help attract more BCI users, helping to further the

development of BCI technology.

C. New Paradigm of 3-D Control Does not Require

Extensive Training and Improve ITR Significantly

Prior to our work, there was only one study of noninvasive

3D BCI control based on endogenous modulation. In it, McFar-

land et al. proposed to use the imagination of movement of both

hands and feet to perform EEG based 3D control [32]. They de-

signed a center out task with eight targets located in the corners

of a cubic workspace, where only one target was displayed per

task. Each subject was asked to move a cursor, which appeared

in the center, to the displayed target at one of the corners within

a 15 s time limit. If the subject was unable to contact the target

by the end of the 15 seconds, the trial was recorded as a miss.

Unlike the work presented here, if the cursor moved to other

target locations, it did not result in a miss. In their work, they

studied four subjects (one naı̈ve BCI subject) who practiced 1–4

sessions of 1D control, 10–12 sessions of 2D control and 21–42

sessions of 3D control. Initially these subjects completed about

20%–60% of the 3D trials, improving to 60%–90% following

extensive training. Our current study demonstrated that a group

of 16 subjects (11 BCI naı̈ve subjects) could complete three

sessions of 3D 8 target tasks with starting and ending group

accuracies of 50% and 59%. Unlike the previous work done by

McFarland and colleagues, these subjects only performed three

sessions of 1D and 2D BCI training before moving on to the

3D control task. Note that the two accuracies are not directly

comparable since the first accuracy [32] represented the pro-

portion of completed trials, while the accuracy in the present

study was PVC, where contact with incorrect targets results in

misses. This difference increases the difficulty of the task in this

study and is also closer to daily life application. Furthermore,

the subjects in our study underwent substantially less training in

the 3D tasks (3–5 sessions versus 21–42), and still demonstrated

high levels of accuracy and control, further suggesting that our

proposed control strategy is useful in practical situations. The

efficiency of the BCI system was investigated through the eval-

uation of the ITR, which not only depends on the classification

accuracy but also correlates with the number of hits and speed

in each run. Previous studies [40], [50], [55] have reported the

ITR for 1D (two classes) and 2D (four classes) cursor control

tasks or up to five classe offline analysis, which produced ITRs

of 4.9 bits/min–14.1 bits/min for 1D tasks [40], [55], ITRs of

11.0 bits/min–20 bits/min for 2D tasks [50], [55], and ITRs of

0.42 bits/trial–0.81 bits/trial for the five class individual offline

analysis [50]. It is difficult to directly compare ITRs across these

studies since some of these works only reported the peak ITR

for individuals and the experimental paradigms were different,

potentially affecting the evaluation of ITR. In our work, the av-

erage ITR for 1D control is 11.1 bits/min (0.68 bits/trial), which

is comparable to the reported maximum individual ITR across

all tasks (two to five class offline analysis) [50]. This verifies

that the ITR for 1D control in this study can serve as a strong

baseline, and that the improvement of ITR through increased di-

mensionality is not a trivial result due to weak starting accuracy.

Moreover, all of the 1D, 2D and 3D tasks in this study were

performed and evaluated in the same paradigm, which allows

for a more fair comparison between different control tasks.

D. Online Control Increase R-value Significantly

Event-related (de)synchronization (ERD/S) has been sug-

gested to be a product of specific cognitive processes which

might be related to the selective attention of multiple neuronal

systems, such as the motor [56] and visual systems [38], [39].

The modulation of mu rhythms was topographically quanti-

fied via the regression analysis R-value displayed in Fig. 5. A

clear pattern or cluster of active electrodes between the com-

pared tasks usually suggests the discriminability of the designed

tasks and the possibility of online control. The R-value topog-

raphy, without any feedback, demonstrates similar results to the

previous studies which employ covert spatial attention [40],

[41]. Here, we showed that the OSA modulation task produces

similar but much stronger parietal-occipital activity, especially

after providing online feedback. The statistical analysis of the R-

values of the corresponding control electrodes (P3/P4 LR OSA;

Pz/Poz UD OSA; C3/C4 LR/UD MI) revealed that following
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the presentation of feedback, there was a significant increase

in the modulation of activity. This further validates that online

feedback could greatly promote the cognitive processes [57] and

might be essential for BCI control [58], [59].

V. CONCLUSION

In this work we propose a new OSA task which utilizes the

endogenous modulation of visuospatial attention and demon-

strate similar performance to conventional MI BCI control. The

OSA task, without feedback, produces activity patterns similar

to those presented in previous studies of CSA. These patterns

which are focused around parietal-occipital cortices are fur-

ther strengthened through the presentation of feedback. This

stronger cognitive process coincides with the successful mod-

ulation of the brain rhythms and the completion of the tasks.

A substantial portion of the subjects further demonstrated that

the combination of the two strategies (MI and OSA) allows for

the control of a virtual cursor in 3D space through the comple-

tion of center out tasks with significantly higher accuracy than

chance. Furthermore, subjects showed significant performance

improvement across the three sessions of 8 target 3D tasks. Note

that, nine of these subjects further demonstrated robust control

in a twelve target 3D control task, resulting in a group average

information transfer rate of 29.7 ± 1.6 bits/min, which signifi-

cantly outperformed the lower dimensional 1D and 2D control

task. The successful completion of a 3D task through the com-

bination of multiple control strategies corroborates our previous

findings that subjects have the cognitive flexibility to simultane-

ously deploy their attention in two different cognitive tasks. By

taking advantage of this cognitive flexibility, future work could

improve and expand upon the efficiency and dimensionality of

BCI control, as well as potentially shed light on the study of

cognitive processes, such as attention, through BCI.
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