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Abstract. Brain tissue segmentation on magnetic resonance (MR) imaging is a difficult task because of sig-
nificant intensity overlap between the tissue classes. We present a new knowledge-driven decision theory (KDT)
approach that incorporates prior information of the relative extents of intensity overlap between tissue class pairs
for volumetric MR tissue segmentation. The proposed approach better handles intensity overlap between tissues
without explicitly employing methods for removal of MR image corruptions (such as bias field). Adaptive tissue
class priors are employed that combine probabilistic atlas maps with spatial contextual information obtained from
Markov random fields to guide tissue segmentation. The energy function is minimized using a variational level-
set-based framework, which has shown great promise for MR image analysis. We evaluate the proposedmethod
on two well-established real MR datasets with expert ground-truth segmentations and compare our approach
against existing segmentation methods. KDT has low-computational complexity and shows better segmentation
performance than other segmentation methods evaluated using these MR datasets. © 2014 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.1.3.034001]
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1 Introduction

Magnetic resonance (MR) imaging is routinely used to obtain

detailed anatomical information about patients’ brains. Structural

changes observed on MR imaging are clinically significant for

diagnostic and treatment planning purposes for several neuro-

logical diseases.1–3 However, because of the large amount of

data collected in MR imaging, manual structural measurements

(such as cortical thickness) are tedious and time intensive. This

has motivated the development of computer-based tools to quan-

tify structural changes on MR volumes that are caused by neu-

rological disorders.

MR tissue segmentation is an important, and often prerequi-

site, component of any comprehensive MR image analysis. This

involves classifying brain MR voxels into four classes: white

matter (WM), gray matter (GM), cerebrospinal fluid (CSF),

and background (BG). However, automatic tissue segmentation

in brain MR images is difficult because of the presence of image

corruptions such as partial volume effects and intensity inhomo-

geneities (or bias field). Accurate segmentation of MR images

requires incorporating the contributions from such image cor-

ruptions while classifying MR voxels into the four classes.

The most common segmentation methods are probabilistic

formulations that represent an MR volume with a parametric

model such as finite mixture model with four Gaussian compo-

nents.4–7 Thereafter, a classification rule attributes class labels to

every voxel in the MR volume. However, the presence of image

corruptions greatly skews the distribution of voxel intensities in

MR volumes. As a result, tissue classes have arbitrarily shaped

and variable density functions of intensities in MR volumes,

which are difficult to represent using an a priori, assumed para-

metric model. To overcome this, the use of more flexible para-

metric models has been suggested.8–12 While flexible modeling

of intensity density functions yields improved segmentation per-

formance,8,10,13 such methods still suffer from the specification

bias of the assumed parametric models.14 Most of the modeling

errors are concentrated along the tails of the intensity distribu-

tions, which are the regions of intensity overlap between the tis-

sue classes. Therefore, the specification bias of the assumed

parametric models directly translates to errors in voxel classifi-

cation. Several nonparametric approaches, such as kernel den-

sity estimation, have also been employed for modeling tissue

intensity distributions in MR volumes.15–17 They provide better

flexibility in modeling arbitrary intensity distributions and show

improved tissue segmentation performance.15–17

Besides producing arbitrarily shaped intensity density func-

tions, the presence of intensity inhomogeneities also results in

significant overlap between the intensity density functions of

tissue classes. Most segmentation errors are the result of inac-

curate classification of MR voxels that reside in this spectrum of

intensity overlap and produce similar likelihoods of membership

to multiple tissue classes. To minimize such errors, preprocess-

ing methods are typically employed to reduce the effect of

intensity inhomogeneities in MR volumes.18,19 However, the

performance of subsequent tissue segmentation becomes sensi-

tive to the accuracy of the preprocessing methods used to

*Address all correspondence to: Nishant Verma, E-mail: vnishant@utexas.edu 0091-3286/2014/$25.00 © 2014 SPIE

Journal of Medical Imaging 034001-1 Oct–Dec 2014 • Vol. 1(3)

Journal of Medical Imaging 1(3), 034001 (Oct–Dec 2014)

http://dx.doi.org/10.1117/1.JMI.1.3.034001
http://dx.doi.org/10.1117/1.JMI.1.3.034001
http://dx.doi.org/10.1117/1.JMI.1.3.034001
http://dx.doi.org/10.1117/1.JMI.1.3.034001
http://dx.doi.org/10.1117/1.JMI.1.3.034001
http://dx.doi.org/10.1117/1.JMI.1.3.034001
mailto:vnishant@utexas.edu
mailto:vnishant@utexas.edu


remove intensity inhomogeneities from MR volumes. Moreover,

the computation complexity associated with such methods is

generally very high.

Accurate MR tissue segmentation requires precise modeling

of tissue classes and a classification rule that takes the effects

from image corruptions. In this study, we present a new three-

dimensional (3-D) knowledge-driven decision theory (KDT)

approach toward handling the intensity overlap across tissue

classes. The approach is motivated by an observation that tissue

class pairs have different relative extents of intensity overlap in

MR volumes. In the presence of image corruptions (such as bias

field), the intensity overlap between tissue classes increases;

however, the relative proportions stay approximately the same

across different MR volumes. The incorporation of intensity

overlap knowledge in the segmentation model enables more

accurate classification of voxels residing in the intensity overlap

spectrum. In KDT, a decision theory-based objective function

is minimized using a variational level-set-based approach.

Variational segmentation methods have gained popularity for

brain MR segmentation;13,17 however, their performance on

well-known datasets is poorly documented. This makes it diffi-

cult to establish their potential in comparison with other energy

minimization strategies, such as graph cuts. In this study, we

evaluate our approach using two well-established datasets from

the Internet brain segmentation repository (IBSR) and compare

against segmentation methods that used different energy mini-

mization techniques. There are four main technical contributions

of this work:

• We demonstrate that the relative extents of intensity

overlap between tissue classes are different and follow

a common trend across MR volumes.

• We propose a Bayesian decision theory framework that

incorporates the knowledge on relative intensity overlaps

between tissue classes to improve tissue segmentation

performance.

• We present a modified methodology of incorporating

Markov random field-(MRF) based class priors in tissue

segmentation that illustrates better performance than

the traditional methodology in proposed decision theory

framework.

• We validate the potential of level-set-based energy mini-

mization for MR tissue segmentation on two standardized

datasets.

A more detailed discussion on the technical contributions of

this work is provided in the Discussion section (Sec. 5).

The paper is organized as follows: Sec. 2 discusses the rela-

tionships of KDTwith existing segmentation methods. Section 3

describes the proposed KDT algorithm for tissue segmentation

and provides details on its numerical implementation. Section 4

evaluates the segmentation performance of KDT, compares the

performance with existing methods, illustrates the significance

of KDT’s individual components, and performs the computa-

tional complexity analysis. Finally, Sec. 5 summarizes the tech-

nical contributions of this work and discusses the advantages

and limitations of KDT.

2 Related Work

The novelty of the proposed KDT approach lies in its use

of prior knowledge on relative extents of intensity overlaps

between tissue classes to improve tissue segmentation perfor-

mance. KDT combines several individual components in order

to incorporate such prior knowledge in the segmentation

framework. Some of these components have been previously

employed or have similarities to methodologies adopted in

other segmentation methods. Therefore, in this section, we

discuss some related tissue segmentation approaches and lay

down their similarities and differences with KDT. Specifically,

we consider existing segmentation approaches that involved

some of the following components: (a) Bayesian energy formu-

lations for tissue segmentation, (b) modeling arbitrary intensity

distributions of tissue classes, (c) tissue class priors based on

probabilistic atlases and MRFs, and (d) level-set-based energy

minimization.

Most existing methods have used a Bayesian maximum

a-posteriori (MAP) formulation for tissue segmentation and

minimized it using the expectation maximization (EM) algo-

rithm. Wells et al.20 proposed an adaptive MAP method for

simultaneous MR tissue segmentation and intensity inhomoge-

neity estimation. Leemput et al.6 extended this approach by

using probabilistic atlases for automatic modeling of tissue

classes. Marroquin et al.4 also presented a Bayesian MAP

formulation for tissue segmentation along with a variant of

the EM algorithm for more efficient energy minimization.

Adaptive pixon represented segmentation (APRS) method by

Lin et al.16 used a MAP formulation, but their formulation

involved clusters of connected pixels (pixons) rather than

individual pixels. Several other well-known segmentation

approaches have also used a MAP formulation for driving tissue

segmentation.10,12,21 In contrast, the proposed KDT approach

minimizes a Bayesian decision theory-based energy function

with a loss matrix optimized to encode prior information on

relative extents of intensity overlap between tissue classes.

However, Bayesian decision theory becomes equivalent to the

MAP formulation if the relative extents of intensity overlap

are assumed to be equal across tissue class pairs. More com-

parisons between Bayesian decision theory and MAP are per-

formed in Sec. 4.6.2.

Most of the MAP formulations of tissue segmentation have

assumed a parametric Gaussian distribution of intensities within

each tissue class.6,12,16,20 As discussed earlier and also noted by

Prastawa et al.,21 intensity distributions of tissue classes show

significant overlap and modeling with Gaussian distributions

results in degenerate decision boundaries. As a result, some

segmentation approaches have considered use of alternate para-

metric models for tissue intensities. Marroquin et al.4 assumed

a parametric model of spline models with a Gibbsian prior

for modeling tissue classes. The constrained Gaussian mixture

model (CGMM) framework by Greenspan et al.10 utilized a mix-

ture of a large number of Gaussian components to represent

individual tissue classes. However, the intensity parameters of

all Gaussian components representing each tissue class were

constrained to be equal, which limit the ability of the CGMM

method to model arbitrary intensity distributions of tissue

classes. The proposed KDT approach does not make any model

assumptions about intensity distributions within the tissue

classes and models them using the nonparametric method of

kernel density estimation (KDE). KDE or parzen-window

estimation has been previously used in other segmentation

approaches to model arbitrary intensity distributions inside tissue

classes.21–24 Awate et al.22 developed an unsupervised tissue seg-

mentation method that adaptively learns image-neighborhood
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Markov statistics and entails estimation of intensity distribu-

tions using parzen-window estimation. KDE has also been

utilized in two mean shift inspired approaches of the adaptive

mean-shift (AMS) method by Mayer et al.23 and the mean shift

method with edge confidence maps (MSECM) by Jiménez-

Alaniz et al.24 Similar to KDT, these segmentation approaches

require precise modeling of the arbitrary intensity distributions

of tissue classes for good segmentation performance.

MRF-based contextual priors and probabilistic tissue atlases

are often used for defining prior anatomical information and

guide tissue segmentation.25 Leemput et al.26 proposed an

approach that combined tissue atlases with MRF priors to

define tissue priors and illustrated significant improvement

in segmentation performance. A similar approach was also

followed by the MPM-MAP4 and APRS16 segmentation

methods for defining tissue class priors. Rivera et al.12 used

a modified MRF methodology involving quadratic potentials,

which allowed for computation of probability estimates for

voxels belonging to all tissue classes. The segmentation approach

by Awate et al.22 used tissue atlases only for initialization pur-

poses. However, since their segmentation framework implicitly

incorporated MRF-based smoothness constraints, their approach

also utilizes atlases and MRF contextual priors for guiding

tissue segmentation. The subvolume probabilistic atlas seg-

mentation (SVPASEG) method by Tohka et al.27 also utilized

a MRF-based framework with tissue atlases used for dividing

MR volumes into different domains. KDT uses a similar

approach as the ones utilized in KVL, MPM-MAP, and

APRS for defining tissue priors. The only difference between

tissue priors of KDT and these studies lies in the methodolo-

gies adopted for combining tissue atlases with MRF contextual

priors. KVL, MPM-MAP, and APRS combined atlases and

MRF priors using fixed weightings throughout the segmenta-

tion. As a result, accurate alignment of atlas maps with

MR volumes using nonrigid registration methods is essential

for achieving good segmentation performance. KDT uses

a slightly different methodology that initializes tissue priors

using atlas maps and then iteratively superimposes them

with MRF contextual priors in subsequent iterations.

Because the contribution from tissue atlases reduces with

progressing segmentation stages, KDT does not require accu-

rate alignment between atlas maps and MR volumes. More

comparisons between these methodologies are performed in

Sec. 4.6.3.

While a level-set-based approach for energy minimization

has been extensively used for segmentation of natural scene

images,28,29 its application in MR tissue segmentation has

been relatively scarce. The level-set-based approach is highly

flexible and enables representation of energy functions con-

taining wide varieties of energy terms, such as local region,

smoothness, and area terms. The ease of implementation

also makes it an attractive framework for representing brain

MRI tissue segmentation models. Some level-set-based meth-

ods have been developed for brain tissue segmentation that

illustrated impressive results.13,30–32 However, the relative

value of level sets in comparison with alternate energy mini-

mization strategies is difficult to appreciate because of poor

documentation of level-set-based methods on well-established

segmentation datasets. KDT minimizes a Bayesian decision

theory energy function using a level-set-based framework sim-

ilar to previous studies 13,30–32 and evaluates its performance on

two well-established datasets.

3 Methods

Notations: we define some notations that are frequently used

in this paper. Given an MR volume V defined as a function

V∶Ω → R on a continuous 3-D domain Ω, the goal of tissue

segmentation is to partition Ω into four disjoint classes

C ∈ fWM;GM;CSF;BGg. Any MR voxel is hence defined

by its spatial location (or coordinates) x ∈ Ω and associated

MR signal/intensity value VðxÞ. Besides the spatial image

domain, we also interpret KDT in the intensity range domain.

The intensity range domain for a given MR volume V is defined

by the space of all possible voxel intensities I ∈ I, where

I ¼ ½minx∈Ω½VðxÞ�;maxx∈Ω½VðxÞ��.
Motivation: the motivation behind our approach is the obser-

vation that the relative extents of intensity overlap between dif-

ferent tissue class pairs are not equal and follow a consistent

trend across MR volumes. We illustrate this fact by calculating

the intensity overlap areas between all tissue class pairs k; j ∈
fWM;GM;CSFg using the expert ground-truth segmentations.

Intensity overlap area OverlapðCk; CjÞ between tissue classes

Ck and Cj is defined as

OverlapðCk; CjÞ ¼

Z

Rk

PðI ; CjÞdI þ

Z

Rj

PðI ; CkÞdI (1)

where I denotes the voxel intensities in the MR volume;

PðI ; CÞ denotes the likelihood of voxel intensity I belong-

ing to class C; and Rk and Rj represent the intensity

ranges defined as Rk ¼ fI∶PðI ; CkÞ > PðI ; CjÞ; I ∈ Ig and

Rj ¼ fI∶PðI ; CjÞ > PðI ; CkÞ; I ∈ Ig, respectively [as illus-

trated in Fig. 1(a)]. Figure 1(b) shows the overlap areas between

tissue pairs WM, GM, and CSF relative to the overlap areas

between WM and CSF. The scatterplot is generated using expert

ground-truth segmentations of 18 real MR volumes from the

IBSR. The consistent pattern across MR volumes suggests

that the extents of intensity overlap are different among tissue

class pairs. In terms of magnitude, the overlap area between

WM and GM is higher than the overlap area between GM and

CSF and between WM and CSF. Some of the MR volumes in

Fig. 1(b) contain high levels of intensity inhomogeneities,

which show increased overlap areas between the tissue class

pairs, such as MR volumes 3 and 10. While we have simply

combined the partial overlap areas between tissue classes

[Areas A and B in Fig. 1(a)] for illustrating that the intensity

overlap areas are not equal, asymmetry may exist between

the partial overlap areas and has been considered for investiga-

tion in our experiments. The relative magnitude of overlap areas

in MR volumes is a combined effect of several factors such as

the lengths of boundaries between tissue types, extent of intensity

inhomogeneities, partial volume effects, and contrast between

the tissue types.

3.1 Knowledge-Driven Decision Theory

Noting this observation, we now formally present the KDT

algorithm for MR tissue segmentation. We use a Bayesian

decision theory framework for integrating knowledge of the

relative extents of intensity overlap between tissue class pairs.

A loss matrix L is defined, where each element Lk;j represents

the loss incurred if a voxel from tissue class Ck is classified as

belonging to class Cj. Therefore, the total expected loss E from

classification of voxels x ∈ Ω can be defined as
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E ¼
X

k

X

j

Z

x∈Cj

Lk;j × Pðx; CkÞdx; (2)

where Pðx; CkÞ denotes the joint likelihood of voxel, x belong-

ing to class Ck. Decision theory has been traditionally used

to determine optimum decision boundaries incurring the least

expected loss in the class likelihood space based on the loss val-

ues (Lk;j and Lj;k) and the overlap between the distributions

Pðx; CkÞ and Pðx; CjÞ.
33 Because the class distributions Pðx; CÞ

for MR volumes are unknown a priori, decision theory has been

rarely applied for MR tissue segmentation.34

We utilize the expected loss E to iteratively influence the

decision boundaries such that the final voxel classification pro-

duces an intensity overlap similar to Fig. 1(b). The energy func-

tion (2) can be interpreted as a weighted sum of the intensity

overlap areas between the tissue class pairs. To understand

this, it is important to note the relationship between the two

terms: (1) ∫
x∈Cj

Pðx; CkÞdx in Eq. (2) measuring the aggregate

probability of misclassification of voxels belonging to class Ck

into class Cj, and (2) ∫ I∈Rj
PðI ; CkÞdI in Eq. (1) measuring the

partial overlap area (in likelihood space) between classes Ck and

Cj in the intensity range of Cj. While the aggregate probability

term is calculated over the image region Cj and the partial

overlap term is calculated over the intensity range Rj, they

both intrinsically measure the same underlying effect. The

aggregate probability term is simply the value of partial intensity

overlap area scaled with the number of voxels belonging in the

overlap area. This relationship can be observed in the scatterplot

[Fig. 1(c)] that shows the aggregate misclassification probabil-

ities between class pairs WM and GM and GM and CSF relative

to the aggregate misclassification probabilities between WM

and CSF for the same 18 MR volumes. A comparison with

the relative intensity overlaps in Fig. 1(b) shows that the relative

misclassification probabilities follow a very similar trend across

all MR volumes.

MR tissue segmentation based solely on intensity overlaps is

sensitive to the presence of image corruptions, such as MR

noise. Therefore, in KDT, we define the joint voxel likelihoods

Pðx; CkÞ using an intensity term PðVðxÞjCkÞ and a spatial prior

term PCk
ðxÞ,

E ¼
X

k

X

j

Z

x∈Cj

Lk;j × PðVðxÞjCkÞ × PCk
ðxÞdx; (3)

where VðxÞ denotes the intensity value of the MR volume at

voxel location x ∈ Ω; PðVðxÞjCkÞ is the likelihood of MR inten-

sity value VðxÞ belonging to class Ck; and PCk
ðxÞ denotes the

prior probability of class Ck at a location x in the MR volume.

In Eq. (3), tissue segmentation is primarily driven by the inten-

sity term PðVðxÞjCkÞ that controls the relative extents of

intensity overlap between tissue class pairs. The spatial priors

help to identify the tissue types and reduce KDTs sensitivity

to image corruptions. The following sections provide detailed

descriptions of the likelihood PðVðxÞjCkÞ and the prior PCk
ðxÞ

terms.

3.1.1 Modeling arbitrary intensity distributions of

tissue classes

PðVðxÞjCÞ is estimated by modeling the arbitrarily shaped

density functions of intensities inside the classes

C ∈ fWM;GM;CSF;BGg. Assuming parametric models for

intensities results in inaccurate modeling of the tissue classes.

The estimation errors are mostly concentrated along the tails

of the intensity density functions, which are the major regions

of intensity overlaps between the classes. Therefore, accurate

modeling of the arbitrarily intensity density functions inside tis-

sue classes is essential for KDT.We use a nonparametric method

of adaptive KDE based on linear diffusion processes35 to model

the intensity distributions inside the tissue classes. Adaptive

KDE is specifically selected over other KDE methods because

adaptive KDE has better local adaptivity, lower sensitivity to

outliers, lower boundary bias, and can handle data that are not

normally distributed.35–38 These properties become significant in

MR volumes because of the nonnegative nature of intensity data,

presence of outliers (such as noise and artifacts), and intensity

distributions that are not normally distributed.

3.1.2 Adaptive tissue class priors

A combination of probabilistic atlas maps and MRF-based con-

textual priors is used for defining tissue class priors PCðxÞ in
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Fig. 1 Relative extents of intensity overlap between tissue classes: (a) schematic illustration showing
the partial intensity overlap areas ∫ R j

PðI ; Ck ÞdI ¼ Area A and ∫ Rk
PðI ; C j ÞdI ¼ Area B, (b) scatterplot

of overlap areasOverlap (WM, GM) andOverlap (GM, CSF) acrossMR volumes relative to Overlap (WM,
CSF), and (c) scatterplot comparing the aggregate misclassification probabilities between WM and GM
and GM and CSF across MR volumes [same as in (b)] relative to the total misclassification probabilities
between WM and CSF. The aggregate misclassification probability between two classes C j and Ck is
defined as: MissProbðC j ; Ck Þ ¼ ∫ x∈C j

Pðx;Ck Þdx þ ∫ x∈Ck
Pðx; C j Þdx .

Journal of Medical Imaging 034001-4 Oct–Dec 2014 • Vol. 1(3)

Verma et al.: Three-dimensional brain magnetic resonance imaging segmentation via knowledge-driven decision theory



KDT. Such tissue class priors are commonly employed to guide

MR tissue segmentation and reduce sensitivity to image corrup-

tions.4,6 In this study, we use adaptive class priors that are

initialized with atlas maps and iteratively superimposed with

MRF contextual priors:

PCðx; nþ 1Þ ¼ ð1 − wÞ × PCðx; nÞ þ w × PMRF
C ðx; nÞ (4)

where PMRF
C ðx; nÞ denote the MRF contextual priors computed

at iteration n and w is an adaptive weight that controls the con-

tribution of PMRF
C ðx; nÞ in class priors PCðxÞ at iteration nþ 1.

The MRF contextual priors are characterized using Pott’s

model:39–41

PMRF
C ðxÞ ¼ exp

�

−
X

p∈P

δ½C;CðpÞ�

�

∕Z; (5)

where Z is a normalizing constant; p ∈ P represent all possible

cliques (set of voxels) of size two in a six-neighborhood system

(in 3-D) around voxel location x; δð:Þ represents the Dirac delta
function; and CðpÞ denotes the classes of voxels contained in

clique p. The adaptive class priors are initialized with tissue

atlas maps PCðx; n ¼ 0Þ ¼ PAtlas
C ðxÞ spatially aligned with the

MR volume using affine registration.

The expected loss function E in Eq. (3) is minimized itera-

tively by drawing decision boundaries in the likelihood space

based on the loss matrix values and the tissue class distributions

Pðx; CÞ. Any perturbations in the decision boundaries change

the voxel classification, which in turn, change the tissue class

distributions. The loss matrix is determined such that the final

segmentation produces an intensity overlap profile as observed

in Fig. 1(c). We can relate the energy function in Eq. (3) with

the MAP classification, which is often used for MR segmenta-

tion. In MAP, the objective function is minimized by choosing

the tissue classes with maximum posterior probabilities for MR

voxels. This decision rule is equivalent to minimizing E in

Eq. (3) when the same loss values are considered for all tissue

misclassifications: Li;j ¼ k (constant) ∀ i; j ≠ i and Li;i ¼ 0.

The equal misclassification loss values imply that all overlap

areas are equally penalized, which would result in equal overlap

areas between all tissue class pairs. In Sec. 4.6.2, we quantita-

tively evaluate the effect of unequal loss values by comparing

against MAP for voxel classification.

3.2 Energy Minimization using Level Sets
Framework

The energy function Eq. (3) is difficult to minimize in terms

of the evolving image regions Cj ∈ fWM;GM;CSF;BGg.
A level set formulation enables representation of the regions

Cj in terms of higher dimensional level set functions

Φ∶Ω → R. Each level set Φ partitions the image domain Ω

into two disjoint subdomains Ω1 ¼ fx ∈ Ω∶ΦðxÞ > 0g and

Ω2 ¼ fx ∈ Ω∶ΦðxÞ < 0g. Therefore, two level sets Φ1;Φ2

can be simultaneously used to represent the four classes:

Ω ¼

8

>

<

>

:

C1ðWMÞ Φ1 > 0;Φ2 > 0

C2ðGMÞ Φ1 < 0;Φ2 > 0

C3ðCSFÞ Φ1 > 0;Φ2 < 0

C4ðBGÞ Φ1 < 0;Φ2 < 0

:

The energy function in Eq. (3) for the four classes can be

written as

E ¼
X

4

j¼1

Z

x∈Cj

�

X

4

k¼1

Lk;j × P½VðxÞjCk� × PCk
ðxÞ

�

dx: (6)

For notational simplicity, we represent the total expected

loss from classification of voxels into class Cj by Ej ¼
P

4
k¼1 Lk;j × PðVðxÞjCkÞ × PCk

ðxÞ. Using the Heaviside func-

tion HðΦÞ and the Dirac delta function δðΦÞ,

HðΦÞ ¼

�

1 if Φ ≥ 0

0 if Φ < 0
; δðΦÞ ¼

d

dΦ
HðΦÞ;

the energy function in Eq. (6) can be represented as

EðΦ1;Φ2Þ ¼

Z

x∈Ω
½E1HðΦ1ÞHðΦ2Þ þ E2Hð−Φ1ÞHðΦ2Þ

þ E3HðΦ1ÞHð−Φ2Þ þ E4Hð−Φ1ÞHð−Φ2Þ�dx:

EðΦ1;Φ2Þ is used as the data term in the level set energy

functional FðΦ1;Φ2Þ ¼ EðΦ1;Φ2Þ þ μ × RðΦ1;Φ2Þ, where

RðΦ1;Φ2Þ is a regularization term with weight μ on the evolving

level set functions Φ1ðxÞ and Φ2ðxÞ. RðΦ1;Φ2Þ ensures

smoothness of the level set functions Φ1 and Φ2 by penalizing

the arc length of their zero level contours (tissue boundaries):

RðΦ1;Φ2Þ ¼

Z

x∈Ω
δðΦ1Þj∇Φ1jdxþ

Z

x∈Ω
δðΦ2Þj∇Φ2jdx:

Hence, the energy functional FðΦ1;Φ2Þ can be represented

as

FðΦ1;Φ2Þ ¼

Z

x∈Ω
½E1HðΦ1ÞHðΦ2Þ þ E2Hð−Φ1ÞHðΦ2Þ

þ E3HðΦ1ÞHð−Φ2Þ þ E4Hð−Φ1ÞHð−Φ2Þ

þ μ × δðΦ1Þj∇Φ1j þ μ × δðΦ2Þj∇Φ2j�dx: (7)

Minimizing the energy functional FðΦ1;Φ2Þ with respect to

Φ1ðxÞ, Φ2ðxÞ yields the associated Euler–Lagrange equations.

Parameterizing by an artificial time t ≥ 0 leads to the following

update equations in Φ1ðxÞ, Φ2ðxÞ in the steepest gradient

descent direction:

∂Φ1

∂t
¼ δðΦ1Þ½μ × div

�

∇Φ1

j∇Φ1j

�

þ ðE2 − E1ÞHðΦ2Þ

þ ðE4 − E3ÞHð−Φ2Þ�; (8)

∂Φ2

∂t
¼ δðΦ2Þ

�

μ × div

�

∇Φ2

j∇Φ2j

�

þ ðE3 − E1ÞHðΦ1Þ

þ ðE4 − E2ÞHð−Φ1Þ

�

; (9)

where ∇ and div are the gradient and divergent operators,

respectively. For more details on the derivation of the level

set update equations, refer to Appendix A.

To summarize, the energy function Eq. (3) is minimized iter-

atively. At every iteration, the arbitrary intensity density func-

tions of tissue classes are modeled using KDE and tissue priors

are updated by the MRF spatial contextual prior calculated on

the previous iteration’s segmentation. The flowchart in Fig. 2(a)
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summarizes these main steps of KDT for energy minimization.

Additionally, an example of updating intensity density functions

of tissue classes is shown in Fig. 2(b) at different iterations to

ultimately produce an overlap profile similar to the one observed

in Fig. 1(b).

3.3 Numerical Implementation

For the numerical implementation of level sets, we use C∞ðΩ̄Þ
regularized versions of the Heaviside function and the Dirac

delta function, denoted Hε and δε, respectively:29 HεðΦÞ ¼
1∕2þ 1∕π tan−1ðΦ∕ϵÞ, δεðΦÞ ¼ ∂HεðΦÞ∕∂Φ ¼ ϵ∕πðϵ2∕Φ2Þ.
This regularization has the tendency to compute a global mini-

mizer without being affected by the initialization of level sets.29

An implicit finite difference scheme is used to discretize and

linearize the update Eqs. (8) and (9).29,42 As frequently recom-

mended in previous level set implementations,29,43 the space step

in the finite difference scheme is chosen as h ¼ 1 and ϵ ¼ 1 is

used to obtain the regularized functions Hε and δε. Similar to

previous level set implementations, the regularization weight

μ is set to the standard value of 0.1 × 2552.29,42 Because adaptive

tissue priors iteratively superimpose MRF contextual prior on

the atlas maps, the performance of adaptive priors is expected

to be partially dependent on the time step Δt used in Eqs. (8)

and (9). Therefore, besides optimizing MRF weight w, we

also consider optimization of the time step to Δt obtain the

optimum adaptive prior performance (Sec. 4.4). The initial

level set functions Φ
0
1ðxÞ;Φ

0
2ðxÞ were defined as the signed

distance transforms of two intersecting spherical surfaces ran-

domly selected on the image domain Ω. The diameter of the

spherical surfaces was defined to be one-eighth of the smallest

dimension in the image domain Ω. As recommended,44 the

criteria for convergence of level set evolution are set as

jΔCðxÞj∕Δn < τ, where jΔCðxÞj denotes the number of voxels

where the class labels change during a span of Δn iterations. In

our implementation, we use the threshold τ ¼ 1 and iteration

span Δn ¼ 15.

4 Experiments and Results

4.1 Data

We consider two real brain MR datasets obtained from the IBSR

to evaluate the segmentation performance of KDT. The first

dataset (IBSR-20) contains MR volumes from 20 normal sub-

jects along with expert ground-truth tissue segmentations. The

data were collected using 1.5 Tesla T1-weighted spoiled gra-

dient echo MRI scans on two different imaging systems with

a slice thickness of 3.1 mm. The second dataset (IBSR-18) con-

tains MR volumes from 18 normal subjects under IBSR V2.0.

The data have higher spatial resolution in comparison with

IBSR-20 and were collected using three Tesla T1-weighted

MRI scans with a slice thickness of 1.5 mm. These datasets

are established references for brain segmentation algorithm

evaluation because they contain images with varying levels of

difficulty, such as low contrast and high intensity inhomogene-

ity, to comprehensively evaluate automatic segmentation

methods. We only consider real datasets in this study because

simulated datasets often implicitly assume a normal distribution

of tissue intensities and, therefore, exclude any analysis on

intensity overlaps from arbitrary intensity density functions.

As a preprocessing step, all MR volumes in IBSR-20 and

IBSR-18 datasets underwent automatic skull stripping using the

brain extraction tool (BET).45 The outputs from skull stripping

were visually inspected, and any skull stripping errors were

manually corrected before tissue segmentation using KDT. For

adaptive tissue class priors, we used the International Consortium

for Brain Mapping atlas maps provided by the Laboratory of

Neuroimaging, University of California at Los Angeles.46

The spatial alignment of atlas maps with subject MR data

was performed using the FMRIB’s linear image registration

tool (FLIRT).47

4.2 Evaluation Metrics

We quantify the segmentation accuracy of KDT by compar-

ing against the expert ground truth segmentations. The Dice

Fig. 2 Knowledge-driven decision theory (KDT) segmentation summary. (a) Flowchart summarizing
the main steps of KDT tissue segmentation algorithm. (b) An illustration on the update of class intensity
density functions (second row) and corresponding tissue segmentations (first row) at iterations n ¼ 0,
n ¼ 25, and n ¼ 56 (convergence). The red and blue outlines show the zero contours of the level set
functions Φ1 and Φ2, respectively (as described in Sec. 3.2).
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similarity coefficient DðA; BÞ and the Jaccard index JðA; BÞ are
the two most commonly reported metrics in the literature for

calculating the overlap between an obtained segmentation

and the ground truth of each class. However, these metrics

are interrelated as J ¼ D∕ð2 −DÞ. Therefore, we only use

the Jaccard index JðA; BÞ to assess performance in this study,

as it is more intuitive for both quantitative evaluation and

comparison purposes. The indices are given by JðA; BÞ ¼
jA ∩ Bj∕jA ∪ Bj and DðA; BÞ ¼ 2jA ∩ Bj∕ðjAj þ jBjÞ, where

A and B are the sets of voxels labeled as tissue class in KDT

and the ground-truth segmentations, respectively. j:j represents
the cardinality of the voxel sets. The results from studies report-

ing only Dice coefficients were converted into their equivalent

Jaccard indices to equitably compare the performances of the

methods. We use a second-order Taylor expansion to approxi-

mate the mean and standard deviation of JðA; BÞ,

μJðA;BÞ ≈
μDðA;BÞ

2 − μDðA;BÞ

þ
2σ2

DðA;BÞ

ð2 − μDðA;BÞÞ
3

σJðA;BÞ ≈
2σDðA;BÞ

ð2 − μDðA;BÞÞ
2
:

4.3 Statistical Comparisons

We statistically compare the segmentation performance of KDT

with other competitive methods that reported accuracies on

IBSR-20 and IBSR-18 datasets. Because of the paired nature of

segmentation accuracies, we perform a two-sided Wilcoxon

signed rank test with methods that reported the subject-wise

segmentation accuracies. While such a comparison would be

ideal, most of the studies did not report the subject-wise accu-

racies and only reported the summary statistics (mean and

standard deviation) of the overlap metric, which excludes any

paired statistical comparisons.

4.4 Parameter Optimization

The parameters that need to be optimized are the loss matrix L,

the adaptive class prior weight w, and the time step Δt in the

level set implementation. We randomly select a set of three

MR volumes each from IBSR-18 and IBSR-20 datasets to

find the optimum parameter values. We consider a range of

possible values for each parameter and select the values that

produce the best segmentation performance. The following

ranges for the parameters are considered: {0–10} for every

Li;j in the loss matrix L (with a step size of 1), {0, 0.05,

0.1, 0.2, 0.4, 0.5, 0.7, 1} for w and {0–1} for time step

Δt (with a step size of 0.1). To simultaneously measure the

segmentation performance across all tissue classes, we use

voxel misclassification rate (VMR) defined as VMR where

VMR ¼
P

i

P

j;j≠i jGi ∩ Sjj∕jGij where Gi denotes the set of

ground-truth voxels for the i-th class, Sj denotes the set of vox-

els classified by KDT as belonging to the j’th class, j:j denotes
the cardinality of the set, and i; j ∈ fWM;GM;CSFg.

The effects of prior weight w and time step Δt values on the

segmentation performance are expected to be interdependent,

whereas the loss matrix is expected to be independent from

the other two variables. The independence assumption is justi-

fied because the loss matrix values in theory should be solely

determined by the relative extents of intensity overlap between

tissue classes. While the inclusion of spatial information using

adaptive priors helps to improve segmentation accuracy, its

omission should not affect the loss matrix values.

The loss matrix elements are optimized first using a small

time step Δt ¼ 0.1 and w ¼ 0.2. The cost of classification

into the correct class is considered as zero (Li;i ¼ 0), and the

cost of misclassification into BG is set to 20 (very high loss

since the background has already been removed using BET).

While Fig. 1(c) simply combined the partial overlap areas

between any two tissue classes into a single overlap area

value, we consider asymmetric loss matrix to investigate any

differences in partial intensity overlap areas. For optimizing

the loss matrix, one of the elements (LWM;GM) is set to 1, and

others are estimated relative to this value. We further assume

that LWM;CSF; LCSF;WM > LGM;CSF; LCSF;GM > LGM;WM based on

the pattern of intensity overlap areas observed in Fig. 1(c).

We find that the following asymmetric loss matrix produces

the best segmentation performance:

L ¼

WM GM CSF

WM

GM

CSF

0

B

@

0 1 10

1 0 6

10 9 0

1

C

A

;

While GM and CSF show the differences between their par-

tial overlap areas (GM → CSF overlap > CSF → GM overlap),

the overlap distributions corresponding to WM − GM and

WM − CSF tissue pairs are symmetric.

The prior weight w and time step Δt are optimized simulta-

neously by considering all possible combinations. We find that a

combination of w ¼ 0.05 and Δt ¼ 0.2 produces the best seg-

mentation performance across all tissue classes. Figure 3 shows

the dynamics of VMR for different values of Δt and w around

the optimum combination of w ¼ 0.05 and Δt ¼ 0.2. To test the

validity of independence assumption, a subset of the loss matrix

elements are again optimized using w ¼ 0.05 and Δt ¼ 0.2.

No changes in the optimum loss matrix elements are observed

that confirm that the loss matrix optimization is independent of

other parameters in KDT.

4.5 Segmentation Performance on Internet Brain
Segmentation Repository Datasets

4.5.1 Internet brain segmentation repository-20 dataset

Table 1 compares the overlap metrics between KDT and other

methods that have reported segmentation results using IBSR-20

dataset. Some studies combined GM and CSF into a single class

GMþ CSF and evaluated their segmentation algorithms using

overlap metrics of WM and GMþ CSF classes. For a fair com-

parison, we compare KDT with methods belonging to both

the categories: segmentation into WM, GM, CSF [Table 1(a)]

and segmentation into WM, GMþ CSF [Table 1(b)]. Besides

Rivera et al.,12 none of the other studies reported the subject-

wise accuracies, which exclude any pairwise statistical compar-

isons. From comparing summary overlap statistics among the

existing methods, Rivera et al.12 produce better WM segmenta-

tion accuracy (74.20� 3.90) than all other existing meth-

ods.4,10,11,13,16,23,24,27,48–52 KDT produces statistically significant

improvements in WM and GMþ CSF segmentation accuracies

over Rivera et al.12 (p ¼ 2.19 × 10−4 for WM and p ¼
8.9 × 10−5 for GMþ CSF) and, therefore, has better WM

accuracy than other competitive methods as well. KDT also
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produces significantly better GM segmentation accuracy than

most of the existing methods.4,10,13,23,24,27,48–51 The methods

by Akselrod-Ballin et al.52 and Lin et al.16 produce similar GM

segmentation accuracy; however, KDT produces significantly

better WM and CSF segmentation accuracies. When compared

for CSF segmentation, KDT performs significantly better than

all existing methods. If the three MR volumes selected for

parameter optimization are excluded, the WM, GM, and CSF

segmentation accuracies on the remaining 17 MR volumes

are 76.75� 3.44, 83.66� 2.78, and 72.54� 1.14, respectively.

The negligible differences in the summary segmentation accu-

racies after removal of the three MR volumes suggest that the

parameter values are not biased toward the volumes suggested

for parameter optimization.

4.5.2 Internet brain segmentation repository-18 dataset

Table 2 shows the segmentation performance of KDT on the

IBSR-18 dataset. Similar to IBSR-20, we report segmentation

results for both the cases when brain tissue is segmented

into all three tissue types WM, GM, CSF [Table 2(a)], and

when CSF and GM classes are combined into one class

GMþ CSF [Table 2(b)]. KDT produces better GM and CSF

segmentation accuracies than all other methods in Table 2(a).

Besides three methods (Local–linear, KVPASEG, and Awate

et al.22), Rivera et al. 12 produce better WM segmentation accu-

racy (78.82� 2.83) than all other existing methods.5–7,10,15,48,49,53

KDT produces statistically significant improvements in the

segmentation accuracies of WM and GMþ CSF over Rivera

et al. 12 (p ¼ 0.02 for WM and p ¼ 2 × 10−4 for GMþ CSF)

and, therefore, has better WM segmentation performance

than the rest of the methods. While the local–linear,17

KVPASEG,27 and Awate et al.22 methods produce similar WM

segmentation, KDT produces much better average GM and

CSF segmentation accuracies. When compared with methods

that combined GM and CSF [Table 2(b)], KDT produces better

average GMþ CSF segmentation accuracy than all other

methods.5,7,12,48,53 The summary WM, GM, and CSF seg-

mentation accuracies are 79.72� 2.78, 88.59� 1.23, and

74.39� 6.43 when the three MR volumes used for parameter

optimization are removed, which suggests that there is no sig-

nificant bias of the selected parameter values on the segmenta-

tion results.

Table 1 Segmentation performance on IBSR-20 dataset.

(a) segmentation into WM, GM, CSF

Method JWM JGM JCSF

KDT 76.98� 3.44 83.68� 2.58 72.94� 2.17

APRS16
74.10� 2.92 82.60� 2.53 70.80� 5.65

SPM,48,a 71.50� 3.75 79.80� 4.10 70.50� 4.32

DMC-EM49
69.00� 12.00 71.00� 8.00 71.00� 7.00

Rueda et al.50 70.10� 4.20 70.80� 4.50 —

Zheng et al.51 70.79 65.02 5.10

Dual-front13 67.00 73.90 —

MPM-MAP4 68.30 66.20 22.70

Akselrod-
Ballin et al.52

66.85� 5.56 75.65� 6.16 28.13� 9.74

AMS23
69.10� 4.20 68.30� 3.50 —

SVPASEG27 68.50 69.80 —

CGMM10
66.00� 6.00 68.00� 4.00 —

MSECM24,b 62.80 59.40 21.0

(b) segmentation into WM, GMþ CSF

Method JWM JGMþCSF

KDT 76.98� 3.44 85.86� 2.12

Rivera et al.12 74.20� 3.90 81.90� 2.80

Ibrahim et al.11 66.83 77.43

aReported by Lin et al.16
bMean shift with edge confidence map method by Jiménez-Alaniz
et al.24
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Fig. 3 Parameter optimization: plots showing the dynamics of segmentation performance against
different values of (a) time step Δt (using w ¼ 0.05) and (b) adaptive tissue prior weighting w (using
Δt ¼ 0.2). For clarity, we have only shown the results on three out of the six MR volumes considered
for optimization.
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4.5.3 Performance comparison between Internet brain

segmentation repository datasets

In comparison with IBSR-20, KDT produces better segmenta-

tion accuracies for IBSR-18 MR volumes. This is because of

the higher resolution of MR volumes in IBSR-18 (less slice

thickness and higher magnetic field strength) with less partial

volume effects than in IBSR-20. Figure 4 shows variations in

JWM; JGM, and JCSF across subjects in IBSR-20 and IBSR-18

datasets. Some MR volumes in IBSR-18 dataset (such as sub-

jects 15 and 16) have significantly fewer CSF voxels (smaller

ventricles), which result in relatively lower JCSF for those vol-

umes (same number of misclassified voxels produce much

higher reduction in Jaccard overlap values). As a result, we

observe higher variability of JCSF in the IBSR-18 dataset as

compared with the IBSR-20 dataset. Although KDT produces

consistent segmentations in both datasets with small variations,

the segmentation performance slightly declines in MR volumes

that contain high levels of intensity inhomogeneities (such as

subjects 2, 3 in IBSR-20 and subjects 11, 13 in IBSR-18).

This suggests that while KDT may have better ability in han-

dling intensity overlaps between tissue classes, it is still sensitive

to the presence of high levels of intensity inhomogeneities.

4.6 Significance of Individual Components

In this section, we evaluate the significance of individual com-

ponents in KDT by comparing against the most commonly

used alternatives. Besides the component being evaluated, all

other aspects of KDT are kept exactly the same to ensure

that the results truly reflect the significance of that particular

component.

4.6.1 Significance of modeling arbitrarily shaped intensity

distributions

We illustrate the significance of modeling arbitrarily shaped

intensity density functions by comparing with the case when

the most common parametric assumption of normal distribution

of intensities is assumed inside each class. Tables 3 and 4 show

comparisons between the overlap scores, sensitivity, and speci-

ficity when modeling arbitrary distributions (first row) and

assuming normal distribution (second row). The tissue segmen-

tation accuracies are significantly higher when arbitrary distri-

butions inside tissue classes are modeled (p ¼ 1.53 × 10−5 for

WM, p ¼ 1.53 × 10−5 for GM, and p < 7.63 × 10−6 for CSF).

In the normal distribution case, we observe an improvement in

SNWM; however, both SCWM and JWM decrease. On the other

hand, SNGM and JGM decrease while SCGM improves. This indi-

cates overclassification of voxels as WM and, therefore, an

improvement in sensitivity is produced, although the overlap

Table 2 Segmentation performance on IBSR-18 dataset.

(a) segmentation into WM, GM, CSF

Method JWM JGM JCSF

KDT 79.93� 2.58 88.62� 1.32 74.55� 5.86

Akselrod-
Ballin et al.15

76.99 75.44 70.94

DCM-EM49
77.00� 6.00 73.00� 13.00 62.00� 11.00

Local-linear17 79.53 84.84 20.77

RCM++17 77.62 81.82 17.37

KVPASEG27
80.31� 2.14 71.92� 3.15 —

Awate et al.22 79.71� 2.89 67.91� 5.99 —

CGMM10
73.71� 6.62 65.56� 8.18 12.65� 6.31

Leemput et al.6,a 75.04� 3.21 65.02� 6.79 9.05� 3.56

(b) segmentation into WM, GMþ CSF

Method JWM JGMþCSF

KDT 79.93� 2.58 89.71� 1.74

Rivera et al.12 78.82� 2.83 86.17� 2.30

FAST7,b
76.77� 1.64 86.43� 1.89

RiCE5
76.28� 2.62 88.09� 1.36

SURFER-FCM53,b
76.40� 2.35 87.63� 1.34

SPM48,b
74.90� 4.32 84.08� 3.67

aReported by Greenspan et al.10
bReported by Roy et al.5
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Fig. 4 Variation in KDT’s segmentation performance: Plots showing the variations in JWM; JGM, and JCSF

across subjects in (a) IBSR-20 and (b) IBSR-18 datasets.
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score and specificity suffers. Overclassification of voxels as

WM is from the inaccurate estimation of intensity distributions

of the tissue classes, which is crucial for the analysis of overlap

areas. Figure 5 visually illustrates overclassification of voxels as

WM using normal distribution (fourth column) when compared

with segmentation results from KDT (third column) and ground-

truth segmentations (second column).

4.6.2 Significance of incorporating intensity overlap

knowledge

We illustrate the significance of incorporating knowledge of the

relative extents of intensity overlap between tissue class pairs

(loss matrix) by comparing with the case when equal loss values

are considered for all tissue misclassifications (equivalent to

the MAP model). Table 3 compares the performance between

using optimum loss matrix (first row) and the MAP model

(third row). While similar JWM is observed, JGM and JCSF of

MAP are significantly lower than KDT (p ¼ 3 × 10−3 for GM,

and p < 7.63 × 10−6 for CSF). MAP penalizes the overlap areas

between tissue class pairs with equal costs and results in voxel

misclassification between GM and CSF. Figure 5 visually illus-

trates the GM − CSF voxel misclassification in MAP (fifth

column) in comparison with segmentations produced by using

optimum loss matrix (third column). This illustrates the impor-

tance of incorporating knowledge regarding the relative extents

of intensity overlap between tissue class pairs.

4.6.3 Significance of adaptive class priors

Adaptive class priors combine atlas maps with MRF contextual

information to incorporate spatial information in voxel

Table 3 Significance of individual components.

Jaccard overlap indices

JWM JGM JCSF

KDT 79.93� 2.58 88.62� 1.32 74.55� 5.86

Normal distance 75.11� 5.19 82.67� 2.64 69.06� 7.31

MAP 79.70� 4.08 86.88� 1.82 59.34� 7.74

Atlas 74.48� 5.02 83.71� 2.43 59.43� 8.55

MRF 77.72� 4.80 86.82� 2.74 72.34� 7.15

Ground truth KDT result Normal distance MAP MR volume 

Fig. 5 Significance of individual components: visual comparisons between ground truths (second col-
umn), KDT segmentations (third column), segmentations obtained from assuming normal distribution for
tissue classes (fourth column), and maximum a-posteriori classification (fifth column).

Table 4 Significance of individual components: comparison of sensitivities and specificities.

Sensitivity and Specificity

SNWM SNGM SNCSF SCWM SCGM SCCSF

KDT 89.6� 2.3 92.0� 2.5 72.5� 5.9 92.2� 2.5 89.3� 2.3 99.98� 0.0

Normal Dist. 95.0� 1.4 83.5� 2.8 68.5� 5.5 83.9� 2.7 94.2� 1.3 99.90� 0.1

MAP 89.7� 2.4 91.6� 2.7 62.2� 5.5 91.9� 2.6 88.7� 2.5 99.84� 0.1

Atlas 89.6� 2.3 86.2� 3.4 64.3� 4.8 86.6� 3.3 89.1� 2.4 99.79� 0.2

MRF 89.7� 3.5 89.9� 3.9 77.7� 7.3 90.1� 3.9 89.9� 3.4 99.84� 0.1
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classification. First, we illustrate the significance of MRF

contextual information in class priors by comparing with

the case when atlas maps are solely utilized as class priors

(fourth row). The atlas maps are aligned to the MR volumes

using the 3-D nonrigid demon registration method.54,55 The

sole use of atlas maps results in significantly lower WM,

GM, and CSF segmentation performance (p < 7.63 × 10−6

for WM, GM, and CSF) than using adaptive class priors.

This reduction in segmentation performance is because of

errors in alignment, which directly translates to segmentation

errors. The inclusion of MRF contextual information helps to

reduce the impact of errors made during the alignment of

atlas maps with the MR volumes. In adaptive class priors,

the atlas maps are aligned with the MR volumes using simple

linear registration.47 The application of nonrigid registration

methods did not produce any statistically significant differ-

ences in the final segmentation performance. This further illus-

trates the significance of MRF contextual information in the

class priors.

In this study, the methodology for combining MRF contex-

tual priors with atlas maps is slightly different from the

traditional way of defining MRF class priors.4,6 Traditional

methodology combined atlas maps and MRF contextual priors

with fixed weightings throughout the segmentation process. As

a result, accurate alignment of atlas maps with the MR volumes

is essential for obtaining good tissue segmentation performance.

Any alignment errors between atlas maps and MR volumes

directly translate to errors in tissue segmentation. On the

other hand, the methodology used in this study initializes tissue

priors with atlas maps and keeps superimposing MRF contex-

tual priors at every iteration on the tissue priors. As a result, the

contribution of atlas maps reduces over the course of the seg-

mentation iterations. Therefore, while tissue atlases still provide

important prior anatomical information in the early stages of

segmentation, any alignment errors do not result in final seg-

mentation errors. In proposed decision theory framework, we

found that the modified methodology is more efficient in incor-

porating spatial information and produces better segmentation

results. We illustrate this by comparing the segmentation perfor-

mance obtained using adaptive class priors with the traditional

MRF class priors (fifth row in Tables 3 and 4). The atlas maps in

the case of traditional MRF class priors were spatially aligned

with the MR volumes using the 3-D nonrigid demon registration

method.54,55 The use of adaptive tissue class priors produces sig-

nificantly better WM and GM segmentation performance than

the traditional MRF class priors (p ¼ 1.39 × 10−2 for WM and

p ¼ 2.68 × 10−2 for GM). These differences in WM and GM

segmentation performances are from errors made during the

alignment of atlas maps with the MR volumes, which persist

throughout the segmentation. No significant difference in

CSF segmentation performance is observed between traditional

MRF priors and adaptive class priors. This is because of the sig-

nificantly higher contrast between CSF and other tissues, which

results in good segmentation performance even if the priors are

inaccurately defined.

4.6.4 Impact of loss matrix elements on segmentation

In comparison with equal loss values for all tissue pairs (MAP

model), we illustrated that the optimum loss matrix produces

significantly better segmentation performance across all tissue

classes (Sec. 4.6.2). Based on the relative loss values assigned

to different tissue misclassification types, decisions are taken for

voxels that have similar posterior probability of belonging to

multiple classes. However, certain applications require higher

sensitivity in segmentation of specific tissue types. Here, we

take the example of computer-based support systems for dis-

eases such as multiple sclerosis, which require high sensitivity

in WM segmentation. As shown in Fig. 6, significant improve-

ment in SNWM can be obtained by simply increasing the relative

loss values associated with WM misclassification.

4.7 Robustness to Initialization of Level Set
Functions

The level set framework for energy minimization is robust to the

initialization of functionsΦ1;Φ2. To illustrate this, we evaluated

the variation in KDTs segmentation performance across all

tissue classes (using VMR) on a MR volume for 20 random ini-

tializations (as discussed in Sec. 3.3). We observe the mean and

standard deviation of VMR to be 0.3748 and 0.021, respectively.

The small variation in misclassification rate (∼0.7% per brain

tissue) shows that the level set framework is robust to the

initialization of level set functions Φ1;Φ2. Similar results have

also been reported by previous level-set-based segmentation

methods.13,17,29

4.8 Computational Complexity

We analyze the computational complexity of KDT and compare

it with other segmentation methods. Adaptive kernel density

estimation 35 involves the use of fast Fourier transform for cal-

culation of cosine and inverse cosine transforms on MR voxel

intensities. Therefore, modeling class distribution has a com-

plexity ofOðK logKÞ, where K denotes the number of MR vox-

els in the tissue class. In practice, K < N∕2, where N is the total

number of voxels in a MR volume. MRF calculation using the

standard belief propagation for a clique size of two has a com-

plexity of OðNL2Þ, where L is the number of class labels

(L ¼ 4). The level set evolution using Eqs. (7) and (8) has

a linear complexity OðNÞ. Therefore, the overall complexity of

KDT is OðN logNÞ. The number of iterations required for con-

vergence in our numerical implementation on the IBSR data is

typically around T ∼ 50 − 60. The average physical run time for
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Fig. 6 Significance of individual components: plot showing the effect
on SNWM when the relative loss values associated with WM misclas-
sification are increased.
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segmenting a MR volume from IBSR-20 dataset (typical size

256 × 256 × 60) on a Intel Core 2.7 Ghz desktop machine

was 4.72 min. On IBSR-18, the average running time per vol-

ume increased to 9.27 min because of the higher resolution MR

data (typical size 256 × 256 × 120).

Among other segmentation methods that performed com-

plexity analysis, KDT is one of the least computationally inten-

sive. Local-linear method 17 has a complexity of OðnM2SÞ
for two-dimensional (2-D) segmentation framework, where

M ∼ 71 − 91 is the window size, n ∼ 256 × 256 is the number

of voxels per MR slice, and S ∼ 60 − 120 is the number of slices

in a MR volume. This results in physical run times of 30 min per

MR volume in IBSR-18 using a Intel Core 2 Ghz machine.

Ibrahim et al. 11 also reported a complexity of OðN2GLÞ,
where G is the number of Gaussian components and L is the

sequence length. Rivera et al.12 did not perform complexity

analysis but reported physical running times of 3.2 h per MR

volume for 2-D framework and 4.1 h per MR volume for

their 3-D framework on a 3 GHz machine. We also compared

the physical run times of KDTwith the state-of-the-art FMRIB’s

automated segmentation tool (FAST)7 included in the FMRIB

software library. The physical run times of FAST were 7.11

and 12.38 min for IBSR-20 and IBSR-18 volumes, respectively,

using the same desktop machine used for all experiments in this

study. Therefore, both KDT and FAST have comparable physi-

cal run times; however, KDT produces significantly better seg-

mentation results [Table 2(b)].

5 Discussions and Conclusions

MR tissue segmentation is a difficult task because of significant

overlaps in the intensity distributions of the tissue classes. Most

of the voxel classification errors occur in these regions of inten-

sity overlap, where voxels have similar likelihoods of belonging

to multiple tissue classes. To address this, the most common

approach has been to correct for image corruptions that reduce

the intensity overlap between tissue classes prior to tissue seg-

mentation.18,19 In this study, we proposed a new strategy to bet-

ter deal with intensity overlaps between tissue classes without

separately accounting for image corruptions. We illustrated that

such a strategy produces more accurate classification of voxels

belonging to intensity overlap regions in comparison with the

existing methods, several of which employed methods for cor-

rection of image corruptions.

There are four main technical contributions of this work.

First, we demonstrated that the relative extents of intensity over-

lap between tissue classes are different. The incorporation of

this knowledge of the relative intensity overlaps significantly

improves the tissue segmentation performance. We illustrated

this (Sec. 4.6.2) by comparing the tissue segmentation perfor-

mance of KDT (with optimal loss matrix) against the segmen-

tation performance obtained using MAP, which is a specific case

of KDTwhen all intensity overlaps are penalized with the same

cost. Second, we presented a Bayesian decision theory frame-

work KDT to incorporate the knowledge on relative intensity

overlaps between tissue classes in tissue segmentation.

Decision theory has been traditionally utilized to make decisions

on new observations, once the class likelihood distributions are

known. Because tissue distributions are unknown prior to seg-

mentation, we utilize the Bayesian decision theory in a different

manner. We exploit its ability to draw decision boundaries iter-

atively, such that the final location of decision boundaries

produces class distributions that conform to the overlap profile

as observed in Fig. 1(c).

Third, we presented a modified approach of adaptive MRF

class priors for tissue segmentation. The adaptive MRF priors

show better adaptivity than the traditional MRF class priors.4,6

Adaptive MRF priors also have lower computational complexity

because they do not require the use of time consuming nonrigid

image registration methods for aligning patient MR volumes

with the atlas maps (Sec. 4.6.3). We illustrated these benefits

by comparing the tissue segmentation performances obtained

using adaptive MRF priors and traditional MRF class priors,

while keeping all other components of the segmentation frame-

work the same. While adaptive class priors show significant

improvements in WM and GM segmentation performances,

these improvements might be specific only for the proposed

decision theory framework. Therefore, further investigation of

adaptive class priors incorporated in different segmentation

frameworks is required to establish their significance in MR tis-

sue segmentation.

Fourth, we illustrated that the level set approach for energy

minimization is highy promising for MR segmentation. While

level-set-based methods have become popular in computer

vision, their application in MR tissue segmentation still remains

to be validated because of lack of evaluation on standardized

datasets. We evaluated the performance of KDT on two very

popular datasets of real MR volumes, which have been exten-

sively utilized for evaluating tissue segmentation methods.

In comparison with methods that employed other energy min-

imization techniques (such as EM and graph cuts), our method

using a level-set framework produced significantly better seg-

mentation results. This demonstrates that the level-set-based

framework is quite promising as a tool for minimizing compli-

cated energy functions.

KDT performs better than most existing segmentation meth-

ods for simultaneously segmenting brain MR images into WM,

GM, and CSF.4–7,10–12,15,22,27,48,51,53 Some methods report similar

segmentation performance on certain tissue types; however, they

fail to perform as well on other brain tissue types.16,17,22,27,52

KDTalso performs better than the popular segmentation method

FAST, which is widely used by the neuroimaging community.7

Several of these methods involve minimizing image corruptions

as part of their segmentation framework. Therefore, KDT illus-

trates better ability in handling intensity overlaps between tissue

classes without the use of any preprocessing method to reduce

MR corruptions. Besides improved segmentation performance,

KDT also has one of the best computational complexities

OðN logNÞ in comparison with other segmentation methods.

For applications that require higher sensitivity in segmentation

of specific tissue types, KDT also provides a very convenient

framework for adapting the segmentation method by simply

increasing the relative values of loss matrix elements.

Besides illustrating advantages, KDT also suffers from

certain limitations. While KDT better handles intensity overlaps

between the tissue classes, it is still affected by the presence of

high levels of intensity inhomogeneities. This can be observed

in Fig. 3, where the segmentation performance of KDT declines

in MR volumes that suffer from high levels of intensity inho-

mogeneities. Another associated limitation of KDT is its sensi-

tivity to the presence of partial volume effects in MR volumes.

This is the reason behind the lower segmentation performance of

KDT on MR volumes of IBSR-20 as compared with MR vol-

umes of IBSR-18. The use of preprocessing steps for reducing
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the effects of intensity inhomogeneities and partial volume

effects can help to improve the segmentation performance in

MR volumes that contain high levels of MR artifacts.

However, inclusion of preprocessing steps will increase the

overall computational complexity of tissue segmentation task.

Moreover, KDTs segmentation performance will become highly

sensitive to the performance of preprocessing steps. The need

for skull and background extractions in MR volumes prior to

segmentation is another limitation of KDT. The skull and

other background structures often present with very similar

intensity distributions as the brain tissues, which result in erro-

neous segmentations using KDT.

This study is limited by its strategy for comparing segmen-

tation accuracy of KDT against the segmentation accuracies of

the existing segmentation methods. Because IBSR datasets

were developed to contain MR volumes with varying level of

difficulties, a paired statistical test is ideal for comparing perfor-

mance between segmentation methods. However, most studies

only reported the summary statistics of overlap metrics, which

make it impossible to perform statistical comparisons with

the existing methods. Noting this limitation, we provide the sub-

ject-wise segmentation accuracies for IBSR-20 and IBSR-18

datasets in Table 5 to facilitate paired statistical comparisons

in future studies.

Appendix A: Detailed Derivation of KDT
Level-Set Framework

In MR volumes, the image domain Ω is a 3-D Cartesian grid

where any location x ∈ Ω is defined by coordinates x ¼
fx1; x2; x3g along the three orthogonal axes. The energy func-

tional Eq. (7) can be rewritten as

FðΦ1;Φ2Þ

¼

Z

x∈Ω
GðΦ1;Φ2;Φ1;1;Φ2;1;Φ1;2;Φ2;2;Φ1;3;Φ2;3Þdx1dx2dx3;

(10)

where G is a real-valued function of level sets Φ1;Φ2 and their

derivatives. The partial derivative of Φi with respect to xj is

denoted as Φi;j in the above equation.

G ¼ E1HðΦ1ÞHðΦ2Þ þ E2Hð−Φ1ÞHðΦ2Þ

þ E3HðΦ1ÞHð−Φ2Þ þ E4Hð−Φ1ÞHð−Φ2Þ

þ μ × δðΦ1Þj∇Φ1j þ μ × δðΦ2Þj∇Φ2j:

The energy functional F is minimized using a gradient

descent method with t as an artificial time parameter:

∂Φi

∂t
¼ −∇Φi

FðΦ1;Φ2Þ; i ¼ 1;2: (11)

The partial derivatives of energy functional FðΦ1;Φ2Þ with
respect to level sets Φ1;Φ2 are obtained by writing the Euler–

Lagrange equations of (10):

∇Φ1
FðΦ1;Φ2Þ

¼
∂G
∂Φ1

−
∂
∂x1

�

∂G
∂Φ1;1

�

−
∂
∂x2

�

∂G
∂Φ1;2

�

−
∂
∂x3

�

∂G
∂Φ1;3

�

¼ δðΦ1Þ × ½E1HðΦ2Þ − E2HðΦ2Þ þ E3Hð−Φ2Þ

− E4Hð−Φ2Þ� −
�

∂
∂x1

�

Φ1;1

ðΦ2
1;1 þΦ

2
1;2 þΦ

2
1;3Þ

1∕2

�

þ
∂
∂x2

�

Φ1;2

ðΦ2
1;1 þΦ

2
1;2 þΦ

2
1;3Þ

1∕2

�

þ
∂
∂x3

�

Φ1;3

ðΦ2
1;1 þΦ

2
1;2 þΦ

2
1;3Þ

1∕2

��

× μ × δðΦ1Þ

¼ δðΦ1Þ × ½ðE1 − E2Þ ×HðΦ2Þ

þ ðE3 − E4Þ ×Hð−Φ2Þ − μ × div

�

∇Φ1

j∇Φ1j

��

Table 5 IBSR-20 and IBSR-18 subject-wise tissue segmentation
accuracies (Jaccard indices).

IBSR20
Subjects WM GM CSF

IBSR18
Subjects WM GM CSF

5_8 77.12 83.61 72.13 01 79.62 87.44 83.21

4_8 70.02 79.81 70.83 02 80.26 89.30 76.21

2_4 68.17 76.23 72.71 03 76.49 87.64 68.11

6_10 74.01 82.34 74.26 04 77.01 88.56 71.92

15_3 72.89 80.67 73.53 05 80.27 87.94 72.71

16_3 76.92 81.93 71.13 06 80.62 89.86 79.62

17_3 77.05 82.89 70.91 07 81.46 86.51 74.12

8_4 79.34 84.55 80.63 08 82.22 85.85 73.83

7_8 81.92 85.13 73.29 09 81.28 87.16 76.45

110_3 81.54 84.43 70.71 10 82.68 88.17 76.81

111_2 77.74 83.01 73.43 11 84.13 89.18 71.91

112_2 76.91 83.72 73.61 12 81.23 90.50 75.67

100_23 76.98 85.39 73.58 13 74.94 90.39 71.34

202_3 79.89 85.79 71.13 14 83.49 89.25 81.77

191_3 76.27 83.93 72.84 15 79.89 88.51 61.36

12_3 78.35 85.31 71.91 16 77.85 89.59 65.76

13_3 78.18 86.64 72.68 17 78.96 89.76 84.15

1_24 78.34 86.74 71.48 18 76.32 89.50 76.96

205_3 78.76 84.98 74.41

11_3 79.21 86.44 73.67
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Similarly for the level set function Φ2,

∇Φ2
FðΦ1;Φ2Þ ¼

∂G
∂Φ2

−
∂
∂x1

�

∂G
∂Φ2;1

�

−
∂
∂x2

�

∂G
∂Φ2;2

�

−
∂
∂x3

�

∂G
∂Φ2;3

�

¼ δðΦ2Þ ×

�

ðE1 − E3Þ ×HðΦ1Þ þ ðE2 − E4Þ

×Hð−Φ1Þ − μ × div

�

∇Φ2

j∇Φ2j

��

Using these partial derivatives in Eq. (11) gives the level set

update equations:

∂Φ1

∂t
¼ δðΦ1Þ½μ × div

�

∇Φ1

j∇Φ1j

�

þ ðE2 − E1Þ ×HðΦ2Þ

þ ðE4 − E3Þ ×Hð−Φ2Þ�

∂Φ2

∂t
¼ δðΦ2Þ

�

μ × div

�

∇Φ2

j∇Φ2j

�

þ ðE3 − E1Þ ×HðΦ1Þ

þ ðE4 − E2Þ ×Hð−Φ1Þ�
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