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ABSTRACT:

Unmanned Aerial Vehicles (UAVs) offer several new possibilities in a wide range of applications. One example is the 3D reconstruction

of buildings. In former times this was either restricted by earthbound vehicles to the reconstruction of facades or by air-borne sensors

to generate only very coarse building models. This paper describes an approach for fully automatic image-based 3D reconstruction of

buildings using UAVs. UAVs are able to observe the whole 3D scene and to capture images of the object of interest from completely

different perspectives. The platform used by this work is a Falcon 8 octocopter from Ascending Technologies. A slightly modified

high-resolution consumer camera serves as sensor for data acquisition. The final 3D reconstruction is computed offline after image

acquisition and follows a reconstruction process originally developed for image sequences obtained by earthbound vehicles. The per-

formance of the described method is evaluated on benchmark datasets showing that the achieved accuracy is high and even comparable

with Light Detection and Ranging (LIDAR). Additionally, the results of the application of the complete processing-chain starting at

image acquisition and ending in a dense surface-mesh are presented and discussed.

1 INTRODUCTION

The automatic generation of accurate three-dimensional models

is useful for a wide range of applications including robot guid-

ance, computer-graphics, virtual reality, communication, and vi-

sual inspection for example during industrial quality assessment.

Especially the three-dimensional reconstruction of buildings is

important due to its potential for the usage of 3D city models in

city planning, damage assessment, monument conservation, ar-

chitecture, and digital tourism.

Earthbound vehicles only move on the ground. Images captured

by them can be used for the reconstruction of facades. The roof

or concave structures cannot be imaged with reasonable effort.

In contrast, conventional air-borne sensors are not able to model

details at the facade. They help to determine the coarse shape of

a building, but cannot model the whole building with a high de-

gree of detail. UAVs combine the advantages of earthbound and

air-borne sensors. They can exploit the whole three-dimensional

space as long as it is free of obstacles. They allow for differ-

ent imaging positions and therefore enable the acquisition of the

whole object.

This paper proposes a complete and automatic processing chain,

beginning with acquiring images over feature tracking, path esti-

mation, and resulting in a dense three-dimensional surface model.

The Falcon 8 octocopter from Ascending Technologies is utilized

as flight platform in this work. A high resolution consumer cam-

era with a prime lens is used as imaging sensor. In the special

case of gathering 3D information with a UAV of less than 5Kg

heavy laser-scanning sensors cannot be employed and a light-

weight camera is the only possibility.

The final 3D reconstruction is computed offline after image ac-

quisition and follows the reconstruction process originally de-

veloped for image sequences obtained by earthbound vehicles.

Interest points within all images are found with the Förstner op-

erator (Föstner and Gülch, 1987) and described by SIFT (Lowe,

2004). Due to the low precision of the on-board GPS and IMU,

the trajectory of the camera is computed only from images. For

the best accuracy, an optimal set of images in the sense of view-

ing angle and number of matches is selected for path estimation.

An additional loop closure detection lead to robust and precise

results. Bundle adjustment is applied as a final optimization step

(Lourakis and Argyros, 2009). After path estimation, a dense

point cloud is computed with a robust multi-view stereopsis ap-

proach (Furukawa and Ponce, 2010). Finally, a Poisson surface

reconstruction method (Kazhdan et al., 2006) fits a polyhedral

mesh into the complete point cloud.

The described processing-chain computes all results fully auto-

matically. Even image capturing is done automatically by the

UAV for a precomputed path. The proposed method achieves

precise results on different benchmark datasets. Furthermore, the

capabilities of the whole processing chain are exemplary illus-

trated by reconstructing a building from UAV image data.

2 RELATED WORK

Due to the large impact of three-dimensional building models and

the high cost of generating them manually, the task of automati-

cal building reconstruction was extensively addressed by the sci-

entific community.

A lot of approaches concentrate on LIDAR, because this acquisi-

tion technique leads to dense and accurate point clouds (eg. (Luo

and Gavrilova, 2006, Arefi et al., 2008)). In (Kada and McKinley,

2009) a cell decomposition approach is used to assemble individ-

ual building parts from a library of standard shapes in order to

fit the model to the measured LIDAR data. In contrast, (Becker

and Haala, 2009) use a grammar based method and mobile LI-

DAR for facade reconstruction. Rules and elements of the facade

grammar are derived automatically from data parts of high qual-

ity and used for building parts, where the data is not sufficiently

dense or accurate to enable a good reconstruction.
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While air-borne data provide outline and shape of building roofs,

ground based views are suitable for facade reconstruction. UAVs

are theoretically able to capture data from all viewing positions.

However, due to weight constraints it is not possible to mount a

LIDAR sensor on a modern UAV. Merging of point clouds from

different data sources is possible, but non-trivial especially if they

are obtained by such different viewing positions as for ground-

based and air-borne sensors. Even if LIDAR data is used for

building reconstruction, optical images will still be needed for

coloring and texturing the derived building models.

Image-based reconstruction methods offer a couple of advantages

compared to LIDAR. Lasers are heavy and expensive, while light-

weight high-resolution cameras are of considerably lower cost.

Another reason for using cameras is the ease of acquiring im-

age data. While a LIDAR system has to be operated by experts,

image acquisition with cameras can be carried out by laymen.

During data recording with a LIDAR sensor, the different posi-

tions are precisely measured in order to merge the submaps to a

global reconstruction afterwards. In the case of a structure from

motion approach, this task is part of the reconstruction toolchain

and automatically solved by the computer. Recent image-based

reconstruction methods lead to robust and accurate 3D models

that are comparable to those of LIDAR approaches (Strecha et

al., 2008).

Different structure from motion approaches have been presented

in the past. A quite popular approach, which works on inter-

net photo collections such as flickr (Agarwal et al., 2009), is de-

scribed in (Snavely et al., 2007). This method was accelerated by

(Frahm et al., 2010) to deal with the same amount of images on a

single computer. All approaches are mainly based on iteratively

applying bundle adjustment. Within this work the number of nec-

essary bundle adjustments is limited. Additionally, a new strat-

egy to detect loop closures is presented. This approach achieves

similar accuracy by lower computational costs. Nevertheless, the

main focus is not on the calculation period, but the accuracy of

the reconstruction.

3 HARDWARE

(a) Falcon 8 octocopter from

Ascending Technologies

(b) Remote control device for

human interaction

Figure 1: Hardware used for this work.

The Falcon 8 shown in Fig. 1(a) is used in this work. Eight rotors

allow a safe landing even in the case of a serious failure of one

motor during the flight. The weight of the UAV alone is 1.5 kg

with an additional payload of 500 g. The maximal flight time

is approximately 20 minutes, depending on the actual payload.

Several sensors such as GPS, IMU, height sensor and compass

are readily mounted on board to facilitate a stable and easy con-

trollable flight.

Due to the included ground control software the used UAV is able

to fly a fixed path using predefined GPS waypoints. However, law

restrictions in Germany do not allow a fully automated flight. The

user either has to steer the UAV manually or at least must be able

to interrupt an automated flight at any time. Both can be accom-

plished by the remote control shown in Fig. 1(b).

A high-resolution consumer camera from Panasonic (Lumix GF1)

is used for image acquisition. The camera weighs only 285 g and

therefore fulfills the payload constraint. It provides images of an

resolution of 12.1 Megapixel with a 20 mm prime lens.

4 DATA ACQUISITION

The usage of UAVs enables image acquisition of objects from

viewing positions, which are impossible to take up by earthbound

vehicles. The flight path might be planned in advance with the

flight control software. This shortens the flight time as well as

the overall time in the field. This is important, since the time

of operation is much stronger restricted for UAVs than for earth-

bound vehicles.

The flight control software receives a set of waypoints. One way-

point is described by a vector consisting of GPS coordinates (only

taken for 2D positioning), height, horizontal orientation angle,

and a vertical camera angle.

Images of the scene are acquired with a pre-calibrated high res-

olution digital camera (see Section 3). The high resolution leads

to a more accurate path estimation as well as a precise 3D recon-

struction which is comparable to LIDAR systems (e.g. (Strecha

et al., 2008)).

If the flight path is predefined, the images either will be taken

at the waypoints or the continuous shooting mode of the camera

will be utilized for a more dense image sequence. In the latter

case, images are gathered with a frame rate of up to three images

per second.

5 THREE-DIMENSIONAL BUILDING

RECONSTRUCTION

This section provides an overview over the processing chain used

by this work to estimate a three-dimensional building model from

previously acquired images. The subsequent subsection discusses

the individual parts of the processing chain (shown in Fig. 2) in

more detail.

Once image capturing is completed for a scene, the processing of

the acquired data is performed completely offline. As explained

in Section 5.1, a first step locates interest points in each image

and generates one description per point in terms of characteris-

tics of a small pixel neighborhood. This description is used to

find interest points within the other images, which correspond to

the same point of the 3D scene.
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Feature Description

Feature Matching

Loop Closure

Path Estimation

Dense Reconstruction

Surface Fitting

Figure 2: Flowchart of the toolchain.

The comparison of every feature point of one image with all

feature points of all the other images would be time consum-

ing. Therefore, Section 5.2 proposes a loop closure detection

approach in order to determine a subset of the whole image se-

quence which probably matches with a specific image.

From the set of matched image points, the external calibration of

the image sequence is calculated. In particular, the precise path

of the camera is determined. Details of the used path-estimation

method are discussed in Section 5.3.

Once all camera positions are calculated, a dense point cloud is

derived by utilization of the method described by (Furukawa and

Ponce, 2010). A final step defines a closed surface constraint by

the point cloud (Kazhdan et al., 2006). Both steps are briefly

explained in Section 5.4.

5.1 FEATURE DETECTION and MATCHING

The proposed processing chain is universal and can be applied

to a wide range of tasks concerning 3D-reconstruction from

images. Nevertheless, the main objective of this work is the

automatic generation of three-dimensional building models.

Like most man-made structures, images of buildings con-

tain strong edges as dominant visual characteristics. Joints of

edges lead to corner-like image regions. Those can be located

with high accuracy within the image and their visual proper-

ties are robust with respect to radiometric and geometric changes.

A common method to define interest points in images is

SIFT (Lowe, 2004), which basically consists of two distinct

parts, namely the detection and description of interest points.

As shown in (Rodehorst and Koschan, 2006), Förstner points

(Föstner and Gülch, 1987) detect corners in images with higher

accuracy than the SIFT detector. For this reason, the well known

SIFT descriptor and the Förstner interest point detector are

combined in this work in order to produce a set of well located

keypoints per image, where each keypoint is described by the

128-dimensional SIFT descriptor.

After keypoints are located and described in each image,

they have to be matched between the different images. This

means in particular to find all feature points in all images, that

are a projection of the same three-dimensional point within the

scene.

A keypoint of an image f will be assumed to match with a key-

point in image g if the euclidean distance between their descrip-

tors ~D
f
i and ~Dg

m is smaller than the distance to all other descrip-

tors in image g and less than a pre-defined threshold T (Eq.1).

Additionally, the ratio between the smallest and second smallest

euclidean distance (the outlier distance (Brown et al., 2005)) has

to be less than a threshold R (Eq.2):

|| ~Df
i − ~D

g
m1

||2 < T (1)

~D
g
m1

= argmin
~D

g

j
∈Dg

(

|| ~Df
i − ~D

g
j ||

2

)

|| ~Df
i − ~Dg

m1
||2

|| ~Df
i − ~D

g
m2

||2
< R (2)

~D
g
m2

= argmin
~D

g

j
∈Dg\~D

g
m1

(

|| ~Df
i − ~D

g
j ||

2

)

In all experiments of Section 6 those thresholds are set to

T = 8000 and R = 0.7.

Using this methodology, the keypoints of each image are com-

pared with the keypoints of all of its predecessors until three suc-

cessive images do not lead to a sufficient number of matches. A

small percentage of strongly degraded images (e.g. due to motion

blur) can thus be tolerated. Additional image pairs, that belong to

potential loop closures, are matched. Their identification will be

described in Section 5.2 in detail.

A subsequent evaluation of all feature pairs against a fundamental

matrix prevents coarse errors. This filtering step does not detect

all existing outliers. An additional trifocal filter is integrated after

all images have been processed. For each image triplet that pos-

sesses a high number of matches, a trifocal tensor is computed.

All feature triplets are tested of consistency with the estimated tri-

focal tensor. If the resulting error lies below a pre-defined thresh-

old, the feature triplet will be accepted or rejected, respectively

(Heinrichs and Hellwich, 2008). Features, that are only matched

in one image pair, are discarded as well. The remaining features

form a stable and nearly outlier free set of feature matches.

This set of features has to be further divided into subsets of fea-

ture points that correspond to the same 3D point. If a feature fi
has no matches with feature points within the predecessors of im-

age i, a unique ID will be assigned to it. Otherwise, the ID of the

predecessors of this feature is used. In the case that the prede-

cessors of a feature have different IDs, the ID with the maximum

count in the list of predecessors is assigned. Merging the IDs was

tried, but it lead to a higher amount of mislabeled features.

After all features in an image are labeled, a simple consistency

check is performed. If two features within one image have the

same ID, the check fails and the ID will be rejected.

5.2 LOOP CLOSURE DETECTION

Depending on the actual path of the camera, the same part of

the scene might be imaged multiple times. The more often a 3D

point is observed, the more information about this point is avail-

able, which can be used for a robust and more accurate estima-

tion. This makes loop-closure detection essential for subsequent

algorithms. The problem is defined as detecting, when the cam-

era has returned to a previously visited position, where it acquired

a similar image.

Fast loop closure detection is a crucial task in structure from mo-

tion approaches and various solutions have been proposed (Nis-

ter and Stewenius, 2006, Cummins and Newman, 2007, Ho and

Newman, 2007, Eade and Drummond, 2008). The problem can

be formulated as an image retrieval task if no geometric informa-

tion is available. Vocabulary trees have been shown to achieve a
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good recognition rate, where visual words are used to describe an

image. One disadvantage of those approaches is the rather large

computational load to build the tree and query an image.

This work proposes Variance Descriptor Analysis (VDA) as a

new method to detect loop closures. Although this approach is

less accurate than vocabulary trees, it is much faster.

Theoretically, it is possible to match all images according to the

methodology discussed in Section 5.1. A loop will be identified if

two images are likely to match each other. Of course the compu-

tational costs to match one image with all of the previous images

are to high. Instead, a method is used, which defines a set of

matching candidates.

Two images will match, if many of their SIFT features match.

A new descriptor is computed from all descriptors in one image.

Given all 128-dimensional SIFT descriptors D
f
i in an image f ,

the variance descriptor ~V f is defined as

~V
f =

1

n− 1

n
∑

i=1

(

~D
f
i −D

f
)

2

(3)

where D
f

is the mean vector of all features in image f .

Given one variance descriptor per image, a similarity matrix M

between all images is calculated as the normalized inner product

of two different ~V -vectors:

Mf,g =
~V fT · ~V g

||~V f || · ||~V g||
(4)

(a) Similarity matrix M (b) After thresholding

Figure 3: Similarity matrix for VDA.

Fig. 3(a) shows an exemplary similarity matrix M based on real-

world data. Values near the main diagonal are quite large. This

is due to the fact that the data used in this work represents an or-

dered image sequence and neighboring images have a high match-

ing score. This effect is exploited to define a threshold as the

mean similarity of the images already successfully matched as

described in Section 5.1.

Fig. 3(b) shows the similarity matrix after applying the threshold.

A standard matching procedure is applied to all remaining poten-

tial matches, marked in black. Candidates with less matches than

a predefined minimum are rejected. The global IDs are assigned

as described in Section 5.1.

5.3 PATH ESTIMATION

The path estimation algorithm used in this work represents the

whole camera sequence as graph that consists of two different

kinds of nodes. While the first node type describes an image

triplet, the second type contains only one single image (see Fig. 4).

The graph contains all nodes previously created in the trifocal fil-

ter step.

A node of the second type is connected with all triplet nodes that

contain the image represented by this node. An image triplet node

contains the relative orientations and scaling factors, which are

shared by three cameras. The relative orientations are computed

by the well known 5 point relative pose algorithm described by

(Nistér, 2004). The scaling factor is the distance between the

second and the third camera. The distance between the first and

second camera is set to 1.0. Two triplet nodes share an edge if

two of the three images are the same.

Each triplet node is optimized with bundle adjustment (Lourakis

and Argyros, 2009). If the change, the bundle adjustment applies

to a node, is too large in terms of the orientation of the cameras

and the relative scale, the node will be rejected as unreliable.

0 1 2

0

1

2

0 1 3

0 2 3

1 2 3

3

Figure 4: Example graph illustrating the connection

between triplets and cameras.

The great advantage of this procedure is the possibility to im-

plement it in a highly parallel manner since each node can be

treated separately. Once the graph is generated an optimal path

through the graph is computed. For faster computation, the de-

gree of each node is measured as local centrality measure instead

of a global optimization (Opsahl et al., 2010). The node with the

highest score is selected as root for further camera path propa-

gation and the shortest path to each camera, ie. the second node

type, is computed. This guarantees a limitation of the error made

by propagating the camera position from one triplet to the next.

5 19 20

3 5 19 5 7 19 4 19 20 16 19 20 5 17 19 20 6 19 20 7 19 20 18 19 20 19 8 19 20 20 9 19 20 19 20 21 19 20 22 10 19 20

2 3 5 3 5 16 3

0 2 3 2
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5 7 15

15

4 16 17 6 7 18 8 9 21 22 20 22 23 10 10 11 20

11 10 11 12 10 11 23

12 11 12 23

23

11 23 24

2412 23 24

12 13 24

13

Figure 5: Spanning tree from the most central node

to each camera for the Herz-Jesu-P25 sequence.

Finally, all camera positions are again optimized with the bundle

adjustment method (Lourakis and Argyros, 2009). As shown in

Fig. 5, the number of triplet nodes to reach a camera from the

root node is reduced drastically in contrast to a sequential cam-

era path propagation. This leads to a better approximation of the

initial camera position and reduces the risk that the bundle adjust-

ment terminates at a local minimum.

5.4 DENSE RECONSTRUCTION

The method proposed in (Furukawa and Ponce, 2010) is used to

derive a dense point cloud. It does not depend on any initial-

ization other than provided by the previous path estimation step,

detects and disregards outliers automatically, is able to use an ar-

bitrary number of images, and performs best on four of six bench-

mark data sets discussed in (Seitz et al., 2006).

All given images along with their interior and exterior calibration
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estimated by previous steps serve as input and are successively

transformed into a set of image patches. A patch p is defined by

the 3D coordinates of the center c(p) and the orientation of the

vector n(p) orthogonal to the patch.

Features based on Harris- and Difference-of-Gaussians-operators

are computed for each image in an initial matching step. Fea-

ture points of different images will be matched if they lie near

the epipolar line and are photometrically consistent, i.e. the nor-

malized grey-scale correlation of their projection into the image

planes is smaller than a threshold. Those matched feature points

are triangulated and serve as initial set of sparse patches.

An expansion step generates new patches p′ in close proximity

to already defined image patches p. Center c(p′) and orienta-

tion n(p′) are initialized consistently with patches in the neigh-

borhood and optimized afterwards. A subsequent filtering step

detects outliers based on visibility or photometric constraints.

Those two steps are iteratively repeated until a sufficiently dense

set of patches is defined.

A 3D surface of the whole scene is computed by a subsequent

surface reconstruction step based on this patch model. The ap-

proach proposed by (Kazhdan et al., 2006) is utilized for this aim.

It expects a set of samples P , where each sample p ∈ P consists

of a center point c(p) and an inward-facing normal vector n(p).
Those samples are assumed to lie on, or at least near, the surface

of the unknown model.

Given this input, the method casts the surface reconstruction task

as spatial Poisson problem, i.e. finding the scalar function χ

whose gradient gives the best approximation of a vector field

which is defined by the samples. For this purpose, a three-dimen-

sional indicator function is computed, which is zero outside and

one inside the model. An appropriate iso-surface of this function

is used as the reconstructed surface.

The spatial and temporal complexity of the necessary calculations

are proportional to the size of the reconstructed surface. Instead

of using only a small local subset of points at a time, all points

of the input set are used at once. This leads to a smooth and

well defined surface with greater detail and higher accuracy than

achievable with other methods.

6 RESULTS

The performance of the proposed processing chain is evaluated

on three datasets including two different benchmarks as well as

one dataset acquired by the system described in Section 3.

The benchmark datasets, namely Herz-Jesu-P25 and Castle-P30

provided by (Strecha et al., 2008), are used for a precise and com-

parable accuracy evaluation. These datasets are not acquired by a

UAV but prove the general accuracy of the proposed approach.

Along with the high-resolution images, the internal as well as the

external orientation of the cameras are provided. The computed

reconstruction is unique up to one scaling, three translation, and

three rotation parameters. A transformation regarding these seven

parameters is applied to the estimated cameras in order to trans-

form them to the ground truth coordinate system.

The difference between ground truth and the results of the pro-

posed method are illustrated in Figs. 6 and 7. A very low av-

erage error of less than one centimeter for the Herz-Jesu-P25

dataset and three centimeter for the sparser Castle-P30 dataset is
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Figure 6: Distance error from Herz-Jesu-P25 and Castle-P30 with

and without loop closure.
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Figure 7: Angle error from Herz-Jesu-P25 and Castle-P30 with

and without loop closure.

achieved. Since the camera in the Herz-Jesu-P25 dataset moves

only along one direction, this dataset is dense enough, whereas

the Castle-P30 dataset does a complete 360 degree rotation. More

images are necessary to achieve a similar error on both datasets.

The loop closure at the end of the sequence facilitates precise re-

sults (see Figs. 6 and 7).

As shown in (Strecha et al., 2008) the accuracy of the posi-

tion (3σ) is approximately around 1-2 cm for the Herz-Jesu-R23

ground truth dataset. A similar accuracy is assumed for the Herz-

Jesu-P25 dataset, although its precision is not provided. The re-

sults in Fig. 6 show, that the achieved error rate is within the 3σ
range of the reference data. The ground truth was produced with

a LIDAR system, whose variance and the error rate are in the

same range. Therefore, the discussed processing chain is able to

provide results that are competitive with LIDAR systems in terms

of accuracy.

The last dataset is acquired by the system described in Section

4. Due to natural obstacles, the UAV was controlled manually.

As otherwise the low precision of the GPS could cause contact

to trees surrounding the building. In total 130 images were cap-

tured, where Fig. 8(a) and 8(b) shows two examples.

The visual results of the reconstruction in Fig. 8(f) look promis-

ing. Even though our reconstruction toolchain works fully au-

tomatically for images with good quality, it is sometimes chal-

lenging in cases of blur, under- and overexposed images. Image

samples should be investigated manually while being still in the

field to prevent a bad reconstruction.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-1/C22, 2011
ISPRS Zurich 2011 Workshop, 14-16 September 2011, Zurich, Switzerland 

187



(a) Sample image front (b) Sample image back

(c) UAV in action (d) Example 3D scene

(e) Sparse point cloud with cam-

era positions

(f) Dense point cloud

Figure 8: 3D Reconstruction by usage of a UAV.

7 CONCLUSION AND OUTLOOK

A processing chain able to compute 3D reconstructions from im-

ages is presented, discussed and applied to data captured by a

UAV. It is shown, that the precision is high enough to compete

with LIDAR systems.

Further research aims to automatically plan the path from existing

3D building models of potentially low level of detail (e.g. LOD 1)

as well as plan the path to update an existing 3D model to achieve

a higher accuracy or fill blank spots. It will be investigated how

all measured information such as images, GPS, and IMU can be

merged by a probabilistic filter to compute an optimal solution

and to apply simultaneous localization and mapping.
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