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ABSTRACT

We analyse the non-linear, three-dimensional response of a gaseous, viscous protoplanetary
disc to the presence of a planet of mass ranging from 1 Earth mass (1 M⊕) to 1 Jupiter mass
(1 MJ) by using the ZEUS hydrodynamics code. We determine the gas f ow pattern, and the
accretion and migration rates of the planet. The planet is assumed to be in a f xed circular
orbit about the central star. It is also assumed to be able to accrete gas without expansion
on the scale of its Roche radius. Only planets with masses Mp � 0.1 MJ produce significan
perturbations in the surface density of the disc. The fl w within the Roche lobe of the planet is
fully three-dimensional. Gas streams generally enter the Roche lobe close to the disc mid-plane,
but produce much weaker shocks than the streams in two-dimensional models. The streams
supply material to a circumplanetary disc that rotates in the same sense as the orbit of the
planet. Much of the mass supply to the circumplanetary disc comes from non-coplanar fl w.
The accretion rate peaks with a planet mass of approximately 0.1 MJ and is highly efficient
occurring at the local viscous rate. The migration time-scales for planets of mass less than
0.1 MJ, based on torques from disc material outside the Roche lobes of the planets, are in
excellent agreement with the linear theory of type I (non-gap) migration for three-dimensional
discs. The transition from type I to type II (gap) migration is smooth, with changes in migration
times of about a factor of 2. Starting with a core which can undergo runaway growth, a planet
can gain up to a few MJ with little migration. Planets with fina masses of the order of 10 MJ
would undergo large migration, which makes formation and survival difficult

Key words: accretion, accretion discs – hydrodynamics – planets and satellites: formation –
planetary systems: formation – planetary systems: protoplanetary discs.

1 I N T RO D U C T I O N

Young planets interact with the surrounding discs from which they
form by accreting mass and exerting torques. In the core-accretion
model for planet formation, the initial growth proceeds as solids ac-
cumulate to form a planetary core (Lissauer 1995; Wuchterl, Guillot
& Lissauer 2000). The core may become a terrestrial planet or may
further develop to become a gas giant through accretion of gas. The
torques resulting from planet–disc interactions cause a planet to
migrate typically inwards (Lin et al. 2000; Ward & Hahn 2000).

Numerical hydrodynamical calculations have been carried out
in two dimensions in order to understand better the dynamics of
a circular orbit planet embedded in a gaseous disc (Bryden et al.
1999; Kley 1999; Lubow, Seibert & Artymowicz 1999; Nelson et al.

⋆E-mail: mbate@astro.ex.ac.uk

2000). These studies have concentrated on the interaction between
a 1-MJ planet and a gas disc that orbits a 1-M⊙ star. The tidal
forces caused by the planet create a gap in the disc. In spite of
the presence of the gap, disc mass fl w on to the planet continues
through the gap with high efficien y. Nearly all the fl w through
the gap is accreted by the planet at a rate comparable to the rate at
which mass accretion would occur in the disc in the absence of a
planet.

The fl w within the Roche lobe of the planet is highly non-
axisymmetric and involves shocks produced by colliding gas
streams (Lubow et al. 1999; D’Angelo, Henning & Kley 2002).
Torques on the planet are exerted by circumstellar disc material that
lies outside the gap. In addition, torques are exerted locally by the
material that fl ws close to the planet. The net torque results in in-
ward migration. Gas accretion can continue to planet masses of the
order of 10 MJ, at which point tidal forces are sufficientl strong to
prevent fl w into the gap.
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214 M. R. Bate et al.

These earlier studies were limited by their neglect of effects in the
vertical direction (perpendicular to the orbit plane). The Roche lobe
radius of a 1-MJ planet orbiting a 1-M⊙ star is comparable to the lo-
cal disc thickness. The effects in the vertical direction are even more
important for lower-mass planets. In addition, suff ciently low-mass
planets do not open a gap in the disc. Analytical models of planet
migration in the non-gap case, sometimes called type I migration,
have been carried out in two dimensions (Ward 1997). The results
imply that planetary migration time-scales are much shorter than
the disc lifetimes. Planets would then be accreted by the central
star. Alternatively, the planets could reside at the circumstellar disc
inner edge, if there is a central hole in the disc. This situation poses
problems for planet survival and for gas giant planet formation. Re-
cent two- and three-dimensional analytical calculations by Tanaka,
Takeuchi & Ward (2002) of the migration rates of low-mass plan-
ets have obtained smaller values (by about an order of magnitude),
making survival more plausible.

The two-dimensional numerical results have also indicated that
accretion within the Roche lobe of a 1-MJ planet is driven by shocks
(Lubow et al. 1999; D’Angelo et al. 2002). It is not clear whether the
same f ow pattern would persist in three dimensions. Recently, Kley,
D’Angelo & Henning (2001) have computed the three-dimensional
f ow for 0.5- and 1-MJ planets and have found minor differences in
the accretion and migration rates compared to the two-dimensional
case. However, the f ow within the Roche lobe is unresolved.

In this paper, we analyse the non-linear interactions between a
planet and a gaseous disc by using global three-dimensional nu-
merical simulations that resolve the f ow within the Roche lobe of
a 1-MJ planet. We are interested in determining the f ow patterns,
the accretion rates and the migration rates for planets whose masses
range between 1 M⊕ (Earth mass) and 1 MJ (Jupiter mass). Each
planet is assumed to be in a circular orbit about the central star. The
mass and orbital radius of each planet are f xed during the simula-
tion; consequently, the results do not include the effects on the f ow
of planetary migration.

The outline of the paper is as follows. In Section 2 we describe
the computational procedure. In Section 3 we provide the results,
and in Section 4 we discuss the implications of the results for giant
planet formation. In Section 5 we give our conclusions.

2 C O M P U TAT I O NA L M E T H O D

2.1 Basic equations

We use a computational method that is similar to that of Lubow
et al. (1999), except that they performed two-dimensional vertically
averaged calculations whereas we solve the problem in three dimen-
sions.

We assume a viscous model for the disc turbulence, with the usual
α prescription. The origin of the coordinate system is taken to be the
centre of the star. (We ignore the slight centre-of-mass shift caused
by the planet.) The disc self-gravity is ignored. The f ow is modelled
in the orbital frame that rotates with the angular speed of the planet
�p =

√

G M∗/r 3
p , where M∗ is the mass of the star, r p is the orbital

radius of the planet, G is the gravitational constant, and we have
neglected the mass of the planet. In this frame, the f ow achieves
a near steady state. We adopt spherical coordinates (r , θ , φ) with
associated f ow velocities in the rotating frame u = (ur, uθ , uφ). The
equations of motion for the disc are

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂sr

∂t
+ ∇ · (sru) = ρr sin2 θ

(

uφ

r sin θ
+ �p

)2

+
ρu2

θ

r

−
∂p

∂r
− ρ

∂


∂r
+ fr , (2)

∂sθ

∂t
+ ∇ · (sθ u) = ρr 2 sin θ cos θ

(

uφ

r sin θ
+ �p

)2

−
∂p

∂θ
− ρ

∂


∂θ
+ r fθ , (3)

and
∂sφ

∂t
+ ∇ · (sφu) = −

∂p

∂φ
− ρ

∂


∂φ
+ r sin θ fφ, (4)

where ρ is the gas density, p is the gas pressure, sr = ρur is the
radial momentum per unit volume, sθ = ρruθ is the meridional
momentum per unit volume, sφ = ρr sin θ (uφ + �pr sin θ ) is the
azimuthal angular momentum per unit volume, 
 is the gravitational
potential due to the central star and the planet, and f = ( f r, f θ ,
f φ) is the viscous force per unit volume that describes the effects
of disc turbulence. We use an unsoftened gravitational potential


(r ) = −
G M∗

r
−

G Mp

|r − r p|
, (5)

where Mp is the planet mass. This is possible because the location of
the planet is such that all gravitational force evaluations are made at
a f nite distance from the planet. We have also performed some test
calculations with gravity softened on the length-scale of twice the
grid resolution near the planet, but we found no signif cant difference
between the softened and unsoftened results.

Equations (1)–(4) express conservation of mass, radial momen-
tum, meridional momentum and azimuthal angular momentum, re-
spectively. Equation (4) is written in terms of the total azimuthal
angular momentum sφ , rather than that in the rotating frame. The
reason is that the sφ equation provides better numerical stability
(Kley 1998).

The equation of state is taken to be locally isothermal, p ∝ ρ

T , with the temperature expressed as a specif ed function of radius,
T(r). This equation of state is appropriate for a gas that radiates
internal energy gained by shocks with high eff ciency. The viscosity
force f is assumed to be the standard Navier–Stokes force (Landau
& Lifshitz 1975, see equation 15.3; Klahr, Henning & Kley 1999).
The coeff cient of shear viscosity µ represents the effects of disc
turbulence, while the bulk viscosity coeff cient ζ is set to zero. The
value for the kinematic turbulent viscosity ν = µ/ρ is assumed to
be constant in space and time. It can be expressed in terms of the
usual α prescription of Shakura & Sunyaev (1973). Namely, for a
disc with local isothermal sound speed cs and vertical scaleheight
H, dimensionless parameter α is def ned through

α(r ) =
ν

cs H
. (6)

The above equations are non-dimensionalized so that the unit of
time is the inverse of the planetary orbital frequency �p, the unit of
distance is the orbital radius of the planet r p, and G = 1.

2.2 Numerical method

The equations are solved using a three-dimensional spherical coor-
dinate version of the ZEUS-2D code (Stone & Norman 1992). The
code was written by K.A. Miller and J.M. Stone. It was modif ed to
include a standard three-dimensional Navier–Stokes viscous force
term. The code allows for variably-spaced gridding, which permits
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3D calculations of planets in discs 215

us to obtain higher resolution in the vicinity of the planet. The time-
steps satisfy the usual Courant condition, for which we have adopted
Courant number 0.3. The code provides an artif cial viscosity term
but, as we introduce a Navier–Stokes viscous force, we suppress
this artif cial viscosity. Of course, there is some intrinsic numeri-
cal viscosity because of the f nite gridding. For a uniformly spaced
mesh, the code is formally second-order accurate in space and f rst-
order accurate in time. For variably spaced meshes, it is formally
f rst-order accurate in space. However, a high level of accuracy and
resolution can be attained by limiting the fractional change in mesh
spacing between adjacent cells to be small, of the order of 1 per
cent. The code uses van Leer interpolation.

2.3 Numerical grid and initial conditions

The planet was f xed at location (r , θ , φ) = (1, π/2, π). We mod-
elled the disc in the region r ∈ [0.3, 4.0], θ ∈ [π/2 − 4H/r , π/2],
and φ ∈ [0, 2π ]. We imposed ref ective boundary conditions at the
radial and θ grid boundaries and periodic boundary conditions at
the azimuthal boundary. The radial boundaries were suff ciently far
from the planet that the ref ected waves were not noticeable. The
grid was uniform in θ , but non-uniform in r and φ. Both the r and φ

grids were uniform in the vicinity of the planet, but the grid spacing
increased logarithmically away from this uniform region (i.e. each
zone was a certain percentage larger or smaller than the zone pre-
ceding it). In addition, the last two zones inside φ = 0 and φ = 2π

were uniform to allow periodic boundaries to be implemented eas-
ily. Each region of the radial grid had [0.3, 0.8965] = 28, [0.8965,
1.1035] = 72, [1.1035, 4.0] = 80 zones. The φ grid had [0, 0.19] =
[2 π − 0.19, 2 π] = 2, [0.19, π − 0.1035] = [π + 0.1035, 2π − 0.19]
= 106, [π − 0.1035, π + 0.1035] = 72 zones in each region. The
θ grid modelled four scaleheights above the disc mid-plane using
36 zones. Thus, the zones in the vicinity of the planet had dimensions
of 0.002875 in r and φ, and twice this value in θ . This grid was de-
cided upon after extensive testing using two- and three-dimensional
calculations. In particular, we found that if the change in size be-
tween two neighbouring zones is too large or if the r and φ dimen-
sions of zones are too different, numerical instabilities occur. The
instabilities are worst in two-dimensional calculations, but also ap-
pear in three-dimensional calculations that have the same gridding
in r and φ. We also performed two-dimensional calculations with in-
creasing resolution in r and φ to test for convergence. Lowering the
resolution in either r or φ tends to increase the accretion rates. Con-
vergence testing of three-dimensional calculations was not practical
due to the factor of 16 increase in computational time that would
have been required to double the above resolution in all three direc-
tions. The above resolution was chosen as the minimum required
both to avoid numerical instabilities and to give quasi-steady-state
accretion rates that had converged to within a few per cent in the
two-dimensional calculations.

The Roche lobe of the planet had a radius

rR =
(

Mp

3M∗

)1/3

rp. (7)

We modelled planets from 1 Earth mass (3 × 10−6 M⊙) to 1 Jupiter
mass (1 × 10−3 M⊙). With the mass of the star equal to 1 M⊙, the
planets’ Roche radii ranged from rR/r p = 0.010 to 0.069. Thus, the
Roche radius of the Jupiter-mass planet was resolved by 24 zones
(i.e. the Roche lobe contained about 3 × 104 zones), while that of
the Earth-mass planet was marginally resolved by 3.5 zones (i.e. the
Roche lobe contained about 80 zones).

The planet was assumed to be able to accrete material without
substantial expansion of its radius on the scale of its Roche lobe.
Some models of planet evolution suggest that this assumption is
valid only for planets of mass greater than about 50 M⊕ (Pollack
et al. 1996). However, these models are subject to a number of major
simplifying assumptions, as discussed in Wuchterl et al. (2000). We
return to this point in Section 4. In any case, the accretion assumption
provides a simple prescription for handling the accretion f ow that
allows us to compute torques on the planet due to its interaction
with the disc.

To simulate the accretion on to the planet, we nearly fully re-
moved material in the four grid zones that surrounded the location
of the planet in each time-step. A residual density was retained in
these zones to avoid numerical divergences. The removed material
was assumed to be accreted on to the planet, although the mass of
the planet was not increased. There was a pressure force directed
towards the planet at the edge of the evacuated region. This force
was small compared with other dynamical forces for massive plan-
ets, but was noticeable for the lowest-mass planets that we modelled
(see Section 3.2).

A temperature prof le T (r ) ∝ r−1 was used at all times. It was
normalized such that H/r p = cs/(�pr p) = 0.05. This prof le gives
a constant value of H/r throughout the unperturbed disc. It is nu-
merically convenient when using a spherical grid, as the vertical
resolution of the disc is constant. We set the kinematic disc viscos-
ity to ν = 10−5 in our dimensionless units, which corresponds to
α = 4 × 10−3 at r = r p = 1 (equation 6).

The underlying initial disc density prof le was chosen to be ax-
isymmetric and to follow ρ(r , θ , φ) ∝ r−3/2 exp[− (θ − π/2)2 r 2/

(2H 2)]. Thus, the disc surface density �(r ) ∝ r−1/2. For planets
with masses Mp � 0.1 MJ, we imposed an initial gap near the planet.
The initial gap size and structure were estimated by an approximate
torque balance condition between viscous and tidal torques near the
planet. For the Jupiter-mass planet, the density at the middle of the
gap was 1 per cent of the unperturbed density. For the 0.3-MJ and
0.1-MJ planets the initial gap densities were 4.2 and 35 per cent of
the unperturbed density, respectively.

In order to conf rm that the presence of an initial gap did
not affect the f nal results, we performed two calculations of the
0.1-MJ planet, one with an initial gap and one without. The ac-
cretion and migration rates of the calculation with the initial gap
reached steady values after about 30 orbits. The calculation with-
out an initial gap initially had much higher accretion and migration
rates, but these converged to the values given by the other calcula-
tion after approximately 100 orbits. Thus, the presence of an initial
gap for the high-mass planets does not affect the f nal results, but it
signif cantly reduced the computational time.

3 R E S U LT S

3.1 Calculations

We performed calculations of six planets with masses of 1, 0.3, 0.1,
0.03, 0.01 and 0.003 Jupiter masses, MJ (i.e. 330, 100, 33, 10, 3.3
and 1 Earth masses, M⊕). The results are scaled so that the planet
is at a distance of 5.2 au from a 1-M⊙ star. The disc mass, Md,
between 1.56 and 20.8 au (the boundaries of the grid) is taken to
be 7.5 Jupiter masses (i.e. 0.0075 M⊙). This gives an unperturbed
disc surface density of 75 g cm−2 at the radius of the planet.

The calculations were run until the accretion rate on to the planet
reached a quasi-steady state (Fig. 1). The number of orbits required
depended on the mass of the planet. Lower-mass planets reached a
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216 M. R. Bate et al.

Figure 1. The accretion rate versus time for each of the six planet cal-
culations. The accretion rate is averaged over every 1/20 of an orbit and
plotted in units of the disc mass (7.5 MJ) per orbit. The calculations were
run until the accretion rates reached quasi-steady values. The lines give the
accretion rates for planets with masses of 1 (long-dashed), 0.3 (dot-dashed),
0.1 (dotted), 0.03 (short-dashed), 0.01 (solid), and 0.003 (dot-long-dashed)
MJ. Low-mass planets reach steady accretion rates after only a few orbits,
while the highest-mass planets require approximately 100 orbits.

steady state after only about f ve orbits, while the 1-MJ planet re-
quired approximately 100 orbits. The calculations never quite reach
a true steady state because the protoplanetary disc is evolving due
to the Navier–Stokes viscosity. Thus, the accretion rates of some
of the high-mass planets can be seen to decrease slightly with time
after the quasi-steady-state accretion is reached.

The calculations were performed on the United Kingdom Astro-
physical Fluids Facility (UKAFF), a 128-processor SGI Origin 3800
computer, and on GRAND, a 24-processor SGI Origin 2000 com-
puter. The computational time required for each calculation was rel-
atively independent of the planet’s mass and required approximately
160 CPU hours per orbit on UKAFF. The total CPU time required
for all the calculations was approximately 50 000 CPU hours.

3.2 Density structure and gas flow

The interaction of the planet with the disc alters the density and f ow
of the gas in the vicinity of the planet. This interaction was analysed
by means of two-dimensional simulations for high-mass planets by
Lubow et al. (1999). Recently, D’Angelo et al. (2002) have studied
the gas f ow near low-mass planets by using two-dimensional sim-
ulations. Here, we study the problem in three dimensions for both
high- and low-mass planets.

3.2.1 Global features

Fig. 2 plots the azimuthally averaged surface density as a function
of radius for planets with masses ranging from 1 to 0.01 MJ. Also
plotted (with the thick solid line) is the two-dimensional result for a
1-MJ planet after 150 orbits from f gure 1 of Lubow et al. (1999). The

Figure 2. The f nal azimuthally averaged disc surface density for planets
with masses of 1 (long-dashed), 0.3 (dot-dashed), 0.1 (dotted), 0.03 (short-
dashed) and 0.01 (thin solid) MJ. Only planets with masses Mp � 0.1 MJ
(Mp � 30 M⊕) produce signif cant perturbations. The thick solid line gives
the result for a 1-MJ planet from the two-dimensional calculations of Lubow
et al. (1999).

surface density in the vicinity a 1-MJ planet is well modelled by two-
dimensional calculations (see also Kley et al. 2001). Only planets
with masses Mp � 0.1 MJ produce signif cant perturbations in the
disc’s surface density; 0.03 MJ (10 M⊕) is insuff cient. This result
is consistent with the expectation that a gap will start to open when
the Roche radius of the planet is comparable to the disc scaleheight
H. The Roche radii of planets with masses 0.3, 0.1 and 0.03 MJ are
rR/r p = 0.046, 0.032 and 0.022, respectively. Comparing these to
H/r = 0.05, we f nd that rR > H/2 is required for a signif cant
surface density perturbation. Even for H = rR (the 0.3-MJ case),
the gap only drops to 15 per cent of the unperturbed density.

In Fig. 3, we plot the global surface density of the disc at the
end of the simulations for each of the six planets. The (partial)
clearing of gaps by the planets is clearly visible in the global surface
density plots for planets with masses Mp � 0.1 MJ. Spiral density
waves launched by the planet propagate inwards and outwards from
the planet’s radius into the disc. For masses Mp � 0.1 MJ, these
density waves are strong enough to appear even in the azimuthally
averaged surface density prof les (Fig. 2). The strength of the surface
density perturbations decreases with lower-mass planets, but their
form is essentially independent of the planet’s mass. For the lowest-
mass planet, the spiral density perturbations are too small to be
visible over the underlying density gradient in the disc. These waves
are essentially two-dimensional in nature and have been studied in
the past using two- and three-dimensional non-linear calculations
(Artymowicz 1992; Kley 1999; Bryden et al. 1999; Lubow et al.
1999; Nelson et al. 2000; Kley et al. 2001) as well as analytically
and through linearized numerical calculations (Ogilvie & Lubow
2002).

3.2.2 The flow in the vicinity of the planet

In Fig. 4, we plot the surface density in the vicinity of the planet.
Overlaid on the plots are the Roche lobes of the planets and their
inner (L1) and outer (L2) Lagrangian points (crosses). In Fig. 5, we
plot the density of the disc (grey-scale) and streamlines on the disc
mid-plane in the vicinity of the planet. From these f gures, we see
that the waves are present in the circumstellar discs, as was found in
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3D calculations of planets in discs 217

Figure 3. Disc surface densities, �, for planets with masses of 1, 0.3, 0.1, 0.03, 0.01 and 0.003 MJ (top-left to bottom-right).
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218 M. R. Bate et al.

Figure 4. Surface density, �, in the vicinity of the planet for planets with masses of 1, 0.3, 0.1, 0.03, 0.01 and 0.003 MJ (top-left to bottom-right). Also plotted
are the Roche lobes (white curves) and the inner (L1) and outer (L2) Lagrangian points (crosses).
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3D calculations of planets in discs 219

Figure 5. Disc density, ρ (grey-scale), and streamlines (dashed and solid lines) on the disc mid-plane for planets with masses of 1, 0.3, 0.1, 0.03, 0.01 and
0.003 MJ (top-left to bottom-right). The white solid streamlines are the critical streamlines that mark the boundaries between the outer/inner disc, the accretion
streams into the Roche lobe, and the horseshoe orbits. Notice that the top two f gures give the logarithm of the density.
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220 M. R. Bate et al.

the previous two-dimensional simulations. They are initiated near
the planet and propagate as shocks. Even with the 1-M⊕ planet, the
density jump across the shock is of the order of 10 per cent, and
the more massive planets have greater density jumps. The disconti-
nuities in the streamlines across the shocks are obvious for planets
with masses Mp � 10 M⊕.

The shape of the shocks is independent of the planet’s mass so
long as a deep gap is unable to form (i.e. for planets with masses Mp
� 0.1 MJ). For the higher-mass planets, the shocks become more
curved, the outer shock moves forward, and the inner shock moves
back. Unlike the 1-MJ case, the shocks generated by the low-mass
planets do not extend radially all the way to the planet’s Roche lobe.
Instead, their radial extent is determined by the disc thickness. The
shocks reach no closer to the planet than a distance of approximately
H (i.e. they begin at approximately at r = r p ± H ). This fact will
be important when we come to consider the torque exerted on the
planet by the disc. Although the disturbances are non-linear, their
form is similar to the surface density perturbations expected from
linear resonance theory (see f gure 6 of Tanaka et al. 2002).

Fig. 6 provides the density of the gas in the vicinity of the planet,
but at height H above the mid-plane. Fig. 7 gives the density and
velocity vectors in an r − z slice through the disc at the location of
the planet (i.e. φ = π). The results are plotted by using a Cartesian
coordinate system (x , y, z), such that the planet is located at (−1,
0, 0) and the disc mid-plane is def ned by z = 0.

Notice that we have not plotted streamlines in these f gures. It
is diff cult to plot a set of three-dimensional streamlines because
they cross each other in projection on to a graph. Streamlines can
be plotted at the disc mid-plane where the vertical velocity is zero
(by symmetry). The velocity vectors in Fig. 7 cannot be connected
to form streamlines because information about the velocity in the
deprojected direction (y) is required. Consequently, we cannot con-
clude that material rapidly drops to the mid-plane near x = 1. In-
stead, material off the mid-plane f ows past a low-mass planet in the
y-direction.

These f gures allow us to determine the structure of the shocks
outside the Roche lobe of the planet. Comparing the locations of
the shocks in similar panels between Figs 5 and 6, we f nd that the
locations are similar for the low-mass planets but, for 1 and 0.3 MJ,
the shock fronts on the mid-plane lead the shock fronts off the mid-
plane. Thus, a section perpendicular to the shock front for the high-
mass planets would have a ‘bowshock’ shape, whereas for the low-
mass planets the shocks are essentially vertical planes. These shock
shapes can be seen clearly in Fig. 7 with the transition from nearly
vertical (0.1 MJ) to bowshock-shaped (1 MJ). The discontinuity in
the velocity vectors across these shocks is also clear in Fig. 7.

Returning to the density structure and streamlines at the mid-plane
(Fig. 5), we see that gas at the same radius as the planet but outside
the planet’s Roche lobe moves on horseshoe orbits, as was reported
in earlier studies (Bryden et al. 1999; Kley 1999; Lubow et al. 1999).
For the high-mass planets, these horseshoe orbits occupy part of the
gap in the disc. The radial extent of the horseshoe orbits decreases
as the mass of the planet is decreased.

Between the outer disc and the portion of the horseshoe orbits
ahead of the planet, and between the inner disc and the portion of
the horseshoe orbits behind the planet, there are two streams of
material that enter the Roche lobe of the planet. This is the mate-
rial (along with material from above and below the disc mid-plane
that is harder to visualize) that is accreted by the planet (see also
Lubow et al. 1999). For planets with masses Mp � 0.1 MJ, we
notice that the breadth of these streams generally increases as the
planet’s mass increases, with the breadth of the stream being of

the order of the Roche radius of the planet. In Section 3.3, we
use this observation to develop a model for the accretion rate of
the low-mass planets. For the 1- and 0.3-MJ planets, the streams
are signif cantly narrower than the planet’s Roche lobe. In fact, for
the 0.3-MJ planet, no streamlines on the mid-plane enter the planet’s
Roche lobe. As this planet has the second highest accretion rate
among the cases we consider, material is still being accreted, but
the f ow must be intrinsically three-dimensional with the accretion
coming from above and below the mid-plane. The 0.3-MJ planet
may be a special case, as its Roche radius rR = 0.046 is almost
identical to the unperturbed scaleheight of the disc. However, even
with the 1-MJ planet, the streams entering the Roche lobe on the
mid-plane are signif cantly narrower than in the two-dimensional
calculations of Lubow et al. (1999), again implying that the f ow into
the planet’s Roche lobe is three-dimensional. To illustrate further
this difference between the two-dimensional and three-dimensional
accretion streams on to a Jupiter-mass planet, we have performed a
two-dimensional 1-MJ calculation with identical resolution in r and
φ to our three-dimensional calculation. The density and streamlines
in the vicinity of the planet are given in Fig. 8 and should be com-
pared to the top-left panel of Fig. 5. The accretion streams are much
broader in the two-dimensional case.

Finally, we note that f ow near the 1-M⊕ planet is only marginally
resolved, as the evacuated zones at the location of the planet can
be seen to affect the gas f ow at the boundary of the Roche lobe.
Whereas the critical streamlines that mark the boundaries of the ac-
cretion streams graze the Roche lobe of the 3.3- and 10-M⊕ planets,
gas is sucked into the Roche lobe of the 1-M⊕ planet by the artif cial
pressure gradients. This effect leads to a slight overestimate of the
accretion rate for the 1-M⊕ planet (Section 3.3).

3.2.3 The circumplanetary disc

Once inside the planet’s Roche lobe, the gas settles into a circum-
planetary disc. In our calculations, the discs are resolved only for
planets with masses Mp � 0.1 MJ; the resolution within the Roche
lobe of lower-mass planets is insuff cient to follow material around
complete orbits.

The scaleheight of the circumplanetary disc is much smaller than
that of the circumstellar disc, H, due to the planet’s vertical gravity.
This can be deduced from the fact that there is no sign of the discs
in the plots of density at height H above the mid-plane (Fig. 6).
Furthermore, Fig. 7 clearly shows the cross-sections of the discs
for the 1- and 0.3-MJ cases. As in two-dimensional calculations, the
discs rotate in a prograde manner (Lubow et al. 1999; D’Angelo et al.
2002). These circumplanetary discs may lead to satellite formation
around the planets.

Lubow et al. (1999) studied the f ow inside the Roche lobe of an
accreting planet. In two-dimensional calculations of a Jupiter-mass
planet, they found that the circumplanetary disc contained strong
shocks that led to rapid accretion of the gas through the planet’s
disc. They concluded that the shocks formed from the collision of
the two streams passing into the Roche lobe, one from the inner disc
and one from the outer disc. D’Angelo et al. (2002) studied lower-
mass planets with a two-dimensional nested grid code and found
these shocks persisted down to planet masses of approximately
5 M⊕.

We f nd that such strong shocks in the circumplanetary disc do not
occur in three-dimensional calculations. They are an artefact of the
two-dimensional calculations in which the streams from the inner
and outer discs are forced to collide without vertical motions. The
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3D calculations of planets in discs 221

Figure 6. Same as Fig. 5, but at distance H from the disc mid-plane. The white line indicates the size of the Roche lobe at the mid-plane.

0.3-MJ case is a particularly good example of the difference between
two- and three-dimensional structures, as in three dimensions there
are no streamlines at the mid-plane that even enter the planet’s Roche
lobe.

The disappearance of the spiral shocks in the circumplanetary disc
when going from two- to three-dimensional simulations is further
illustrated for a 1-MJ planet by comparing the density and stream-
lines in a two-dimensional calculation (Fig. 8) with those in the
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222 M. R. Bate et al.

Figure 7. Disc density, ρ, and velocity vectors in an r–z slice through the disc at the location of the planet (i.e. φ = π) for planets with masses of 1, 0.3, 0.1,
0.03, 0.01 and 0.003 MJ (top-left to bottom-right). Notice that the top two f gures are scaled by the logarithm of the density.
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3D calculations of planets in discs 223

Figure 8. Results from a two-dimensional calculation to be compared with
the three-dimensional calculation pictured in the top-left panel of Fig. 5.
Disc density, ρ = �/(

√
2π H ), and streamlines on the disc mid-plane for

a 1-MJ planet. The thick white streamlines are the critical streamlines that
mark the boundaries between the outer/inner disc, the accretion streams into
the Roche lobe, and the horseshoe orbits. Notice that the streams on to the
planet are much broader than in the three-dimensional calculation and there
are strong spiral shocks in the circumplanetary disc which are not present in
three dimensions.

Figure 9. Left: Accretion rate, Ṁp, versus planet mass. Right: Mass doubling time-scale, Mp/Ṁp. Our results are shown by the f lled circles. Open circles
are taken from Lubow et al. (1999) and are scaled to match the accretion rate of our Jupiter-mass planet. The accretion rate of the lowest-mass planet (1 M⊕)
is slightly overestimated because gas near the planet’s Roche lobe is sucked into the Roche lobe by the evacuated zones (see Fig. 5). Thus, we plot this as an
upper limit with an arrow. Our results show that low-mass planets (Mp � 10 M⊕) accrete proportional to their mass (equation 8, dotted lines), if the thermal
energy of the gas can be radiated away quickly enough. Thus, the mass doubling time-scale is independent of mass for low-mass planets and is ≈500 yr for
our chosen disc mass. For higher-mass planets, the accretion rate drops rapidly with increasing mass as the planet opens a gap in the disc. The rapid fall off in
accretion rate for very high masses sets a natural upper limit to the mass of a planet of approximately 10 MJ (see also Fig. 13).

three-dimensional calculation (Fig. 5, top-left panel). Stream colli-
sions do occur at the mid-plane in both cases. But the strong spiral
shocks present in the two-dimensional calculation are greatly di-
minished in three dimensions. This weakening in three dimensions
is evidenced by the fact that streamlines within the Roche lobe are
more tightly wrapped in the three-dimensional case. In two dimen-
sions, the spiral shocks drive the accretion through the circumplan-
etary disc with the gas losing angular momentum on each passage
through a shock.

We make two suggestions for the effects of the absence of strong
spiral shocks in the three-dimensional circumplanetary discs. First,
accretion through the circumplanetary disc may be driven in a simi-
lar manner to accretion through the circumstellar disc, rather than by
spiral shocks. Secondly, the more quiescent three-dimensional f ow
might be more conducive to satellite formation in circumplanetary
discs.

3.3 Accretion rates

In Fig. 9, we plot the f nal accretion rates in Jupiter masses per year.
Lubow et al. (1999) performed two-dimensional calculations to de-
termine the relative accretion rates of planets with masses Mp �

1 MJ. The open circles in Fig. 9 give their accretion rates, scaled
to match our Jupiter-mass case. Two-dimensional calculations are
adequate for modelling accretion on to high-mass planets which
open well-def ned gaps in the disc (Kley et al. 2001). Fig. 9 then
gives accretion rates over 3.3 orders of magnitude in planet mass,
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224 M. R. Bate et al.

from 1 Earth mass to 6 Jupiter masses. As discussed in Section
3.2.2, the accretion rate on to 1 M⊕ is slightly overestimated be-
cause of the lack of resolution in the vicinity of the planet’s Roche
lobe. Thus, the derived accretion rate is plotted as an upper limit in
Fig. 9.

For low-mass planets up to Mp ≈ 10 M⊕ (0.03 MJ), the accretion
rate is proportional to the planet’s mass. The accretion rates peak
at Mp ≈ 0.1 MJ, just as the planet starts to open a gap in the disc
(Fig. 2). For higher masses, the accretion rate drops rapidly with
increasing mass as the gap becomes wider (Fig. 2). As discussed
by Lubow et al. (1999), the rapid decline of accretion rate at high
masses provides a natural limit of about 10 MJ for the mass of a
planet on a circular orbit (see Section 4).

The gas mass accretion process is always dominated by three-
body effects and the relevant capture radius is the Roche lobe radius
rR. This statement can be justif ed by considering the ratio of the
Roche lobe radius to the Bondi–Hoyle accretion radius which is
approximately (H/rR)2. This ratio is greater than unity for planets
whose mass is less than 1 MJ for typical disc parameters (H/r ≃
0.05). The mass capture rate for a low-mass planet can then be
estimated by a simple argument that Ṁp ≃ πr 2

Rρv, where ρ is the
gas density along the planet’s orbit and we have used the fact that
the breadth of the accretion streams into the planet’s Roche lobe
scales with the Roche radius, rR (Section 3.2.2). But, as the velocity
of the gas relative to the planet v ≃ �prR, using equation (7), we
can express the accretion rate as

Ṁp = b
Mp

M∗
ρ�pr 3

p , (8)

where b is a constant of order unity. Consequently, we recover the
numerical result that Ṁp ∝ Mp, with b = 2.30 in the above equation
(dotted lines, Fig. 9).

The mass accretion eff ciency was def ned in Lubow et al. (1999)
as

E =
Ṁp

3πν�
, (9)

where � is the disc surface density just outside the disc gap. The
eff ciency measures the ratio of the accretion rate on to the planet
to the accretion rate that would occur in the disc if the planet was
absent. As in Lubow et al. (1999), we obtain accretion rates of order
unity. For a 1-MJ planet, E is about a factor of 2 larger than the
value obtained in two dimensions. We have also calculated the mass
f ow rate through r = r p (i.e. past the planet). In all cases, this rate
is much less than the accretion rate on to the planet. For the 1-MJ
planet, which opens a well-def ned gap in the disc, the f ow through
r = r p is less than 2 per cent of the planet’s accretion rate. For all the
lower-mass planets, the f ow through r = r p is less than 7 per cent of
the planets’ accretion rates. Together, these results imply that mass
freely f ows into the gap, but that most is captured by the planet.
Naturally, the f ow past the planet would be expected to increase if
the disc’s viscosity were increased.

3.4 Migration rates

A planet experiences torques due to its interaction with the disc. Res-
onant torques likely play an important role (Goldreich & Tremaine
1980). In addition, torques may arise from the gas that f ows in the
gap, including material within the planet’s Roche lobe. For low-
mass planets that undergo type I migration, resonant torques peak
in value at a radial distance of order H from r p. Consequently, it is
necessary to resolve the gas density structure at distances of order
H from the planet. Similarly, for planets that open gaps in the disc

and undergo type II migration (i.e. they migrate due to the disc’s
viscous evolution), it is necessary to resolve the f ow at distances of
order rR ≈ H from the planet.

The migration rates due to resonant torques have been the sub-
ject of many linear analyses (e.g. Goldreich & Tremaine 1980;
Hourigan & Ward 1984; Ward 1986; Korycansky & Pollack 1993;
Ward 1997; Tanaka et al. 2002). Ward (1997) considered the motion
of the planet relative to the disc material, treated the disc as being
two-dimensional, and did not consider corotation resonances. More
recently, Tanaka et al. (2002) calculated the type I migration rate ex-
pected from linear theory taking into account the three-dimensional
nature of the disc and corotation resonances.

Tanaka et al. (2002) give the type I radial migration velocity to
be

vI = − f
Mp

M∗

r 2
p �

M∗

(

H

rp

)−2

rp�p, (10)

where � and H are evaluated at r p, and f is a value of order unity
that depends on the radial variation of both the disc surface density
prof le and the scaleheight. For our disc parameters, we have f =
3.00. The type II radial migration velocity is simply the viscous
radial velocity of the disc

vII = −
3ν

2rp
= −

3
2
α

(

H

rp

)2

rp�p. (11)

The migration time-scales are then given by τ = r p/|vI | and r p/|vII|.

3.4.1 Non-linear results

Both Ward (1997) and Tanaka et al. (2002) assume that the mate-
rial near the planet (i.e. inside the planet’s Roche lobe) does not
exert a net torque on the planet. In this section, we aim to compare
their results with those of our simulations. Thus, when evaluating
the torque on the planet from our numerical calculations, we only
include torques from material at distances greater than some cut-off
radius from the planet, r c. Our default is to set the radius of this
sphere to be equal to the Roche radius of the planet, r c = rR. We
discuss the torques inside the Roche lobe in Section 3.4.2.

For each of the six planet masses, we calculate the average torque
exerted on the planet over the last simulated orbital period (i.e.
when the calculations have reached steady accretion). The resulting
migration time-scales, τ , are plotted with f lled circles in Fig. 10.
Notice that, because the gas f ow near the Roche lobe of the 1-M⊕
planet is affected by the evacuated zones (Section 3.2.2), we have
increased r c to 2rR for this case.

As seen in Fig. 10, our numerical results are in excellent agree-
ment with the linear theory of Tanaka et al. (2002) for Mp � 0.1 MJ.
Although the linear theory of Tanaka et al. is only formally valid for
rR ≪ H , the agreement is excellent up to rR ≃ (2/3) H . Higher-mass
planets migrate more slowly than predicted by equation (10), with
a time-scale than converges toward the type II prediction at Mp �

1 MJ. Our migration time-scales are about a factor of 3 longer than
those reported from the two-dimensional numerical calculations of
D’Angelo et al. (2002).

We point out, however, that the corotation resonance is subject
to saturation. For our disc parameters, saturation may occur for
planets of mass greater than about 8 M⊕ (Ward 1992). Saturation
would result in a reduction of the type I migration time-scale by less
than 30 per cent. This level of change does not signif cantly impact
the level of agreement between the simulations and the theory on
the scale of Fig. 10.
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3D calculations of planets in discs 225

Figure 10. Migration time-scale, τ , versus planet mass. Our results are
shown by the f lled circles. The short-dashed line is the three-dimensional
linear prediction of Tanaka et al. (2002) which applies for low-mass planets
that do not open gaps. The long-dashed line is the two-dimensional linear
prediction of Ward (1997) which applies for both low-mass and high-mass
planets. Our results are calculated by using the net torque from outside the
planet’s Roche radius rR, except for the lowest-mass planet (1 M⊕) where
we neglect the torques from inside 2rR. The error bars do not give the
uncertainties in our measurements. Rather, they give the migration time-
scales that are obtained when neglecting the torques inside 0.5rR (lower
bar) and 1.5rR (upper bar) (1rR and 3rR for the 1-M⊕ planet). Thus, they
indicate the sensitivity of the migration time-scale to torques in the vicinity
of the Roche lobe.

The error bars in Fig. 10 do not represent the uncertainties in our
measurements. Rather, they give the migration time-scales that are
obtained if we change the value of the cut-off radius to r c = 0.5rR
or 1.5rR (r c = 1rR or 3rR for the 1-M⊕ case). Thus, they indicate
the sensitivity of the migration time-scale to the material just inside
or outside the Roche lobe.

Our numerical results show a transition from type I to type II
migration that is qualitatively, but not quantitatively, similar to that
predicted by Ward (1997). In Fig. 11, we provide an empirical f t to
our results as the migration rate τ = r p/|v|, where

v =
vI

1 + (Mp/Mt)3 +
vII

1 + (Mt/Mp)3 . (12)

Parameter M t is the transition mass between type I and type II
migration. We f nd that a good f t is obtained with 3/5 of the mass
for which rR = H , i.e. M t = 1.8M∗(H/r p)3 = 0.23 MJ (Fig. 11).
As can be seen from Figs 10 and 11, the transition from type I to
type II migration involves a much smaller shift in time-scales (about
a factor of 2), than was suggested by Ward (1997) (about a factor
of 10). Note that this shift in time-scales is quite sensitive to H/r p
(equations 10 and 11) and increases for thinner discs.

3.4.2 The torque distribution

Linear theory predicts that the strongest resonances occur at a radial
distance of order H from a planet. But, as the resonances have a non-

Figure 11. Migration time, τ , versus planet mass. Our results are shown
by the f lled circles (see also Fig. 10). The solid line is an empirical f t to the
migration rates (equation 12) that has a transition from the type I migration
rate (Tanaka et al. 2002) to the type II migration rate at Mp = 0.23 MJ.

zero width, the strongest torques are exerted over a region within
a radial distance of order H from the planet. In Fig. 12, we plot
the radial distribution of the torque and the cumulative torque as a
function of radius (solid lines). For the low-mass planets that do not
begin to open a gap in the disc (Mp � 10 M⊕), almost the entire
torque comes from a region r = r p ± 2H . For higher-mass planets,
the radial extent increases. For 1 MJ, the torque comes from r =
(1 ± 0.25) rp, which is consistent with a region r = r p ± 2(rR
+ H ) for the high-mass planets. The resulting cumulative torque
distributions are sharply peaked for low-mass planets and broad
for the high-mass planets. Also visible in most of the cumulative
plots are low-order resonances (e.g. 2:1 at r ≃ 1.59r p), although
they do not contribute signif cantly to the total torque. In all cases,
the cumulative torque at large radius is negative, indicating inward
migration.

As discussed above, in order to compare our results with linear
theory, we have specif cally excluded torques from material inside
the Roche lobe of the planet (r c = rR). In any case, as demonstrated
by the gas f ows in Fig. 5, we only resolve the f ow inside the Roche
lobe for Mp � 0.1 MJ. The question arises as to whether torques
from material inside the Roche lobe can affect the migration rate of
the planet.

In Fig. 12, the dashed lines give the torque exerted on the planet
including all zones on the numerical grid. For Mp � 0.1 MJ (for
which the f ow inside the Roche lobe is resolved), the net torque
inside the Roche lobe is positive. In fact, for the 1-MJ case, the total
torque is slightly positive (i.e. outward migration). The problem with
including torques from deep inside the Roche lobe is that near the
planet the torque per unit mass becomes very large. Therefore, small
departures from axisymmetry (either real or due to f nite numerical
resolution) can produce a large net torque that is comparable to the
net torque from outside the Roche lobe. As shown by the error bars
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226 M. R. Bate et al.

Figure 12. The torque exerted by the disc on planets with masses of 1, 0.3, 0.1, 0.03, 0.01 and 0.003 MJ (top-left to bottom-right). In each case there are two
panels. Left panel: The dashed line gives the torque density (torque per unit radius) as a function of radius calculated using all grid zones. The solid line gives
the torque density calculated only using those grid zones outside the planet’s Roche radius, rR. The torque density is dimensionalized by multiplying by GMp
Md/(4π r2

p). The dotted vertical lines show the size of the Roche lobe (r = rp ± rR). Right panel: The solid line gives the cumulative torque as a function of
radius, neglecting grid zones within rR of the planet, except for the 1-M⊕ planet. For the 1-M⊕ planet we neglect zones within 2rR. Note that the radial scale
is larger than in the plots of torque density. The cumulative torque is dimensionalized by multiplying by GMp Md/(4πrp). For planets that do not open gaps
(i.e. Mp � 0.1 MJ), essentially all of the torque comes from the region within r = rp ± 2H . In particular, the 2:1 resonance at r ≈ 1.59 does not contribute
signif cantly to the total torque. In each case, the overall torque is negative giving inward migration.

in Figs 10 and 11, including torques into r c = 0.5rR only results in
changes at the 20 per cent level (for Mp � 10 M⊕). Here the f ow
is still reasonably well resolved. Going deeper than this, however,
gives very unreliable results.

The same problem has been encountered in other studies. Lubow
et al. (1999) found that the contributions to the torque from radii
near the planet were in the opposite sense to the torque from further
out in the disc (i.e. radii outside but near the planet gave a positive
net torque and radii inside but near the planet contributed a nega-
tive torque). D’Angelo et al. (2002) found that taking into account
torques near the planet usually resulted in the migration switch-
ing from inward to outward. They neglected the contribution from
zones within approximately 0.2rR when calculating the net torque.
The problem is worse in these two-dimensional calculations than
in three dimensions because of the strong spiral shocks within the
circumplanetary disc – any asymmetry due to numerical resolution
results in a large net contribution.

A related issue is that the material, which is accreted by the planet
and removed from the calculation, carries some angular momentum.
If this angular momentum were put back into the orbital angular
momentum of the planet it would reduce the migration rate of the
planet. The magnitude of this effect depends on the radius of the
region from which the gas is removed. In most of our calculations,
the amount of angular momentum that is removed is low. If it were
all added to the orbital angular momentum of the planet, it would
reduce the migration rates by approximately 2 per cent in the cases
of the 1- and 0.3-MJ planets, by approximately 10 per cent for the
0.1-, 0.03- and 0.01-MJ planets, and by approximately 50 per cent
in the case of the 1-Earth-mass planet. The large effect for the Earth-

mass planet is partially due to its accretion rate being overestimated
(Section 3.2.2).

To accurately evaluate the torques from inside the Roche lobe will
require higher-resolution, three-dimensional calculations. It may
also require a realistic equation of state, as low-mass planets may be
unable to accrete gas at the rate the disc can provide it because the
thermal energy of the gas cannot be radiated away quickly enough
(see Section 4). For the present, we have presented an accurate de-
termination of the torque from outside the Roche lobe and we f nd
excellent agreement with the linear theory of Tanaka et al. (2002).

3.5 Further tests of type I migration

The discs in the above calculations had unperturbed scaleheights
H/r = 0.05 and surface density prof les � ∝ r−1/2. Tanaka et al.
(2002) predicted how the migration time-scales should vary with
the disc’s thickness and surface density prof le. To further test their
predictions, we performed calculations of 10-M⊕ planets in discs
with different thicknesses and surface density prof les.

We performed a calculation with H/r = 0.10. According to equa-
tion (10), the planet should migrate four times slower than with
H/r = 0.05. We f nd that the planet migration time-scale increases
by a factor of about 4.9 ± 1.4, where the estimated error comes from
using values of r c ranging between r c = 0.5rR and 1.5rR. We also
note that the torque density and cumulative torque distributions are
similar to those in the Mp = 0.03 MJ panels of Fig. 12, except they
are spread over twice the radial range around the planet. Thus, the
torque is generated almost entirely within the radial range r = r p ±
2H , as discussed in the previous section.
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We performed a calculation with � ∝ r−3/2. According to Tanaka
et al. (2002), the planet should migrate 36 per cent faster than with
� ∝ r−1/2. We f nd that the planet migration time-scale decreases by
a factor of about 1.8 ± 0.2. The distribution of the torque is similar
to the Mp = 0.03 MJ panels of Fig. 12.

Given the diff culties in measuring the torques, these results are in
reasonable agreement with the predictions of Tanaka et al. (2002).

4 D I S C U S S I O N

The accretion and migration rates from the previous sections can
be used to investigate the time-scale for the gas accretion phase of
giant planet formation. In the core-accretion model of giant planet
formation, giant planets are thought to form through gas accretion on
to a solid core of about 10 M⊕ (Mizuno 1980; Hayashi, Nakazawa
& Nakagawa 1985). Runaway gas accretion is thought to occur
at higher masses, greater than about 50 M⊕ (Pollack et al. 1996).
The overall formation time-scale may be dominated by the phase
between the onset of gas accretion and the beginning of runaway
gas accretion. During this stage, the accretion on to the planet is
limited by the energy losses in the contracting envelope. This model
is subject to several major assumptions, and there are issues with
the apparently small observationally inferred core mass of Jupiter
(Pollack et al. 1996; Wuchterl et al. 2000). In any case, the accretion
rates during this intermediate stage are typically much smaller than
the rates we plotted in Fig. 9. Consequently, the accretion rates we
obtain are valid, within the framework of the current calculations
of the core-accretion model, only during the runaway gas accretion
phase.

As a protoplanet accretes, it will migrate through the disc. Its
rate of migration is given by Fig. 11. Thus, we can investigate the
time-scale and result of giant planet formation by starting with a

Figure 13. Left: mass of an accreting protoplanet versus time. Right: the protoplanet’s orbital radius versus its mass. The protoplanet is assumed to begin at
an orbital radius of 2 (thin lines), 5 (medium lines) or 10 (thick lines) au around a 1-M⊙ star. The line types give the results for different disc surface densities:
75 g cm−2 (solid), 150 g cm−2 (dotted), 300 g cm−2 (dashed) at 5.2 au. It is assumed that the protoplanet can accrete gas at the rate at which the disc can
provide it. The evolution of the protoplanet could be stopped at any point by dispersal of the disc. Notice that there is an upper limit of approximately 10 MJ
to the mass of a planet. Also notice that the mass and orbital radius of a giant planet and its gas accretion time-scale do not depend signif cantly on the initial
mass of the protoplanet as long as it is less than approximately 50 M⊕.

core and integrating its mass and orbital radius forward in time. The
results of such integrations are given in Fig. 13. The evolution of the
protoplanet can be stopped at any point along the curves by dispersal
of the disc. We plot results for cores beginning at three different
orbital radii and for three different disc surface densities (i.e. three
different disc masses). We have assumed that the disc surface density
varies as � ∝ r−1/2, but the results are very insensitive to the index;
� ∝ r−3/2 gives almost identical results.

For convenience, we assume the initial core mass is 1 M⊕ and we
ignore the possibility that the planet may not be able to accept mass
at the rates we obtain. Notice, however, that the results we obtain are
insensitive to the value of the threshold mass for rapid gas accretion,
as long as it is less than approximately 50 M⊕. The time required
for the gas accretion to produce a giant planet is almost independent
of the initial core mass, because the mass doubling time-scale for
a low-mass core is much shorter than that for a high-mass planet
(Fig. 9, right panel). Thus, only a small fraction of the total time
(Fig. 13) is spent while it is a low-mass core. Similarly, the orbital
radius of the planet is independent of the initial core mass because
the migration time-scale of a low-mass object is much longer than its
mass doubling time-scale. Thus, the time-scale of the runaway gas
accretion phase and the f nal mass and orbital radius of a giant planet
are essentially independent of whether we assume that runaway gas
accretion begins at 1 M⊕ or 50 M⊕.

We f nd the time required for a core to accrete to 1 MJ is only
t acc = 2.0 × 103–2.0 × 104 yr. None of the objects migrates sig-
nif cantly during this period, and the f nal orbital radius of the
1-MJ planet simply depends on the initial orbital radius of the
core.

Much more of a problem is the formation of very massive plan-
ets. To form a 4-MJ planet requires an order of magnitude longer
(t acc = 2.0 × 104 − 2.0 × 105 yr). Cores that begin rapid gas ac-
cretion at 2 au migrate into the star before they reach 4 MJ, unless
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the disc is massive (� � 200 g cm−2 at 5.2 au). Cores that begin at
larger radii and survive all migrate signif cantly during this period.
The formation of giant planet with Mp > 7 MJ is only possible for
cores that begin at large distances in massive discs. To form a giant
planet of 10 MJ requires either a very massive circumstellar disc, a
large initial orbital radius, or both.

The above rates represent the fastest possible accretion and the
least possible migration. Even then, the formation of planets with
masses Mp ≃ 10 MJ is diff cult or impossible. Thus, there is a
natural limit to the mass of a giant planet of ≃10 MJ, as suggested
in Lubow et al. (1999). This is in good agreement with the mass
distribution of extrasolar planetary systems (Basri & Marcy 1997;
Mayor, Queloz & Udry 1998; Mazeh, Goldberg & Latham 1998;
Halbwachs et al. 2000; Zucker & Mazeh 2001; Jorissen, Mayor
& Udry 2001; Tabachnik & Tremaine 2002). However, it is worth
pointing out that our results apply only to planets with circular orbits.
Planets with highly eccentric orbits may accrete signif cantly even
for masses Mp > 10 MJ. Thus, the eccentric orbits of many observed
extrasolar planets may assist them in growing to large masses.

5 C O N C L U S I O N S

We have simulated the three-dimensional interaction of a young
planet, ranging in mass from 1 M⊕ to 1 MJ, with a gaseous disc
by means of the ZEUS hydrodynamics code. The disc was vertically
isothermal with an unperturbed disc thickness ratio of H/r = 0.05,
and the disc turbulent viscosity parameter was α = 4 × 10−3. We
have analysed the f ow patterns, the accretion rates, and the migra-
tion rates. Each planet was assumed to remain in a circular orbit and
to accrete gas without expansion on the scale of its Roche lobe. To
incorporate the latter assumption into the simulations, we removed
mass from the grid zones that immediately surround the planet at
each time-step.

Only planets with masses Mp � 0.1 MJ produced signif cant per-
turbations in the disc’s surface density; 0.03 MJ (10 M⊕) is insuff -
cient (see Fig. 2). The f ow near the planet is fully three-dimensional
(see Fig. 7). The f ow at the disc mid-plane generally involves ma-
terial that passes by the planet, two gas streams that penetrate the
Roche lobe and supply material to a circumplanetary disc, and ma-
terial on horseshoe orbits (Fig. 5). These features are similar to those
found in previous two-dimensional studies (Bryden et al. 1999; Kley
1999; Lubow et al. 1999), but with some important differences.

The shocks in the circumplanetary f ow are much weaker in the
three-dimensional case than in the two-dimensional case (see Figs 5
and 8). The circumplanetary disc in three dimensions is likely to
behave more like a standard accretion disc, rather than being subject
to strong shock-driven accretion, as is the case in two dimensions.

The gas streams at mid-plane are narrower in the three-
dimensional case. However, the overall eff ciency of accretion in
three dimensions is still high. The accretion rate peaks at approxi-
mately 0.1 MJ, but a 1-MJ planet still accretes mass at a rate greater
than the usual local viscous rate. This result suggests that the lower
accretion occurring at the mid-plane in the three-dimensional calcu-
lations is compensated by accretion occurring from above the mid-
plane. For small-mass planets, the accretion occurs with a cross-
section whose length-scale is of the order of the size of the Roche
lobe (see Figs 5 and 9). This leads to the accretion rate increasing
in proportion to the planet’s mass (equation 8).

We investigated the disc torques on planets and the resulting
migration time-scales. The migration time-scales obtained from
torques exerted outside the planet’s Roche lobe are in excellent

agreement with recent linear theory (Tanaka et al. 2002), as seen
in Fig. 10. The transition from type I (non-gap) migration to type
II (gap) migration occurs at Mp ≈ MJ/4. The transition is smooth
with only about a factor of 2 difference in rates. The torque outside
the Roche lobe is concentrated in a region of distance of order H

from the planet, as expected from linear theory.
It is not yet possible to determine the torques from within the

Roche lobe of a planet. The problem is that the torque per unit mass
increases as the distance from the planet decreases. Consequently,
small numerical f uctuations in the density close to the planet give
rise to numerical noise in the torque (see Fig. 12). On the other
hand, it is not clear that strong torques can arise close to the planet,
as the outer portions of the circumplanetary disc in three dimensions
appear to be quite smooth.

We have considered the orbital and mass evolution of a planet,
based on the orbital migration and mass accretion rates we have ob-
tained (Fig. 13). For low-mass protoplanets, less than about 50 M⊕,
the accretion rate may be limited by the response of the planet (see
the discussion in Section 4). In the absence of this limit, a planet
could gain considerable mass with little migration. Starting with a
higher mass core of say 50 M⊕, higher-mass planets, up to about 2
MJ, can also grow with little migration. Masses as high as 10 MJ do
not appear possible (as was also suggested in Lubow et al. 1999),
because the planet will migrate inward over a large distance before
accreting enough material.
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