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The steady three-dimensional flow of a thin, slowly varying ring of Newtonian fluid on
either the outside or the inside of a uniformly rotating large horizontal cylinder is investi-
gated. Specifically, we study “full-ring” solutions, corresponding to a ring of continuous,
finite and non-zero thickness that extends all the way around the cylinder. In particular,
it is found that there is a critical solution corresponding to either a critical load above
which no full-ring solution exists (if the rotation speed is prescribed) or a critical rotation
speed below which no full-ring solution exists (if the load is prescribed). We describe the
behaviour of the critical solution and, in particular, show that the critical flux, the crit-
ical load, the critical semi-width and the critical ring profile are all increasing functions
of the rotation speed. In the limit of small rotation speed, the critical flux is small and
the critical ring is narrow and thin, leading to a small critical load. In the limit of large
rotation speed, the critical flux is large and the critical ring is wide on the upper half of
the cylinder and thick on the lower half of the cylinder, leading to a large critical load.
We also describe the behaviour of the non-critical full-ring solution, and, in particular,
show that the semi-width and the ring profile are increasing functions of the load but,
in general, non-monotonic functions of the rotation speed. In the limit of large rotation
speed, the ring approaches a limiting non-uniform shape, whereas in the limit of small
load, the ring is narrow and thin with a uniform parabolic profile. Finally, we show that,
while for most values of the rotation speed and the load the azimuthal velocity is in the
same direction as the rotation of the cylinder, there is a region of parameter space close
to the critical solution for sufficiently small rotation speed in which backflow occurs in a
small region on the upward-moving side of the cylinder.

1. Introduction

Even before the pioneering work by Pukhnachev (1977)¶ and Moffatt (1977) there
was theoretical and experimental interest in flows on rotating horizontal cylinders, but
since the publication of these seminal works there has been considerable and ongoing
theoretical, numerical and experimental research activity on both “coating flow” (i.e.
flow on the outside surface) and “rimming flow” (i.e. flow on the inside surface) on a
uniformly rotating horizontal cylinder.
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orative Applied Mathematics (OCCAM), University of Oxford, Mathematical Institute, 24–29
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Both coating flow and, more especially, rimming flow have proved to be a fascinating
and fruitful “test bed” for the study of a wide range of fluid-dynamical phenomena,
including (in no particular order) fluid instabilities, solitary waves, pattern formation,
multiple steady and unsteady states (including chaotic behavior), segregation in dilute
suspensions, and avalanches in granular materials. As a result there is a considerable
and steadily growing literature on both coating and rimming flows. Following the work
by Pukhnachev (1977) and Moffatt (1977), important contributions have been made by
many authors, including Johnson (1988), Preziosi & Joseph (1988), Melo & Douady
(1993), Thoroddsen & Mahadevan (1997), Hosoi & Mahadevan (1999), Duffy & Wilson
(1999), Peterson et al. (2001), Wilson et al. (2002b), Ashmore et al. (2003), Hinch &
Kelmanson (2003), Acrivos & Jin (2004), Evans et al. (2004), Benilov & O’Brien (2005),
Evans et al. (2005), Villegas-Dı́az et al. (2005), Benilov (2006), Noakes et al. (2006),
Chen et al. (2007), Benilov et al. (2008), Hunt (2008), Benilov et al. (2009), Kelmanson
(2009), Shrager et al. (2009), Tougher et al. (2009), Chicharro et al. (2011), Pougatch &
Frigaard (2011), Thiele (2011), Benilov et al. (2012), Leslie et al. (2012), and Williams
et al. (2012). The recent review article by Seiden & Thomas (2011) focuses on pattern
formation and segregation in rimming flows of dilute suspensions and granular materials,
but also provides probably the most complete overview of the literature on coating and
rimming flows of pure fluids currently available.

Inevitably most of the theoretical and numerical work has focused on the most tractable
cases of two-dimensional or weakly three-dimensional flows. In particular, Moffatt (1977)
found that steady two-dimensional solutions corresponding to a thin film of fluid covering
the entire cylinder are possible only below a critical maximum load, and that, rather
counter intuitively, these solutions always have top-to-bottom symmetry (i.e. they are
the same on the top and the bottom halves of the cylinder).

The present work provides the first theoretical analysis of a three-dimensional coating
and rimming flow consisting of “rings” (sometimes also referred to as “bands” or “strips”)
of fluid flowing around a uniformly rotating horizontal cylinder. As we shall see, not only is
this flow of considerable interest in its own right, but may also be relevant to the complex
three-dimensional flows observed experimentally by, for example, Moffatt (1977), Melo &
Douady (1993), Thoroddsen & Mahadevan (1997) and Chen et al. (2007) as well as the
banded films of condensed ammonia-water mixtures observed experimentally by Deans
& Kucuka (2011) on the outer surface of a stationary horizontal cylinder.

Although, on account of their inherent three-dimensionality, there has been relatively
little previous theoretical work on rings, there is a large literature on the related problem
of rivulet flow. In particular, Towell & Rothfeld (1966) and Allen & Biggin (1974) studied
the steady unidirectional flow of a uniform rivulet (i.e. a rivulet with constant cross-
sectional profile) of Newtonian fluid down an inclined plane, and subsequently Duffy
& Moffatt (1995) obtained the solution for a thin rivulet and interpreted their results
as describing the locally unidirectional flow of a thin rivulet down a slowly varying
substrate, and, in particular, as describing the flow in the azimuthal direction around a
large horizontal cylinder. There has been considerable work on many different aspects
of rivulet flow; in the absence of a recent review article, the work by Schmuki & Laso
(1990), Duffy & Moffatt (1997), Wilson & Duffy (1998), Roy & Schwartz (1999), Wilson
et al. (2002a), Kim et al. (2004), Perazzo & Gratton (2004), Saber & El-Genk (2004),
Wilson & Duffy (2005), Le Grand-Piteira et al. (2006), Alekseenko et al. (2008), Sullivan
et al. (2008), Benilov (2009), Diez et al. (2009), Tanasijczuk et al. (2010), Daerr et al.

(2011), Wilson et al. (2011) and Yatim et al. (2011) (and the references therein) provide
a representative selection of the recent literature.

In the present paper we use a combination of asymptotic and numerical methods to
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investigate the steady three-dimensional flow of a thin, slowly varying ring of Newtonian
fluid on either the outside or the inside of a uniformly rotating large horizontal cylinder.
Specifically, we study what we will call “full-ring” solutions, corresponding to a ring of
continuous, finite and non-zero thickness that extends all the way around the cylinder.
This study therefore combines aspects of the classical two-dimensional coating and rim-
ming flow studied by Moffatt (1977) (such as, for example, the existence of a critical
maximum load for the fluid to extend all the way around the cylinder) with aspects of
the locally unidirectional flow of a thin rivulet down a slowly varying substrate studied
by Duffy & Moffatt (1995) (such as, for example, the non-uniform profile and the lack of
top-to-bottom symmetry) to provide the first theoretical analysis of this interesting and
previously largely unexplored three-dimensional flow.

2. Problem formulation

Consider the steady three-dimensional flow of a thin, slowly varying ring of Newtonian
fluid with uniform density ρ and viscosity µ on either the outside or the inside of a
large circular cylinder of radius R rotating in a counter-clockwise direction about its
horizontal axis at uniform angular speed Ω (> 0) (so that the circumferential speed,
denoted by U , is U = RΩ). Referred to polar coordinates θ (the azimuthal coordinate
measured counter-clockwise from the horizontal), Y (the axial coordinate with origin at
the axis of symmetry of the ring) and r = R ± Z (the radial coordinate with origin at
the cylinder’s axis), as shown in figure 1 (drawn for the case of flow on the outside of
the cylinder), we take the free surface of the ring to be at r = R + h for flow on the
outside of the cylinder and r = R − h for flow on the inside of the cylinder, the ring
profile being denoted by h = h(θ, Y ), and take the contact lines at the edges of the ring
(where h = 0) to be at Y = ±a, the semi-width being denoted by a = a(θ) (> 0). Hence
the fluid lies in the intervals −a 6 Y 6 a and 0 6 Z 6 h for −π < θ 6 π. The fluid
velocity u = ueθ +veY +wer (where eθ, eY and er denote unit vectors in the azimuthal,
axial and radial directions, respectively) and pressure p are governed by the usual mass-
conservation and Navier–Stokes equations. On the cylinder r = R the velocity u satisfies
no-slip and no-penetration conditions, while on the free surface r = R ± h the usual
normal and tangential stress balances and the kinematic condition apply.

We consider a thin, slowly varying ring whose longitudinal aspect ratio, denoted ǫ,
is defined to be ǫ = ℓ/R ≪ 1, where ℓ = (γ/ρg)1/2 is the capillary length in which
γ is the constant coefficient of surface tension and g is the magnitude of gravitational
acceleration, and whose transverse aspect ratio is defined to be the prescribed contact
angle, denoted by β ≪ 1. In particular, we consider the situation in which the ring is
sufficiently slowly varying (i.e. the cylinder is sufficiently large) that ǫ ≪ β ≪ 1. Hence
we non-dimensionalise and scale the system appropriately by writing

r = R(1 ± ǫβZ∗), Y = ǫRY ∗, θ = ±θ∗, h = ǫβRh∗, a = ǫRa∗,

p − pa = ǫβRρgp∗, u =
ǫ2β2R2ρg

µ
u∗, v = ±ǫ3β2R2ρg

µ
v∗, w =

ǫ3β3R2ρg

µ
w∗,

Q =
ǫ4β3R4ρg

µ
Q∗, M = ǫ2βR3ρM∗, U = RΩ =

ǫ2β2R2ρg

µ
U∗,



























(2.1)
in which the + sign (− sign) corresponds to flow on the outside (inside) of the cylinder, pa

is the constant pressure in the surrounding atmosphere, Q is the azimuthal volume flux
of fluid crossing a station θ = constant, and M (> 0) is the constant fluid load (i.e. the
mass of fluid) on the cylinder. For clarity the star superscripts on the non-dimensional
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Figure 1. Geometry of the problem: steady three-dimensional flow of a thin, slowly varying
ring of Newtonian fluid on a uniformly rotating horizontal cylinder.

quantities will be omitted henceforth. We shall describe what follows in terms of flow
on the outside of the cylinder only (i.e. we choose the + in the ± above) so that, in
particular, positive values of θ correspond to the top of the cylinder and negative values
to the bottom; to interpret the results that follow for flow on the inside of the cylinder it
is simply necessary to let positive values of θ correspond to the bottom of the cylinder and
negative values to the top. (Note that this swapping of top and bottom when switching
between coating and rimming flow also occurs in the corresponding two-dimensional
problem.)

At leading order in ǫ and β the governing equations for the flow on the cylinder become

∂u

∂θ
+

∂v

∂Y
+

∂w

∂Z
= 0,

∂2u

∂Z2
= cos θ,

∂p

∂Y
= 0,

∂p

∂Z
= − sin θ, (2.2)

together with the boundary conditions

u = U, v = 0 and w = 0 on Z = 0, (2.3)

p = − ∂2h

∂Y 2
,

∂u

∂Z
= 0 and

∂v

∂Z
= 0 on Z = h, (2.4)

the kinematic condition on Z = h, which may be written in the form

∂ū

∂θ
+

∂v̄

∂Y
= 0, (2.5)

where the local azimuthal and axial fluxes, ū = ū(θ, Y ) and v̄ = v̄(θ, Y ), are defined by

ū =

∫ h

0

u dZ, v̄ =

∫ h

0

v dZ, (2.6)

and

h = 0 and
∂h

∂Y
= ∓1 on Y = ±a. (2.7)
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Introducing the rescaled axial coordinate y = Y/a and rescaled radial coordinate z =
Z/h (so that the fluid lies within the fixed intervals −1 6 y 6 1 and 0 6 z 6 1 for
−π < θ 6 π) and integrating (2.2)4 subject to (2.4)1 gives the solution for the pressure:

p = h sin θ(1 − z) − 1

a2

∂2h

∂y2
, (2.8)

from which (2.2)3 gives a third-order ordinary differential equation for the ring profile
h = h(θ, y), namely

∂

∂y

(

h sin θ − 1

a2

∂2h

∂y2

)

= 0, (2.9)

whose solution satisfying (2.7) is

h =































cosh ma − cosh may

m sinhma
if 0 < θ < π,

a(1 − y2)

2
if θ = 0 or θ = π,

cos may − cos ma

m sin ma
if −π < θ < 0,

(2.10)

where for convenience we have introduced the notation m = | sin θ|1/2. At any station
θ = constant the ring profile h given by (2.10) is symmetric about y = 0, with a single
maximum at y = 0, and the maximum thickness of the ring, denoted hm = hm(θ) =
h(θ, 0), is given by

hm =



























1

m
tanh

(ma

2

)

if 0 < θ < π,

a

2
if θ = 0 or θ = π,

1

m
tan

(ma

2

)

if −π < θ < 0.

(2.11)

Note that the local solution for the profile of the ring is equivalent to the profile of a
thin rivulet flowing down a plane inclined at an angle π/2 − θ to the horizontal given
by Duffy & Moffatt (1995). Physically the flow is a balance between gravity and viscous
forces, with the cross-sectional profile determined by a balance between surface-tension
and gravity forces. For future reference it is useful to note that h is given by

h =
a

2

(

1 − y2
)

− sgn(θ)
m2a3

24

(

1 − y2
)2

+ O
(

m4a5
)

(2.12)

in the limits a → 0+ and m → 0+, while for 0 < θ < π it is given by

h =
1

m
(1 − 2 exp(−ma) cosh may) + O (exp(−2ma)) (2.13)

in the limit a → ∞, and for −π < θ < 0 it is given by

h =
1 + cos πy

m(π − ma)
+

y sinπy

m
+ O(π − ma) (2.14)

in the limit ma → π.
In the present work, we shall henceforth be concerned only with what we will call

“full-ring” solutions, i.e. solutions for which a and h are continuous, finite and non-zero
for all −π < θ 6 π and −1 < y < 1, corresponding to a continuous ring of finite, non-
zero width and thickness that extends all the way around the cylinder. These full-ring
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solutions may be thought of as a three-dimensional generalisation of the two-dimensional
“full-film” solutions described by Moffatt (1977), and, like them, have a constant (but
as yet unknown) volume flux Q. Note, however, that the full-ring solutions do not, in
general, have the rather counter-intuitive top-to-bottom symmetry exhibited by the full-
film solutions. Integrating (2.2)2 twice subject to (2.3)1 and (2.4)2 gives the azimuthal
velocity

u = U − h2 cos θ

2
(2 − z)z, (2.15)

and so the local azimuthal flux ū is given by

ū = Uh − h3 cos θ

3
, (2.16)

and hence the constant flux Q is given by

Q = a

∫ 1

−1

ū dy = Ua

∫ 1

−1

h dy − a cos θ

3

∫ 1

−1

h3 dy, (2.17)

which leads to

Q = −cos θ

9m4
F (ma) +

U

m2
G(ma), (2.18)

where the functions F (ma) and G(ma) are defined by

F (ma) =







15ma coth3 ma − 15 coth2 ma − 9ma coth ma + 4 if 0 < θ < π,

−15ma cot3 ma + 15 cot2 ma − 9ma cot ma + 4 if −π < θ < 0
(2.19)

and

G(ma) =







2(ma coth ma − 1) if 0 < θ < π,

−2(ma cot ma − 1) if −π < θ < 0,
(2.20)

and appropriate interpretation of the special cases θ = 0 and θ = π as limits is required.
The functions F (ma) and G(ma) are plotted together with their derivatives F ′(ma) and
G′(ma) in figure 2. For 0 < θ < π the functions F (ma) and G(ma) are positive functions
of ma, increasing monotonically from zero at ma = 0 to infinity with finite slope as
ma → ∞, whereas for −π < θ < 0 the functions F (ma) and G(ma) have multiple
branches; however, one may show that the branch that gives rise to full-ring solutions
lies in the interval 0 < ma < π within which they are positive functions of ma, increasing
monotonically from zero at ma = 0 to infinity with infinite slope as ma → π. For future
reference it is useful to note that F (ma) and G(ma) are given by

F (ma) =
12

35
(ma)4 − sgn(θ)

8

105
(ma)6 + O

(

(ma)8
)

(2.21)

and

G(ma) =
2

3
(ma)2 − sgn(θ)

2

45
(ma)4 + O

(

(ma)6
)

(2.22)

in the limit ma → 0, while for 0 < θ < π they are given by

F (ma) = 6ma − 11 + 12(6ma − 5) exp(−2ma) + O (ma exp(−4ma)) (2.23)

and

G(ma) = 2ma − 2 + 4ma exp(−2ma) + O (ma exp(−4ma)) (2.24)
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Figure 2. The functions F (ma) and G(ma) (solid lines), defined by (2.19) and (2.20), respec-
tively, together with their derivatives F ′(ma) and G′(ma) (dashed lines) for (a) 0 < θ < π and
(b) −π < θ < 0 in the interval 0 < ma < π.

in the limit ma → ∞, and for −π < θ < 0 they are given by

F (ma) =
15π

(π − ma)3
− 6π

π − ma
+ O(π − ma) (2.25)

and

G(ma) =
2π

π − ma
− 2π

3
(π − ma) + O

(

(π − ma)2
)

(2.26)

in the limit ma → π.
Equation (2.18) provides an implicit solution for the semi-width a = a(θ) in terms

of the flux Q. At the top and bottom of the cylinder (i.e. at θ = ±π/2) the flux Q
given by (2.18) takes the form Q = UG(a) (> 0), while at θ = 0 and θ = π it yields
Q = −4a4/105+2Ua2/3 and Q = 4a4/105+2Ua2/3, respectively. While the roots of the
former quadratic for a2 are always real, those of the latter are only real provided that
0 < Q 6 35U2/12, showing that for full-ring solutions Q must always lie in this interval.

Figure 3 shows three contours of the expression for the flux Q given by (2.18) in the
θ/π–a plane when U = 1 (contours for other values of U are qualitatively similar) which,
since they are by definition curves on which Q = constant, represent candidate solutions
for the semi-width a = a(θ). This figure clearly demonstrates one of the key features of the
present problem, namely the existence of a critical solution with a critical flux, denoted
by Q = Qc, such that full-ring solutions exist when Q 6 Qc but not when Q > Qc. Here
and henceforth variables in the critical case are denoted with a subscript c, e.g. Qc. This
solution, which is analogous to the critical two-dimensional full-film solution described
by Moffatt (1977), is discussed in Section 3. In particular, figure 3(a) shows that when
Q < Qc only the lowest branch (shown with a solid line) is a full-ring solution, while the
higher branches (shown with dashed lines) form a rather complicated “network” which
does not extend over all −π < θ 6 π and so cannot be a full-ring solution. Figure 3(b)
shows that when Q = Qc the critical full-ring solution is made up of two different branches
(again shown with a solid line) which meet to form a corner at θ = θ̂c and a = âc, while
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Figure 3. Three contours of the expression for the flux Q given by (2.18) in the θ/π–a plane

when U = 1. The contours are drawn for (a) Q = 2.25 (< Qc = 10
√

5/9 ≃ 2.48452), (b) Q = Qc

and (c) Q = 2.75 (> Qc). The branches corresponding to full-ring solutions are shown with solid
lines, while the other branches are shown with dashed lines.

again the higher branches (again shown with dashed lines) cannot be a full-ring solution.
Here and henceforth variables relating to the corner in the critical case are denoted with
both a subscript c and a hat, e.g. θ̂c. Figure 3(c) shows that when Q > Qc there is no
branch that extends over all −π < θ 6 π and so no full-ring solution exists. Of course,
as, for example, Johnson (1988) describes in the two-dimensional case, as well as the
continuous full-ring solutions there can also be piecewise-continuous “shock” or “jump”
solutions with one or more discontinuities at which the solution jumps between different
branches. In particular, figure 3(b) shows that, as in the two-dimensional case, in the
critical case there can be a solution with only one discontinuity. Piecewise-continuous
solutions are not considered further in the present work, but are an interesting topic for
future work.

The total fluid load on the cylinder, M , is given by

M =

∫ π

−π

∫ 1

−1

∫ 1

0

a(θ)h(θ, y) dz dy dθ, (2.27)

leading to

M =

∫ π

−π

G(ma)

m2
dθ, (2.28)

where the function G(ma) is again given by (2.20).
With the rotation speed U prescribed, the semi-width a, and hence the ring profile h

given by (2.10), is determined in terms of Q by the algebraic equation (2.18) in which the
functions F (ma) and G(ma) are given by (2.19) and (2.20), respectively. The constant
but unknown value of Q is determined either from an appropriate criticality condition
or from the condition of prescribed load using (2.28). The properties and behaviour of
the solutions in these two cases are discussed in Sections 3 and 4, respectively, but in
both cases, the solutions for p, h and u are given explicitly by (2.8), (2.10) and (2.15),
respectively. If required, v can (in principle) be determined by proceeding to higher
order in (2.2)3 and then w can be determined from the leading order mass-conservation
equation (2.2)1.
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3. The critical full-ring solution

In this Section we describe the behaviour of the critical full-ring solution with critical
flux Q = Qc. Not only is this solution of considerable interest in its own right but, as
we shall see, investigating this critical case is necessary in order to understand when a
non-critical full-ring solution exists when both the rotation speed U and the load M are
prescribed (this solution is discussed in Section 4). In the critical case either U or M may
be prescribed with the other being determined by the criticality condition; specifically,
as we shall see, if the rotation speed U is prescribed then there is a critical load, denoted
by M = Mc, above which no full-ring solutions are possible, whereas if the load M is
prescribed then there is a critical rotation speed, denoted by U = Uc, below which no full-
ring solutions are possible. For simplicity and to avoid repetition we present the following
analysis for the case of prescribed rotation speed U and leave the reader to interpret the
results appropriately for the case of prescribed load M .

As may be seen from figure 3(b), a key feature of the critical solution is that the

expression for the flux Q given by (2.18) has a saddle point at θ = θ̂c and a = âc which

gives rise to a corner in the critical full-ring profile hc at θ = θ̂c. This corner is analogous
to the corner in the critical two-dimensional full-film profile described by Moffatt (1977),
except, of course, that it occurs on a curve in three dimensions (rather than at a point in
two dimensions). At the saddle point we have the necessary (but not sufficient) conditions
∂Q/∂θ = 0 and ∂Q/∂a = 0, which, from (2.18), leads to the criticality conditions

(1 + cos2 θ̂c)F (m̂câc) = 9U cos θ̂c| sin θ̂c|G(m̂câc) (3.1)

and

cos θ̂cF
′(m̂câc) = 9U | sin θ̂c|G′(m̂câc), (3.2)

where we have defined m̂c = | sin θ̂c|1/2. We may eliminate θ̂c and âc from (3.1) and
(3.2) in favour of B̂c = m̂câc (> 0) in order to obtain a single algebraic equation for B̂c

involving the parameter U only, namely

F (B̂c)F
′(B̂c)

2

G′(B̂c)
[

F ′(B̂c)G(B̂c) − 2F (B̂c)G′(B̂c)
] = 81U2. (3.3)

From the criticality condition (3.2) it is immediately apparent that cos θ̂c > 0, and
so we deduce that the corner always lies on the upward-moving side of the cylinder
(i.e. in the interval −π/2 < θ̂c < π/2). When 0 < θ̂c < π/2 the function on the left-
hand side of (3.3) is negative for all B̂c > 0, and so (3.3) has no full-ring solution for

B̂c for any U ; on the other hand, when −π/2 < θ̂c < 0 this function is positive for
0 < B̂c < π, increasing monotonically from zero at B̂c = 0 to infinity as B̂c → π, and
so for any prescribed U equation (3.3) has a unique full-ring solution for B̂c. Then, with

B̂c determined numerically from (3.3), the position of the corner θ̂c = θ̂c(U) is given by
(3.2) as

θ̂c = − tan−1

(

F ′(B̂c)

9UG′(B̂c)

)

, (3.4)

which together with (3.3) may be used to show that −π/4 < θ̂c < 0. In particular, (3.4)
shows that, unlike for the critical two-dimensional full-film solution described by Moffatt
(1977) in which the corner is always at θ = 0, the position of the corner in the present
critical full-ring solution varies with U . The values of the critical semi-width and critical
maximum thickness at the corner, âc = âc(U) = a(θ̂c) and ĥmc = ĥmc(U) = hm(θ̂c), are
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Figure 4. (a) The scaled position of the corner in the critical solution θ̂c/π, (b) the critical
flux Qc, and (c) the critical load Mc plotted as functions of U (solid lines) together with the
asymptotic solutions (3.9), (3.10) and (3.15), and (3.16), (3.17) and (3.34) in the limits U → 0
(dotted lines) and U → ∞ (dashed lines), respectively. Full-ring solutions exist only for values
of Q, U and M that lie below the solid curves in (b) and (c).

then given by

âc =
B̂c

m̂c

=
B̂c

(− sin θ̂c)1/2
(3.5)

and

ĥmc =
1

m̂c

tan
B̂c

2
=

1

(− sin θ̂c)1/2
tan

B̂c

2
, (3.6)

respectively, and from (2.18) and (3.1) the critical flux Qc = Qc(U) is given by

Qc =
F (B̂c)

9 sin2 θ̂c cos θ̂c

. (3.7)

Note that in the special case U = 1 we obtain the exact values B̂c = π/2, θ̂c = − cot−1 2 ≃
−0.46365, âc = 51/4π/2 ≃ 2.34889, ĥmc = 51/4 ≃ 1.49535 and Qc = 10

√
5/9 ≃ 2.48452.

With the rotation speed U prescribed and the value of Qc obtained from (3.7), the
solution for the critical semi-width ac, critical ring profile hc, critical maximum thickness
hmc = hc(θ, 0), critical pressure pc, critical velocity uc and critical load Mc may be
obtained from (2.18), (2.10), (2.11), (2.8), (2.15) and (2.28), respectively. Figure 4 shows

(a) the scaled position of the corner in the critical solution θ̂c/π, (b) the critical flux Qc,
and (c) the critical load Mc, plotted as functions of U . In particular, figure 4 shows that

θ̂c is a decreasing function of U , decreasing from zero at U = 0 to −π/4 as U → ∞.
Figure 4 also shows that both the critical flux Qc and critical load Mc are increasing
functions of U , increasing from zero at U = 0 to infinity as U → ∞, and so full-ring
solutions, which exist only for values of Q, U and M that lie below the solid curves in
figures 4(b) and 4(c), exist for a wider range of fluxes and loads when the rotation speed
is increased.

Figure 5 shows (a) the critical semi-width ac and (b) the critical maximum thickness
hmc plotted as functions of θ/π for a range of values of U , and figure 6 shows the same
quantities plotted as functions of U for a range of values of θ. In particular, figures 5 and 6
show that both ac and hmc are increasing functions of U (as is the critical ring profile hc).
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Figure 5. (a) The critical semi-width ac and (b) the critical maximum thickness hmc plotted as
functions of θ/π for U = 1/3, 2/3, 1, . . . , 10 (solid lines) together with the asymptotic solutions
(3.11) and (3.12), and (3.24), (3.25), (3.30) and (3.31) in the limits U → 0 (dotted lines) and
U → ∞ (dashed lines) for U = 1/3 and U = 10, respectively.

Figure 6. (a) The critical semi-width ac and (b) the critical maximum thickness hmc plotted
as functions of U for θ = π (solid lines), θ = π/2 (long-dashed lines), θ = 0 (short-dashed lines)
and θ = −π/2 (dotted lines).

Figure 7 shows three-dimensional plots of the critical ring profile hc for various values of
U , clearly illustrating how the shape of the ring varies with U . In particular, figures 5–7
show that when U is small the ring is narrow and thin but not uniform, whereas when
U is large the ring is wide on the upper half of the cylinder and thick on the bottom half
of the cylinder. In Subsections 3.1 and 3.2 below we will analyse the behaviour of the
critical solution in the asymptotic limits U → 0 and U → ∞, respectively.
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Figure 7. Three-dimensional plots of the critical ring profile hc as a function of Y = acy and
θ/π for (a) U = 1/3, (b) U = 1, (c) U = 3, (d) U = 6 and (e) U = 10.

Figures 3(b), 5 and 7 clearly illustrate that not only the position but also the shape
of the corner in the critical solution vary with U . The slopes of the critical semi-width
ac, the rivulet profile hc, and the critical maximum thickness hmc on either side of the
corner (i.e. as θ → θ̂±c ) are denoted by

A±

c =
dac

dθ

∣

∣

∣

∣

θ=θ̂±c

, H±

c =
∂hc

∂θ

∣

∣

∣

∣

θ=θ̂±c

and H±

mc
= H±

c

∣

∣

y=0
=

dhmc

dθ

∣

∣

∣

∣

θ=θ̂±c

, (3.8)

respectively. Figure 8 shows (a) A±
c and (b) H±

mc
plotted as functions of U . In particular,

figure 8 shows that A−
c and H−

mc
are positive increasing functions of U (as is H−

c ),
whereas H+

mc
is a negative decreasing function of U (as is H+

c ) and A+
c is a negative

decreasing function of U when U < 0.25452, a negative increasing function of U when
0.25452 < U < 1.40264, and a positive increasing function of U when U > 1.40264. This
behaviour of the corner in hc differs significantly from that in the two-dimensional critical
full-film solution described by Moffatt (1977), not only because the slopes vary with U
but also because the corner is not, in general, symmetric, as it is in the two-dimensional
case. Of course, in practice the corner in the critical solution will not be perfectly sharp
and higher-order effects will become significant very close to the corner (see Wilson et al.

(2002b)).
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Figure 8. (a) The slopes of the critical semi-width ac as θ → θ̂±
c , A±

c , and (b) the slopes of

the critical maximum thickness hmc as θ → θ̂±
c , H±

mc
, plotted as functions of U (solid lines)

together with the asymptotic solutions (3.13) and (3.14), and (3.32) and (3.33) in the limits
U → 0 (dotted lines) and U → ∞ (dashed lines), respectively.

3.1. The limit of small rotation speed, U → 0

In the limit of small rotation speed, U → 0, the position of the corner in the critical
solution θ̂c is given from (3.3) and (3.4) by

θ̂c = −7U

9
+

22148U3

24057
+ O(U5), (3.9)

while from (3.7) the critical flux Qc is given by

Qc =
35U2

12
− 1715U4

1944
+ O(U6). (3.10)

These asymptotic solutions for θ̂c and Qc are shown as dotted lines in figures 4(a) and

4(b), respectively, and show that the effect of small rotation speed is to decrease θ̂c and
to increase Qc from zero at U = 0.

With the solution for Qc known it may be shown from (2.18), (2.21) and (2.22) that
the critical semi-width ac is given by

ac =
1

2

(

35U

1 +
√

2S sin(θ/2)

)1/2

+
7
√

35S cos(θ/2)
(

5S sin(θ/2) −
√

2
)

72
(

1 +
√

2 S sin(θ/2)
)3/2

U3/2 + O(U5/2), (3.11)
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Figure 9. Three-dimensional plots of the asymptotic solutions for the critical ring profile hc in
the limit (a) U → 0, given by (3.12), for U = 1/3 and (b) U → ∞, given by (3.30) and (3.31),
for U = 10, and plotted as functions of Y = acy and θ/π. These plots may be compared with
the corresponding exact solutions shown in figures 7(a) and 7(e), respectively.

and hence from (2.10) and (2.12) that the critical ring profile hc is given by

hc =
1 − y2

4

(

35U

1 +
√

2S sin(θ/2)

)1/2

+
7
√

35S(1 − y2) cos(θ/2)
(

5S sin(θ/2)(3y2 − 1) − 2
√

2
)

288
(

1 +
√

2 S sin(θ/2)
)3/2

U3/2 + O(U5/2), (3.12)

where we have defined S = sgn(θ − θ̂c). Figure 9(a) shows a three-dimensional plot
of the asymptotic solution for the critical ring profile hc given by (3.12) for U = 1/3,
which may be compared with the corresponding exact solution shown in figure 7(a). The
asymptotic solutions for the critical semi-width ac and the critical maximum thickness
hmc are shown as dotted lines in figure 5. In particular, these solutions show that the
effect of small rotation speed is to increase both ac and hc from zero at U = 0.

The slopes on either side of the corners in ac and hc, A±
c and H±

c , are given by

A±

c = ∓ (70U)1/2

8
+

(35U)3/2

144
+ O(U5/2) (3.13)

and

H±

c = ∓ (70U)1/2(1 − y2)

16
+

(35U)3/2(1 − y2)(3y2 − 1)

576
+ O(U5/2). (3.14)

The asymptotic solutions for A±
c and H±

mc
are shown as dotted lines in figure 8, and

show that the effect of small rotation speed is to increase A−
c and H−

c and to decrease
A+

c and H+
c from zero at U = 0.

The critical load Mc is given by

Mc =
70U

3
log(1 +

√
2) + O(U3). (3.15)

This asymptotic solution is shown as a dotted line in figure 4(c), and shows that the
effect of small rotation speed is to increase Mc from zero at U = 0.
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Figure 10. Sketches showing the structure of the asymptotic solutions for (a) the critical
semi-width ac and (b) the critical maximum thickness hmc (the latter of which is also typi-
cal of hc away from y = ±1) in the limit U → ∞.

3.2. The limit of large rotation speed, U → ∞
In the limit of large rotation speed, U → ∞, the position of the corner in the critical
solution θ̂c is given from (3.3) and (3.4) by

θ̂c = −π

4
+

3

4U
− 15

8π

(

5

2U3

)1/2

+ O

(

1

U2

)

, (3.16)

while from (3.7) the critical flux Qc is given by

Qc =
8πU3/2

3
√

5
− 2πU1/2

√
5

+ O(1). (3.17)

These asymptotic solutions for θ̂c and Qc are shown as dashed lines in figures 4(a) and
4(b), respectively, and show that the effect of large but finite rotation speed is to increase

θ̂c from its O(1) leading order value and to make Qc large (specifically, Qc = O(U3/2)).
Unlike in the limit U → 0, the asymptotic solutions for the critical semi-width ac and

the critical ring profile hc in the limit U → ∞ are qualitatively different for positive and
negative values of θ (i.e. on the upper and lower halves of the cylinder) and have thin
boundary layers of width O(1/U1/2) ≪ 1 near θ = 0 and θ = π. Sketches showing the
structure of the asymptotic solutions for ac and hmc (the latter of which is also typical
of hc away from y = ±1) in the limit U → ∞ are shown in figure 10.
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Figure 11. Plot of the real roots of the cubic equation (3.20) ζ as a function of θ/π. The largest
positive real root given by (3.21), which corresponds to the full-ring solution, is shown with a
solid line, while the other real roots, which correspond to higher branches of solutions, are shown
with dashed lines.

Away from the boundary layers near θ = 0 and θ = π, the solution for the critical
semi-width ac is given by

ac =
4πmU1/2

3
√

5
+

1

m
+ O

(

1

U1/2

)

(3.18)

if 0 < θ < π and

ac =
π

m
− ζ

mU1/2
+ O

(

1

U3/2

)

(3.19)

if −π < θ < 0, where ζ = ζ(θ) is a root of the cubic polynomial equation

8 sin2 θ ζ3 + 6
√

5 sin θ ζ2 + 5
√

5 cos θ = 0 (3.20)

that is real in the interval −π < θ < 0. A plot of the real roots of (3.20) is shown in
figure 11. The largest positive real root, which corresponds to the full-ring solution, is
shown with a solid line, while the other real roots, which correspond to higher branches
of solutions, are shown with dashed lines. The largest positive real root of (3.20) may be
written explicitly as

ζ =



































−
√

5

4 sin θ

[

1 + 2 cosh

(

1

3
cosh−1 [1 + 2 sin 2θ]

)]

if −π < θ < −π

2
,

3
√

5

4
if θ = −π

2
,

−
√

5

4 sin θ

[

1 + 2 cos

(

1

3
cos−1 [1 + 2 sin 2θ]

)]

if −π

2
< θ < 0,

(3.21)

which (in agreement with the behaviour of θ̂c in the limit U → ∞ described previously)
has a corner at θ = −π/4. From (3.18) and (3.19) we see that the effect of large but
finite rotation speed is to make ac large (specifically, ac = O(U1/2)) on the upper half
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Figure 12. Plot of ãc as a function of T obtained from (3.23).

of the cylinder and to decrease it from its O(1) leading order value on the lower half of
the cylinder. Note that there is no corner at leading order in the solution for ac given
by (3.18) and (3.19); the corner does, however, appear at first order. In the boundary
layers near θ = 0 and θ = π, ac is of O(U1/4) (which is intermediate between O(1) and
O(U1/2)) and is given by

ac =



















ãcU
1/4 − sgn(cos θ)

F (ãc|T |1/2)

9U1/4|T |3/2G′(ãc|T |1/2)
+ O

(

1

U3/4

)

if θ 6= 0 and θ 6= π,

2
√

πU1/4

51/4
+ sgn(cos θ)

8π3/2

35(125U)1/4
+ O

(

1

U3/4

)

if θ = 0 or θ = π,

(3.22)
where ãc = ãc(T ) is the smallest positive solution of

G(ãc|T |1/2) =
8π|T |
3
√

5
(3.23)

and T (6= 0) is given by T = θU1/2 with ãc = ac0 in the boundary layer near θ = 0 and
by T = (sgn(θ)π − θ)U1/2 with ãc = acπ in the boundary layer near θ = π. A plot of ãc

as a function of T obtained from (3.23) is shown in figure 12. A composite solution for
ac may be written as

ac =
4πU1/2

3
√

5

[

m − (π − θ)1/2 − θ1/2

]

+
1

m
− 1

(π − θ)1/2
− 1

θ1/2
+(ac0 +acπ)U1/4 (3.24)

if 0 < θ < π and

ac =
π

m
− π

|θ|1/2
− π

(π + θ)1/2

− 1

U1/2

(

ζ

m
− 3

√
5

4

[

1

|θ|3/2
+

1

(π + θ)3/2
− 8

27|θ|1/2
+

8

27(π + θ)1/2

]

)

+(ac0+acπ)U1/4

(3.25)
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if −π < θ < 0, and is shown as a dashed line in figure 5(a).
Away from the boundary layers near θ = 0 and θ = π, the solution for the critical ring

profile hc is given by

hc = ξ + O

(

1 − |y|
U1/2

exp

[

−4πm2U1/2(1 − |y|)
3
√

5

])

(3.26)

if 0 < θ < π, where ξ = ξ(m) is given by

ξ =
1

m

[

1 − 2 exp

(

−
[

4πm2U1/2

3
√

5
+ 1

])

cosh

([

4πm2U1/2

3
√

5
+ 1

]

y

)]

, (3.27)

and

hc =
1 + cos πy

mζ
U1/2 +

y sin πy

m
+ O

(

1

U1/2

)

(3.28)

if −π < θ < 0, where ζ is again given by (3.21). From (3.26) and (3.28) we see that the
effect of large but finite rotation speed is to decrease hc from its O(1) leading order value
on the upper half of the cylinder and to make it large (specifically, hc = O(U1/2) except
near y = ±1) on the lower half of the cylinder. We note that, unlike in the asymptotic
solution for ac given by (3.18) and (3.19), the corner appears at leading order in the
solution for hc given by (3.26) and (3.28). In the boundary layers near θ = 0 and θ = π,
hc is of O(U1/4) (i.e. of the same size as ac) and is given by

hc = η(T, y) =































cosh(ãcT
1/2) − cosh(ãcT

1/2y)

T 1/2 sinh(ãcT 1/2)
U1/4 + O

(

1

U1/4

)

if 0 < θ < π,

ãc(1 − y2)

2
U1/4 + O

(

1

U1/4

)

if θ = 0 or θ = π,

cos(ãc|T |1/2y) − cos(ãc|T |1/2)

|T |1/2 sin(ãc|T |1/2)
U1/4 + O

(

1

U1/4

)

if −π < θ < 0.

(3.29)
A composite solution for hc may be written as

hc = ξ(m) − ξ(θ1/2) − ξ([π − θ]1/2) + η(θU1/2, y) + η([π − θ]U1/2, y) (3.30)

if 0 < θ < π and

hc =

[

1

mζ
− 4

3
√

5

(

|θ|1/2 + (π + θ)1/2

)

]

(1 + cos πy)U1/2

+

[

1

m
− 1

|θ|1/2
− 1

(π + θ)1/2

]

y sinπy + η(θU1/2, y) + η([π + θ]U1/2, y) (3.31)

if −π < θ < 0, where ζ, ξ and η are again given by (3.21), (3.27) and (3.29), respectively,
and the corresponding composite solution for hmc is shown as a dashed line in figure 5(b).
Figure 9(b) shows a three-dimensional plot of the asymptotic solution for the critical
ring profile hc given by (3.30) and (3.31) for U = 10, which may be compared with
the corresponding exact solution shown in figure 7(e). The asymptotic solutions for the
critical semi-width ac and the critical maximum thickness hmc are shown as dotted lines
in figure 5.

The slopes on either side of the corner in the solutions for ac and hc, A±
c and H±

c , are
given by

A±

c =
π

23/4
− 23/4

√
5

12U1/2
(9 ± 2

√
6) +

15π

215/4U
+ O

(

1

U3/2

)

(3.32)
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and

H±

c = ∓23/4
√

5U1/2

30
(2
√

6 ± 3) (1 + cos πy) +
y sin πy

23/4
+ O

(

1

U1/2

)

. (3.33)

The asymptotic solutions for A±
c and H±

mc
are shown as dashed lines in figure 8, and

show that the effect of a large but finite rotation speed is to decrease A±
c from their

O(1) leading order values and to make H±
c large (specifically, H±

c = O(U1/2) away from
y = ±1). Note that the leading order values of A±

c are the same while the leading order
values of H±

c are of the same magnitude but opposite sign, confirming that there is no
corner in the leading order solution for ac but that there is a corner in the leading order
solution for hc.

The critical load Mc is given by

Mc =

(

8π2

3
√

5
+

∫ 0

−π

2π

m2ζ
dθ

)

U1/2 + O(1) ≃ 24.25391U1/2 + O(1). (3.34)

This asymptotic solution is shown as a dashed line in figure 4(c), and shows that the effect
of a large but finite rotation speed is to make Mc large (specifically, Mc = O(U1/2)).

4. The non-critical full-ring solution

In Section 3 we described the behaviour of the critical full-ring solution when either the
rotation speed U or the load M are prescribed. In this Section we describe the behaviour
when both U and M are prescribed, in which case case a non-critical full-ring solution
exists only provided that U and M satisfy U > Uc (i.e. super-critical rotation speed) and
M < Mc (i.e. sub-critical load) so that Q < Qc, i.e. only for values of Q, U and M that
lie below the solid curves in figures 4(b) and 4(c).

Figure 13 shows (a) the semi-width a and (b) the maximum thickness hm plotted as
functions of θ/π for five different values of M and a range of values of U in each case
(including the corresponding critical rotation speed Uc), and figure 14 shows the same
quantities plotted as functions of θ/π for three different values of U and a range of values
of M in each case (including the corresponding critical load Mc). In particular, figures 13
and 14 show that both a and hm are increasing functions of M (as is the ring profile h) but
are, in general, non-monotonic functions of U . Another feature evident from figures 13 and
14 is that while varying M can have a significant effect on the shape of the ring, varying
U typically has relatively little effect, with the most significant changes occurring for
values of U close to Uc and for values of θ close to θ̂c. Figure 15 shows three-dimensional
plots of the non-critical ring profile h for various values of U and M , clearly illustrating
how the shape of the ring varies with both U and M . In particular, figures 13–15 show
that when U is large the ring approaches a limiting non-uniform shape, whereas when
M is small the ring is narrow and thin with a uniform profile. In Subsections 4.1 and 4.2
below we will analyse the behaviour of the non-critical solution with prescribed rotation
speed U or prescribed load M in the asymptotic limits M → 0 and U → ∞, respectively.
Note that since, as we have already seen, full-ring solutions exist only when M 6 Mc

and U > Uc, there are no full-ring solutions in the limits M → ∞ with prescribed U and
U → 0 with prescribed M , and hence there is no corresponding analysis of the behaviour
in these asymptotic limits.
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Figure 13. (a–e) The semi-width a and (f–j) the maximum thickness hm plotted as functions
of θ/π for (a,f) U = Uc ≃ 0.12240 and U = 0.15, 0.2, 0.25, . . . , 0.5 with M = 2.5, (b,g)
U = Uc ≃ 0.24834 and U = 0.3, 0.4, 0.5, . . . , 1 with M = 5, (c,h) U = Uc ≃ 0.52666 and
U = 0.6, 0.8, 1, . . . , 2 with M = 10, (d,i) U = Uc ≃ 1.24416 and U = 1.5, 2, 2.5, . . . , 5 with
M = 20, and (e,j) U = Uc ≃ 3.51518 and U = 4, 5, 6, . . . , 11 with M = 40 (solid lines). The
O(1) leading order asymptotic solutions for a and hm in the limit U → ∞ given by (4.2) and
by (4.5)–(4.7), respectively, are shown as dotted lines.

4.1. The limit of large rotation speed, U → ∞
In the limit of large rotation speed, U → ∞, with the load M prescribed, the flux Q and
the semi-width a are given from (2.18) and (2.28) by

Q =
MU

2π
− I

162πU
+ O

(

1

U3

)

(4.1)

and

a = a0 +
cos θF (ma0)

9m3G′(ma0)U
+ O

(

1

U2

)

, (4.2)
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Figure 14. (a,b,c) The semi-width a and (d,e,f) the maximum thickness hm plotted as functions
of θ/π for (a,d) M = 1, 2, 3, . . . , 9 and M = Mc ≃ 9.55293 with U = 1/2, (b,e) M = 3, 6, 9, . . . ,
27 and M = Mc ≃ 27.75873 with U = 2 and (c,f) M = 5, 10, 15, . . . , 60 and M = Mc ≃ 64.48444
with U = 8.

where a0 = a0(θ) is a0 = (3M/4π)1/2 when θ = 0 or θ = π and the smallest positive
solution of

G(ma0) =
m2M

2π
(4.3)

when θ 6= 0 and θ 6= π, and I = I(M) (> 0), defined by

I =

∫ π

−π

cos2 θF (ma0)F
′(ma0)

m6G′(ma0)
dθ, (4.4)

is a monotonically increasing function of M plotted in figure 16. Hence the ring profile
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Figure 15. Three-dimensional plots of the non-critical ring profile h as a function of Y = ay
and θ/π for (a) M = 3, (b) M = 6 and (c) M = 9 for U = 1/2, (d) M = 9, (e) M = 18 and (f)
M = 27 for U = 2, and (g) M = 20, (h) M = 40 and (i) M = 60 for U = 8.

h is given from (2.10) by

h =
cosh ma0 − cosh ma0y

m sinhma0

+
cos θ [cosh ma0 cosh ma0y − y sinhma0 sinhma0y − 1] F (ma0)

9m3 sinh2 ma0 G′(ma0)U
+ O

(

1

U2

)

(4.5)
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Figure 16. Plot of I given by (4.4) as a function of M .

if 0 < θ < π, by

h =
1 − y2

2

(

3M

4π

)1/2 [

1 + sgn(cos θ)
3M

140πU

]

+ O

(

1

U2

)

(4.6)

if θ = 0 or θ = π, and by

h =
cos ma0y − cos ma0

m sin ma0

− cos θ [cos ma0 cos ma0y + y sinma0 sin ma0y − 1] F (ma0)

9m3 sin2 ma0 G′(ma0)U
+ O

(

1

U2

)

(4.7)

if −π < θ < 0. The asymptotic solution for the flux Q given by (4.1) shows that the
effect of large but finite rotation speed is to make Q large (specifically, Q = O(U)).
Figure 17 shows Q plotted as a function of (a) U for a range of values of M and (b) M
for a range of values of U , respectively, together with the critical flux shown as a dashed
line. Figure 17(a) also includes the asymptotic solution for Q given by (4.1) shown as
dotted lines and, rather unexpectedly, shows that in practice the asymptotic solution
provides a surprisingly good approximation to Q for all U > Uc. The O(1) leading order
asymptotic solutions for a and hm are shown as dotted lines in figure 13 for a range of
values of M . Figure 18 shows three-dimensional plots of the asymptotic solution for the
non-critical ring profile h for various values of U and M , which may be compared with
the corresponding exact solutions shown in figures 15(c), 15(f) and 15(i). In particular,
figure 18 shows that, like the asymptotic solution for Q, the asymptotic solution for h
provides a good approximation to the exact solution for all U > Uc. In particular, the
asymptotic solutions for a and h show that the effect of large but finite rotation speed is
to increase (decrease) both a and h on the upward-moving (the downward-moving) side
of the cylinder from their O(1) leading order values.



24 G. A. Leslie, S. K. Wilson and B. R. Duffy

Figure 17. The flux Q plotted as a function of (a) U for M = 10, 20, 30, 40, 50 (solid lines)
with the asymptotic solution (4.1) in the limit U → ∞ (dotted lines) together with the critical
flux Qc (dashed line), and (b) M for U = 1, 2, 3, 4, 5 (solid lines) with the asymptotic solution
(4.8) in the limit M → 0 (dotted lines) together with the critical flux Qc (dashed line).

Figure 18. Three-dimensional plots of the asymptotic solution for the non-critical ring profile
h in the limit U → ∞ as a function of Y = ay and θ/π for (a) U = 1/2 with M = 9, (b) U = 2
with M = 27, and (c) U = 8 for M = 60. These plots may be compared with the corresponding
exact solutions shown in figures 15(c), 15(f) and 15(i), respectively.
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Figure 19. Three-dimensional plots of the asymptotic solutions for the non-critical ring profile
h in the limit M → 0 as a function of Y = ay and θ/π for (a) M = 3 with U = 1/2, (b) M = 9
with U = 2, and (c) M = 20 with U = 8. These plots may be compared with the corresponding
exact solutions shown in figures 15(a), 15(d) and 15(g), respectively.

4.2. The limit of small load, M → 0

In the limit of small load, M → 0, with the rotation speed U prescribed, the flux Q and
the semi-width a are given from (2.18) and (2.28) by

Q =
MU

2π
− 9M3

9800π3U
+ O(M5) (4.8)

and

a =
1

2

(

3

π

)1/2 [

M1/2 +
(7U sin θ + 6 cos θ)

280πU
M3/2

]

+ O(M5/2). (4.9)

Hence the ring profile h is given from (2.10) by

h =
1 − y2

4

(

3

π

)1/2 [

M1/2 +
(7(5y2 − 3)U sin θ + 12 cos θ)

560πU
M3/2

]

+ O(M5/2). (4.10)

The asymptotic solution for the flux Q given by (4.8) shows that the effect of small load
is to increase Q from zero at M = 0. Figure 17(b) also includes the asymptotic solution
for Q given by (4.8) shown as dotted lines and shows that, as for the corresponding
solution in the limit U → ∞ described in Subsection 4.1, in practice the asymptotic
solution provides a surprisingly good approximation to Q for all M 6 Mc. Figure 19
shows three-dimensional plots of the asymptotic solution for the non-critical ring profile
h for various values of U and M , which may be compared with the corresponding exact
solutions shown in figures 15(a), 15(d) and 15(g), respectively. In particular, figure 19
shows that, as for the corresponding solution in the limit U → ∞ described in Subsection
4.1, the asymptotic solution for h provides a good approximation to the exact solution
for all M 6 Mc. In particular, the asymptotic solutions for a and h show that the effect
of small load is to increase both a and h from zero at M = 0, and that at leading order
in the limit of small load, M → 0, the ring is narrow and thin with uniform width
a = (3M/4π)1/2 ≪ 1, uniform maximum thickness hm = (3M/16π)1/2 ≪ 1, and uniform
parabolic profile h = (3M/16π)1/2(1 − y2).

5. Occurrence of backflow

For the two-dimensional full-film flow described by Moffatt (1977), the azimuthal ve-
locity u is always in the same direction as the rotation of the cylinder (i.e. u > 0 for
all −π < θ 6 π and 0 6 z 6 1) and so backflow (i.e. u < 0 somewhere within the
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flow) never occurs. In contrast, in this Section we will show that for the present three-
dimensional full-ring flow backflow can occur, but only within a restricted region of the
U–M parameter space, and that when it does occur it is always in a small region on the
upward-moving side of the cylinder.

From (2.15) the azimuthal velocity may be zero (i.e. u = 0) only on the three-
dimensional surface defined by

z = 1 −
(

1 − 2U

h2 cos θ

)1/2

(5.1)

in 0 < z 6 1. It is immediately apparent that (5.1) may have solutions satisfying z > 0
only for −π/2 < θ < π/2 (i.e. only on the upward-moving side of the cylinder), and that
the surface on which u = 0 cannot intersect either the substrate z = 0 (by the no-slip
condition) or the stations θ = ±π/2. If the surface on which u = 0 intersects the free
surface of the fluid z = 1 then it would do so when h = (2U/ cos θ)1/2, which from (2.10)
means that it may intersect the free surface only on the curves y = ±ys(θ) defined by

ys =



































1

ma
cosh−1

[

cosh ma − (2U tan θ)1/2 sinhma
]

if 0 < θ <
π

2
,

(

1 − 2(2U)1/2

a

)1/2

if θ = 0,

1

ma
cos−1

[

cos ma + (−2U tan θ)1/2 sinma
]

if −π

2
< θ < 0,

(5.2)

which provides an explicit expression for the “footprint” of the region of backflow on the
cylinder (i.e. in the θ/π–Y plane). From (2.15) it is clear that at any station θ = constant
the azimuthal velocity u on the free surface z = 1 has a minimum at y = 0, since this is
where h takes its maximum value h = hm. Hence the endpoints of the region of backflow
in the θ direction (at which, of course, u = 0) will lie on y = 0, and at these endpoints
hm = (2U/ cos θ)1/2 and a is given by

a =



























2

m
tanh−1 (2U tan θ)

1/2
if 0 < θ <

π

2
,

2(2U)1/2 if θ = 0,

2

m
tan−1 (−2U tan θ)

1/2
if −π

2
< θ < 0,

(5.3)

so that (2.18) provides an equation determining the values of θ at the endpoints of any
region of backflow in terms of Q, namely

Q =



































































− cos θ

9m4
F

(

2 tanh−1 (2U tan θ)
1/2

)

+
U

m2
G

(

2 tanh−1 (2U tan θ)
1/2

)

if 0 < θ <
π

2
,

304

105
U2 if θ = 0,

− cos θ

9m4
F

(

2 tan−1 (−2U tan θ)
1/2

)

+
U

m2
G

(

2 tan−1 (−2U tan θ)
1/2

)

if −π

2
< θ < 0.

(5.4)

The function on the right-hand side of (5.4) is real and positive only for −π/2 < θ <
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Figure 20. The differences between (a) the critical flux and the minimum flux below which
backflow is not possible, Qc − Qmin, and (b) the critical load and the minimum load below
which backflow is not possible, Mc − Mmin, plotted as functions of U .

θmax, where θmax = θmax(U) = cot−1(2U) > 0; this function decreases with θ from
infinity as θ → −π/2+ to a minimum flux denoted by Q = Qmin at some θ = θmin(U)
(−π/2 < θmin < 0), and then increases to infinity as θ → θ−max. With U prescribed, it
can be shown that Qmin satisfies 0 < Qmin 6 Qc for any U (and there is a corresponding
minimum load denoted by M = Mmin satisfying 0 < Mmin 6 Mc), and therefore (5.4)
has two solutions θ = θ1 and θ = θ2 (with −π/2 < θ1 < θmin < θ2 < θmax) when
Q > Qmin (with Q 6 Qc), one solution θ = θ1 = θ2 = θmin when Q = Qmin, and no
solution when Q < Qmin. However, not all of these solutions for θ correspond to full-ring
solutions; specifically, it is found that for a full-ring solution there may be a region of
backflow near the free surface in θ1 6 θ 6 θ2 only when U < 1 and Qmin < Q 6 Qc, and
that otherwise the flow is always in the same direction as the rotation of the cylinder. In
the special case Q = Qmin the region of backflow collapses to a stagnation point on the
free surface at θ = θmin. Figure 20 shows the differences between (a) the critical flux and
the minimum flux below which backflow is not possible, Qc − Qmin, and (b) the critical
load and the minimum load below which backflow is not possible, Mc − Mmin, plotted
as functions of U , which, in conjunction with figures 4(b) and 4(c), shows the regions of
U–Q and U–M parameter space in which backflow occurs. In particular, figure 20 shows
that for a given rotation speed U , backflow occurs only when Q and M are very close
to Qc and Mc, respectively, and so for brevity we shall henceforth restrict our attention
to backflow in the critical case. (The corresponding results in the non-critical case are
qualitatively similar, but without the corners that occur in the critical case.)

Figure 21(a) shows the scaled endpoints of the region of backflow in the critical case,
θ1c/π and θ2c/π, plotted as functions of U together with the scaled position of the corner

in the critical solution, θ̂c/π, and, in particular, shows that the endpoints always lie on
opposite sides of the corner. It may also be shown that at leading order in the limit
U → 0 the endpoints θ1c and θ2c have the same magnitude but opposite signs, with
θ1c = −θ2c = − cos−1(1216/1225) ≃ −0.12129 (≃ −0.03861π), while at leading order in

the limit U → 1− the endpoints have the same value, with θ1c = θ2c = θ̂c = − cot−1 2 ≃
−0.46365 (≃ −0.14758π), showing that the region of backflow has zero width in this case.

Figure 21(b) shows the footprint of the region of backflow in the θ/π–Y plane (i.e.
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Figure 21. (a) The scaled endpoints of the region of backflow in the critical case, θ1c/π and
θ2c/π, plotted as functions of U together with the scaled position of the corner in the critical

solution, θ̂c/π. (b) The footprint of the region of backflow in the θ/π–Y plane (i.e. the curves
y = ±ys given by (5.2)) in the critical case for U = 0.1, 0.2, 0.3, . . . , 0.9 and U = 0, U = 0.001,
U = 0.01, U = 0.95 (solid lines) and U = 1 (dot) together with the curves y = ±ŷsc , where

ŷsc = ys(θ̂c), on which the region of backflow has maximum width.

the curves y = ±ys given by (5.2)) in the critical case for a range of values of U . Figure

21(b) also shows the curves y = ±ŷsc , where ŷsc = ys(θ̂c) (i.e. the value of ys at the

position of the corner θ = θ̂c), on which the region of backflow has maximum width. In
particular, figure 21(b) shows that in the limit U → 0 the region of backflow becomes
narrow in the Y direction but approaches a constant width in the θ direction, eventually
becoming a line when U = 0 (when there is, of course, no full-ring solution), while in the
limit U → 1− it becomes narrow in the Y direction and even narrower in the θ direction,
eventually becoming a point when U = 1 (representing a stagnation point on the free
surface).

6. Conclusions

In the present paper we used a combination of asymptotic and numerical methods to
investigate the steady three-dimensional flow of a thin, slowly varying ring of Newtonian
fluid on either the outside or the inside of a uniformly rotating large horizontal cylinder.
Specifically, we studied full-ring solutions, corresponding to a ring of continuous, finite
and non-zero thickness that extends all the way around the cylinder. In particular, it
is found that, as for the analogous two-dimensional full-film flow described by Moffatt
(1977), there is a critical solution corresponding to either a critical load M = Mc above
which no full-ring solution exists (if the rotation speed U is prescribed) or a critical rota-
tion speed U = Uc below which no full-ring solution exists (if the load M is prescribed).

In Section 3 we described the behaviour of the critical solution and, in particular,
showed that the critical flux Qc, the critical load Mc, the critical semi-width ac and the
critical ring profile hc are all increasing functions of the rotation speed U . We also showed
that the profile of the critical full-ring solution has a corner analogous to the corner in
the critical two-dimensional full-film solution described by Moffatt (1977), but (unlike
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in the the two-dimensional case) that both its position and shape depend on U . In the
limit of small rotation speed, U → 0, the critical flux Qc = O(U2) ≪ 1 is small and the
critical ring is narrow and thin (with both ac and hc being O(U1/2) ≪ 1), leading to a
small critical load Mc = O(U) ≪ 1. In the limit of large rotation speed, U → ∞, the
critical flux Qc = O(U3/2) ≫ 1 is large and the critical ring is wide on the upper half
of the cylinder (with ac = O(U1/2) ≫ 1 and hmc = O(1)) and thick on the lower half of
the cylinder (with ac = O(1) and hmc = O(U1/2) ≫ 1), leading to a large critical load
Mc = O(U1/2) ≫ 1. Sketches of the structure of the asymptotic solution in this limit are
shown in figure 10.

In Section 4 we described the behaviour of the non-critical full-ring solution which
exists only provided that U > Uc and M < Mc, where Uc and Mc are the critical values
described in Section 3. In particular, we showed that the semi-width a and the ring
profile h are increasing functions of M but, in general, non-monotonic functions of U ,
and that while varying M can have a significant effect on the shape of the ring, varying
U typically has relatively little effect. In the limit of large rotation speed, U → ∞, the
ring approaches a limiting non-uniform shape (with both a and hm being O(1)), whereas
in the limit of small load, M → 0, the ring is narrow and thin (with both a and hm being
O(M1/2) ≪ 1) with a uniform parabolic profile.

Finally, in Section 5 we showed that, while for most values of U and M the azimuthal
velocity is in the same direction as the rotation of the cylinder, unlike in the corresponding
two-dimensional full-film flow, there is a region of U–M parameter space close to the
critical solution for U < 1 in which backflow occurs in a small region on the upward-
moving side of the cylinder.

There are several possible worthwhile directions for future work on fluid rings in ad-
dition to the piecewise-continuous “shock” or “jump” solutions with one or more dis-
continuities mentioned in Section 2. In particular, it would be interesting to formulate
and solve the evolution equation for the unsteady version of the present steady problem
following the approach of, for example, Benilov (2006).
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