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We show that three-dimensional incoherent primary sources can be reconstructed from finite-aperture
Fresnel-zone mutual intensity measurements by means of coordinate and Fourier transformation. The
spatial bandpass and impulse response for three-dimensional imaging that result from use of this
approach are derived. The transverse and longitudinal resolutions are evaluated as functions of aper-
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imentally measure the three-dimensional point-spread function by using a rotational shear interferom-
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1. Introduction

Improvements in electronic sensors, automated po-
sitioning systems, and data processing equipment
render optical coherence imaging of complex three-
dimensional ~3D! objects increasingly practical.
Two-dimensional ~2D! imaging based on the far-field
van Cittert–Zernike theorem has been used in radio
astronomy for more than two decades.1 Recently,
coherence imaging techniques have begun to shift
back to the optical domain,2,3 and a number of optical
systems have been implemented or are under devel-
opment.4

Several researchers have generalized the van
Cittert–Zernike theorem to 3D source distributions
and have shown that 3D inversion is possible in the
far field.5,6 LaHaie7 describes modal 3D reconstruc-
tion techniques that also work in the near and
Fresnel zones. Zarubin notes that the 3D general-
ized van Cittert–Zernike theorem applies in the
Fresnel zone under certain coherence assumptions
and that the theorem can also be applied to x-ray and
particle scattering.8 More recently, 3D source re-

construction from a finite far-field aperture by use of
the generalized 3D theorem was analyzed and exper-
imentally demonstrated.9–11 Unlike pseudo-3D
techniques such as holography and stereo imaging,
coherence imaging provides a true 3D model of object
sources.

In this paper we show that Fourier reconstruction
techniques can be applied to Fresnel-zone reconstruc-
tion by application of a coordinate transformation to
the generalized van Cittert–Zernike theorem. This
extension is important because the object distance
may be much less for a given aperture and wave-
length in the Fresnel zone than in the Fraunhofer
zone. Because longitudinal resolution falls as the
square of object distance, longitudinal resolution in
the Fresnel zone may exceed longitudinal resolution
in the Fraunhofer zone by several orders of magnitude.

In Section 2 of this paper we review the Fourier-
transform relationship between the source intensity
distribution and the far-field mutual intensity and
describe the coordinate transformation by which a
similar relationship is obtained between the source
distribution and the Fresnel-zone mutual intensity.
In Section 3 we explore the bandpass and resolution
limits of 3D coherence imaging. Resolution con-
straints are easily visualized by use of the 3D spatial
bandpass, or band volume, because in limited-
aperture systems the band volume has precise
boundaries.12,13 The resolution along any given di-
rection is inversely proportional to the extent of the
band volume along that direction. In Section 3 we
analyze the band volume and the impulse response
for two particular coherence measurement systems,
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the Michelson stellar interferometer and the rota-
tional shear interferometer. In Section 4 we show
experimental reconstructions obtained from an im-
plementation of the rotational shear interferometer.

2. Fourier Inversion of the Generalized Van

Cittert–Zernike Theorem

The mutual intensity for a quasi-monochromatic 3D
incoherent primary source can be expressed in terms
of the source radiant power density by use of the
Hopkins integral:

J~r1, r2! 5 Sk0

2p
D2

*
s

I~rs!

3
exp@jk0~ur1 2 rsu 2 ur2 2 rsu!#

ur1 2 rsir2 2 rsu
d3rs, (1)

where s is the source volume, I~rs! is the 3D source
radiant power density, J~r1, r2! is the mutual inten-
sity at field sample positions r1 and r2, and k0 5
2pyl0 is the wave number of the optical field at wave-
length l0.14 The geometry of the radiation and mea-
surement space is illustrated in Fig. 1. rs is the
position vector in the source volume. J~r1, r2! is
measured between pairs of points drawn from an
aperture labeled the correlation plane. The correla-
tion plane lies a distance R along the z axis from the
center of the correlation volume. As is shown in the
figure, r1 and r2 are vectors from the origin of the
source volume to field sampling points on the corre-
lation plane. J~r1, r2! is the zero-delay mutual co-
herence function between the field at r1 and that at
r2. Systems for measuring J~r1, r2! are described in
section 3.

The goal of coherence imaging is to invert Eq. ~1!
and reconstruct I~rs! from measurements of J~r1, r2!.

Inversion was previously shown to be straightfor-
ward in the Fraunhofer zone, where Eq. ~1! reduces to
the generalized van Cittert–Zernike theorem

J~r1ŝ1, r2ŝ2! 5 ĨF~ŝ1 2 ŝ2!

l0
G exp@ jk0~r1 2 r2!#

l0
2r1 r2

, (2)

where ŝ1 and ŝ2 are unit vectors in the r1 and r2

directions, r1 5 ur1u, r2 5 ur2u, and Ĩ~u! is the 3D
Fourier transform of the source intensity distribu-
tion.5,6 u is the position vector of I~rs! in 3D Fourier
space. According to Eq. ~2!, measurement of J~r1,
r2! over a range in r1 5 r1ŝ1 and r2 5 r2ŝ2 yields
samples of Ĩ~u! for u over the range ~ŝ1 2 ŝ2!yl0.
Inasmuch as variations in r1 and r2 do not affect the
range sampled in u, it is sufficient to measure J~r1,
r2! for r1 and r2 drawn from a surface surrounding
the object rather than a volume. Doing so reduces
the six-dimensional measurement space of J~r1, r2! to
four dimensions. Even for r1 and r2 drawn from a
surface, redundant values of ~ŝ1 2 ŝ2!yl0 will be ob-
tained. To characterize I~rs! to wavelength-limited
resolution it is necessary only to sample J~r1, r2! over
a 3D subspace of r1 R r2 that fully samples the range
of ŝ1 2 ŝ2. If J~r1, r2! is measured over this sub-
space, Ĩ~u! is known for all u such that uuu # 2yl0.
The sphere uuu # 2yl0 is the band volume for this
imaging system. The band volume is the 3D spatial
bandpass of the imaging system. The impulse re-
sponse of the system is the inverse Fourier transform
of the band volume. For the fully sampled imaging
system, the impulse response will be spherically sym-
metric, with a resolution of approximately l0y2.

In most optical imaging situations, particularly the
far-field systems to which Eq. ~2! applies, the source
volume is remote from the correlation space. In
such cases it is not possible to measure J~r1, r2! over
a surface that encloses the source. Rather, the goal
for these systems is to reconstruct I~rs! from mea-
surements of J~r1, r2! over a limited range of ŝ1 and
ŝ2. The limited range is illustrated in Fig. 1 by the
circular aperture in the correlation plane. The effect
of limiting the range of ŝ1 and ŝ2 is to limit further the
range of u and thereby to reduce the band volume and
the imaging resolution.

Rosen and Yariv previously considered source re-
construction from a finite aperture in the far field.9–11

The result of Rosen and Yariv is obtained by expan-
sion of ŝ1 and ŝ2 in terms of the planar coordinates of
the correlation plane as, for example,

ŝ1 <
x1

R
îx 1

y1

R
îy 1 S1 2

x1
2

1 y1
2

2R2 D îz, (3)

where R is the distance from the origin of the source
volume to the sampling plane. The range over
which Ĩ~u! is determined from measurements of
J~Rŝ1, Rŝ2! in this plane is

u 5
~ŝ1 2 ŝ2!

l0

<
Dx

l0 R
îx 1

Dy

l0 R
îy 2

x̂Dx 1 ŷDy

l0 R2 îz, (4)

Fig. 1. Measurement geometry for coherence imaging. An inco-
herent primary source distribution in the source volume is imaged
by use of two-point correlation measurements drawn from the
correlation plane. The separation between the volumes is greater
than the extent of either volume. The correlation point coordi-
nates are ~x1, y1! for the first point and ~x2, y2! for the second point.
The correlation points are scanned throughout the correlation
plane to yield the mutual intensity. r1, r2, vectors from the source
volume origin to ~x1, y1! and ~x2, y2!; ŝ1, ŝ2, unit vectors parallel to
r1 and r2; rs, position vector in the source volume.
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where x̂ 5 ~x1 1 x2!y2, ŷ 5 ~y1 1 y2!y2, Dx 5 ~x1 2 x2!,
and Dy 5 ~y1 2 y2!. These correlation plane vari-
ables are illustrated in Fig. 2. Many different com-
binations of x̂, Dx, ŷ, and Dy may result in the same
ı̂z coordinate in u. To recover all the nonredundant
information about Ĩ~u! available for a given range in
~ x̂, ŷ, Dx, Dy! one need only measure the mutual
intensity over a 3D projection of the four-dimensional
x̂, Dx, ŷ, and Dy space. The 3D projection should
sample all allowed values of Dx, Dy, and x̂Dx 1 ŷDy.
As in Refs. 9–11, we define a variable q 5 x̂Dx 1 ŷDy.
We then define the new function J3D~Dx, Dy, q!, which
is J~r1, r2! restricted to the Dx, Dy, q subspace. In
this subspace, Eq. ~2! becomes

J3D~Dx, Dy, q! 5
1

l0
2R2 ĨSux 5

Dx

l0 R
,

uy 5
Dy

l0 R
, uz 5 2

q

l0 R2D . (5)

J3D~Dx, Dy, q! is sampled from two-point correlations
over the correlation plane of Fig. 1. The source dis-
tribution is recovered from these measurements by
inverse Fourier transformation of Eq. ~5!, which
yields

I~rs! p Pr~rs! 5 lR2 ***
r

J3D~Dx, Dy, q!

3 expSj2pxsDx

l0 R
1

j2pysDy

l0 R

2
j2pzs q

l0 R2 DdDxdDydq, (6)

where r is the range over which the mutual intensity
is measured in ~Dx, Dy, q! space and Pr~rs! is an
impulse response for the coherence imaging system.
Pr~rs! is the inverse Fourier transform of the band
volume. The band volume in this case is propor-
tional to the sample range in ~Dx, Dy, q!. The anal-

ysis leading to Eq. ~5! follows discussions in previous
publications, especially as presented in Ref. 11.

To derive the Fresnel-zone Fourier relationship we
begin again with Eq. ~1!. Both the Fresnel- and the
far-zone approximations rely on paraxial approxima-
tions of ur1 2 rsu and ur2 2 rsu. The far-field approx-
imation of relation ~3!, however, includes an
assumption that 1yR is an accurate approximation of
1y~R 2 zs! for all points in the source volume at ~xs, ys,
zs!. This assumption severely restricts the trans-
verse extent of the source, as discussed below.
Rather than make this assumption, we substitute
1y~R 2 zs! for 1yR in the paraxial approximation.
The resultant equations are substantially simpler if
we shift the origin of the z axis to the correlation
plane. To do this, we define a new variable, zsp 5
R 2 zs. The correlation plane then corresponds to
the zsp 5 0 plane, and the paraxial approximation is

ur1 2 rsu < zsp 1
~x1 2 xs!

2

2zsp

1
~y1 2 ys!

2

2zsp

1 . . . . (7)

Substituting expression ~7! into Eq. ~1! yields

J~r1, r2! 5 ***
s

I~rsp!

l2zsp
2 expF2

j2p

l0 zsp

~xsDx 1 ysDy!

1
j2p

l0 zsp

~ x̂Dx 1 ŷDy!Gd3rsp, (8)

where rsp is the position vector in the source coordi-
nates ~xs, ys, zsp! and, as above, Dx and Dy are the
separations between the sampling points and x̂ and ŷ
are the mean positions of the sampling points on the
correlation plane. We can obtain Eq. ~5! from Eq. ~8!
if we assume that 1yzsp ' ~1yR!@1 2 ~zsyR!#, such
that ~zsxsDx!y~lR2!, ~zsysDy!y~lR2! ,, 1, and that the
range of ~xs, ys! is much less than the range of ~ x̂, ŷ!.
These approximations would mean that the longitu-
dinal extent of the source must be much less than the
mean source range and that the transverse extent of
the source must be much less than the mean inter-
ferometer displacement. These are relatively harsh
limitations, particularly in view of the quadratic de-
crease in range resolution with increasing range.

We can express Eq. ~8! as a Fourier transform with-
out making these approximations if we transform the
source coordinates into the projective coordinates15

x9 5
xs

zsp

, y9 5
ys

zsp

, z9 5
1

zsp

(9)

Figure 3 illustrates the transformation between the
source coordinates ~xs, ys, zsp! and the ~x9, y9, z9!
coordinate system. x9 and y9 are equal to the tan-
gents of the angles ux and uy between the ray from the
correlation plane’s origin to the source point ~xs, ys,
zsp! and to the planes ys 5 0 and xs 5 0, respectively.
In the small-angle approximation, x9 5 ux and y9 5 uy.
Figure 3 is drawn in Cartesian space and shows grids
of constant x9, y9 in the projective space. As indi-
cated by the distortion between the grids, uniform

Fig. 2. Coordinate geometry in the sampling plane. Source in-
version is simplified by use of the transformed coordinates ~Dx, Dy!

5 ~x1 2 x2, y1 2 y2!, ~ x̂, ŷ! 5 @~x1 1 x2!y2, ~y1 1 y2!y2#, q 5 Dxx̂ 1

Dyŷ.
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sampling in the primed coordinate system yields non-
uniform samples in Cartesian space. The orienta-
tion of the primed axes is shown at the lower left of
Fig. 3. The origin of the z9 axis is at zsp 5 ` off the
left of the figure. The correlation plane, which is
assumed not to lie in the source volume, is at z9 5 `.

One can translate displacements in the ~x9, y9, z9!
coordinate system into real space displacements by
using the differential relationships

dx 5
z9dx9 2 x9dz9

z92 , dy 5
z9dy9 2 y9dz9

z92 ,

dz 5 2
dz9

z92 . (10)

Neglecting the dz9 dependence of the x and y resolu-
tions and substituting z 5 1yz9 simplify these rela-
tionships to

dx 5 zdx9, dy 5 zdy9, dz 5 z2dz9. (11)

These relationships quantify the distorted Cartesian
space grid sampling shown in Fig. 3. For example,
uniform steps in dz9 yield grid spaces that increase as
z2 in real space. The sampling resolution decreases
in both the transverse and the longitudinal directions
as the distance from the image plane increases, but
the angular grid spacings dxyz and dyyz remain con-
stant.

In the primed coordinates Eq. ~8! becomes

J3D~Dx, Dy, q! 5 ***
s9

I~x9, y9, z9!

l0
2z92

3 expF2j2p

l0

~x9Dx 1 y9Dy!

1
j2p

l0

z9qGd3r9, (12)

where s9 is the source volume expressed in the trans-
formed coordinates. As in the far-field case, q 5
x̂Dx 1 ŷDy and J3D~Dx, Dy, q! is J~r1, r2! in the 3D
subspace. Note that the Jacobian factor for the dif-
ferential ~z924! combines with the denominator of
source radiation factor ~z2! to maintain the form of
the 1yz92 radiation factor. Equation ~12! can be ex-
pressed in analogy with Eq. ~5! as

J3D~Dx, Dy, q! 5
1

l2 ĨpSDx

l0

,
Dy

l0

,
q

l0
D , (13)

where Ĩp~u! is the 3D Fourier transform with respect
to ~x9, y9, z9! of I~x9, y9, z9!yz92. Since care must be
taken to avoid the singularity at z9 5 0, the Fourier
transform of I~x9, y9, z9!yz92 cannot be taken over
unbounded space. The range of integration is
bounded by the assumption that the source distribu-
tion has finite support and that the correlation plane
is far removed from the source. As in the far-field
case, one recovers the incoherent intensity distribu-
tion of the distributed source by inverse Fourier
transforming Eq. ~13!, using the mutual intensity
sampled in the correlation plane in pairs of coordi-
nates parameterized in ~Dx, Dy, q!. In analogy with
Eq. ~6!, this approach yields

FI~x9, y9, z9!

z92 G p Pr~r9! 5 l***
r

J3D~Dx, Dy, q!

3 expFj2p

l0

~x9Dx 1 y9Dy!

2
j2p

l0

z9qGdDxdDydq. (14)

The source intensity in the Cartesian-space coordi-
nate system is determined by transformation of I~r9!
to the rs coordinate system. As in the far-zone case,
Pr~r9! is the Fourier transform of the band volume.
The primary difference between Eqs. ~5! and ~6! and
Eqs. ~13! and ~14! is that the ratio of the source extent
to the source range can be larger in the latter. This
means that Eqs. ~13! and ~14! can accurately recon-
struct a source of a given size from a closer range than
can Eqs. ~5! and ~6!. Because the band volume in
both cases scales with the ratio of lateral aperture to
the source range, a closer range means a bigger band
volume and better resolution.

Fig. 3. Relationship between the Cartesian source coordinates
and the projective coordinates. The origin of longitudinal coordi-
nate zsp is in the correlation plane. Longitudinal projective coor-
dinate z9 5 1yzsp has an origin at zsp 5 ` and is equal to 1yR at the
center of the source volume. In the small-angle approximation,
the transverse projective coordinates x9 5 z9xs and y9 5 z9ys cor-
respond to the angles ux and uy between the y 5 0 and x 5 0 planes
and the ray from the correlation plane origin to the real-space
source point.
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3. Measurement Systems, Band Volume, and Impulse

Response

In Section 2 we derived source-reconstruction algo-
rithms from limited-aperture coherence measure-
ments. In this section we consider two particular
physical systems for obtaining these coherence
measurements and we analyze the band volume
and the impulse response for each system. The
two systems that we consider are the Michelson
stellar interferometer ~MSI! and the rotational
shear interferometer ~RSI!. The MSI, first imple-
mented in 1878,16 is the prototypical astrometry
instrument and was used by Rosen and Yariv to
demonstrate 3D coherence imaging. MSI has gen-
eral utility as an interferometer, but because it col-
lects only one correlation for each instrument
position it is extraordinarily inefficient as an imag-
ing instrument. The RSI has a much briefer his-
tory but still has been under investigation for more
than three decades.17 Roddier2 and Roddier and
Rodier18 have used the RSI for 2D imaging, and Itoh
et al.19–22 used RSI data to reconstruct 3D data sets
consisting of two spatial dimensions and one spec-
tral dimension. The advantage of the RSI is that it
samples entire planes of independent coherence
measurements in parallel. In this section we
briefly review data acquisition with the MSI and
RSI, and we analyze the band volume and the im-
pulse response for typical implementations of each
instrument.

The MSI consists of two field-sampling ports
mounted upon a single mechanical beam. One com-
bines the field drawn from the sampling ports
through an optical system to determine the mutual
intensity between the two sampling points. Various
mechanisms can be employed to adjust the relative
path lengths from the sampling ports to the detector
that determines the mutual intensity. The phase
and the amplitude of the mutual intensity can be
extracted from a spatial fringe pattern or by dither-
ing of the relative delay of the optical paths. We do
not consider the beam-combining optics here. It is
useful, however, to consider the sample point geom-
etry in the correlation plane, which is illustrated in
Fig. 4. The sample points lie upon the mechanical
beam that passes through the origin of the correla-
tion plane. The beam rotates freely about the origin
but cannot be displaced. The sample points may lie
anywhere along the beam. We define the new vari-
able rmax to be the maximum distance of a sampling
point from the origin. rmax is also the radius of the
correlation plane aperture and half of the length of
the MSI beam.

We define three new variables to describe the state
of the MSI. f is the angle between the mechanical
beam and the x axis. The range of f is @0, 2p#. d is
the separation between the sampling points. The
range of d is @0, 2rmax#. d̂ is the distance of the
midpoint between the sampling ports from the origin.
The range of d̂ is @~dy2! 2 rmax, rmax 2 ~dy2!#. The

sample space coordinates for a given interferometer
state are

Dx 5 d cosf,

Dy 5 d sinf,

q 5 d̂d. (15)

Using the ranges described above, we find that Dx
and Dy cover the range @22rmax, 2rmax#. The range
of q varies as a function of Dx and Dy. For a given
value of d 5 =Dx2 1 Dy2, the range of q is $2d@rmax

2 ~dy2!#, d@rmax 2 ~dy2!#. The band volume is the
range of u over which Ĩ~u! or Ĩp~u! can be sampled.
The band volume is the Fourier transform of the
impulse response Pr~rs!, which is used in Eqs. ~6! and
~14!. In the far-field reconstruction of Eq. ~5!, we
find that u 5 @~Dxyl0R!, ~Dyyl0R!, ~qyl0R2!#. For
the projective coordinates used in the Fresnel case,
we find from Eq. ~13! that u 5 @~Dxyl0!, ~Dyyl0!,
~qyl0!#. In both cases the band volume is propor-
tional to the range of ~Dx, Dy, q!.

The band volume for the MSI is sketched in Fig. 5.
The axes in the figure are scaled in terms of rmaxyR,
where R is the nominal distance from the source to
the correlation plane. Because rmaxyR , 1 in both
the Fraunhofer and the Fresnel domains and because
uz scales as rmax

2yR2, the uz axis is greatly expanded
relative to the ux and uy axes in the figure. The band
volume is useful in estimating the resolution of
source reconstruction and in designing the coherence
sampling scheme. The resolution along any given
direction can be approximated by the inverse of the
extent of the band volume along that direction. This
approximation yields transverse resolution l0Ryrmax

and longitudinal resolution l0R2yr2
max in the Fraun-

hofer zone. In the primed Fresnel-zone coordinates,
the transverse resolution is l0yrmax and the longitu-
dinal resolution is l0yrmax

2. Note that the trans-
verse and the longitudinal coordinates are not in the
same units. When the conversion factors from dis-
torted to Cartesian space listed in Eq. ~9! are applied,
the Fresnel-zone resolution is also l0Ryrmax in trans-

Fig. 4. Geometry of the MSI correlation plane: rmax, radius of
the system aperture; d, sampling-point separation; d̂, distance
between the midpoint of the sampling points and the origin; f,
angle between the interferometer beam and the x axis.
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verse coordinates and l0R2yrmax
2 longitudinally.

These estimates are confirmed in models of the im-
pulse response presented below.

The contraction of the band volume along the lon-
gitudinal axis near the origin ~the “missing cone”15!
acts as a high-pass filter on the reconstructed source
distribution. This filtering has two effects: First,
objects with high-frequency transverse spatial fea-
tures will be better resolved longitudinally than more
nearly uniform objects and, second, interference sam-
pled between distant points covers more of the band
volume and thus contains more information than in-
terference between near neighbors. The first effect
means that one could not resolve a longitudinally
distributed set of uniform planar sources at all but
that one could easily resolve discrete point sources.
The Fourier-space representation of the planar
sources is a set of points on the uz axis, exactly or-
thogonal to the band volume. The Fourier represen-
tation of the point sources covers the ux–uy plane,
fully overlapping the band volume. In view of the
second point one may seek to measure correlation
samples with separations that match the direction of
the lobes of the band volume so that high-frequency
details that provide depth information are not
missed.

As was mentioned above, the MSI samples only one
correlation per instrument position. Other designs
based on RSI’s are attractive because they sample
complete planes in ~Dx, Dy! space in parallel. The
primary components of the RSI, as illustrated in Fig.
6, are a beam splitter and two folding mirrors. The
field incident upon the folding mirrors is reflected
back through the output port of the beam splitter and
detected at every point in the output plane. The
folding mirrors consist of two planar reflectors joined
at right angles. The folding mirrors are often imple-
mented by the use of roof prisms. Each folding mir-
ror inverts the reflected field about its fold axis. The

fold axes of both mirrors lie in the transverse plane.
As shown in Fig. 6, the fold axis of one mirror makes
an angle u with respect to the x axis. The fold axis of
the other mirror makes an angle 2u with respect to
the x axis. Let the transverse coordinates in the
output planes of the RSI be ~xf, yf !. The field pro-
duced at the output point ~xf, yf ! by the fold mirror
with an axis at angle u relative to the x axis is the field
that would appear at ~xf cos 2u 2 yf sin 2u, 2 xf sin 2u
2 yf cos 2u! if the fold mirror were replaced with a
plane mirror. If, for example, u 5 0, the fold mirror
would reflect across the x axis and the output point
~xf, yf ! would correspond to the plane-mirror output
point ~xf, 2yf !. The field produced at ~xf, yf ! by the
2u mirror would appear at ~xf cos 2u 1 yf sin 2u, xf sin
2u 2 yf cos 2u! if that mirror were replaced with a
plane mirror. The mutual coherence between fields
that is due to the two mirrors can be determined by
longitudinal dithering of one of the fold mirrors.
Each point in the output window samples the mutual
coherence for a distinct transverse separation rela-
tive to the plane-mirror Michelson interferometer.
The separations and mean positions for the mutual
coherence sampled at ~xf, yf ! are

Dx~xf, yf! 5 2yf sin~2u!,

Dy~xf, yf! 5 2xf sin~2u!, (16)

x̂~xf, yf, xg! 5 2xf cos~2u! 1 xg,

ŷ~xf, yf, yg! 5 22yf cos~2u! 1 yg, (17)

where ~xg, yg! is the transverse displacement between
the origins of the output plane coordinates and the
source volume coordinates. The q coordinate at each
point in the output plane is

q 5 Dx~xf, yf! x̂~xf, yf, xg! 1 Dy~xf, yf! ŷ~xf, yf, xg!

5 ~yf xg 2 xf yg!sin~2u!. (18)

A RSI samples a surface in ~Dx, Dy, q! space for each
value for ~xg, yg!. To sample the entire accessible 3D

Fig. 5. Band volume for MSI sampling. The band volume is
plotted in the real-space Fourier space of the source density for
the Fraunhofer zone and in the projective-space Fourier space
for the Fresnel zone. The coordinate axes correspond to the Fou-
rier coordinates ~ux, uy, uz!. The transverse coordinates are nor-
malized with respect to rmaxyl0R. The longitudinal coordinate is
normalized with respect to rmax

2yl0R2. Because rmaxyR ,, 1, the
normalization frequency for the longitudinal axis is less than it is
for the transverse axes. The missing cone in the Fourier space
along the uz axis is characteristic of limited-angle tomographic
systems.

Fig. 6. Basic structure of a rotational shear interferometer. The
RSI is a Michelson interferometer in which the plane retroreflec-
tion mirrors have been replaced with folding mirrors. The folding
axes of the mirrors lie in the transverse plane at angles f and 2f

with respect to the x axis. The output port interferes differen-
tially rotated wave fronts from the two mirrors.
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~Dx, Dy, q! space one translates the interferometer in
~xg, yg!.

As for the MSI, let rmax be the radius of the RSI
aperture. Let xgmax

be the distance over which the
RSI is translated transversely to the optical axis.
The band volume captured by a RSI with u 5 py4
translated linearly along the xg axis is shown in Fig.
7. u 5 py4 corresponds to a special class of RSI, the
wave-front folding interferometer.23 The crease in
the band volume of Fig. 7 along the uy axis is due to
the fact that q vanishes normally to the translation
direction for linear translation of the RSI so that only
object features and edges perpendicular to the path
contribute to longitudinal resolution. This crease
can be avoided by translation of the RSI along a
nonlinear path. For example, Fig. 8 shows the band
volume when RSI with circular aperture rmax is
translated in a circle of radius xgmax

. Reducing u de-
creases the effective aperture of the RSI and
thereby decreases its resolution. This may be desir-
able, particularly if one wishes to match interference
fringes in the output plane to a CCD pixel spacing.

We now consider impulse responses for MSI and
RSI systems. As a benchmark of the resolution of
these systems, we calculate impulse response under

the assumption that the correlation plane aperture is
fixed in space. This assumption is not likely to re-
flect practical RSI uses in which the aperture moves
with the instrument, but a fixed aperture gives us a
common basis for comparing the two interferometers.
To find the impulse response for the fixed aperture we
set correlations between pairs of points where either
pair of correlated points ~x1, y1! or ~x2, y2! was outside
the aperture ~x1

2 1 y1
2! . rmax

2! or ~x2
2 1 y2

2! .
rmax

2! to zero.
We model the impulse response of a Fresnel-zone

imaging system by calculating the mutual intensity
as a function of space, using Eq. ~13!, and then in-
verting the mutual intensity to find the filtered
source intensity, using Eq. ~14!, under aperture and
sampling constraints of the imaging system. Our
simulations use a discrete 64 3 64 3 64 point-source
volume, consisting of one nonzero intensity point,
that was propagated by means of a fast Fourier trans-
form to provide the mutual intensity correlations as a
function of Dx, Dy, and q. We then inverse by fast
Fourier transform the mutual intensity to recon-
struct the filtered source intensity. Because the in-
put is a single point, this reconstruction is the
impulse response. In general, each ~Dx, Dy, q! cor-
responds to multiple pairs of correlation plane points
~x1, y1! or ~x2, y2!. The MSI and RSI approaches, as
well as other potential sampling schemes, improve
sampling efficiency by associating each ~Dx, Dy, q!
with unique values of ~x1, y1! and ~x2, y2!.

Figure 9 is a surface plot of a cross section of the
impulse response for MSI sampling for a 0.5-cm ap-
erture and a wavelength of 632.8 nm. The lateral
coordinate is in angular units and the longitudinal
coordinate is in units of inverse distance, consistent
with the primed coordinate system. To transform
these units into real space, one multiplies the trans-
verse coordinate by the source–correlation plane dis-

Fig. 7. Band volume for linear translation RSI sampling. The
situation is identical to that of Fig. 4, except that the normalization
of the uz axis is now xgmax

rmaxyl0R2. xgmax
is the linear displace-

ment range for the RSI. For the RSI of this figure, f 5 py4 and
the fold axes of the two mirrors are perpendicular. In this geom-
etry, the RSI is also called a wave-front folding interferometer.

Fig. 8. Band volume for imaging with a circularly translated RSI.
The situation is identical to that of Fig. 6, except that xgmax

now
represents the radius of the circle about which the optical axis of
the RSI is translated.

Fig. 9. Surface plot of the 3D MSI impulse response in the x9–z9

plane. The vertical axis is normalized to the maximum response.
The spatial axes are in projective coordinates, with units of inverse
meters for the longitudinal axis and radians for the transverse
axis. The impulse response is approximately shift invariant in
the projective space; it is not shift invariant in real space. To
obtain the real-space impulse response one adds 1yR to the longi-
tudinal range and takes the inverse. For an impulse at 1 m, a
point at z9 5 0.1 is at z 5 1y~1 1 0.1! 5 0.91. A point at z9 5 20.1
is at z 5 1y~1 2 0.1! 5 1.11.
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tance and the longitudinal coordinate by the square
of this distance. At 2 m, for example, the center spot
size is approximately 0.025 cm along the transverse
axis and 14 cm along the longitudinal axis. Figure
10 is the cross section of the RSI impulse response.
The values of all sampling parameters were identical
for both simulations.

To compare the resolution of the two sampling
schemes we use relations between lateral and longi-
tudinal resolution and aperture size:

x9res 5
Cxl

d
, z9res 5

Czl

d2 , (19)

where x9res is the lateral resolution size in radians, z9res

is the longitudinal resolution size in inverse length, d
is the aperture diameter, and Cx and Cz are sampling-
scheme-dependent unitless constants, where a
smaller number indicates a smaller resolution ele-
ment size or better resolution. The resolution here
is not calculated with the Rayleigh two-point crite-
rion; rather, it uses the root-mean-square size of the
point-spread function ~PSF!. For the MSI, Cx 5 0.95
and Cz 5 1.38, whereas for the RSI, Cx 5 1.15 and Cz

5 1.65.
Under the definition of aperture used here, there is

little difference in resolution between the RSI and the
MSI sampling schemes. Each of the sampling
schemes has its own advantages and disadvantages,
however. The MSI scheme most effectively utilizes
a circular aperture of a given size because the trans-
lation ~ x̂, ŷ! is always in the same direction as the
displacement ~Dx, Dy!, so the value of q is maximized.
The MSI approach will contain more correlations
within a fixed sized aperture and therefore is ex-
pected to provide superior longitudinal resolution.
Our simulations seem to indicate that this difference
may not be great because the two methods yield sim-
ilar impulse responses. The advantages of the RSI
approach are that data are taken in parallel and that
the higher acquisition speed makes translation of the
instrument more attractive. Parallel acquisition
speeds acquisition and reduces stabilization require-
ments. By translating the instrument as a whole
one avoids the fixed-aperture assumption of our sim-
ulations, to permit a greater range for the mean

transverse displacement of sample points than for
the maximum sample separation. This approach
can substantially improve the resolution obtained.

4. Experimental Results

We explored our PSF models experimentally by mea-
suring correlations produced by a laser diode with a
RSI. We measured the correlations by translating
the RSI laterally perpendicular to the RSI optical
axis and sampling the interference intensity with
various phase shifts at each lateral position.

Our RSI consisted of a 5.08-cm-aperture cube beam
splitter with two 5.08-cm folding mirrors, each con-
structed from two separate mirrors affixed to each
other at a 90-deg angle ~Fig. 11!. Each of the mir-
rors could be independently rotated about its axis
such that the shear angle and the alignment axis
could be set. The focal-plane array was a Princeton
Instruments 512 3 512 backilluminated CCD camera
placed at the output face of the RSI. To provide the
longitudinal delay, one of the folding mirrors was
placed upon a piezo-driven flexure stage, which per-
mitted precise control of relative path length down to
10-nm resolution when it was used in conjunction
with an inductive positioning sensor. All these op-
tical components were in suitable optical mounts and
bolted to a 1.9-cm-thick stainless-steel plate, which
was itself bolted to a 1.27-cm-thick steel plate to pro-
vide the required vibration stability to minimize
noise. The bottom plate was placed upon two steel
rails, and the RSI was moved along the rails by an
Aerotech translation stage, which could move the in-
terferometer over a 5-cm distance. Even with the
extremely rigid steel, the plates collectively bent
enough to change the path length delay ;20 mm over
its full range of travel, and this misadjustment was
repeatable and corrected for when the path-length
delay was set.

We measured the impulse response of this system
by using a laser diode that had a center wavelength of
660 nm. The diode facets were damaged to inhibit
lasing, and the device was used as a LED with a
20-nm spectral bandwidth. The source provided an
elliptical radiation pattern that completely filled the
aperture. An iris was used as the pupil stop to con-
trol the aperture size. The RSI imaged the source at
256 different positions of the translation stage sepa-
rated by 34 mm. At each transverse RSI position,
images were recorded for eight different relative path
delays between the folding mirrors. These longitu-
dinal dithers were separated by 0.125 wavelength,
centered about zero path delay. The complex mu-
tual intensity across the RSI output plane was iso-
lated from these eight measurements in two steps.
First we multiplied the 2D pattern recorded for each
delay by the phase factor exp~2j4pdyl0!, where d is
the path delay. Then we summed all eight modu-
lated frames. This process isolates the component of
the output intensity that oscillates at the frequency
2yl0 under longitudinal dithering. This component
is the mutual intensity. The RSI detects the mutual
intensity as a function of Dx and Dy on the Cartesian

Fig. 10. Cross section of the RSI impulse response in the x9–z9

plane under the same constraints as for Fig. 9.
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CCD grid and for uniform shifts in xg. We trans-
formed these measurements into uniform estimates
of J3D~nDx, mDy, lx̂Dx! for integrals n, m, and l by a
series of one-dimensional interpolations. We used
the approximate prolate-spheroidal interpolation se-
ries24 to implement this transformation. We then
implemented a 3D fast Fourier transform of J3D~nDx,
mDy, lx̂Dx! over the indices n, l, and m to obtain the
function I~xyz, yyz, 1yz!yz2.

The lateral aperture diameter in our PSF experi-
ment was 5.6 mm. The RSI was set with a 90-deg
rotational shear angle, and the total translation dis-
tance was 8.7 mm to ensure full sampling of the
aperture. The results of the 3D reconstructed PSF
are shown in Fig. 12. Because the simulated and

measured aperture sizes were so similar, there is
close agreement between the sizes of the measured
and the simulated PSF’s. There is a slight asymme-
try in the measured PSF, because the iris is not com-
pletely coincident with the axis of the RSI at the
center position of the lateral travel.

We also used this experimental system to recon-
struct more-complex sources. For example, we im-
aged a source consisting of four light-emitting diodes
at l0 5 640 nm. In this case, no aperture stop was
used to limit resolution. The mutual intensity was
measured by the RSI with its shear angle set to 19 deg.
The RSI was translated laterally by a micrometer-
resolution translation stage to 256 different positions
193 mm apart. We obtained a 2D measure of the

Fig. 11. RSI used to measure the mutual coherence of the four-LED test object and RSI impulse response. The RSI consisted of ~a! a
5 cm 3 5 cm 3 5 cm cube beam splitter with ~b! two 5 cm 3 5 cm folding mirrors. Each folding mirror was constructed from two separate
mirrors affixed to each other at a 90-deg angle, giving a full 5 cm 3 5 cm square aperture. A Princeton Instruments 512 3 512
backilluminated CCD was used as the focal-plane array. For longitudinal delay, one of the folding mirrors was placed upon a
piezoelectric-driven flexure stage in conjunction with an inductive positioning sensor. The RSI was mounted upon two linear bearings
and was translated over a 5-cm length by an Aerotech translation stage.
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mutual intensity at each position, using the eight-
longitudinal-position approach described above for
the PSF measurement. Figure 13 shows the esti-
mated power density of the LED sources as a 50%
constant isosurface of the maximum power density
in the source. Because the LED’s provide differing
intensities, each appears to be a different size,
when they were in fact all similarly sized. Three of
the LED’s were in a rear plane approximately 1.5 m
from the RSI pupil plane and one was 1 m away.
The longitudinal accuracy of reconstruction was ap-
proximately 0.2 m21, or 20 cm at a 1-m distance.
These results demonstrate that lensless imaging of
3D sources with coherence measurements alone is
possible.

5. Conclusion

We have shown that finite-aperture 3D coherence
imaging can be extended to the Fresnel diffraction
zone by straightforward Fourier analysis, and we
have analyzed the resolution of both Fraunhofer- and

Fresnel-zone imaging. The PSF of a rotational
shearing interferometer was also experimentally
measured. Although coherence imaging holds the
potential to revolutionize 3D imaging, several further
questions remain to be addressed. Most notably,
noise issues are not addressed here but will play an
important role in computational coherence imaging.
It is interesting to note that, in contrast with the
point-to-point independence of conventional imaging
systems, system noise scales with object complexity
in coherence imaging systems. When the informa-
tion capacity of a conventional imaging system is
limited only by the space–bandwidth product, the
information capacity of a coherence imaging system
will be limited by both the space–band volume prod-
uct and noise scaling.
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