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The spatio-temporal evolution of a turbulent swirling jet undergoing vortex
breakdown has been investigated. Experiments suggest the existence of a self-excited
global mode having a single dominant frequency. This oscillatory mode is shown to
be absolutely unstable and leads to a rotating counter-winding helical structure that
is located at the periphery of the recirculation zone. The resulting time-periodic 3D
velocity field is predicted theoretically as being the most unstable mode determined
by parabolized stability analysis employing the mean flow data from experiments.
The 3D oscillatory flow is constructed from uncorrelated 2D snapshots of particle
image velocimetry data, using proper orthogonal decomposition, a phase-averaging
technique and an azimuthal symmetry associated with helical structures. Stability-
derived modes and empirically derived modes correspond remarkably well, yielding
prototypical coherent structures that dominate the investigated flow region. The
proposed method of constructing 3D time-periodic velocity fields from uncorrelated
2D data is applicable to a large class of turbulent shear flows.
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1. Introduction

Free and confined strongly swirling jets are of great interest due to their unique
feature, commonly known as vortex breakdown. This phenomenon occurs when the
ratio of the azimuthal to axial momentum exceeds a certain threshold, while both
quantities have to be of the same order of magnitude. Breakdown in swirling jets is
characterized by a transition of a jet-like axial velocity profile to a wake-like profile
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with a local minimum on the axis. This leads to a stagnation point to be followed by a
highly turbulent region of reverse flow farther downstream. It can play a crucial role –
from desired to detrimental – in a variety of technical applications. For example, vortex
breakdown stabilizes the flame of a gas turbine combustor and enhances mixing, thus
leading to a reduction of NOx emissions. On the other hand, bursting of leading-
edge vortices adversely affects the lift distribution on delta wings resulting in poor
flight performance. Understanding the cause of the vortex breakdown is therefore
of great importance in order to develop appropriate control strategies. Furthermore,
the transition of the flow from jet-like to wake-like that generates coexisting inner
and outer shear layers and the concomitant axial and azimuthal shear makes this
flow complex and highly three-dimensional and thus poses a formidable challenge to
fundamental studies.

In the present work, we investigate coherent structures of a strongly swirling jet
undergoing vortex breakdown. This study is based on experiments carried out at
the TU Berlin. 3D time-periodic coherent structures are predicted by stability theory
and are constructed from 2D particle image velocimetry (PIV) data via a proposed
identification method. In the introductory section we describe the main observed
phenomena (§ 1.1), highlight the triple decomposition as the corner stone of our
theoretical and experimental study of coherent structures (§ 1.2) and review current
definitions of coherent structures in conjunction with stability analyses (§§ 1.3 and 1.4,
respectively). Finally, an outline of the paper is provided (§ 1.5).

1.1. Vortex breakdown studies

Several types of vortex breakdown have experimentally been observed. Lambourne
& Bryer (1962) were the first to describe the axisymmetric and spiral type of vortex
breakdown. Swirling jet experiments in pipes conducted by Sarpkaya (1971) and Faler
& Leibovich (1978) identified three different types of vortex breakdown, namely the
single helical, double helical and bubble-shaped vortex breakdown. Billant, Chomaz
& Huerre (1998), investigating a swirling jet at a low Reynolds number, observed an
additional conical-shaped breakdown type.

Many researchers found helical disturbances that characterize strongly swirled
jets, but their role in the dynamics of vortex breakdown is still a controversial
issue. Some experts relate the onset of vortex breakdown to the hydrodynamic
instability of vortical flow. Ludwieg (1961) assumes that the formation of a stagnation
point results from the sensitivity of the vortex core to helical disturbances. Other
researchers describe vortex breakdown as a transition of the flow from a supercritical
to a subcritical state similar to a shock wave or a hydraulic jump. According to
Escudier & Keller (1985) there is a clear separation of the roles of flow criticality
and flow stability. It was proposed that the criticality of the flow determines the
basic, wake-like character of the flow and that instability waves are a superimposed
fine detail. Recent quantitative investigations could significantly contribute to the
understanding of the dynamics accompanying the onset of vortex breakdown. Time-
resolved measurements conducted by Liang & Maxworthy (2005) indicate that a
recirculation bubble with nearly axisymmetric shape accompanies the first appearance
of a stagnation point. It was further noticed that in the wake of this dividing
streamline a single helical vortex arises near the jet centre that amplifies until it
imposes its frequency onto the entire near field. The authors suggest this to be a self-
excited/globally unstable mode, supposably arising from a region of local absolute
instability in the lee (downstream) of vortex breakdown. Forced experiments using
vortex generators mounted on a rotating nozzle supported the absolute/convective
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nature of the dominating instabilities. Gallaire et al. (2006) performed a linear stability
analysis based on numerical simulations of a swirling jet at Re= 200 that were
conducted by Ruith et al. (2003). They found a convective to absolute instability
transition in the lee of the recirculation bubble with a single helical mode being most
unstable. Thus, it is likely that the precession of the vortex core and the appearance
of strong oscillations that have been observed in experiments and simulations (Ruith
et al. 2003; Liang & Maxworthy 2005; Duwig & Fuchs 2007; Martinelli, Olivani
& Coghe 2007) can be attributed to a self-excited global mode initiated by flow
instabilities in the region of vortex breakdown.

1.2. Triple decomposition as a basis for structure extraction and prediction

Large-scale organized structures in turbulent flows were investigated for more than
40 years. For a comprehensive summary of earlier work, the reader is referred to
Laufer (1975), Roshko (1977), Cantwell (1981) and Ho & Huerre (1984). A variety
of definitions and techniques have been developed to reveal these so-called coherent
structures. These include statistical approaches, pattern recognition methods, stability
theory, conditional sampling and averaging and topological methods from dynamical
system theory. Some of these methods are based on a triple decomposition introduced
by Hussain & Reynolds (1970). Accordingly, turbulent flow may be decomposed into
three constituents: mean (time- or ensemble-averaged), coherent (phase-averaged) and
random (incoherent turbulent) motion. The triple decomposition method represents
a refinement of the classical Reynolds decomposition. It has become a conventional
tool in active flow control (AFC) experiments that distil coherent disturbances by
means of phase-locked averaging. Its application to experiments is easy when the
coherent structure is tagged by external excitation where a simple synchronization
of the data acquisition with the forcing signals is required. Without such external
phase trigger, proper orthogonal decomposition (POD)-based techniques can provide
another means for phase identification (Depardon et al. 2007).

The triple decomposition method has been implicitly used in a number of theoretical
articles where the stability analysis was applied for turbulent flows (see, e.g. Crighton
& Gaster 1976; Gaster, Kit & Wygnanski 1985). Liu (1989) has developed a local
turbulence model for many shear flows utilizing the triple decomposition.

1.3. Empirical identification of coherent structures

Large-scale coherent structures in many turbulent shear flows (see, e.g. Van Dyke 1975)
are visually similar to predominant instability modes persisting over a wide range
of Reynolds numbers. This similarity applies to flows whose mean velocity profiles
are inviscidly unstable and whose shape of these profiles does not materially change
during the transition from laminar to turbulent flow. This observation suggests that
stability considerations can be applied to the mean turbulent flow field, although there
is no theoretical basis for this step. However, weakly nonlinear stability approaches
explicitly assume that instability modes and most energetic (POD) modes are the
same, at least near the onset of a supercritical Hopf bifurcation (Stuart 1958; Noack
et al. 2003).

Stability theory approximates the flow as a given mean flow and a superposition of
space- and time-dependent modes. In similar spirit, turbulent coherent structures
can be conceptualized as an expansion of modes. A corresponding least-order
representation of a flow snapshot ensemble is obtained by the POD. This approach
minimizes a time-averaged residual of the POD expansion for a given number of
modes, and it is equipped with further useful analytical properties (Lumley 1967;
Holmes, Lumley & Berkooz 1998). Historically, Lumley (1967) introduced POD as a
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least-biased definition of coherent structures following up on the analytical approach
by Townsend (1956) and the well-known Karhunen–Loéve decomposition from the
1940s.

Meanwhile, many other empirical expansions of flow snapshots have been proposed
serving dynamical systems or control theory goals. For instance, the dynamic mode
decomposition (DMD) extracts modes from snapshots that are more related to
stability eigenmodes (Rowley et al. 2009; Schmid 2010). Furthermore, the balanced
POD serves as economic expansion for linear input–output relationships (Rowley
2005). The present study is restricted to the classical POD since it targets an optimal
kinematical representation of the flow.

1.4. Linear stability analysis of swirling jets

Linear stability analysis is presently used to describe the large-scale oscillations
observed in this experiment. In principle, self-excited oscillations are known to arise
from a region of absolutely unstable flow. They can be described by an unstable global
mode (Chomaz 2005) or by local spatio-temporal stability analysis with complex
frequency and wavenumber (Huerre & Monkewitz 1990; Monkewitz, Huerre &
Chomaz 1993; Pier & Huerre 2001). However, for the underlying flow configuration,
we employ a simple local spatial stability analysis to approximate the velocity of
the global mode. This simplification serves the main purpose of this study, which
is to enhance the understanding of turbulent coherent structures in highly turbulent
swirling flows. It is in line with similar studies summarized by Liu (1989), and it is
rooted by experimental observations (Oberleithner et al. 2009). Strong oscillations at
the global frequency were found upstream of vortex breakdown, revealing a precessing
vortex core that acts as the global wavemaker. In the outer shear layer, downstream
travelling instabilities were detected that were internally forced by the wavemaker
and were synchronized to its frequency. These waves served as amplifiers to external
forcing, which suggests that the signalling problem is valid for the outer flow region.
Assuming that the outer shear layer responds to internal forcing in the same way as
to external forcing, we may approximate the large-scale fluctuations downstream of
the wavemaker by convectively unstable modes that oscillate at the global frequency.
Hence, the spatial analysis presented here was conducted with an unknown complex
streamwise wavenumber and the known real global frequency.

Computing spatially growing disturbances in shear layers by means of linear
stability analysis has a long history. Michalke (1965) calculated the spatial stability
characteristics for the hyperbolic-tangent velocity profile according to inviscid theory.
Spatial growth rate and amplitude distribution agreed well with measurements
conducted by Freymuth (1966), but they disagreed in some detail when the flow
was divergent. As refinement, several attempts have been made to account for non-
parallel effects (Gaster 1974; Crighton & Gaster 1976; Plaschko 1979; Gaster et al.
1985; Cohen, Marasli & Levinski 1994). Gaster et al. (1985) applied the inviscid
linear stability analysis to the periodically forced turbulent and slightly divergent
mixing layer. The computed normalized phase and velocity amplitudes agreed with
experimental data but the amplification rates in the direction of streaming were
strongly overpredicted. The robustness of the stability analysis was demonstrated by
Weisbrot & Wygnanski (1988), whose computed eigenmodes correctly predicted the
measured phase and amplitude distributions of the excited waves, although the latter
were forced at high amplitudes clearly exceeding the linear regime. It is important
to note that for high Reynolds numbers, the stability analysis is based on the time-
averaged turbulent flow which is not a stationary solution of the Navier–Stokes
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equation. It is argued that this infringement of the linear stability theory is possible
‘knowing that the random changes in the mean velocity occur on a time scale that
is short in comparison with the period associated with the large coherent structures’
(Weisbrot & Wygnanski 1988).

1.5. Overview

The outline of the paper is as follows. The experimental set-up and procedures are
described in § 2, while the main features that characterize the strongly swirling jet
undergoing vortex breakdown are summarized in § 3. This flow is dominated by
strong oscillations resulting from a self-excited global mode. Two methods to extract
the coherent velocity of this mode are introduced in § 4. The first method employs
linear stability analysis and the second, empirical approach, is based on the POD.
Stability analysis provides spatially amplified eigenmodes that represent the amplitude
distribution of the phase-averaged velocity. The empirical feature extraction directly
provides the measured phase-averaged velocity field by applying a proposed method.
Finally, the results of both methods are compared in § 5 and a three-dimensional
reconstruction of the global mode is presented. It is based on stability analysis and
on PIV data providing a portrait of the dominant coherent structures. The main
observations are summarized in § 6.

2. Experimental arrangement

2.1. The swirling jet facility

A turbulent swirling free jet was generated using an apparatus that resembles the one
built by Chigier & Chervinsky (1965). The schematic arrangement of the facility is
shown in figure 1. The primary axial stream of air passes through a deep honeycomb
prior to entering a swirler through which a secondary air stream is introduced
through four tangential slots, each 80 mm long. The flow is then guided through a
600 mm long tube, before entering the contraction forming the nozzle. A perforated
plate is mounted in the tube to minimize possible inhomogeneities resulting from
the tangential inlets in the swirl chamber. The swirl levels generated by the facility
depend on the ratio of mass flows coming through the two inlets: a non-swirling jet
is generated when no air enters tangentially through the swirler and the maximum
swirl level is attained when the axial inflow is zero. Two frequency-controlled blowers
provide the necessary airflow. The volume flux of each blower was monitored and
controlled by calibrated orifices. The nozzle diameter is D = 51 mm.

Particular attention was paid to the design of the excitation device located at the
nozzle lip where the thin shear layer between the jet and the quiescent surrounding
fluid is unstable to all azimuthal modes (Cohen & Wygnanski 1987; Gallaire, Rott &
Chomaz 2004). Acoustic excitation was applied using an array of eight loudspeakers
equally spaced along the azimuth (figure 1). Such an array provides radial fluctuations
that trigger the inviscid shear layer instabilities. An acoustic wave-guide from each
actuator terminates in a rectangular duct leading to a narrow slot that does not
interfere with the jet flow when the speakers are inactive. The loudspeakers are driven
by a set of digital-to-analogue converters under program control. The actuators are
adjusted to equal amplitudes under no-flow conditions using a microphone located
at the centreline in the exit plane of the nozzle. The azimuthal disturbances can be
controlled by varying the phase difference between the actuators. With an array of
eight actuators the highest azimuthal mode numbers that can be excited are m = ±4.
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Figure 1. Experimental set-up and coordinate systems (all lengths are expressed in mm).

2.2. Data acquisition

Stereoscopic particle image velocimetry (Stereo-PIV) was used to measure the flow
field. It consists of velocity measurements of particles going through a laser sheet
generated by a double-pulsed Nd:Yag laser at 532 nm and 25 mJ in 5 ns burst. Two
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CCD cameras with a resolution of 1.3 million pixels were used. Both cameras were
positioned at a 45◦ angle in order to measure all three velocity components in a 2D
plane. The cameras and the laser were mounted onto a single traversing system. Data
were taken in the crossflow plane as well as in the axial plane. Each ensemble of PIV
snapshots consisted of 800 events captured at approximately 3 Hz.

2.3. Coordinate systems

The orientation of the two coordinate systems used in the present work is shown in
figure 1. Cylindrical coordinates are used to describe the flow quantities in the
crossflow plane, whereas Cartesian coordinates are used for data shown in the
streamwise plane. The two coordinate systems are necessary, as the latter does not
cause a singularity along the jet axis. On the other hand, in the crossflow plane,
cylindrical velocity components are necessary to correctly describe the flow quantities
of the axisymmetric flow. Furthermore, the normal mode decomposition, necessary
for the linear stability analysis, is strictly based on an axisymmetric flow given in
cylindrical coordinates. In order to compare theoretical results with experimental
data, we will switch between the two coordinate systems.

2.4. Characteristic numbers

Two independent dimensionless numbers characterize the global behaviour of the
flow:

ReD =
DU

ν
with U =

Q

π(D/2)2
(2.1)

and

S =
Ġθ

D/2Ġx

=

2π

∫ ∞

0

ρVxVΘr2 dr

Dπ

∫ ∞

0

ρ

(
V 2

x − V 2
θ

2

)
r dr

. (2.2)

The Reynolds number ReD is based on the nozzle diameter D and the average axial
velocity U which is derived from the mean mass flow rate Q. The swirl number
S is the commonly used parameter that quantifies the amount of swirl (Chigier &
Chervinsky 1965; Panda & McLaughlin 1994). It is defined as the ratio between
the axial flux of angular momentum Ġθ and the axial flux of axial momentum Ġx .
According to the conservation of momentum, the swirl number is conserved in the
axial direction (Rajaratnam 1976).

3. Flow phenomenology

This paper focuses on the near field of a turbulent jet at a very high rate of swirl.
The basic features of this flow are described in the following section in order to
explain the motivation for investigating the evolution of the coherent structures.

3.1. Mean flow properties

Figure 2 illustrates the streamwise distribution of the time-averaged flow. Due to the
occurrence of vortex breakdown, the maximum axial velocity is displaced from the jet
centre. The axial velocity profiles have a local velocity minimum in the inner region of
the jet. Thus, a wake with a region of reversed flow on and near the jet axis resembles
with a recirculation bubble that is bound by upstream and downstream stagnation
points. This reversed flow region is similar to the one created by an obstacle placed on
the jet centre. Hence, the flow emanating from the nozzle is a swirling ring-jet with an
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Figure 2. Profiles of the time-averaged axial and plane-normal velocity at various axial
locations; velocities are normalized by the bulk velocity U ; streamlines indicate the location
of the recirculation bubble (ReD = 20 000; S = 1.22).

inner and an outer axial and azimuthal shear layer. The streamlines shown in figure 2
illustrate how the flow is guided around the recirculation zone causing a rapid increase
of the jet diameter. Downstream the recirculation zone, at approximately x/D > 1.4,
the inner shear layers begin to merge and the axial velocity on the jet centre increases
gradually with increasing downstream distance. The azimuthal velocity profiles may
be divided into a vortex core, the region between the jet centre and the maximum
azimuthal velocity, and the outer azimuthal shear layer located between the maximum
azimuthal velocity and the quiescent surrounding fluid. The axial velocity profile has
two inflection points, and thus, in terms of inviscid hydrodynamic stability they
possess as many plane instability modes. Since the flow is axisymmetric, these could
combine with azimuthal modes. The convex streamlines over the frontal part of the
recirculation bubble coupled with the decelerating outer flow provide the necessary
conditions for centrifugal instability, as do the concave streamlines in the lee of the
bubble coupling with the inner shear layer.

3.2. Self-excited oscillations

Former experimental investigations by Liang & Maxworthy (2005) and numerical
simulations of Ruith et al. (2003) revealed that the onset of vortex breakdown is
accompanied by energetic large-scale fluctuations. In the present investigation, these
strong oscillations had a distinct frequency (figure 3). By traversing a hot-wire probe in
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Figure 3. Power spectral density of hot-wire-anemometer voltage fluctuations at
(x/D, y/D) = (0.57, 0.38) for the unforced swirling jet. The same dominant frequency Stnat

was measured in the inner and outer axial shear layers. The Strouhal number is defined as
St = f D/U .

radial and axial directions, a constant dominant frequency was observed throughout
the region of interest, with highest amplitudes occurring in the inner and outer axial
shear layers. As will be shown later, the spectral peak at Stnat = 0.49 corresponds
to the precession of the vortex core or, in terms of hydrodynamic stability, to the
appearance of a strong helical instability with azimuthal wavenumber m =1. This
relatively sharp peak is attributed to a self-excited global mode with its origin being
located on the jet centreline in the region of reversed flow (Ruith et al. 2003; Liang
& Maxworthy 2005; Gallaire et al. 2006).

There are several experimental techniques to confirm that the flow has transitioned
to a global mode via a supercritical Hopf bifurcation. According to Huerre &
Monkewitz (1990), near critical conditions, the amplitude of the global mode |A| is
governed by the forced Landau equation (Landau & Lifshitz 1959)

d|A|/dt = c1|A| − c2|A|3 + f, (3.1)

where c1 is the temporal amplification rate during the time of exponential growth
and f is proportional to the external forcing amplitude. In the absence of forcing, the
limit cycle amplitude should increase proportionally to the deviation from a control
parameter,

|A|sat ∝
√

S − Scrit , (3.2)

where Scrit is the critical control parameter for a constant Reynolds number and
S � Scrit . The amplitude of the global mode was measured with a calibrated hot wire
placed in the centre of the inner axial shear layer at (x/D, y/D) = (0.57, 0.38). At
this radial location the oscillations reach their maximum amplitude. A single-wire
probe was used with the wire aligned parallel to the azimuthal velocity. The signal
was Fourier transformed and the amplitude at the dominant frequency was derived.
Figure 4 shows the growth of the global amplitude with increasing swirl while keeping
the Reynolds number constant. Evidently, the saturation amplitude is proportional to√

S − Scrit . The linear dependence suggests that the oscillation is of the supercritical
Hopf bifurcation type. The critical swirl number was found to be Scrit = 0.88.
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Figure 4. The squared saturation amplitude |A|2sat of the dominant mode as a function of
the increasing control parameter S. The open circles represent measurements; the straight
line represents a least-squares fit to this data. This linear dependence is characteristic for
a supercritical Hopf bifurcation. The zero marks the critical control parameter Scrit = 0.88.
|A|sat is measured with a single hot-wire anemometer placed at (x/D, y/D) = (0.57, 0.38) in
the centre of the inner axial shear layer (ReD = 20 000).

A second experimental technique that may confirm the existence of a self-excited
global mode is to investigate the lock-in characteristic. According to Provansal, Mathis
& Boyer (1987), Sreenivasan, Raghu & Kyle (1989) and Juniper, Li & Nichols (2009),
the critical forcing amplitude at which the frequency of the natural mode Stnat locks
onto the forcing frequency Stf should linearly depend on |Stnat − Stf |. The lock-in
region is defined as the forcing amplitude at which the spectral peak of the natural
mode disappears and the spectrum peaks at the forcing frequency. Measurements
conducted with a single hot wire, placed on the centre of the inner axial shear layer at
(x/D, y/D) = (0.57, 0.38), revealed that the critical lock-in amplitude is proportional
to |Stnat − Stf | (figure 5). This provided additional evidence for the existence of a
supercritical Hopf bifurcation needed to establish a global mode.

Concluding this section, the base flow under investigation is a swirling ring-jet
whose conical boundaries originate at the orifice due to a recirculation zone located
on the jet axis. The axial and azimuthal shear layers coexist in the outer region of
the jet and in the jet core. The swirl number considered presently is above the critical
value at which a supercritical Hopf bifurcation takes place. Thus, the strong coherent
fluctuations that are dominating the entire flow field near the nozzle are attributed to
the existence of a self-excited global mode.

4. Extraction of coherent structures

Two approaches are outlined in this section in order to extract the coherent
structures from overall turbulence. In § 4.1, the theoretical considerations and
numerical implementation of the linear stability analysis are described. In § 4.2,
the empirical extraction of coherent structures by means of the POD is introduced.
Moreover, it is proposed how to reconstruct the three-dimensional shape of the
structure from two-dimensional empirical data. The results of the presented methods
are compared in the subsequent section.
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Table 1. Coordinate system and corresponding velocity components.
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Figure 5. Critical loudspeaker input voltage at which the global mode locks onto the forcing
frequency. The open circles mark measurement values and the the solid lines represent fits
to these data. The linear dependence of the threshold amplitude on |Stnat − Stf | is another
indicator of a supercritical Hopf bifurcation to a global mode. The flow was forced at the
orifice at m= 1 which is the azimuthal wavenumber of the natural mode. The natural frequency
is Stnat = 0.49 (ReD = 20 000; S =1.22)

For the following considerations, we decompose all flow variables into three parts
(Hussain & Reynolds 1970): steady mean flow, coherent component and stochastic
fluctuations:

v(x, t) = V (x) + v
c(x, t) + v

s(x, t), (4.1)

with the phase-averaged velocity v
p = V (x)+v

c(x, t). Table 1 summarizes the symbols
used to distinguish between the different parts of the velocity components in their
corresponding coordinate systems.

4.1. Theoretical approach based on the linear stability analysis

We shall assume that the mean flow is known and introduce its analytical
approximation followed by an outline of the theoretical considerations and the
numerical procedures used in the linear stability analysis.

4.1.1. Analytic representation of the time-averaged flow

The incompressible mean flow of the unconfined swirling jet is expressed by an
axial velocity Vx and a circumferential velocity Vθ . The radial velocity is neglected.
The characteristic velocity scale V = Vx,max is defined as the maximum axial velocity at
a certain axial location, and the characteristic length scale R = rx,max is represented by
the radial distance of the maximum velocity. The ‘Monkewitz profile’ approximates
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Figure 6. Velocity profiles of the approximated mean flow field using the shape parameters
listed in table 3. Symbols refer to experimental data.

the axial component if we normalize all velocities by V and all lengths by R. In
the current study, we employ a modification of this profile introduced by Michalke
(1999):

Vx = 4BF1[1 − BF2], (4.2a)

where F1 and F2 are given by Monkewitz & Sohn (1988) as

Fj =
[
1 +

(
er2bj − 1

)Nj
]−1

, j = 1, 2. (4.2b)

The quantity B depends on the axial velocity on the jet centreline Vcl:

B = 0.5[1 + (1 − Vcl)
1/2]. (4.2c)

N1,2 � 1 are the shape parameters that control the thickness of the jet shear layers.
In contrast to Michalke (1999), we use two parameters N1 and N2 in order to
approximate the inner and outer shear layer, respectively. The normalized swirl
component is represented by the same equations with the simplification that B =1.
Therefore, the local swirl parameter Sloc = Vθ,max/Vx,max is introduced yielding

Vθ = 4F3[1 − F4]Sloc . (4.3)

Note that all flow parameters and fitting parameters of (4.2)–(4.3) vary in the axial
direction due to the non-parallelism of the mean flow. Their quantities are displayed in
tables 2 and 3 for profiles taken at x/D =[0.25; 0.5; 1; 1.5]. The fitted velocity profiles
are displayed in figure 6 together with the measured mean axial and azimuthal
velocities for distances in the range 0.5 � x/D � 3. Both velocity components are well
represented by the suggested approximation. Note that this rather complex mean
flow approximation is necessary to accurately represent the two axial and azimuthal
shear layers. Simpler models as introduced by Michalke (1999) and Gallaire, Chomaz
& Huerre (2004) did not approximate the underlying mean flow well enough for an
accurate linear stability analysis.

4.1.2. Eigenvalue problem

To analyse the linear stability at a given axial location of the mean flow, velocity
and pressure disturbances (vc

x, v
c
r , v

c
θ ) are superposed onto the corresponding mean
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x/D V/U Sloc R/D B

0.25 0.87 0.91 0.45 1.01
0.50 0.76 0.90 0.50 1.03
1.00 0.63 0.81 0.56 1.04
1.50 0.51 0.71 0.58 1.00

Table 2. Flow parameters of mean flow approximation (4.2)–(4.3).

x/D N1 N2 N3 N4 b1 b2 b3 b4

0.25 4.23 1.10 4.18 0.73 0.51 0.38 0.51 0.27
0.50 3.14 1.35 2.23 1.09 0.56 0.52 0.73 0.66
1.00 2.92 1.06 1.87 0.55 0.53 0.46 0.63 0.35
1.50 2.38 0.87 1.17 0.56 0.46 0.35 0.71 0.57

Table 3. Fitting parameters of mean flow approximation (4.2)–(4.3).

velocity profile expressed by (4.2)–(4.3). These perturbations are decomposed in the
classical form

(
vc

x, v
c
r , v

c
θ , p

c
)

= Re {[H, iF, G, P ] exp[i(αx + mθ − ωt)]}, (4.4)

where H , F , G and P are the eigenfunctions, α = αr + iαi is the complex axial
wavenumber, m is the integer azimuthal wavenumber and ω =ωr +iωi is the complex
angular frequency. Upon substituting the modal decomposition (4.4) into the Navier–
Stokes equations, linearized about the prescribed mean flow (4.2)–(4.3), we obtain the
linear system of ordinary differential equations for continuity

F ′ +
F

r
+

mG

r
+ αH = 0, (4.5a)

for the x-momentum

H ′′

Re
+

H ′

rRe
+

[
iω − imVθ

r
− iαVx − m2r2Re

]
H − iV ′

xF − iαP =
α2H

Re
, (4.5b)

for the r-momentum

iF ′′

Re
+

iF ′

rRe
−

[
ω − mVθ

r
− αVx +

i(m2 + 1)

r2Re

]
F − 2

[
im

r2Re
− Vθ

r

]
G − P ′ =

iα2F

Re
,

(4.5c)

and for the θ-momentum

G′′

Re
+

G′

rRe
+

[
iω − imVθ

r
− iαVx − m2 + 1

r2Re

]
G

−
[
iV ′

θ +
2m

r2Re
+

iVθ

r

]
F − imP

r
=

α2G

Re
, (4.5d)

where the primes denote d/dr . For the free jet, the boundary conditions in the far
field are

F (∞) = G(∞) = H (∞) = P (∞) = 0 (4.6)
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and in the limit along the centreline (r = 0) impose

F (0) = G(0) = H (0) = P (0) = 0 if |m| > 1 (4.7a)

H (0) = P (0) = 0

F (0) + mG(0) = 0

2F ′(0) + mG′(0) = 0

⎫
⎪⎬

⎪⎭
if |m| = 1 (4.7b)

F (0) = G(0) = 0

H (0) and P (0) finite

}
if m = 0. (4.7c)

For a given mean velocity profile, the system (4.5)–(4.7) describes an eigenvalue
problem. A non-zero solution of (F, G, H, P ) exists if and only if the complex pair
(α, ω) satisfies the dispersion relation D(α, ω, m, Γ, Re) = 0. The symbol Γ represents
all control parameters describing the mean velocity profiles.

In the present work, the linear stability analysis is performed to derive the spatial
modes that are retrieved by phase-averaged measurements. Thus, the focus is on the
viscous spatial stability analysis where the spatial branches α(ω, Γ ) are obtained by
solving for complex axial wavenumbers when ω and m are real. The non-parallelism
of the mean flow requires to solve the eigenvalue problem (4.5)–(4.7) at each axial
location. The slowly varying amplitudes are expressed by the local eigenmodes. The
full solution is then constructed by using the eigenfunctions that depend on x and
on the global parameters ω and m and a carrier wave exp (

∫ x

0
α(x) dx + mθ − ωt).

The Reynolds number in (4.5) is based on the characteristic length and velocity scale
Re= RV/ν and is also varying with x. The flow will be considered as unstable when
the disturbance grows with x, i.e. when the imaginary part of the eigenvalue αi is
negative. The existence of saddle points in the complex α plane, which serve as an
indicator for absolute instability, will not be investigated.

4.1.3. Numerical method

Khorrami, Malik & Ash (1989) demonstrated that the eigenvalue problem can
be efficiently solved by using a Chebyshev spectral collocation method. Following
this study, the system of ordinary differential equations (4.5) is solved numerically
by discretizing the three velocity components and the three momentum equations
at the Chebyshev collocation points. The continuity equation is enforced at the mid
grid points. This approach has been successively applied by Khorrami (1991) to the
temporal problem and recently to the spatial problem by Parras & Fernandez-Feria
(2007). For a detailed description of the numerical procedure, the reader is referred
to Khorrami et al. (1989); thus, only a brief summary is given here.

The boundary conditions (4.6) are enforced at a large but finite radius rmax ≫ 1
as was done by Olendraru & Sellier (2002) and Parras & Fernandez-Feria (2007).
A coordinate transformation is necessary to map the Chebyshev collocation points,
in the interval −1 � ξ � 1, onto the physical domain of the problem, in the range
0 � r � rmax . Here, the two-parameter transformation proposed by Malik, Zang &
Hussaini (1985) is used, which reads

r

rc

=
1 + ξ

1 − ξ + 2rc/rmax

. (4.8)

Since the Chebyshev collocation points are known to be distributed in the vicinity
of r = 0 and rmax , the parameter rc is necessary to redistribute the collocation
points. It allows half of the points to be distributed in the region 0 � r � rc.
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Finally, the eigenvalue problem (4.5) for the case of spatial stability (given real
ω, complex eigenvalue α) is linearized by introducing a generalized eigenvector
X = [F, G, H, αF, αG, αH, P ]T. Discretizing the system of ordinary differential
equations (4.5) in terms of the variable ξ and enforcing the boundary conditions
(4.6)–(4.7), we may write the generalized eigenvalue problem as

DX = αEX . (4.9)

Taking Z as the number of Chebyshev points, both D and E are square matrices
with dimensions of 7Z. Note that the last 14 rows of matrix D contain the boundary
conditions. The eigenvalue problem (4.9) is solved using a standard EIG routine
embedded in the software environment MATLABTM. Spurious eigenmodes, caused
by the discretization, are discarded by two independent criteria: first, all eigenmodes
are discarded that do not diminish at r → ∞, that is to say that we consider only
those eigenvalues satisfying

Z/10∑

i=1

|F (ri)|2

Z∑

i=1

|F (ri)|2
< ǫ1 (4.10)

with ri being the radial points and ǫ1 a given tolerance. Second, spurious eigenvalues
are filtered out by comparing the computed spectra SZ and SZ′ for Z′ >Z. The
location of the spurious modes in the complex α-plane is very sensitive to the number
of Chebyshev points Z, in contrast to the few physical eigenvalues of the problem.
Thus, the eigenvalues α are considered as spurious if min|α − α′| >ǫ2.

The accuracy of our calculations is first checked by comparing the computed
eigenvalues with those calculated by Khorrami et al. (1989) and Parras & Fernandez-
Feria (2007). Our computed eigenvalues agree for all shown digits which is not
surprising as these authors use exactly the same numerical method. A comparison
of our computations with the results presented by Gallaire & Chomaz (2003) is
more challenging as their results are retrieved by direct numerical simulations of
the linear impulse response. Unfortunately, Gallaire & Chomaz do not explicitly
present computed eigenvalues of their spatio-temporal analysis but only display the
complex frequency ω of the temporal problem. Hence, for the sake of comparison,
we computed the temporal modes using the same base flow as used by Gallaire &
Chomaz. Figure 7 clearly shows that for m =1 both numerical methods arrive at the
same solutions. The correctness of the computed eigenvalues makes us confident to
apply the computations to our base flow. In comparison to the base flow used by
Gallaire & Chomaz and Parras & Fernandez-Feria, our mean flow is more complex
as it consists of two axial and two azimuthal shear layers. Furthermore, the Reynolds
number is in the range of 3000 � Re � 8000, i.e. one order of magnitude higher than
that used by Gallaire & Chomaz. Thus, from the numerical point of view the problem
is more demanding and the number of collocation points has to be increased. To
satisfy the filter criterion (4.10) and to successfully discard the spurious eigenvalues, the
number of Chebyshev points is increased to Z = 300. A convergence study optimizes
the parameters a and rmax of the transformation (4.8) yielding a = 3 and rmax = 100
for all computations presented here. It was observed that the calculated eigenvalues
are relatively insensitive to the radial distribution of the collocation points.



16 K. Oberleithner and others

0 2 4

0.1

0.2

0.3

ωi

α

0

±2

±1

±3

Figure 7. Temporal stability analysis of a non-swirling jet. The growth rate ωi is plotted over
the axial wavenumber α. The corresponding azimuthal wavenumbers m are shown close to
the corresponding curves. The solid lines represent computations reprinted from Gallaire &
Chomaz (2003). Symbols represent our computations at m ± 1 using a Chebyshev collocation
method (Z =180, a = 3, rmax = 100, ǫ1 = 10−11, ǫ2 = 10−3).

A further challenging aspect of the computation of spatial instability is the sorting
of the eigenvalues and eigenfunctions with respect to the corresponding modes. Spatial
branches have to be identified and tracked in the complex wavenumber plane while
a parameter of the dispersion relation is changed. A well-designed sorting routine
is of great importance to accurately follow the spatial branches into the region of
negative growth αi > 0. In this region, many modes coexist and several spatial branches
intersect. We developed a routine which sorts the eigenvalues and eigenfunctions of
the dispersion relations D and D′ by incorporating two criteria: first, eigenvalues are
sorted by minimizing the distance |α − α′|; second, the normalized eigenvectors X are
sorted by minimizing |1 − 〈X X

′〉|. The efficiency of the sorting routine was validated
by visually checking the spatial branches.

4.2. Empirical approach based on the POD

In this section, we outline the path from the POD of 2D PIV data to the construction
of full 3D time-dependent velocity field.

4.2.1. Proper orthogonal decomposition

We consider the fluctuation snapshots of a velocity field

v
′(x, tk) = v(x, tk) − V (x), (4.11)

where x is a point in a spatial domain Ω ⊂ �
3, and tk , k = 1, . . . , N , are the sampling

instants. The goal is to find a least-order expansion of the snapshots

v
′(x, tk) =

I∑

p=1

ap(tk)Φp(x) + vres (x, tk), (4.12)

which minimizes the residual vres in a sense specified below. The snapshots are
considered as elements of the Hilbert space of square integrable vector fields L2(Ω).
This Hilbert space is equipped with the inner product in Ω between two vector fields
v and w defined by

(v, w)Ω :=

∫

Ω

v · w dx, (4.13)
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and the related norm ‖v‖Ω reads

‖v‖Ω :=
√

(v, v)Ω . (4.14)

The velocity fields are provided by PIV snapshots taken at N uncorrelated points at
the times tk , k =1, . . . , N . In addition to the inner product in space, we define the
ensemble average of a quantity ζ as

ζ :=
1

N

N∑

k=1

ζ (tk). (4.15)

The quantity ζ may be a scalar, a vector or any other tensor. The norm and ensemble
average allows one to formulate an optimal property of the Galerkin expansion (4.12).
We require that the spatial modes are chosen such that the time-averaged L2 error
is minimal for the number of modes I = 1, . . . , N:

χ2(Φ1, . . . , ΦI ) := ‖vres‖2 = min. (4.16)

Note that the minimized residual vres ≡ 0 for I = N . This optimality property is
fulfilled by the snapshot POD modes introduced by Sirovich (1987). The corresponding
algorithm is based on the N × N autocorrelation matrix R =(Rkl) defined by

Rkl :=
1

N
(v′(x, tk), v

′(x, tl))Ω (4.17)

quantifying the relation between the snapshots. The correlation matrix is symmetric
and positive semi-definite, i.e. the eigenvalue problem

Rap = λpap (4.18)

has real and non-negative eigenvalues λp � 0. Without loss of generality, we assume
the eigenvalues to be sorted by magnitude:

λ1 � λ2 � · · · � λN = 0. (4.19)

Note that λN = 0 since N linearly independent snapshots cannot span the whole
N-dimensional space. Two points, for instance, define a one-dimensional line. The
corresponding eigenvectors ap : = [ap(t1), . . . , ap(tN )]T, called temporal modes, are
orthogonal by construction. For reasons of convenience, we require

apaq =
1

N

N∑

k=1

ap(tk)aq(tk) = λpδpq . (4.20)

Now, the spatial POD modes can be calculated as a linear combination of the
fluctuation snapshots

Φp(x) =
1

Nλp

N∑

k=1

ap(tk)v
′(x, tk). (4.21)

These spatial POD modes are orthonormal by construction:

(Φp, Φq)Ω = δpq. (4.22)

The eigenvalues λp represent twice the amount of the fluctuating kinetic energy

contained in each POD mode, Kp := (v′, Φp)2Ω/2 = λp/2. The total fluctuation energy
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Figure 8. POD spectrum of the velocity modes p for the crossflow and streamwise planes of

measurement. TKE is expressed in per cent of the sum K =
∑N

p=1 Kp .

is defined as the sum of the modal contributions owing to orthonormality (4.22):

K :=
1

2
‖v′‖2

Ω =

N∑

p=1

Kp =
1

2

N∑

p=1

λp. (4.23)

K is generally referred to as turbulent kinetic energy (TKE). Snapshot POD extracts
the most energetic structures representing them as linear combinations of the
snapshots and imposes orthogonality in spatial and temporal modes. Snapshot POD
is the time-discrete variant of a general continuous formulation (Holmes et al. 1998).
In turbulent flows, the large-scale structures usually contain a major portion of the
TKE, so the POD modes with high energy content can hence be expected to span
the basis for the dominant coherent structures.

4.2.2. Spatial and temporal POD modes

The snapshot POD, as described above, is applied to the data taken in the
crossflow and streamwise planes of measurement. Both sets of measurement consist
of 800 snapshots. The observation domains have a spatial extent of −1.1 <y/D < 1.1
and −1.1 <z/D < 1.1 at x/D =0.57 for the crossflow plane and 0.25 <x/D < 3 and
−1.1 <y/D < 1.1 at z/D = 0 for the streamwise plane. The eigenvalue spectrum of
POD modes for both measurement planes is shown in figure 8.

For both cases the POD shows that the first two eigenvalues contain substantial
amount of energy. In the crossflow plane the first two modes contain already 30 %
of TKE, while in the streamwise plane these modes contain more than 14 %. In both
cases, the energy contained in the two leading modes is nearly equal suggesting that
the two modes span a travelling wave.

In the crossflow plane of measurement, the first and second spatial POD modes
resemble one another as do the fourth and fifth modes (figure 9). The first pair of
modes describes an azimuthal wave represented by two modes having a π/2 phase
shift. The second pair having twice the azimuthal wavenumber has a π/4 shift between
them with respect to the dominant harmonics. The first pair represents a travelling
azimuthal wave with wavenumber m =1, and the second pair indicates a travelling
azimuthal wave m = 2.
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Figure 9. First five POD modes of the crossflow plane of measurement; the radial velocity
component is shown with contour lines vr/max(vr ) = {−0.8, −0.6, −0.4, −0.2, 0.2, 0.4,
0.6, 0.8}. The POD mode-number p is written in the top-left corner and the percentage
of TKE at the bottom. The dashed circle indicates the nozzle diameter.
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Figure 10. Phase portrait of the POD modal amplitudes ap for the crossflow plane of
measurement. The dots represent the experimental data. The solid line is a smoothed fit and

similar to Lissajous figures. A =
√

a2
1 + a2

2 is the mean amplitude of the first two modes (see

(4.24)).

To elucidate the temporal behaviour of the identified structures, the phase portraits
of the corresponding temporal amplitudes ap are investigated. Considering the phase
portrait of a1 and a2 (figure 10), it is clearly seen that the modes describe an oscillating
process. In addition, the comparison of a1 and a4 reveals that the second mode-pair is
the second harmonics with respect to the first one, as indicated by the eight-like form
of the Lissajous figure. Both mode pairs describe rotating structures that rotate with
the same revolution time with azimuthal wavenumber m =1 for the first and second
modes and with m =2 for the fourth and fifth modes. The third mode describes
an axisymmetric fluctuation of the flow, which is not correlated with the identified
harmonic structures (figure 10). This mode is related to the axial fluctuation of the
location of vortex breakdown.

Figure 11 displays the POD modes of the streamwise cross-section. Again, the
first two modes have the same azimuthal wavenumber and frequency. These similar
modes are axially shifted by a quarter wavelength. They describe coherent structures
that are first growing and than decaying in the streamwise direction. The temporal
representation of the first two streamwise modes corroborates an oscillating process
(figure 12). The first two modes in both crossflow and streamwise planes of
measurement describe a harmonically fluctuating structure that the spectral analysis
(figure 3) picked up as containing one fundamental frequency. Consequently one
may assume that both modes are tied to the same oscillatory structure. Linking the
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Figure 11. First four POD modes of the streamwise measurement plane; the transversal
velocity component is shown with contour lines vy/max(vy) = {−0.8, −0.6, −0.4, −0.2, 0.2,
0.4, 0.6, 0.8}. The mode number is written in the top-right corner and the percentage of TKE
in the bottom-right corner. The vertical dashed line indicates the position of the crossflow
plane of measurement.
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Figure 12. Same as figure 10, but with ap of the streamwise measurement plane.

information from both measurements suggests that the dominant structure is a helical
instability mode with azimuthal wavenumber m =1 winding around the recirculation
bubble. In this context, the structure at the jet centre (i.e. r/D = 0) near the nozzle
exit (x/D < 0.5), that is visible in the two streamwise modes, is interpreted as being
the wavemaker for the global mode.

We note that the relative levels of the first mode-pair with respect to its TKE
content are unequal for crosswise and streamwise observation planes. This is due to
the dominant structure governing only half of the analysed streamwise measurement
domain. Hence, the energy content with respect to the entire streamwise plane is
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approximately half as high in comparison to the crosswise plane. Using an appropriate
sub-domain for streamwise POD analysis can decrease this difference.

The third and forth streamwise modes (figure 11) are coupled and represent the
meandering of the recirculation bubble. The phase portrait reveals no relation to the
dominant structure. Hence, the meandering is affected by other processes.

In conclusion, the periodically fluctuating global mode is represented by the first
two POD modes in both measurement planes. This harmonic process is indicated
by the phase portraits. It is possible to extract the phase information of the
dominant coherent structure by identifying the corresponding POD modes. It is
then a straightforward procedure to use the temporal amplitudes of these POD
modes to obtain the phase angle ϕk for each snapshot k, yielding

âk eiϕk = a1(tk) + ia2(tk). (4.24)

This phase angle corresponds to the phase position of a snapshot with respect to the
dominant structure, in the manner that the optimal amount of kinetic energy of each
snapshot is represented by these modes. Hence, it is possible to define a flow phase
via the POD. In the following this definition of phase is used to extract the coherent
structures.

4.2.3. Linking the POD modes to the coherent velocity

First, we define the coherent velocity v
c. Holmes et al. (1998) recommend to

identify and exploit symmetries in experimental data. This additional filter reduces
the complexity of the POD and yields a better understanding of the underlying
process. For an axisymmetric swirling jet, the azimuthal direction θ can be regarded
as a homogeneous direction, as it is also assumed for linear stability analysis. This
direction can be represented through Fourier modes with respect to the azimuthal
wavenumber m =1. The triple decomposition assumes the coherent component as
being a phase-dependent average of a harmonic signal with temporal period T .
Hence, the time can also be regarded as a homogeneous direction and can be
decomposed by a Fourier representation according to the phase information ϕk of
the POD (4.24). With these simplifications, the coherent velocity reads

v
c(x, r, θ, t) = Re{Fmn(x, r) exp[i(mθ − nωt)]} (4.25)

where m indicates the azimuthal wavenumber, n is a multiple of the fundamental
frequency ω =2πf and Fmn(x, r) is a complex-valued vector field containing the
radial and axial dependence of the coherent component. The Fourier modes Fmn are
obtained through a Fourier transform of the fluctuating part of the velocity v

′:

Fmn(x, r) =
1

2πT

∫ T

0

∫
π

−π

v
′(x, r, θ, t) exp[−i(mθ − nωt)] dθ dt. (4.26)

As described in the previous section, the POD relates each snapshot to a phase angle
of the dominant fluctuations. Thus, the Fourier modes Fmn are obtained for a discrete
time (according to ϕk) and continuous space Fourier transform:

Fmn(x, r) =
1

2πN

N∑

k=1

∫
π

−π

v
′(x, r, θ, tk) exp[−i(mθ − nϕk)] dθ. (4.27)

This is valid only if the phase angles ϕk are equally distributed in [0, 2π]. The phase
angles obtained from the POD fulfil this condition, so these angles correspond to a
oscillation with uniform frequency ϕk =ωtk .
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(a) (b)

Figure 13. Coherent radial velocity vc
r derived from crossflow measurement via

v
c = Re{F1(r, θ )} (a) is compared with the one derived from streamwise measurement via

v
c = Re{F11(r) eiθ } (b). The flow is visualized by the contour lines vc

r /max(vc
r ) = {−0.8, −0.6,

−0.4, −0.2, 0.2, 0.4, 0.6, 0.8}. The dashed circle indicates the nozzle diameter.

The assumed rotational symmetry is examined for the crossflow measurement plane
of the vector field. If we omit the assumption of homogeneity in θ of (4.25), then the
complex coherent component is given by

Fn(x, r, θ) =
1

N

N∑

k=1

v
′(x, r, θ, tk) einϕk . (4.28)

This equals the definition of POD modes (4.21) provided the first two POD modes
are considered in a complex representation with âk eiϕk = a1(tk)+ia2(tk), except that the
amplitude âk of the temporal modes is neglected. We assume the amplitude variations
to be caused by turbulent noise, which is indicated by the phase portrait in figure 13
(see also Depardon et al. 2007). In consequence, the spatial POD modes are similar
to the coherent component, in detail Φ1 + iΦ2 ≈ F1 (with Fn as in (4.28)).

In figure 13, the coherent component v
c in the crosswise measurement plane

is compared between the simple phase-average derived from crosswise data
v

c =Re{F1(r, θ)} and the phase-average constructed from streamwise data assuming
azimuthal symmetry v

c = Re{F11(r) eiθ}. The contour plots of v
c are very similar

proving that the assumed symmetry is legitimate. The discrepancy between the two
plots is attributed to an insufficient number of snapshots for more precise averaging.

It should be noted that the triple decomposition, as outlined in this section, is not
limited to the use of POD. The phase information of oscillatory fluctuations is often
inferred in three different ways. First, if the flow is externally actuated, the phase
information can be directly derived from the actuation signal. Second, it is possible
to obtain the required phase information from a time-resolved point measurement
(e.g. hot wire), using a bandpass filter and a Hilbert transformation. Third, it is
provided by a statistical approach such as the POD described above. In the present
investigation, the POD was chosen because it has some advantages with respect to
the other techniques which will be shortly depicted.

Most flow oscillations do not occur at a prescribed frequency, as there is always
jitter. Filtering with respect to a fixed frequency will ignore large portions of the
flow affected by frequency modulation, reappearing in v

s . With a locally adjusted
frequency, we reduce the amount of TKE captured by v

s , while v
c lumps a narrow

frequency band into a single frequency. In the case of a phase average, triggered
by external forcing, no phase jitter is incorporated at all. If a time-resolved sensor
is used, the amount of phase jitter accounted for depends on the bandwidth of the
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bandpass filter used. When using the POD phase, obtained according to (4.24), no
fixed frequency has to be assumed, and the calculated phase is the optimal one in
terms of energy representation. The optimal phase is related to the optimality of
spatial POD modes, where these modes are understood as a prior guess for coherent
structures providing the phase through projection on the snapshots. Furthermore, in
contrast to a time-resolved point measurement, the POD approach predicts the phase
angle from spatial modes and not from one single point in the flow yielding a more
accurate prediction of the global phase.

4.2.4. Construction of three-dimensional coherent structures

It is now straightforward to construct 3D-velocity data from the two measurement
planes utilizing the identified symmetries of the coherent velocity v

c discussed in
the previous section. The approach for this construction is graphically outlined in
figure 14, illustrating the main steps in this section.

(a) Identification of a fundamental frequency by time-resolved point measurement.
(b) POD analysis of the PIV data in the two measurement planes, which identifies

dominant structures and provides the related phase information.
(c) Calculation of coherent structures with phase information and identification of

azimuthal symmetries through a Fourier transform.
(d) Construction of 3D data of the coherent structure using the identified

symmetries to extrapolate data from 2D measurement plane.
In the final step, the streamwise measurement plane (r–x-plane) gives the axial and
radial dependence of the coherent complex amplitude Fmn(x, r) (4.26). As shown in the
previous section, the fundamental frequency is related to the azimuthal wavenumber
m = 1 and first harmonic n = 1. Combining this information in (4.25), a spatio-
temporal representation of the coherent velocity is given by

v
c(x, r, θ, t) = Re{F11(x, r) exp[i(θ − ωt)]}. (4.29)

5. Results

5.1. Most unstable spatial modes

Before we discuss the results obtained from the linear stability analysis, we would
like to recall its simplifying assumptions. Due to the occurrence of vortex breakdown,
the underlying time-averaged flow exhibits strong gradients in the axial direction.
Hence, the employed parallel-flow assumption for the normal mode decomposition
(4.4) is violated due to these gradients. Various approaches have been developed
to overcome this shortcoming of the linear theory, generally restricted to small
deviations. Intriguingly, wavelength and radial amplitude distribution are often found
to be reasonably well approximated by the eigensolution of the Orr–Sommerfeld
equation solely based on a locally parallel flow. In this study, we do not pause to
incorporate non-parallel effects.

In the scheme of linear stability analysis, the spatial amplification rate αi is
computed for the azimuthal wavenumber m = 1 in order to derive the coherent
velocity of the single helical instability mode that is observed in the experiment. The
complex wavenumber was calculated for real frequencies in the range 0 � ω � 6 at four
different axial locations. The spatial branches are displayed in figure 15. Note that the
frequency ω is normalized by the length scale R(x) and velocity scale V (x) (see § 4.1.1),
whereas the Strouhal number St associated with the global oscillation frequency is
based on the bulk velocity U and nozzle diameter D. The global frequency expressed
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Figure 14. Schematic diagram of the 3D flow construction. The illustrated steps are as follows:
(a) identification of the fundamental frequency; (b) POD analysis of the PIV data yielding the
flow phase; (c) identification of coherent structures and symmetries and (d ) construction of
3D data from the 2D measurements.

by ω increases in the downstream direction as the downstream increase of R is more
rapid than the decay of U (see the open circles in figure 15). At the axial locations
where the flow is unstable to the global frequency, only one unstable spatial branch
is found and the spatial amplification rate can easily be tracked in the downstream
direction. Waves forced at the global frequency grow rapidly near the nozzle exit
where the shear layer is thin relative to the nozzle radius. As the shear layer spreads
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ω at different cross-sections. The open circle marks the measured frequency of the mode m= 1
indicating the growth (x/D � 1) and decay (x/D = 1.5) of the most unstable mode.
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Figure 16. Streamwise evolution of the spatial amplification rate (a) and axial wavelength
Λ= 2πR/αr (b) of the most unstable mode m= 1 based on local analysis.

in the radial direction with increasing downstream distance, the spatial amplification
rate at St = 0.49 decreases. The corresponding spatial branch downstream of the point
of neutral amplification is stable for all frequencies.

The evolution of the spatial growth rate αi with downstream distance is investigated
in detail by computing the eigenmodes for various streamwise locations at the global
frequency of St = 0.49 (figure 16). Accordingly, the spatial growth rate decreases
continuously with downstream distance reaching natural amplification at x/D = 1.28.
Downstream of the neutral point, the decaying rate increases in the axial direction
up to x/D = 2. In the decaying region several modes coexist and the spatial branch
that corresponds to the most unstable mode is tracked from the unstable regime
where only one mode exists by minimizing the distance between the eigenfunctions
and eigenvalues (see the last paragraph of section 4.1.3 for further details). Note that
in the bottom-right frame of figure 15, only the spatial branch that corresponds
to the most unstable mode is shown. The computed axial wavelength of the
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Figure 17. Coherent velocity of the most amplified normal mode. Eigenfunctions are
shown at an arbitrary phase-angle. The contour lines represent vc

r /max(vc
r ) = {−0.8, −0.6,

−0.4, −0.2, 0.2, 0.6, 0.4, 0.8}. The eigenvalue problem (4.9) was solved for the azimuthal
wavenumber m= 1 and global frequency St =0.49. The dashed circle in (b) indicates the nozzle
diameter which approximately separates the inner and the outer shear layer. (a) Transversal
coherent velocity vc

y . (b) Radial coherent velocity vc
r at x/D =0.57.

most amplified mode is displayed as a function of x/D in figure 16. The rapid
decrease in wavelength in the axial direction is caused by non-parallel effects. The
convectively unstable modes are amplified at constant frequency while they travel
downstream. Due to the pronounced jet widening, their convection velocity, that is
related to U , is rapidly decaying in the axial direction, thus causing the wavelength to
decrease.

The accuracy of the stability analysis is validated by comparing the computed
eigenfunctions with the actually measured phase-averaged velocities described in § 4.
The eigenfunction of the most amplified mode is computed at x/D = 0.57, the axial
location where crossflow measurements were conducted. Comparing the empirical
mode, displayed in figure 13, to the stability mode, displayed in figure 17(b), shows
obvious similarities. Both modes agree well in the outer region of the jet where
they are most energetic (|y/D| > 0.5). In the inner region the structures seem to be
out of phase and the coherent velocity near the jet core that is evident from the
measurements is not modelled by the eigenmodes. As stated previously, the present
stability analysis is only valid for the outer convective unstable region of the jet.
In particular, near the jet core close to the nozzle exit where coherent velocity
indicates the location of the wavemaker, the present analysis should produce wrong
estimations. Further downstream of the wavemaker, the agreement of the eigenmodes
to the phase-averaged measurements improves even for the inner region of the jet.
This is shown by constructing the streamwise shape of the global mode from the
locally computed eigenfunctions and eigenvalues. According to Gaster (1968), the
overall growth of a disturbance can be calculated by integrating the complex α along
x, yielding

[
vc

x, v
c
r , v

c
θ , p

c
]

= Re

{
[H, iF, G, P ] exp

[
i

(∫ x

x0

α dx + mθ − ωt

)]}
, (5.1)

where α is complex and x0 is the location of the first measured profile with x0/D = 0.2.
In order to consistently ensemble the local eigenmodes to a global solution, the
eigenvector X was normalized using the Euclidean norm ‖X‖ =

√
(X, X), and the
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(a)
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Figure 18. Three-dimensional flow field visualizing the global mode m= 1 that is dominating
the near field of a strongly swirled jet (ReD = 20 000; S =1.22). The blue iso-contour represents
the constant azimuthal vorticity of phase-averaged velocities indicating the streamwise growth
of a single helical instability in the outer region of the jet. Streamlines and LIC surface are
based on the time-averaged flow, visualizing the recirculation bubble and the sense of rotation
of the swirling jet. (a) Empirically extracted coherent structure using POD. (b) Theoretically
extracted coherent structure using linear stability analysis.

phase angle was equalized at the characteristic jet radius R. The resulting coherent
velocity distribution along the streamwise plane is shown in figure 17(a).

Except for the jet core region upstream x/D = 0.7 where the wavemaker is located,
the computations agree well with the empirical POD modes shown in figure 11. The
axial wavelength and the radial amplitude distribution are well estimated. Even the
overall amplification is well approximated with the maximum coherent amplitude at
x/D ≈ 1.25 and the decaying region further downstream.

5.2. Three-dimensional shape of the global mode

Finally, the empirically extracted mode and the mode derived from the stability model
are constructed in the entire three-dimensional domain. By adding the time-averaged
mean flow to the coherent velocities, the global mode renders a physically plausible
shape as can be seen in figure 18. The blue helix represents an iso-surface having
constant phase-averaged azimuthal vorticity. For the upper figure the phase average
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was derived applying the empirical approach based on the POD as outlined in § 4.2,
whereas for the lower figure the phase-averaged velocity was derived from the linear
stability analysis based on the analytically approximated mean flow as outlined in § 4.1.
Both methods reveal the same structure. It represents the m =1 mode that rotates in
the clockwise direction with the base flow at a rotation rate corresponding to St =0.49.
The yellow streamlines and the grey LIC-surface (linear integral convolution; see e.g.
Cabral & Leedom 1993; Stalling & Hege 1995) are computed from the actually
measured time-averaged flow. The streamlines are intended to visualize the direction
of rotation of the mean flow and also indicate the mean boundary of the recirculation
bubble. Note that the streamlines are orientated perpendicularly to the roll-axis of the
helical mode. Accordingly, the helical structure is co-rotating but counter-winding.
Similar observations have been found in experiments by Liang & Maxworthy (2005)
and in DNS computations conducted by Ruith et al. (2003). The LIC surface visualizes
the flow structures inside the recirculation bubble showing a stationary ring-like vortex.
This structure must be carefully interpreted because the time-averaged flow field of
the inner region of the recirculation bubble differs strongly from the phase-averaged
or instantaneous flow. It is observed that the entire recirculation bubble meanders
around the jet centre in phase with the outer coherent structure. As mentioned above,
the frequency of the global mode is dictated by the wavemaker located on the jet
centre. This precessing of the vortex core is not visible in figure 18 since the level of
the vorticity iso-contour was selected to most properly visualize the structures in the
outer region of the jet and is therefore too high for visualizing the structures located
in the interior of the jet.

6. Concluding remarks

The coherent structures of strongly swirled jets undergoing vortex breakdown
were investigated. The nature of these structures was phenomenologically observed,
whereupon power spectra measured by a hot wire indicated that this flow regime
exhibits pronounced harmonic oscillations. The origin of these oscillations was
studied by two independent experimental techniques. First, the lock-in behaviour
of the forced flow was investigated and it revealed a linear relationship between
the forcing frequency and the critical lock-in amplitude. Second, the limit-cycle
amplitude of the dominant mode was observed to be proportional to the square
root of the deviation from the swirl magnitude considered as a control parameter.
Both observations corroborate quantitative relationships of a self-excited oscillatory
global mode originating from a supercritical Hopf bifurcation. In other words, the
results are consistent with mean-field theory. The phase-averaged velocities show
the existence of a co-rotating counter-winding helical mode. Most energy of its
intensity is located in the outer region of the jet. A similar structure was observed
experimentally by Liang & Maxworthy (2005) and in numerical simulations by Ruith
et al. (2003). Theoretical considerations of Gallaire et al. (2006) suggest that the self-
excited global mode originates from a local region of absolute instability located in the
jet centre. These results are confirmed by our observation where a strong precessing
of the vortex core sets the pace of the amplified instabilities in the outer part of
the jet.

The observed oscillatory helical structures were then closely examined. Starting
with an experiment using 2D uncorrelated PIV snapshots in a streamwise and
a crossflow plane, the 3D time-dependent coherent structures were extracted by
kinematic and dynamic considerations, exploiting the observed dominant periodicity
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of the flow. The kinematic velocity field reconstruction started from the uncorrelated
2D streamwise velocity fields determined by PIV. The pronounced oscillatory nature of
the fluctuations was evidenced by two leading POD modes spanning a corresponding
convecting vortex pattern. These two POD modes allowed one to attribute a phase
to each snapshot taken. A continuous time dependence was imposed by assuming
a single oscillation frequency, consistent with the experimental measurements. This
assumption allows for restoration of time dependence provided that small-amplitude
variations of the turbulent flow such as the less-energetic higher harmonics and
stochastic small-scale fluctuations are negligible. A 3D flow pattern was reconstructed
by exploiting an azimuthal symmetry of the observed helical coherent structures. The
resulting 3D flow pattern corroborates PIV observations in crossflow planes. Thus,
the spatio-temporal evolution of the full 3D helical structure was obtained from 2D
uncorrelated data sets.

The velocity field of the global mode was also derived by means of a linear
stability analysis employing the measured mean flow. A spatial approach was justified
by previous experiments conducted by the authors, showing that the wavemaker
generating the global oscillations is located inside the jet central core upstream
of the recirculation bubble imposing its frequency on the outer shear layer where
instabilities are convective. Hence, for a purely spatial analysis, the precessing vortex
core upstream of the vortex breakdown location was considered as a ‘natural oscillator’
and the convectively unstable surrounding flow field was modelled as being externally
forced. The spatial approach is corroborated a posteriori by the good agreement of
the stability eigenmodes, amplification rates and wavelengths with the corresponding
quantities of the measured phase-averaged flow, particularly in the periphery of the
recirculation bubble. The theoretical prediction was less accurate in the interior of
the jet near the wavemaker location due to the convective type of the analysis. The
good agreement in the convective unstable region also gives credibility to the above-
mentioned empirical reconstruction of the 3D time-periodic flow, using the same
velocity field ansatz.

Finally, a three-dimensional portrait of the global mode was constructed from
experimental data and from the theoretical model. Both approaches represent a co-
rotating, counter-winding single helical coherent structure that is wrapped around
the recirculation zone – in a remarkable agreement. The vortex axis is perpendicular
to the mean flow direction which is characteristic for the Kelvin–Helmholtz type of
instability. The good agreement between instability and POD-based eigenmodes is
neither self-evident nor completely unusual in free shear flows. Our study reveals that
the highly swirled jet has similar dynamics as, e.g. the wake flow with an absolutely
unstable clock-work of vortex shedding in the recirculation zone and convectively
moving structures in the far wake. Moreover, our study provides simple and effective
kinematic and dynamic tools that complete the coherent-structure extraction from
2D PIV data. The proposed approach is expected to be applicable to a large class of
other shear flows.
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