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In this paper, the authors consider a nontrivial three-dimensional viscoelastic contact
problem which has some physical significance. (Although the subject of the analysis is
an elliptical roller, it is only a small step onward to the consideration of a crowned
cylindrical roller.)

Generally, it is the intractability of the mathematics which hinders analytic solution
of true three-dimensional problems in (visco)elasticity. The traditional method of
surmounting this difficulty is to reduce the problem to two dimensions, either by
choosing a suitable geometry, or by using an appropriate co-ordinate system. The
elastic line integral theory represents another approach; certain approximations are
used to simplify the governing equations, thus allowing the solution of the problem.

After the development of a viscoelastic analogue of the Boussinesq equation valid
for the solution of quasi-steady state viscoelastic contact problems, analysis proceeds
making use of near field and extended line integral approximations. Results are
generated showing the velocity dependence of several physical parameters, including
the size and shape of the contact zone. One additional point of interest is uncovered,
namely the presence of a pressure peak near the leading edge of the contact zone.

1. Introduction

IN 1961, Hunter presented the solution to the two-dimensional problem of a rigid
cylinder rolling on a viscoelastic half space (Hunter, 1961). For reasons of simplifying
the solution to the problem, the viscoelastic solid was idealized as being a standard
linear material with a single relaxation time and a constant Poisson's ratio;
furthermore, inertia effects were neglected. Later, Morland extended Hunter's results
by considering contact between two cylinders, and by taking into account more
general constitutive laws (Morland, 1962, 1967a, b).

In the present paper the authors consider the three-dimensional version of Hunter's
problem, still retaining the simplification afforded by employing the standard linear
viscoelastic model and neglecting inertia effects. The actual three-dimensional
analysis is done in an approximate manner by employing the elastic line contact
theory (Kalker, 1972, 1977; Panek & Kalker, 1977). Pertinent line contact equations
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which were not included in the original publications are developed in the body of this
paper.

To state that the analysis is restricted to frictionless contact developed by an
indentor traversing a viscoelastic half space is to point out the fact that in this analysis
all rolling friction is neglected. In actuality, some shear loading would develop
between a roller and the surface of the half space due to non-uniform lateral and
transverse surface deformations, but the inclusion of such effects are outside the scope
of this paper.

2. The Boussinesq Equation for a Viscoelastic Solid

Generally, this paper considers the contact between an indentor and a viscoelastic
half space. For reasons of simplifying the following analysis it is assumed that the
viscoelastic material has a constant Poisson's ratio, and that the behaviour of the
material can be described by the standard linear model with a single relaxation time
(see Fig. 1). In particular, the creep-strain behaviour of the material in shear, e(t), in
response to a constant stress, a, applied at time t = 0 is

e(t) = CTUD '[1 -1-/(1 — e~'lz)]H(t), (1)

where nD is the dynamic shear modulus, x is the relaxation time,/is the ratio of the
creep response to the instantaneous response and H{t) is Heaviside's unit step
function.

A/W

FIG. 1. Standard linear viscoelastic model.

Hunter found that for an applied load p(x,y) moving across the surface of the
viscoelastic solid with a constant velocity V, the normal surface displacement in terms
of a moving co-ordinate system is given by

f
Jo

(2)

where ut(x, y) is the instantaneous elastic displacement. This elastic displacement is
given by the Boussinesq equation,

where v is Poisson's ratio and A denotes the domain of the moving loaded zone. It
should be noted that Equation (2) is valid for velocities V small in comparison to the
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sound propagation velocities for the viscoelastic medium. To cast Equation (2) into a
form more suitable for analysis, first notice that

e "j- ut(x + VTti,y)d>i = -ue(x,y)+ \ e "ue (4)

By adding Equations (2) and (4) together, it is possible to eliminate the single term
ue(x, y), and one finds

I — I ^ I
u{x,y)= e *\ (l+f)ut(x + Vxr^,y) — Vx — ue(x + Vxt],y) \dt^. (5)

Jo L dx j
The second term in the integral of Equation (5) comes from the fact that

Vx — ue(x + Vxr], v) = — ut{x + Vxt], \). (6)
ox at]

Defining a pseudo load according to

p*(x,y) = (1 +J)p(x,y)~ Vx — p(x,y) \, (7)
2;tu.D (_ ox J

it is possible to rewrite Equation (5) as

•dx' a

The last step in simplifying the original formula commences with differentiating both
sides of Equation (8) with respect to x. Within the integral one may replace d/dx by
1/KT d/drj, then integration by parts gives

Defining a pseudo normal surface displacement by

u[x,y), (10)

one finally arrives at the equation

This result may be interpreted as the viscoelastic analogue of the Boussinesq
equation.

To solve the original problem of an indentor traversing a viscoelastic solid, it is
sufficient to consider the viscoelastic analogue of the Boussinesq equation presented
above. Given the indentor profile, one calculates a pseudo displacement field u*{x, y).
Presuming that one knows or can somehow determine A, one finds a pseudo load
p*(x, y) which satisfies Equation (11). With this result, one goes back to the
differential equation defining p*(x,y) and solves for p(x, y) using an appropriate
boundary condition.
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3. Description of the Problem

A rigid three-dimensional indentor is allowed to slide without friction across the
surface of a viscoelastic half space at constant velocity V. Presuming that all transient
effects have died out, one may write the stress and displacement boundary conditions
for the quasi-steady state response of the material in terms of a moving co-ordinate
system centred on the indentor. (Refer to Figs 2a and 2b.) Thus, one has that

and
p(x,y) = 0, outside A,

"(*, y) — S{x, y), inside A,

(12)

(13)

where A is the projected domain of the contact zone, p(x, y) the contact pressure,
u(x, y) the normal displacement and S(x, y) defines the shape of the lower surface of
the indentor.

Fio. 2. Geometry of the problem.

The goal of the analysis is to determine the contact pressure, as well as the domain
of contact, given the shape of the indentor. In the course of the analysis, one makes
the standard assumptions of linearity and small deformations so that the boundary
conditions are applied at the undeformed surface of the viscoelastic solid.

4. The Line Integral Approximations

Solution of the original viscoelastic problem has been reduced to the solution of an
analogous elastic problem through the work of a previous section. Namely, one must
satisfy Equation (11) subject to the boundary conditions given in Equations (12) and
(13). Unfortunately, there is no adequate method of analytically handing the double
integral on the right-hand side of Equation (11). It is for this reason that one appeals
to the line contact theory. By using the line contact equations, the double integral of
Equation (11) may be approximated by several single integrals plus certain functions
of x and y.

Since this particular analysis requires an extended approximation valid for all x
outside the contact region in addition to the near field approximation which, as
originally published (Kalker, 1972), is valid inside the contact region, it is appropriate
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to derive the extended approximation here. The following represents the simplest
method for generating this approximation, and merely requires comparison of the
individual near and far field approximations in the transition region. It is interesting
to note that this procedure also provides a straightforward derivation of the original
near field approximation.

Consider a long narrow loaded region of half length / on the surface of a half space,
such as would be developed by an indentor with an ellipsoidal face. For convenience,
identify the ^-direction as being along the length of the loaded zone, and the x-
direction as being across the width of the zone (see Fig. 2b). If one further assumes
that the load does not change rapidly in the y-direction, it is reasonable to formulate
the normal surface displacements in and near the loaded region, wm, in terms of the
two-dimensional plane strain result for a loaded strip plus suitable correction terms.
Accordingly, one may write

P{x',y)\n\x'-x\dx'+fjAl(y)xi, (14)
Hy) 1 = 0

where A(y) is the x projection of A at any given y. [The functions At(y) are yet to be
determined.]

On the other hand one may compute wy, the normal surface displacements for large
x, by considering the action of an equivalent line load of forces and moments acting
along the y-axis. Defining F0(y) and F^iy) according to

FiO0= x'p(x',.
J«y)

ri(y) = f X'P(X',.
JX(y)

,y)dx', (15)
J«y)

and

. ^ x , (16)

one may write

= I' (Foiy'Kxi + iy-y'fr* dy'- A J' ^

y ' ) 2 ] " 1 ^ ' . (17)

where / is the half length of the contact zone, and the kernel, [(x — x')2 +
{y—y')2~}~*\x=o> is t n e Green's function for a line load acting along the y-axis (x' = 0).
In Equation (17), the second kernel is written in its equivalent form, as the differential
of the first kernel. Doing this will facilitate some of the following work.

First, it is necessary to compare the two approximations, wn and My, in order to
determine the functions A^y). Once this has been done, it will be possible to develop
an extended approximation which will be valid for all x outside the contact region.

To allow comparison of wn to wy, rewrite Equation (14) in an approximate form
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valid for x > x'. Such an approximation can be made by replacing In \x'-x\ by
In |x| — x'/x— . . . . Doing this, one has

wn(x,y)^-2\ p(x',y)\\n\x\---...Idx'+f, Atyfr'. (18)

Using the definitions of F0(y) and F^y) as given in Equations (15) and (16), the
above approximation becomes

00
wa(x,y) — — 2F0(.y)ln \x\ + 2F1(y)/x+ £ ^((yjx1. (19)

(-0

To cast Equation (17) into an approximate form valid for small x (nominally
x < |/—y\), first rearrange each integral by introducing the appropriate F(y) so that
typically

= P
r,

\F(y)\ lx2 + {y-y)2T{dy'. (20)

Note that the second integral on the right-hand side of Equation (20) can be
~l{y'-y11

{yy\Y
evaluated directly giving sinh 11 — . Using the logarithmic approximation

\ \X\ /|y>_/
for the inverse hyperbolic sine one has

^ln4( / 2 -y 2 ) - ln(x 2 ) . (21)

For the first integral on the right-hand side of Equation (20), replace [xJ + (/—y)2]1

by |/—y\, which is consistent with the assumption that x < \y"—y\. Thus, Equation
(20) may be approximately reduced to

P F(/)|y +(/-JO2]-><*/- f F{y.)~F\y) dy +

F(y)\Q4(l2-y2)-2F(y)\n\x\. (22)

Using this result in Equation (17), and differentiating with respect to x, one finds

2F0(y)\n\x\ + 2Fl(y)/x. (23)

Comparing Equation (19) with Equation (23), one concludes that for this level
approximation Ax{y) = A2(y) = . .. s 0, and that

o ( y ) l n 4{l2~y2)- ( 2 4 )
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Consequently, one immediately arrives at the near field approximation

F0(y) In 4 ( / 2 - / )

f fo(y)-Fo(y)
J-i \y'-y\

dy1, \x\<X(y). (25)

Now the extended approximation, when properly formulated, should contain terms
which are characteristic of both the near and far field approximations. To this end,
the extended approximation will be constructed by adding the near field equation
(14), to the far field equation (17), and then subtracting out the common intermediate
result, Equation (19). Proceeding as indicated, one finds for the extended
approximation

L
p(x',y)ln\x'-x\dx'-r

x2 + ( y - y ) 2 ] ' 1 dy + 2F0(y) In |x | -

. (26)

5. Solution for an Ellipsoidal Indentor

The primary assumption necessary for the application of the line contact theory is
that the width of the loaded zone be much smaller than its length. Consequently, the
solution of this problem must be restricted to indentors which produce long narrow
contact zones (such as bearing rollers, as opposed to narrow wheels).

Although, in the interest of reality, one refers to the indentor as an ellipsoidal roller,
the first step in the solution of the problem is to invoke the concept of small
deformations and approximate the lower surface of the ellipsoid by the doubly
parabolic equation

S(x,y) = -\Clx
1-\C2y

1 + d, (27)

where d is the depth of penetration as measured from the undeformed surface, and Ct

and C2 are the curvatures of the ellipsoid in the lateral and longitudinal direction,
respectively.

The first step is to determine, as explicitly as possible, the form of the contact
pressure developed under the indentor. To this end, substitute Equation (27) into
Equation (11) with its appropriate definitions, and use the near field approximation
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(25). Thus :

-Ap*(x',y)ln\x'-x\dx'-F0(y)\n4(l2-y2)-
i(y)

\y'-y\
y', inside A. (28)

It is convenient to define the contact zone in terms of two new functions, a(y) and
b(y), so that

] , \y\ < I. (29)

Then, if one makes the change of variables

x = Z + b(y), x' = Z' + b(y), \y\<l, (30)

Equation (28) may be rewritten as

-<*T)

/2-/)+ I
(31)

The fact that the right-hand side of Equation (31) contains terms which are either
functions of £, or y, but not both, allows one to invert the equation. Using standard
techniques (see Green & Zerna, 1954, p. 171), one finds that

where

G{y) = £-F0{y)-ia*{y), \y\ < I, (33)

and F0(y) must satisfy the integral equation

d, \y\ < /. (34)

Another equation in G(.v) can be determined by enforcing the condition that the
contact pressure goes to zero at both the leading and trailing edges of the contact
zone. This requires writing a solution to the differential equation (7) which
automatically insures p{x, y) - 0 at x = b{y) + a(y), thus
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1 _ v 1
( )

e~"+f)x'IVtdx', \x-b{y)\<a(y). (35)

Evaluating the integral in the above equation—it is advantageous to use the change
of variables of Equation (30)—and imposing the condition that p(x, y) = 0 at
x = b(y)-a(y), one finds that

\y[ < i, (36)
i *\y)) *o\?-\y)\

where
a(y) = —7}—^(.v). (37)

and lv{x) is the modified Bessel function of the first kind of order v.
It is important to notice that Equation (11) is correctly interpreted as a relation

between the shape of the bottom surface of the indentor and the contact pressure. One
has not yet required that the indentor actually be in contact with the half space.
Enforcing this condition will supply the fourth equation necessary to determine the
four functions F0(y), G{y), a(y) and b(y).

Now, rather than use Equation (8) to insure contact, it is simpler to find an
expression for the surface displacement anywhere outside the contact zone, and then
evaluate this function at the leading edge of contact. For this purpose, one may
interpret (9) as a differential equation for u(x, y) in terms of the double integral of
p*(x, y). Solving this equation subject to the condition that u(x, y) -»0 as x -»oo, one
finds

|x| > b(y) + a(y). (38)

As before, the difficulty presented by the above equation is the evaluation of the
double integral, and it is for this reason that the double integral is replaced by the
extended approximation given in Equation (26). After making this substitution, but
before integrating with respect to tj, one encounters an integral involving the
pseudo pressure and a logarithmic term. Since p*(x,y) is well defined according to
Equation (32), it is possible to carry out this integration yielding

p*(x',y)\n\x'-x\dx'

2F0(y)cosh- , \Z\>a(y), (39)
a{y)

where the change of variables, as well as the definition of Equation (33), has been used
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to simplify the result. With this result, and continued use of the change of variables,
Equation (38) becomes

± J ^ eUF0(y),ti
Vx )i+bij) I on

Vx

2F0(y) cosh"1 -4^]^, \{\<a(y), (40)

where, typically,

iW- (41),x]=\ F(y'

The second integral on the right-hand side of Equation (40) can be evaluated directly,
and the second term of the first is integrated by parts. After a fair amount of
substitution and manipulation, and making use of the recursion formula for modified
Bessel functions of the second kind Kv(x), one finds that at x = b(y)+a(y),

-Ffy) dy>
y\

-fiIlFi(y),Hy)+a(y)], \y\ < I. (42)

In order to evaluate the integral on the right-hand side of Equation (42), rewrite it as
the difference of two integrals according to:

()dn= (-)dri-
JdO-J + otv) JO Jo

(43)

Carrying out the first integration with respect to r\ yields terms containing logarithms,
Bessel functions of the second kind Yv(x), and Struve functions //,(*). (See
Abramowitz & Stegun, 1965, Ch. 12.) A substitution is made in the second term
before integrating. Since the term, I[.F0(y)—Fl(y)/Vx, rf], is being integrated over the
range 0 < tj < b(y) + a(y), it is reasonable to use the same small argument
approximation which was employed when deriving Equation (22). Thus substituting,
performing the integration, and rearranging terms, one has
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J-i W-

- ^ J Q(?)x

where y is Euler's constant, and

(45)

The function Ft{y) can be eliminated from Equation (45) by using its definition and
evaluating the integral in p*(x,y). Proceeding, and making some simplification
through the use of (33), one finds

| [ ^ ] (46)
The four equations (33), (34), (36) and (44) must be solved for the four functions

F0(y), G(y), a(y) and b(y); but in addition one must simultaneously determine the
unknown half length of the contact zone /, which is a function of Vx. This is done by
requiring that the total applied load remain constant. Choosing the static indentor
load as a reference value, one may write

f F0(y)dy= f F0(y)dy
KT-0

where the last equality of (47) is obtained by using the static result

(47)

(48)
Vz-0

6. Coefficient of Rolling Friction

By assumption, there is no shear stress developed on the surface of the half space,
and thus there is no direct frictional force. But there is an impeding force on the roller
due to the non-symmetric load distribution, and from this one may calculate the
coefficient of rolling friction.

Resolving the contact pressure (which acts normally to the surface of the indentor)
into horizontal and vertical components, Px and Px, respectively, one finds that

and
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Defining the coefficient of rolling friction x as PJPZ, and using first-order
approximations to the above integrals, one has

X = C, IT xp{x, y) dx dy \\ p(x, y) dx dy. (51)

Now it is not necessary to use Equation (35) to evaluate x- Notice that through
Equation (7), one can evaluate corresponding integrals in p*(x, y) yielding

f p(x,y)dx, (52)
/ My) ^"-hD J X(y)

and
r i_vr r f "I

xp*(x, y) dx = (1+/) xp(x,y)dx + Vx \ p(x,y)dx . (53)

Using these results in conjunction with Equation (51), one finds

f / f /f 1
x = ctVx<—- — 6(jO<fW "̂oCyM.vh P4)

where F0(y) and (?(>>) are as previously defined. Note that from Equation (47), the
second integral of the above may be replaced with a known quantity.

7. Numerical Solution and Results

The most advantageous means of solving the set of simultaneous equations
developed above is to define the functions a(y) and b(y) in terms of several unknown
coefficients, and then to determine these coefficients by minimizing the residuals of the
remaining equations by a least squares technique. Even so, there are several thorny
numerical problems to be overcome, such as evaluating the Struve function and
accurately integrating certain singular functions as required by Equation (45); but the
details of such work are not within the scope of this paper.

A 5/1 contact ellipse was chosen for specific analysis since this represents the
broadest ellipse for which the line contact equations may be expected to give errors of
less than 3% in static analysis (see Kalker, 1972, Table 1). A value of 9 was chosen for
/ s o as to accentuate the velocity dependence of the various physical quantities.

The velocity dependence of certain physical parameters describing the size and
shape of the contact zone are summarized in Fig. 3. Specifically plotted are the
location of the centreline of contact, and the width of the contact zone along the x-
axis (y = 0), as well as the overall length of the contact zone. It is seen that as Vx -»oo,
the quantities a(0)/ao (a0 being a(0)|Kt=0) and ///„ (/o being l\Vz-o) both approach the
limit (1 +/)"* as predicted analytically.

Two other velocity dependent quantities are presented in Fig. 4. These are the
coefficient of rolling friction and the depth of indentor penetration. As VT-*CO, the
quantity <f/C,ao approaches its analytic limit ^(l+/)~' ln (4/0/a0).

Figure 5 shows resulting contact zones for increasing values of Vx/a(0). As
expected, the contact zone contracts with increasing velocity, but more interesting is
the pronounced shrinkage of the trailing half for intermediate velocities. Physically,
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FIG. 3. Velocity dependence of certain parameters defining the size and shape of the contact zone.
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FIG. 4. Velocity dependence of rolling friction and penetration depth for the ellipsoidal roller.
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FIG. 5. Contact zone developed by the ellipsoidal roller for several different velocities.
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-0(0) otOJ

FIG. 6. Contact pressure developed along the {-axis for several different velocities (reseated for
comparison).

one should expect this because viscoelastic damping will cause a lag in recovery after
indentation. One other interesting point brought out by Fig. 5 is the fact that the
extreme point of the edge of the contact zone along its length (at y = I) does not lie
along the indentor centreline. This is an important numerical consideration due to the
pressure of the term VxCxb{y) which appears, for example, in Equation (34).
Analytically, one can show that in the limit as Vx ->oo, the above term reduces to a
second order function of y.

Figure 6 shows the contact pressure along the line y = 0 for some values of Vx. The
most dramatic effect is the appearance of a pressure peak at the leading edge of
contact for small velocities. This peak is verifiable analytically and is present in
Hunter's solution to the two-dimensional problem, although he did not seem to
notice it.

8. Conclusions

The elastic line contact theory, although approximate, appears to give excellent
results when applied to a non-trivial three-dimensional viscoelastic contact problem.
It is true that the performance criterion of the theory is merely the compliance of the
analytical results to expected physical results, but this is necessary since there is no
other solution to this problem in existence. The authors would be deeply indebted to
anyone providing an alternative solution to this problem which would allow for more
extensive evaluation of the present results. But the authors caution the users of finite
element techniques to be wary of the analytically predicted pressure peak, the
presence of which would require careful modelling, especially near the leading edge of
contact.

The work of one of the authors (C. P.) was supported at various times by two
separate fellowships granted by the Government of The Netherlands, by The
University of Cincinnati, and not least of all by Ebasco Services, Incorporated.
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