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Abstract. This paper proposes a novel curvilinear structure detector, called Op-

timally Oriented Flux (OOF). OOF finds an optimal axis on which image gradi-

ents are projected in order to compute the image gradient flux. The computation

of OOF is localized at the boundaries of local spherical regions. It avoids con-

sidering closely located adjacent structures. The main advantage of OOF is its

robustness against the disturbance induced by closely located adjacent objects.

Moreover, the analytical formulation of OOF introduces no additional computa-

tion load as compared to the calculation of the Hessian matrix which is widely

used for curvilinear structure detection. It is experimentally demonstrated that

OOF delivers accurate and stable curvilinear structure detection responses under

the interference of closely located adjacent structures as well as image noise.

1 Introduction

Analysis of curvilinear structures in volumetric images has a wide range of appli-

cations, for instance centerline extraction [1,3], detection and segmentation [7,15,9],

vascular image enhancement [12,8,11] or visualization [2]. In particular, low-level

detectors which are sensitive to curvilinear structures are the foundations of the afore-

mentioned applications. One classic low-level detector is the multiscale based image

intensity second-order statistics. Lindeberg [10] conducted in depth research regard-

ing the use of the Gaussian smoothing function with various scale factors for extracting

multiscale second-order statistics. Koller et al. [7] exploited the image intensity second-

order statistics to form Hessian matrices for the analysis of curvilinear structures in

three dimensional image volumes. Frangi et al. [6] introduced the vesselness measure

based on eigenvalues extracted from the Hessian matrix in a multiscale fashion. Kris-

sian et al. [9] studied the relation between the Hessian matrix and the image gradient

computed in multiple scales for the detection of tubular structures. Manniesing et al.

[11] made use of the multiscale Hessian matrix based features to devise a nonlinear

scale space representation of curvilinear structures for vessel image enhancement.

Another recently developed low-level detector for the curvilinear structure analysis

is the image gradient flux. It is a scalar measure which quantifies the amount of image

gradient flowing in or out of a local spherical region. A large magnitude of the image

gradient flux is an indication of the presence of a curvilinear structure disregarding the
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structure direction. Bouix et al. proposed to compute the image gradient flux for ex-

tracting centerlines of curvilinear structures [3]. Siddqi et al. [15] showed promising

vascular segmentation results by evolving an image gradient flux driven active surface

model. But the major disadvantage of the image gradient flux is its regardless of direc-

tional information.

Grounded on the multiscale based Hessian matrix, Sato et al. [12] presented a thor-

ough study on the properties of the eigenvalues extracted from the Hessian matrix in

different scales, and their performance in curvilinear structure segmentation and visu-

alization. The study showed that the eigenvalues extracted from the Hessian matrix can

be regarded as the results of convolving the image with the second derivative of a Gaus-

sian function. This function offers differential effects which compute the difference

between the intensity inside an object and in the vicinity of the object. However, if the

intensity around the objects is not homogeneous due to the presence of closely located

adjacent structures, the differential effect given by the second derivatives of Gaussian

is adversely affected.

In this paper, we propose a novel detector of curvilinear structures, called optimally

oriented flux (OOF). Specifically, the oriented flux encodes directional information by

projecting the image gradient along some axes, prior to measuring the amount of the

projected gradient that flows in or out of a local spherical region. Meanwhile, OOF dis-

covers the structure direction by finding an optimal projection axis which minimizes

the oriented flux. OOF is evaluated for each voxel in the entire image. The evaluation

of OOF is based on the projected image gradient at the boundary of a spherical region

centered at a local voxel. When the local spherical region boundary touches the object

boundary of a curvilinear structure, the image gradient at the curvilinear object bound-

ary produces an OOF detection response. Depending on whether the voxels inside the

local spherical region have stronger intensity, the sign of the OOF detection response

varies. It can be utilized to distinguish between regions inside and outside curvilinear

structures.

The major advantage of the proposed method is that the OOF based detection is lo-

calized at the boundary of the local spherical region. Distinct from the Hessian matrix,

OOF does not consider the region in the vicinity of the structure where a nearby ob-

ject is possibly present. As such, OOF detection result is robust against the disturbance

introduced by closely located objects. With this advantage, utilizing OOF for curvilin-

ear structure analysis is highly beneficial when closely located structures are present.

Moreover, the computation of OOF does not introduce additional computation load

compared to the Hessian matrix. Validated by a set of experiments, OOF is capable of

providing more accurate and stable detection responses than the Hessian matrix, with

the presence of closely located adjacent structures.

2 Methodology

2.1 Optimally Oriented Flux (OOF)

The notion of oriented flux along a particular direction refers to the amount of image

gradient projected along that direction at the surface of an enclosed local region. The

image gradient can flow either in or out of the enclosed local region. Without loss of
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generality, our elaboration focuses on the situation where the structures have stronger

intensity than background regions. As such, optimally oriented flux (OOF) aims at find-

ing an optimal projection direction that minimizes the inward oriented flux for the de-

tection of curvilinear structure.

The outward oriented flux along a direction ρ̂ is calculated by projecting the image

gradient v(·) along the direction of ρ̂ prior to the computation of flux in a local spherical

region Sr with radius r. Based on the definition of flux [13], the computation of the

outward oriented flux along the direction of ρ̂ is,

f(x; r, ρ̂) =

∫

∂Sr

(

(v(x + h) · ρ̂)ρ̂
)

· n̂dA, (1)

where dA is the infinitesimal area on ∂Sr, n̂ is the outward unit normal of ∂Sr at the

position ĥ. As ∂Sr is a sphere surface, h = rn̂, thus

f(x; r, ρ̂) =

∫

∂Sr

{

3
∑

k=1

3
∑

l=1

(

vk(x + rn̂)ρkρlnl

)

}

dA = ρ̂T Qr,xρ̂, (2)

where ρ̂ = (ρ1, ρ2, ρ3)
T , v(x) = (v1(x), v2(x), v3(x))T , n̂ = (n1, n2, n3)

T , Qr,x is

a matrix that the entry at the ith row and jth column (i, j ∈ {1, 2, 3}) is,

qi,j
r,x =

∫

∂Sr

vi(x + rn̂)njdA. (3)

2.2 Analytical Computation of OOF

The idea of OOF is to identify the direction p̂ that the inward oriented flux attains the

minimum. It is not easy to discretize any one of the surface integrals of Equations 1

and 3 to estimate oriented flux and find the optimal axis which minimizes the inward

oriented flux. Nevertheless, computation of OOF can be achieved analytically by ac-

quiring the values of the entries of Qr,x, that only involves convolving an image with a

set of filters ψr,i,j ,

qi,j
r,x = ψr,i,j(x) ∗ I(x). (4)

The above formulation avoids discretization and reduces computation complexity as

compared with the discretization of either Equation 1or Equation 3. By using fast Fourier

transform, the complexity of evaluating Equation 4 and thus Qr,x is O(N log N), where

∀x ∈ Ω and Ω is the image domain having N voxels. The proposed method introduces

no additional computation load compared to some traditional approaches, such as Hes-

sian matrix based methods [12,9,6].

We begin the elaboration of the filters ψr,i,j(x) from Equation 3,

qi,j
r,x =

∫

∂Sr

vi(x + rn̂)njdA =

∫

∂Sr

[vi(x + rn̂)âj ] · n̂dA, (5)

where â1, â2 and â3 are the unit vectors along the x-, y- and z-directions respectively.

Assuming that v is continuous, by the divergence theorem,

qi,j
r,x =

∫

Sr

∇ · [vi(x + y)âj ]dV =

∫

Sr

∂

∂âj

vi(x + y)dV, (6)
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where y is the position vector inside the sphere Sr and dV is the infinitesimal volume in

Sr. The continuous image gradient v(x) is acquired by convolving the discrete image

with the first derivatives of Gaussian with a small scale factor, i.e. vi(x) = (gâi,σ ∗
I)(x), where ∗ is the convolution operator, gâi,σ is the first derivative of Gaussian

along the direction of âi and σ = 1 in all our implementations. Furthermore, the volume

integral of Equation 6 is extended to the entire image domain Ω by employing a step

function, br(x) =

{

1, ||x|| ≤ r,
0, otherwise ,

hence

qi,j
r,x =

∫

Ω

br(y)((gâiâj ,σ ∗ I)(x + y))dV =
(

(br ∗ gâiâj ,σ)(x)
)

∗ I(x), (7)

where gâiâj ,σ is the second derivative of Gaussian along the axes âi and âj . Therefore,

the set of linear filters of Equation 4 is ψr,i,j(x) = (br ∗gâi,âj ,σ)(x). The next step is to

obtain the analytical Fourier expression of ψr,i,j(x) in order to compute the convolution

in Equation 4 by Fourier coefficient multiplication. Denote Ψr,i,j(u) be the Fourier

expression of ψr,i,j(x), where u = (u1, u2, u3)
T is the position vector in the frequency

domain. The values of u1, u2 and u3 are in ”cycle per unit voxel” and in a range of

[−0.5, 0.5). By employing Fourier transforms on gâiâj ,σ and Hankel transforms [4] on

br(x),

Ψr,i,j(u) = 4πruiuje
−2(π||u||σ)2 1

||u||2

(

cos(2πr||u||) −
sin(2πr||u||)

2πr||u||

)

. (8)

Based on the above formulation, the optimal projection axis which minimizes inward

oriented flux can be computed analytically. Denote the optimal direction is ωr,x, min-

imizing inward oriented flux is equivalent to maximizing fr(x; ωr,x) subject to the

constraint ||ωr,x|| = [ωr,x]T ωr,x = 1. The solution is found by taking the first deriva-

tive on the Lagrange equation,

L(ωr,x) = [ωr,x]T Qr,xωr,x + λr,x(1 − [ωr,x]T ωr,x), (9)

for ∇L(ωr,x) = 0, and since qi,j
r,x = qj,i

r,x (see Equation 7), and thus Q = QT ,

Qr,xωr,x = λr,xωr,x. (10)

Equation 10 is in turn solved as a generalized eigenvalue problem. For volumetric im-

ages, there are at most three distinct pairs of λr,x and wr,x. The eigenvalues can be pos-

itive, zero or negative. These eigenvalues are denoted as λi(x; r), for λ1(·) ≤ λ2(·) ≤
λ3(·), and the corresponding eigenvectors are ωi(x; r). Inside a curvilinear structure

having stronger intensity than the background, the first two eigenvalues would be much

smaller than the third one, λ1(·) ≤ λ2(·) << λ3(·) and λ3(·) ≈ 0. The first two eigen-

vectors span the normal plan of the structure and the third eigenvector is the structure

direction.

2.3 Eigenvalues and Eigenvectors

The major difference between the eigenvalues and eigenvectors extracted from OOF

and those from the Hessian matrix is that the computation of OOF and thus, its eigen-

values and eigenvectors are grounded on the analysis of image gradient on the local



372 M.W.K. Law and A.C.S. Chung

sphere surface (∂Sr in Equation 3). In contrast, as pointed out by Sato et al. [12], the

computation of the Hessian matrix is closely related to the results of applying the sec-

ond derivative of Gaussian function on the image. This function computes the weighted

intensity average difference between the regions inside the structure and in the vicinity

of the structure. As such, the coverage of this function extends beyond the boundary

of target structures and possibly includes structures nearby. As a result, the weighted

intensity average difference computed by the second derivative of Gaussian function

can be affected by the adjacent objects. It can be harmful to the detection accuracy of

the Hessian matrix when closely located adjacent structures are present.

On the contrary, the evaluation of OOF is performed on the boundary of a local spher-

ical region ∂Sr. Detection response of OOF is induced from the intensity discontinuities

at the object boundary when the local sphere surface touches the object boundary of the

structure. The detection of OOF is localized at the boundary of the local spherical re-

gion. The localized detection avoids the inclusion of objects nearby. Therefore, the OOF

based detection is robust against the disturbance introduced by closely located adjacent

structures.

The eigenvalues extracted from OOF are the values of oriented flux along the corre-

sponding eigenvectors,

λi(x; r) = [ωi(x; r)]T Qr,xωi(x; r) = f(x; r, ωi(x; r)). (11)

The image gradient at the object boundary of a strong intensity curvilinear structure

points to the centerline of the structure. Inside the structure, when the local spherical

region boundary ∂Sr (see Equation 1) touches the object boundary, at the contacting

position of these two boundaries, the image gradient v(·) is aligned in the opposite

direction of the outward normal n̂, hence λ1(·) ≤ λ2(·) << 0. On the other hand, the

image gradient is perpendicular to the structure direction, the projected image gradient

along ω3(·) has zero or very small magnitude, thus λ3(·) ≈ 0. In contrast, if OOF

is computed for a voxel which is just outside the curvilinear structure, at the position

where ∂Sr touches the curvilinear structure boundary, the image gradient v(·) is in the

same direction as the outward normal n̂. It results in a large positive eigenvalue, that is

λ3(·) >> 0.

Combining multiple eigenvalues to tailor a measure for identifying structures in a

specific shape is now possible. For instance Λ12(x; r) = λ1(x; r) + λ2(x; r) can pro-

vide responses at the curvilinear object centerline with circular cross section. According

to Equations 1 and 11,

(a) (b) (c)

 

 

0

0.2

0.4

0.6

0.8

1

(d)

Fig. 1. (a, b, c) The values of ||[W12(·)]
T n̂||. (d) The intensity scale of the images in (a-c).
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Λ12(x; r) =

∫

∂Sr

(

[W12(x; r)]T v(x + h)
)

·
(

[W12(x; r)]T n̂
)

dA.

where W12(x; r) = [ω1(x; r) ω2(x; r)]. The term involving the projection of n̂ in

the second half of the surface integral of the above equation is independent to the im-

age gradient. This term varies along the boundary of the spherical region ∂Sr. It is a

weighting function that makes the projected image gradients at various positions on the

sphere surface contribute differently to the resultant values of Λ12(x; r). The values of

||[W12(x; r)]T n̂|| on the local spherical region surface are shown in Figures 1a-c. A

large value of ||[W12(x; r)]T n̂|| represents the region where Λ12(x; r) is sensitive, as

the projected image gradient at that region receives a higher weight for the computa-

tion of Λ12(x; r). The large valued regions of ||[W12(x; r)]T n̂|| are distributed in a

ring shape around the axis ω3(x; r). In a curvilinear structure having circular cross sec-

tion, the image gradient at the object boundary points to the centerline of the structure.

Therefore, at the centerline of the structure, Λ12(x; r) delivers the strongest response if

r and the radius of the structure are matched.

Finally, it is worth mentioning that the elaboration of Λ12(·) merely demonstrates

a possibility to integrate different eigenvalues to facilitate the analysis of curvilinear

structures. It is possible to devise other combinations of eigenvalues of the proposed

method analogous to those presented in [12] and [6].

2.4 Regarding Multiscale Detection

Multiscale detection is an essential technique for handling structures with various sizes.

The multiscale detection of OOF involves repetitive computations of OOF using a set

of radii (r in Equation 1). The radius set should cover both the narrowest and the widest

curvilinear structures in an image volume. Since the evaluation of OOF is localized

at the spherical region boundary, the spherical region has to touch the target structure

boundary to obtain detection responses of OOF. As such, linear radius samples should

be taken for OOF with the consideration of the voxel length in order to properly detect

vessels in a given range of radii. It also ensures that a structure with non-circular cross

section can induce detection responses of OOF obtained in at least one radius sample.

We suggest that radius samples are taken in every 0.5 voxel length according to the

Nyquist sampling rate.

For different values of r, the area covered by the surface integral of Equation 1

varies. Dividing the computation result of Equation 1 by 4πr2 (the surface area of the

spherical region) is an appropriate mean to normalize the detection response over radii

and hence, the computation of Equation 1 is scale-invariant. Such normalization is es-

sential to aggregating OOF responses in a multiple scale setting. For the same rea-

son, the eigenvalues of Qr,x, λi(r, x) are divided by 4πr2 prior to being utilized in

any multiscale framework. This OOF normalization scheme is distinct to the average-

outward-flux (AOF) measure [5], which divides the outward flux by the surface area of

the spherical region to attain the AOF-limiting-behavior. The AOF measure works only

on the gradient of a distance function of a shape with its boundary clearly delineated.

OOF, in contrast, is applied to a gradient of a gray-scale image, where no explicit shape

boundary is embedded and noise is possibly present.
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(f)

Fig. 2. Examples of evaluating OOF using multiple radii. (a, b) The slices of z = 0 (left) and

x = 0 (right) of two synthetic image volumes consisting of synthetic tubes with a radius of 4
voxel length. C1 and C2 are the positions of the centers of the tubes. L1, R1 and L2, R2 are the

positions of the boundaries of the tubes centered at C1 and C2 respectively. (b) The width of the

separation between the closely located tubes is 2 voxel length. (c, d) The intensity profiles along

the line x = 0, z = 0 of the synthetic image volumes shown in (a) and (b) respectively. (e, f) The

normalized trace of Qr,x along the line x = 0, z = 0 of the image volumes shown in (a) and (b)

respectively.

In Figures 2a-f, we show two examples of evaluating OOF on image volumes con-

sisting of one synthetic tube (Figures 2a and c) and two closely located synthetic tubes

(Figures 2b and d) using multiple radii. The normalized trace of the matrix Qr,x (Equa-

tions 9), which is equal to the sum of the normalized eigenvalues of Qr,x, is utilized

to quantify the detection response strength of OOF. The normalized trace of the matrix

Qr,x is computed using multiple radii in both of the synthetic image volumes. In Fig-

ures 2e and f, it is observed that the normalized trace of Qr,x is negative for all radii

inside the tubes. It attains its maximal negative values at the tube centers and with the

radius r matching the tube radius, i.e. r = 4. The magnitudes of the normalized trace

of Qr,x with r = 4 decline at positions away from the tube centers. In these positions,

it attains its maximal magnitudes with smaller values of r when approaching the tube

boundaries. Therefore, making use of the normalized trace of Qr,x as well as the nor-

malized eigenvalues of Qr,x, (the trace of Qr,x is equal to the sum of its eigenvalues),

with maximal negative values or maximal magnitudes over radii is capable of delivering

a strong detection responses inside curvilinear structures.

When OOF is computed using multiple radii, the spherical regions of OOF with

large radii possibly overshoot the narrow structure boundaries. The computation of OOF

with overshot radii can include the objects nearby and adversely affects the detection

responses of OOF (see Figure 2e, r = 5 and 6 versus Figure 2f, r = 5 and 6). In which,

utilizing the normalized eigenvalues or the normalized trace of the matrix Qr,x with

the maximal negative values or maximal magnitudes over radii as mentioned above can



Three Dimensional Curvilinear Structure Detection Using Optimally Oriented Flux 375

eliminate the responses obtained by using overshot radii. Furthermore, it excludes the

OOF responses associated with undersized radii at the center of curvilinear structures

(see Figures 2e and f, r = 1, 2 and 3). In the case that the radius of the spherical region

r matches the target structures, OOF avoids the inclusion of objects nearby. It therefore

reports the same response at the centerlines of the tubes with r = 4 despite the presence

of closely located structures (see Figure 2e, r = 4 versus Figure 2f, r = 4).

3 Experimental Results

In this section, we compare the performance of OOF and the Hessian matrix by using

both synthetic data and real clinical cases. The differential terms of the Hessian matrix

are obtained by employing the central mean difference scheme on the image smoothed

by a Gaussian kernel with scale factor ̺. The eigenvalues and eigenvectors extracted

from the Hessian matrix and Q for OOF (Equation 10) are represented as λH
i (x; r),

ωH
i (x; r) and λQ

i (x; r), ω
Q
i (x; r), respectively. The order of the eigenvalues and the

notation of sums of the first two eigenvalues (ΛH
12(x; r) and ΛQ

12(x; r)) are analogous

to those described in Section 2.2.

3.1 Synthetic Data

The proposed method, OOF, is examined in this section using synthetic images con-

taining tori with various sizes. There are 10 synthetic volumetric images in the size of

100 × 100 × 100 voxels being generated for the synthetic experiments. The main pur-

pose is to verify the performance of OOF and compare OOF with the Hessian matrix

when closely located structures are present.

The configurations of the tori in the synthetic images are shown in Figure 3. The

number of tori in different synthetic images varies and depends on the values of d and

R. The tori are placed in a layer fashion along the z-direction. The strategy to generate

the first layer of tori is to place a torus with D = 10 at the altitude z = 8. The center

R

D

d

d

z
-d

ire
c
tio

n

d+2R

The center of the tori 
in the ith layer

The tori in the
ith layer

The center of the tori 
in the (i+1)th layer

The tori in the
(i+1)th layer

Fig. 3. The description of the tori. These tori have been used in the synthetic data experiments.

The center of the tori in each layer is randomly selected from the positions of (x = 35, y =
35), (x = 45, y = 35), (x = 35, y = 45) and (x = 45, y = 45). The values of d and R are

fixed to generate a torus image. In the experiments, there are 10 torus images generated by using

10 pairs of {d, R}, {2, 1}, {2, 2}, {2, 3}, {2, 4}, {2, 5}, {5, 1}, {5, 2}, {5, 3}, {5, 4} and {5, 5}.
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of that torus is randomly selected among the positions (x = 45, y = 45, z = 8),
(x = 35, y = 45, z = 8), (x = 45, y = 35, z = 8) and (x = 35, y = 35, z = 8). We

keep deploying adjacent tori centered at the same position of the first torus but having

larger values of D in an interval of 2R + d until D ≤ 42. Each successive layer of tori

is generated in a 2R + d interval of altitude z for z ≤ 90. The center of each layer of

tori is randomly selected among the positions of (x = 35, y = 35), (x = 45, y = 35),
(x = 35, y = 45) and (x = 45, y = 45). The background intensity of these images

is 0 and the intensity inside the tori is assigned to 1. The torus images are smoothed

by a Gaussian kernel with scale factor 1 to mimic the smooth intensity transition from

structures to background. Each synthetic image is corrupted by two levels of additive

Gaussian noise, with standard deviations of σnoise = {0.75, 1}. Finally, 20 testing cases

are generated for this experiment.

The experiment results are based on the measures obtained in the estimated object

scales of the both methods. For the testing objects with circular cross section such as the

tori used in this experiment, computing the sums of the first two eigenvalues ΛH
12(·) and

ΛQ
12(·) at structure centerlines is useful to determine the structure scales. The reason is

that ΛH
12(·) of the Hessian matrix quantifies the second order intensity change occurred

along the radial direction of a circle on the normal plane of the structure. Meanwhile, for

OOF, ΛQ
12(·) evaluates the amount of gradient pointing to the centerlines of tubes with

circular cross section. Based on the above observation, the object scale is obtained as

SH
x

= argmax
s∈E

(− s2

3 ΛH
12(x; s√

3
)) for the Hessian matrix (see [7,14] for details regarding

the structure scale detection and [10] for Hessian matrix based feature normalization

over scales) and SQ
x

= arg max
s∈F

(− 1
4πs2 ΛQ

12(x; s)) for OOF. The set of discrete detection

scales of OOF and detection scales of the Hessian matrix are represented as F and E
respectively. These scales cover the structure radii ranged from 1 to 6 voxel length. The

radii of OOF are taken for each 0.5 voxel length and there are in total 11 different radii in

F . Meanwhile, the same number of scales are logarithmically sampled for the Hessian

matrix scale set E so as to minimize the detection error of the Hessian matrix [12].

There are two measures being studied for the comparison of OOF and the Hessian

matrix, “Angular discrepancy” and “Response fluctuation”. For objects with circular

cross section and having stronger intensity than the background, the third eigenvector

represents the structure direction. At the estimated structure scales, we measure the

angular discrepancy of the Hessian matrix and OOF by

arccos(|Gt · ω
H
3 (x; SH

t
)|), arccos(|Gt · ω

Q
3 (x; SQ

t
)|), (12)

respectively, where Gt is the ground truth direction, which is defined as the tangent

direction of the torus inner-tube centerline at the position t, t ∈ T , where T is a set

of samples taken in every unit voxel length at the inter-tube centerlines of the tori.

Bilinear interpolation is applied if t does not fall on an integer coordinate. The value

of the angular discrepancy is in a range of [0, π/2] and a small value of the angular

discrepancy represents an accurate estimation of structure direction.

The second measure, “Response fluctuation” for the tori having circular cross section

is defined as the ratio between the variance and the mean absolute value of Λ12(·). The

“Response fluctuation” of the Hessian matrix and OOF are defined as
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Table 1. The performance of optimally oriented flux and the Hessian matrix obtained in the syn-

thetic data experiments. The entries in the columns of ”Angular discrepancy” include two values,

the mean and the standard deviation (the bracketed values) of the resultant values of Equation 12.

The values in the columns of ”Response fluctuation” are the results based on Equation 13.

d = 5, σnoise = 0.75
Angular discrepancy Response fluctuation

R Hessian matrix OOF Hessian matrix OOF

1 0.406 (0.250) 0.309 (0.176) 0.270 0.246

2 0.232 (0.197) 0.180 (0.093) 0.166 0.160

3 0.109 (0.111) 0.110 (0.065) 0.092 0.095

4 0.063 (0.068) 0.062 (0.054) 0.059 0.054

5 0.054 (0.075) 0.059 (0.027) 0.052 0.056

d = 2, σnoise = 0.75
Angular discrepancy Response fluctuation

R Hessian matrix OOF Hessian matrix OOF

1 0.408 (0.260) 0.304 (0.178) 0.283 0.252

2 0.305 (0.215) 0.227 (0.129) 0.218 0.195

3 0.162 (0.155) 0.135 (0.072) 0.133 0.117

4 0.098 (0.127) 0.087 (0.055) 0.092 0.085

5 0.079 (0.125) 0.065 (0.033) 0.086 0.069

d = 5, σnoise = 1
Angular discrepancy Response fluctuation

R Hessian matrix OOF Hessian matrix OOF

1 0.518 (0.288) 0.409 (0.239) 0.321 0.291

2 0.331 (0.252) 0.246 (0.148) 0.210 0.200

3 0.204 (0.218) 0.169 (0.109) 0.129 0.105

4 0.112 (0.158) 0.110 (0.080) 0.089 0.080

5 0.107 (0.159) 0.082 (0.044) 0.073 0.061

d = 2, σnoise = 1
Angular discrepancy Response fluctuation

R Hessian matrix OOF Hessian matrix OOF

1 0.532 (0.305) 0.414 (0.243) 0.338 0.298

2 0.435 (0.278) 0.319 (0.192) 0.272 0.239

3 0.279 (0.243) 0.200 (0.132) 0.177 0.134

4 0.181 (0.220) 0.125 (0.095) 0.127 0.108

5 0.157 (0.217) 0.097 (0.088) 0.107 0.085

Var
t∈T

(

ΛH
12(x; SH

t
)
)

Mean
t∈T

(∣

∣ΛH
12(x; SH

t
)
∣

∣

) ,
Var
t∈T

(

ΛQ
12(x; SQ

t
)
)

Mean
t∈T

(∣

∣

∣
ΛQ

12(x; SQ
t

)
∣

∣

∣

) , (13)

respectively. A small value of fluctuation implies a stable response, which is robust

against the adverse effects introduced by the interference of closely located structures

as well as image noise.

The results based on the above measurements for different combinations of noise

levels and torus separations are presented and listed in Table 1. In Table 1, it is ob-

served that both the Hessian matrix and OOF perform better when the inner-tube radii

of tori rise. It is because structures having low curvature surfaces such as large inner-

tube radius tori are easier to be detected than the tori having small inner-tube radii.

To evaluate the performance drops of OOF and the Hessian matrix in handling images

having closely located structures, the changes of the mean angular discrepancy and re-

sponse fluctuation in various cases are investigated in Table 2. In the entries of Table 2,

a small value represents high robustness against the reduction of torus separation (Table

2a); the increment of noise level (Table 2b); and both of them (Table 2c).

As previously mentioned, the detection of OOF is localized at the boundary of local

spherical regions. The OOF detection responses are merely induced from the intensity

discontinuities taken place at the structure boundary, when the local sphere surface of

OOF touches the structure boundary. In contrast to OOF, the Hessian matrix based de-

tection relies on the computation of the weighted intensity average difference between

the regions inside the structure and in the vicinity of the structure, where a nearby ob-

ject is possibly present. As the correct detection scale of the Hessian matrix increases

for recognizing large scale structures, the detection coverage of the correct scale of the

Hessian matrix expands. It increases the chances to include adjacent structures. Hence,

the increments of mean angular discrepancies and response fluctuations of the Hessian
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Table 2. The changes of mean angular discrepancy and response fluctuation from the case of

”d = 5, σnoise = 0.75” to other three cases presented in Table 1

(a)

From ”d = 5, σnoise = 0.75” to ”d = 2, σnoise = 0.75”

Changes of mean angular discrepancy Changes of response fluctuation

R Hessian matrix OOF Hessian matrix OOF

1 +0.002 -0.005 +0.013 +0.006

2 +0.073 +0.048 +0.052 +0.035

3 +0.053 +0.025 +0.041 +0.023

4 +0.035 +0.024 +0.033 +0.031

5 +0.025 +0.005 +0.034 +0.012

(b)

From ”d = 5, σnoise = 0.75” to ”d = 5, σnoise = 1”

Changes of mean angular discrepancy Changes of response fluctuation

R Hessian matrix OOF Hessian matrix OOF

1 +0.112 +0.100 +0.050 +0.045

2 +0.099 +0.067 +0.044 +0.040

3 +0.095 +0.059 +0.036 +0.010

4 +0.049 +0.047 +0.030 +0.026

5 +0.053 +0.023 +0.021 +0.004

(c)

From ”d = 5, σnoise = 0.75” to ”d = 2, σnoise = 1”

Changes of mean angular discrepancy Changes of response fluctuation

R Hessian matrix OOF Hessian matrix OOF

1 +0.126 +0.104 +0.068 +0.052

2 +0.203 +0.139 +0.106 +0.079

3 +0.170 +0.090 +0.085 +0.039

4 +0.118 +0.062 +0.068 +0.054

5 +0.103 +0.037 +0.054 +0.029

matrix are larger than those of OOF, especially when R increases, in the cases that the

torus separation is reduced from 5 voxel length to 2 voxel length (the second and the

forth columns versus the first and the third columns of Table 2a).

Moreover, in the situation where noise is increased (Table 2b), it is observed that

OOF (the second and the forth columns) has less increment of the mean angular dis-

crepancies than the Hessian matrix (the first and the third columns), particularly when

R increases. Although the Gaussian smoothing taken by the Hessian matrix partially

eliminates noise from the image volume, the smoothing process also reduces the edge

sharpness of the structure boundaries. In particular, the scale factor of the Gaussian

smoothing process of the Hessian matrix has to rise to deal with large scale structures.

Consequently, the Hessian matrix performs detection based on the smoothed object

boundaries which are easier to be corrupted by image noise. For OOF, the detection

does not require Gaussian smoothing using a large scale factor (σ = 1 for OOF). It re-

tains the edge sharpness of the structure boundaries. Therefore, the OOF detection has

higher robustness against image noise than the Hessian matrix. As expected, when the

torus separation is reduced to 2 voxel length and the noise level is raised to σnoise = 1,

OOF has higher robustness than the Hessian matrix, against the presence of both closely

located adjacent structures and high level noise than the Hessian matrix (Table 2c).

To summarize the results of the synthetic data experiments (Tables 1 and 2), OOF

is validated in several aspects, the structure direction estimation accuracy, the stabil-

ity of responses, the robustness against the disturbance introduced by closely located

structures and the increment of noise levels. In some applications, an accurate structure

direction estimation is vital. For instance, vascular image enhancement, the estimated
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structure direction is to avoid smoothing along the directions across object boundaries.

Furthermore, for tracking curvilinear structure centerlines (a centerline tracking exam-

ple is in [1]), estimated structure direction is to guide the centerline tracking process.

Also, small response fluctuation facilitates the process to extract curvilinear structures

or locate object centerlines by discovering the local maxima or ridges of the response.

On the other hand, the structure direction estimation accuracy and the stability of

structure responses of OOF are robust against the reduction of structure separation and

the increment of noise levels. As such, employing OOF to provide information of curvi-

linear structures is highly beneficial for curvilinear structure analysis.

3.2 Application Example - Blood Vessel Extraction

In this section, we demonstrate an example on utilizing OOF to supply information of

curvilinear structures for extracting vessels in a vascular image. The vascular image

utilized in this example is a phase contrast magnetic resonance angiographic (PCMRA)

image volume (Figure 4a) and the image intensity represents the blood flow speed inside

the vasculature. The challenges to extraction algorithms are the presence of closely

located vessels due to the complicated geometry of vascular structures, and the small

and low intensity vessels in images with relatively high background noise level.

To perform comparison between OOF and the Hessian matrix, we replace the Hes-

sian matrix based information used by a vessel extraction measure with the similar

information extracted from OOF. It is reminded that the main goal of this paper is to

propose OOF as a general curvilinear structure detector. Therefore, measures having

heuristic parameters which involve different values for certain kinds of structures are

not preferred in this example, such as the vesselness measure [6] or majority of tech-

niques in [12] for integrating multiple eigenvalues which involve heuristic parameters.

On the other hand, the sum of the first two eigenvalues employed in the synthetic ex-

periments is designed to provide responses at centerlines of curvilinear structures. It

is not suitable for vessel extraction, which requires a measure to give vessel detection

responses in the entire image region. We make use of the geometric mean of the first

two eigenvalues, which was proposed for the detection of vessels in [12,7],

M(x; s) =

{√

|λ1(x; s)λ2(x; s)|, λ1(x; s) ≤ λ2(x; s) < 0,
0, otherwise,

(14)

This measure is computed in a set of discrete scales to obtain the object scales, SH
x

=

argmax
s∈E′

(

s2

3 MH(x; s√
3
)
)

for Hessian matrix and SQ
x

= argmax
s∈F ′

(

1
4πs2M

Q(x; s)
)

for OOF. There are 15 radii and scales being employed for F ′ and E′ respectively to

cover the vessel radii ranged from 1 to 8 voxel length. Linear radius samples for F ′

and logarithmic scale samples for E′ are utilized analogous to those described in the

synthetic experiments. The vessel measure response is retrieved as the resultant values

of Equation 14 obtained in the estimated object scales. The binary extraction results

are obtained by thresholding the vessel measure responses. The thresholding value is

found empirically so that neither over-segmentation nor under-segmentation of major

vessels is observed and the same amount of voxels for both the methods are selected.

Finally, 4% of voxels having the highest vessel measure responses among all voxels are

thresholded as the extraction results.
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The vessel extraction results are shown in Figures 4b and c. The interesting positions

in the results are highlighted by the numbered arrows in Figures 4b and c. In the regions

pointed at by the fifth and sixth arrows in Figures 4b and c, the Hessian based method

misidentifies closely located vessels as merged structures. On the contrary, the OOF

based method is capable of discovering the small separation between the closely located

vessels. This result is consistent with the findings in the synthetic experiments, where

OOF is more robust than the Hessian matrix when handling closely located structures

(Table 2a).

In Figure 4c, it is found that several vessels with weak intensity (arrows 1, 2, 3, 4
and 7) are missed by the Hessian based method where the OOF based method has

no problem to extract them (Figure 4b). The reason is that the noise level relative to

the weak intensity structures is higher than those relative to strong intensity structures.

Axial view Sagittal view

Coronal view
(a)

(b) (c)

Fig. 4. (a) A phase contrast magnetic resonance angiographic image volume with the size of

213×143×88 voxels. (b) The vessel extraction results obtained by using the optimally oriented

flux based method. (c) The vessel extraction results obtained by using the Hessian matrix based

method.
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Coherent to the synthetic experiments, in which OOF shows higher robustness against

image noise as compared to Hessian matrix (see Table 2b). The vessel extraction results

in this real case experiment reflects that robustness against image noise is important on

extracting vessels with weak intensity.

4 Future Developments and Conclusion

In this paper, we have presented the use of optimally oriented flux (OOF) for detecting

curvilinear structures. With the aid of the analytical Fourier expression of OOF, no dis-

cretization and orientation sampling are needed. It therefore leads to a highly efficient

computation of OOF. Computation-wise, it has the same complexity as in the compu-

tation of the commonly used approach, Hessian matrix. Furthermore, computation of

OOF is based on the image gradient at the boundary of local spheres. It focuses on the

detection of intensity discontinuities occurred at the object boundaries of curvilinear

structures.

The OOF based detection avoids including the adjacent objects. Thus, it exhibits the

robustness against the interference introduced by closely located adjacent structures.

This advantage is validated and demonstrated by a set of experiments on synthetic and

real image volumes. In addition, in the experiments, it is observed that OOF has higher

structure direction estimation accuracy and stable detection responses under the distur-

bance of high level image noise. With the aforementioned high detection accuracy and

robustness, OOF as opposed to the Hessian matrix, to supply information of curvilinear

structures, is more beneficial for curvilinear structure analysis.

In this paper, our current focus is on formulating OOF as a general detector for

extracting reliable information of curvilinear structures. Identifying branches, high cur-

vature curvilinear structures or distinguishing between blob-like, sheet-like and tubular

structures would involve post-processing steps of the information extracted by the curvi-

linear structure detector, such as those presented in [12]. Considering the robustness of

OOF against image noise and interference of closely located adjacent structures, tailor-

ing appropriate post-processing steps of OOF for various kinds of structures will be an

interesting direction for the future developments of this work.
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