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Abstract
Today, due to the widespread outbreak of the deadly coronavirus, popularly known as COVID-19, the traditional
classroom education has been shifted to computer-based learning. Students of various cognitive and psychological abilities
participate in the learning process. However, most students are hesitant to provide regular and honest feedback on the
comprehensiveness of the course, making it difficult for the instructor to ensure that all students are grasping the information
at the same rate. The students’ understanding of the course and their emotional engagement, as indicated via facial
expressions, are intertwined. This paper attempts to present a three-dimensional DenseNet self-attention neural network
(DenseAttNet) used to identify and evaluate student participation in modern and traditional educational programs. With the
Dataset for Affective States in E-Environments (DAiSEE), the proposed DenseAttNet model outperformed all other existing
methods, achieving baseline accuracy of 63.59% for engagement classification and 54.27% for boredom classification,
respectively. Besides, DenseAttNet trained on all four multi-labels, namely boredom, engagement, confusion, and frustration
has registered an accuracy of 81.17%, 94.85%, 90.96%, and 95.85%, respectively. In addition, we performed a regression
experiment on DAiSEE and obtained the lowest Mean Square Error (MSE) value of 0.0347. Finally, the proposed approach
achieves a competitive MSE of 0.0877 when validated on the Emotion Recognition in the Wild Engagement Prediction
(EmotiW-EP) dataset.
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1 Introduction

The global outbreak of COVID-19 has led to closure of
educational institutes worldwide. According to a recent sur-
vey by UNESCO, due to the COVID-19 pandemic, over
190 countries’ schools and 61 countries’ higher education
institutions have been forced to shut down [1]. The absence
of in-person education in schools, colleges, and universities
has adversely affected approximately 156 million students
throughout the world.1 According to experts, normal class-
room instruction is unlikely to return anytime soon. In such
circumstances, students are heavily dependent on online
learning environment to complete their courses through vir-
tual mode platforms like Zoom, WebEx, and Google meet
[2]. Due to the availability of the internet worldwide, learn-
ing through virtual mode has become the new normal and
has finally reached remote corners of the country. Students
can learn and communicate with teachers, and their peers

1https://en.unesco.org/covid19/educationresponse, accessed on
22/06/2021
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from far-off locations [3]. In terms of transportation, lodg-
ing, and the overall cost of institution-based learning, it is
considered an alternative cost-effective solution for physical
learning [4–6]. The main problem in synchronous learning
environments, such as e-learning platforms, Massive Open
Online Courses (MOOCs), traditional classrooms, seminars,
and so on, is to maintain students’ comfort with course
content. Moreover, lack of interaction with instructors and
the absence of traditional classroom socialization has led to
the increased withdrawal rate among students’ using online
learning environments [4, 7]. Hence, detecting learners’
involvement has become critical in virtual education to give
individual pedagogical assistance. Analyzing the students’
engagement can be one of the possible phenomenon that can
help measure the above parameters effectively. Encouraging
student engagement is beneficial not just in online learning
but also in other learning environments such as conven-
tional classrooms, problem-solving and creative educational
games, and online tutoring systems [8, 9].

One can consider student engagement in any learning
environment a blend of behavioral, cognitive, and emotional
states. Behavioral engagement requires the active participa-
tion and involvement of the students in classroom activities.
On the other hand, cognitive engagement incorporates stu-
dents’ zeal to master learning and self-dedication towards
the learning process. Whereas emotional engagement is one
of the affective states of the student, and it indicates the
students’ active participation in the class [10–12]. Students
who are emotionally and cognitively engaged in learning
tend to put more effort into their studies and are more persis-
tent and efficient in meeting the courses’ demands than stu-
dents with relatively less emotional and cognitive engage-
ment. It is, therefore, one of the fundamental determinants
of the welfare and overall growth of students. Emotional
engagement in the teacher-student and peer group relation-
ships has an indirect effect on the perceived influence of
students’ cognitive engagement [10, 13–15]. Engagement
intensity is strongly related to facial expressions, upper-
body posture, and overall environmental factors, but facial
expressions are the most natural nonverbal way of express-
ing engagement in the online learning environment [1, 8].
For the longest time, datasets largely covered the seven basic
expressions of happy, neutral, sorrow, anger, surprise, dis-
gust, and contempt [16–19]. The emphasis is currently on
monitoring a students’ emotional state in a learning environ-
ment to obtain concrete results of students’ involvement. A
recent study identified face expressions connected to self-
reported and evaluated learning-centered emotional states
such as boredom, engagement, confusion, and frustration
[20–22]. The relationship between the strength and timing
of facial emotions is important in a synchronous learning
environment [23].

There are primarily two approaches to estimate the
affective states, one based on machine learning and
the other on deep learning. The machine learning-based
method acquire facial features and estimate engagement
levels by using hand-crafted patterns [23–26]. While deep
learning techniques learn on-the-fly features from training
data, allowing the algorithm to identify the fine-grained
facial variations, and outperforms the traditional machine
learning-based method in affective state prediction tasks
[21, 27–31]. Moreover, the deep learning-based approaches
are non-intrusive, and the resources used by these methods
to capture and analyze facial expressions video data are
low-cost, automated, and easy to implement [8]. Existing
deep learning methods for emotion recognition are divided
into two categories: static image-based approaches and
video sequence-based methods [18]. It is more natural to
categorize facial expressions from consecutive frames in a
video, as the video sequence provides significantly more
information for facial expression recognition (FER) than
static facial images. The video sequence-based methods are
subdivided into a combination of spatial and temporal CNN
models, a three-dimensional convolutional neural network
(3D CNN), and a hybrid of CNN and long-short term
memory (LSTM) network [21, 27–29, 32–34]. In this paper,
we have used an end-to-end 3D CNN-based method for
video analysis and prediction.

Since the development of C3D neural networks [35],
several deep 3D CNNs have been proposed for numerous
computer vision applications [36]. For instance, Hara et
al. [37] proposed several variants of the ResNet3D and
ResNeXt3D CNN for human action recognition in video
sequences. In another work, Ruiz et al. [38] proposed a
3D DenseNet for the classification of Alzheimer’s disease.
Most of the existing 3D CNNs are compute-intensive and
thus cannot be utilized for real-time applications. On the
other hand, our proposed 3D DenseNet, a modified 3D
variant of the DenseNet-121 CNN [39] is tailored to attain
the right balance between accuracy and computational
cost. The designed model with 19.30 million parameters
requires 76.70 megabytes (MB) memory footprint and
thus can be deployed on a low-cost embedded platform
for real-time detection of student engagement in a video
stream. Besides, the self-attention blocks (spatial, temporal,
and spatial-temporal) in the proposed model helps it to
extract enhanced features for efficient detection of students’
affective states in a video sequence. For the multi-class
and multi-label classification of the affective states, we
explored three loss functions, namely the Cross-Entropy
(CE) [40], Class-Balanced Cross-Entropy (CB-CE), and
Class-Balanced Focal loss (CB-FL) [41]. The MSE and
Class-BalancedMean Square Error (CB-MSE) were utilised
in the regression experiment. We assessed the feasibility
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and robustness of the proposed technique using publicly
available DAiSEE [21], and EmotiW-EP [42, 43] datasets.
The proposed systems’ automatic and timely input to the
instructor can improve the students’ learning experience.
The system can assess and identify a students’ absent-
mindedness during a lecture session, improve content
delivery effectiveness, and boost productivity and learning
gains. The major contributions of our work are summarized
as follows:

• Design and implementation of a robust and efficient
three-dimensional DenseNet self-attention neural net-
work (DenseAttNet). The designed neural network is
trained and tested for multi-class classification of affec-
tive states, with a baseline accuracy of 63.59% for
engagement and 54.27% for boredom.

• Training and testing of the multi-label DenseAttNet
on all four affective states: boredom, engagement,
confusion, and frustration with accuracies of 81.17%,
94.85%, 90.96%, and 95.85%, respectively.

• The model has achieved a baseline MSE of 0.0347
on the DAiSEE engagement validation set and a
competitive MSE of 0.0877 on the EmotiW-EP.

• The manuscript also includes a real-time implemen-
tation in a classroom setting, as well as Gradient-
based Localization Class Activation Mapping (Grad-
CAM)[44] is used for visual interpretation and under-
standing of model predictions.

The rest of the paper is organized as follows. Background
and related work are discussed in Section 2. The details
of our proposed method DenseAttNet and variation of loss
function is described in Section 3. Section 4 discusses
the qualitative and quantitative analysis and results of the
engagement prediction as a classification and regression
problem on DAiSEE and EmotiW-EP datasets, along with a
thorough comparison with the benchmark results. Section 5
concludes the paper.

2 Related work

Momentary expressions that transmit emotions include
muscle movements such as raising the brows, wrinkling
the forehead, rolling the eyes, and curling the lip [45].
Students who are anxious may have a depressed brow,
a drawn-together brow, horizontal or vertical forehead
creases, and trouble maintaining eye contact. In order to
be a good receiver of student communication, a lecturer
must be aware of many of the subtle nonverbal cues
that their students express [46]. Automated computer
vision and deep learning-based approaches are the most
popular methods for assessing learners’ engagement based
on their facial expression [16–19, 47–49]. There are

several studies in the literature on detecting learners’
engagement. Minyu et al. [50] suggested a theoretical
basis for explaining student’s facial expressions and auto-
assessment for teaching and learning in the classroom.
The student’s attention is based on the head posture and
five learners’ expressions of focused, surprised, confused,
joyful, and distracted. They characterize student’s learning
affects (SLA) and build an SLA transfer model using
learning facial expressions and attentiveness. However,
before it can be used to assess the efficacy of classroom
instruction and learning, their theoretical SLA analysis must
be tested “in the wild”. Thomas et al. [51] has extracted
multimodal features from both the speaker and listener
audio and video data. The feature set includes audio features
(extracted from Praat, OpenSMILE, pyAudioAnalysis
toolbox), facial features (extracted from OpenFace), and
posture features (extracted from OpenPose). Although their
system aims to improve learning by analyzing instructor-
learner interactions in the classroom, it does not reflect
the level of engagement of learners. Kerdawy et al.
[52] proposed an approach to use electroencephalography
(EEG) and facial expression modalities to anticipate
students’ cognitive states, engagement, and spontaneous
attention. They observed that, while the EEG and face-
based models demonstrated significant agreement in the
engaged classes, there was less consensus in the non-
engaged case. The combination of the two modalities,
EEG and facial expression, has the potential to improve
performance, but implementing a brain-computer interface
(BCI) module in a practical classroom or online learning
situation would be difficult because of mental privacy,
wearability, portability, and cost constraint [26, 53, 54].
Bhardwaj et al. [49], have introduced a deep learning
approach to compute the students’ Mean Engagement
Score (MES) in real-time through emotion detection and
emotion weights picked up from a survey carried out on
students in an hour-long classroom. Tongu et al. [48] used
Microsoft’s emotion identification API to identify emotions
like sadness, joy, fear, anger, surprise, and contempt
throughout the lecture. Students’ emotions were examined
in relation to department, lecture hours, gender, session
information, and other factors. Their research has revealed
patterns of different emotional states over time, but it would
be ideal to focus only on the emotions that are significant in
a classroom setting, and all of these methods are unreliable
in the real world. Gupta et al. [21] has created a DAiSEE
dataset of 112 students that includes four affective states
of boredom, engagement, confusion, and frustration with
degrees of engagement (low, very low, high, and very
high) in e-learning environments. The aim is to determine
how engaged students are in online classrooms. They
reported baseline results using several CNN-based video
classification approaches, such as InceptionNet [55], C3D
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[35], and Long-term Recurrent Convolutional Networks
(LRCN) [56] models with 46.4%,56.1%, and 57.9% for
four-class classification of engagement. Using LRCN,
they have attained the Top-1 accuracy of 94.6% for the
engagement label in binary classification, labelling from
(low, very low) categories to “not engaged (0)” and (high,
very high) categories to “engaged (1)”. They only presented
the performance metric as an accuracy in their studies and
didn’t address class imbalance problem. Wang et al. [29]
also proposed a 2D CNN-based architecture that could
detect the amount of engagement on still images with
57% accuracy. Huang et al. [27] has proposed a Deep
Engagement Recognition Network (DERN) that comprises
temporal convolution, bidirectional LSTM, and an attention
mechanism. They have achieved a Top-1 accuracy of 60.0%
of engagement recognition on DAiSEE and 94.2% for
binary classification. However, all the above strategies did
not account for class imbalances and were not validated
on other engagement datasets. Zhang et al. [30] introduced
Weighted Single RGB-stream inflated 3D convolutional
network (WSRGB -I3D) with weighted cross-entropy loss
and obtained 52.30% accuracy to classify four labels of
engagement and achieved the highest accuracy of 98.82%
in binary not-engaged/engaged, classification problem, but
performed poor in four class classification. Geng et al. [57]
offer a Convolutional 3D (C3D) approach for recognizing
student interest in videos by modeling both visual and
motion information. In order to tackle the class-imbalanced
data distribution problem in engagement recognition, they
employed focal loss [41]. The focal loss collects additional
feature information from the various samples and increases
accuracy to 56.2% over the C3D baseline by adaptive
reducing the weight of high engagement samples while
increasing the weight of low engagement samples. For
engagement prediction, Liao et al. [28] suggested the
Deep Facial Spatio-temporal Network (DFSTN). The model
includes a pre-trained Squeeze-and-Excitation-ResNet-50
(SENet) as a facial spatial feature extractor, as well as
a hidden state LSTM Network with a global attention
that captures temporal information and increases result
efficiency. They evaluated their method on the DAiSEE
and reported 58.84% accuracy in the four-class engagement
classification. To address the problem of imbalanced data
distribution in the DAiSEE, a combination of cross-entropy
loss and center loss is used to learn more discriminatory
features. Although the methods presented above addressed
the class imbalance problem for four class engagement but
the highest accuracy obtained was less than 60%, and the
confusion matrix presented in [28] did not perform well
for minority classes. EmotiW-EP is another challenging
dataset for predicting student engagement. [42, 43]. Niu et
al. [58] introduced the Gaze-AU-Position (GAP) feature,

which takes into consideration the test subject’s gaze, action
units, and head pose for engagement prediction in EmotiW-
EP. EmotiW 2018 challenge winners Yang et al. [33]
approach build a multi-modal regression model, including
local binary pattern (LBP), convolutional 3D (C3D), and
statistical temporal features such as gaze, head, and body
posture, followed by LSTM-FC layers. The accuracy of
each affective state for the model trained on authentic
DAiSEE dataset is presented, and no approach other than
[28] has been tested on both DAiSEE and EmotiW-EP.
Therefore, a deep learning-based solution that can address
class imbalances with improved accuracy and be evaluated
on multiple datasets is required. In addition to the multi-
class classification, we introduced DenseAttNet for multi-
label classification, which predicts all four affective states
with a single model. In another set of experiments the
DenseAttNet is modified to perform the regression task, and
the DenseAttNet pre-trained with DAiSEE is evaluated on
the EmotiW-EP training and validation set to ensure the
models’ robustness.

3 Proposedmethod

Figure 1 shows the block diagram of the proposed pipeline
for automated student engagement prediction in a video
sequence. The proposed pipeline consists of multiple stages,
including temporal down-sampling of video clip frames,
face detection and alignment with Dlib [59], and prediction
with the proposed neural network. The aligned face image is
resized and concatenated to get 30×224×224×3-dimension
image cube that is fed as input to the DenseAttNet
(described in Section 3.2) model to predict affective states.

3.1 Pre-processing

In DAiSEE, a 10-second video clip with a resolution of
640 × 480 captured at 30 frames per second results in
300 frames. A significant proportion of the frames are
redundant. Therefore, we chose 30 frames at a frame
interval of 10 from the 300 frames in the video clip. As
a next step, we use a robust real-time Dlib face detector
to crop face regions from each selected frame. Afterward,
the cropped faces are passed to a face alignment function
that aligns the faces and rejects the frames which lack
frontal face alignment or have facial occlusions, as shown
in Fig. 12. The clean frontal faces are then resized to 224 ×
224×3. Thus, for each 10-second video, 30×224×224×3
(D × C × H × W )-dimension image cubes are given to the
DenseAttNet, where D is the number of frames extracted
from the video, C is the number of channels, and H and W

are the height and width of a video frame.
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Fig. 1 Proposed pipeline for automatic students’ engagement detection

3.2 DenseNet self-attention network (DenseAttNet)

One can express the task of students’ engagement in a
video sequence as spatial-temporal variations in the facial
expressions. Therefore, it requires deep learning archi-
tectures that can extract the spatial-temporal relationship
among the video sequence frames. It appears intuitive to
use 3D CNN that is efficient in learning spatial-temporal
relationships in video sequences. Furthermore, as a non-
local operation, we used a self-attention module to char-
acterize the global dependencies of the 3D CNN feature
maps [60]. The self-attention module can help the model
to focus on more relevant regions of the image, result-
ing in better performance. Such an attention approach
enhances the discovery of new patterns in data by allow-
ing models to learn deeper correlations between spatial
or temporal dependencies between any two points in the
input feature maps. In general, regardless of their prox-
imity on the input image or feature maps, any two spots
with similar features or strong dependencies will be repre-
sented in the correlation matrix and contribute to the final
response by learning and focusing on critical areas of the
input feature maps while suppressing irrelevant information
[60–64].

Figure 2 presents our proposed DenseAttNet, which
combines 3D DenseNet-121 [39] and a 3D self-attention
module to capture global relationship between the fea-
tures. It comprises multiple important building blocks,
including 3D Convolutional dense and transitional blocks
followed by a self-attention block, and fully connected clas-
sifier layers.

3.2.1 3D DenseNet

An image cube of students’ facial expressions is supplied
as input to the proposed 3D DenseNet-121 neural network.
The DenseNet’s dense block concatenates additional input
feature maps from previous layers and feeds their feature
maps to successive layers at a growth rate of k = 32 [39].
Each dense block in Fig. 2 comprises a batch normalization
(BN), rectified linear unit (ReLU), and 1 × 1 × 1 Convo-
lution (Conv) layers followed by another set of BN, ReLU,
and 3 × 3 × 3 Conv layers. After each of the dense blocks,
namely 3D Dense Block 1, 3D Dense Block 2, and 3D
Dense Block 3 the transition layers are employed as bottle-
neck layers that comprises of BN, ReLU, and 1 × 1 × 1
Conv followed by a 2 × 2 × 2 average pooling layer with
stride 1 × 2 × 2. The bottleneck layers cut the number of
input feature maps to half, increasing computational effi-
ciency. Eventually, the fourth dense block output of 1024 ×
5 × 7 × 7 (Co × Do × Ho × Wo)-dimension image cube is
given to the self-attention module.

3.2.2 Self-attention layer

We used three strategies to link global features across
spatial, temporal, and both spatial and temporal dimensions.
The attention module represented in Fig. 4a, b, and c
reflect intra-frame, inter-frame, and both intra-frame and
inter-frame dependencies in a video.

The DenseNet layers’ output x ∈ R
Co×Do×Ho×Wo

dimensional image cube is transformed to the key k(xi),
query q(xj ) and value v(xi) by using 1× 1× 1 convolution
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Fig. 2 DenseNet, self-attention layer, and FC classification layers are the three components of the proposed DenseAttNet

filters, where k(xi) = Wkx, q(xj ) = Wqx, v(xi) = Wvx and
W is the weight of the learned convolution filter. We have
reduced the channel number of Ĉ0 to be Co/4 for memory
efficiency. As shown in Fig. 4a the spatial self-attention
module is used to compute intra-frame dependencies of
facial images. It computes each pixels’ relationships to all
other pixels in the frame and passes only those features
with dominant intra-frame dependencies, as illustrated in
Fig. 3a and mathematically expressed by (1). In (1), Sj,i ∈
R

Ĉo×Do×Ho×Wo×Ho×Wo is the spatial correlation matrix
obtained by softmax normalization of the inner product
of q(xj ) and k(xi). The relationships between pixels are
represented by the spatial dimension (Ho×Wo)×(Ho×Wo)

correspond to a 49 × 49 matrix.

Sj,i = exp(k(xi)
T q(xj ))

∑H0×W0
i=1 exp(k(xi)T q(xj ))

. (1)

The output attention features across spatial o ˆSatt
=

∑H0×W0
i=1 v(xi)Sj,i ∈ R

Ĉo×Ho×Wo×Do is fed through the
1 × 1 × 1 convolution filter, which results in oSatt attention
feature maps with increase in channel number to the original
Co channels. The final result attained by adopting the spatial
attention module ys is given by:

ys = γ oSatt + x. (2)

Temporal self-attention in Fig. 4b is used to compute inter-
frame dependencies of facial images and relates the global
features from other facial images in temporal domain. As
illustrated in Fig. 3b and mathematically expressed by (3),

Tj,i isRĈo×Ho×Wo×Do×Do dimensional temporal correlation

matrix. The relationships between pixels in depth dimension
Do × Do correspond to a 5 × 5 matrix.

Tj,i = exp(k(xi)
T q(xj ))

∑D0
i=1 exp(k(xi)T q(xj ))

. (3)

The output attention features across temporal o ˆT att
=

∑Do

i=1 v(xi)Tj,i ∈ R
Ĉo×Do×Ho×Wo is fed through the 1×1×

1 convolution filter, which results in oT att attention feature
maps with increase in channel number to the original Co

channels. The final result attained by adopting the temporal
attention module yt is given below:

yt = γ oT att + x. (4)

The hybrid module, which combines both inter-frame
and intra-frame dependencies, is shown in Fig. 4c, and the
final result obtained by combining the spatial and temporal
attention module is given in the following equation:

yh = γ (oT att + oSatt ) + x. (5)

where γ is a scalar parameter that is initially set to 0 and can
be learned as training advances further. Allow the network
to rely on local cues at first, then gradually increase the γ

value to give non-local evidence more weight.
The self-attention blocks’ output feature map is subse-

quently sent to a 1 × 1 × 1 Adaptive Global Pooling layer,
and the 1024 flattened features are passed to three sequential
fully connected layers, namely FC1, FC2, and Output. The
multi-class classification problem as illustrated in Fig. 2A
is used for predicting the affective states’ all four levels. In
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Fig. 3 (a) 3D spatial
self-attention architecture (b) 3D
temporal self-attention
architecture. Where ⊗ denotes
element-wise multiplication
operation and ⊕ denotes
element-wise addition operation.
Here, temporal or depth is an
interchangeable term

Fig. 4 The spatial-attention
module (which uses the Fig. 3a
spatial self-attention
architecture), the
temporal-attention module (uses
the Fig. 3b temporal
self-attention architecture), and
the hybrid module includes both
spatial and temporal
self-attention architecture
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Fig. 2B all four affective states of the binarized DAiSEE
dataset (described in Section 4.1.1) is predicted with a single
model. In Section 3.3 and 4.2.2 the loss and hyperparameter
settings are described in greater detail.

3.3 Class-balanced (CB) loss

In general, when neural networks are trained on class-
imbalanced datasets the classes with a larger number of
examples are easier to classify whereas classes with a few
samples are more difficult to classify. To handle class-
imbalanced datasets mainly two types of techniques have
been proposed.

One approach is to use synthetic samples and re-samples
the training dataset for imbalanced classes. To some extent,
re-sampling can assist to re-balance the distribution of
training data, but it can also lead to model over-fitting
[65–67]. Furthermore, in the multi-label DAiSEE with 6 :
22 : 2 : 1 imbalance ratio for Boredom: Engagement:
Confusion: Frustration affective states, one affective state is
linked to another affective state, for example, DAiSEE data
label [0, 2, 1, 1] indicates that engagement (majority class),
confusion (minority class), and frustration (minority class)
are all high at the same time. Hence, to balance the dataset
in this situation eliminating samples from classes with large
sample numbers is simply incorrect.

While the other approach is to re-weight the training
loss based on the imbalance. Re-sampling is the process
of oversampling classes with minority samples, under-
sampling classes with majority samples and occasionally
using both approaches [68, 69]. As a result, the only
alternative is to employ the CB loss parameter which
provides a weighting factor that is inversely proportional to
the effective number of samples that performs better than
loss re-weighting by inverse class frequency, to solve the
difficulty of training from imbalanced data. Given input x
and label y with C total number of classes, the models’
estimated class probabilities p, and loss denoted by L(p,y).
Cui et al. [68], introduced Eny = (1 − βny

y )/(1 − βy)

the effective numbers of samples to employ inverse class
frequency to alter the CB parameter between non re-
weighting and re-weighting smoothly, theoretically β = (N -
1)/N, N is the volume of all possible samples in the feature
space of class that is difficult to obtain empirically. Thus, we
select the hyper parameters β ∈ {0.9, 0.99, 0.999}, which
was also used by Cui et al. [68] in their experiments. In the
above equation, ny represents the number of samples for
a given engagement level. The CB loss is denoted by the
following formula:

CB(p, y) = 1

Eny

L(p, y) = 1 − β
1 − βny

L(p, y). (6)

3.3.1 Classification loss

Two distinct versions of the CB classification loss functions
are used in the experiment. Firstly, CB-CE, as shown in (7)
is used in DAiSEE multi-class classification.

CB − CE(p, y) = − 1 − β
1 − βny

C∑

i=1

log(Sof tmax(pi)). (7)

Secondly, we have used CB-FL described in (9) for both
the multi-class and multi-label classification. The Focal loss
[41] reduces the relative loss for well-identified samples
while increasing the relative loss for badly categorized
samples by adding a modulating component (1 − pt )

γ

to the sigmoid cross-entropy loss. In the case of sigmoid
cross-entropy loss, the class probabilities are computed
with the assumption that each class is independent and not
mutually exclusive. Single-label classification and multi-
label prediction are combined in sigmoid. This is a useful
feature to have since DAiSEE data includes more than one
semantic label and to train all the affective states with a
single classifier model. One-hot encoding is used to encode
the actual labels y and for notational convenience pt is used.

pt =
{

p, if y = 1

1 − p, otherwise,
(8)

CB − FL(p, y)=− 1 − β
1 − βny

C∑

y=1

(1−pt)
γ log(Sigmoid(pt )).

(9)

Here γ ∈ {1, 2} is tunable focusing hyper parameter that
modulates the original sigmoid cross-entropy loss by (1 −
pt )

γ factor.

3.3.2 Regression loss

To train the DAiSEE engagement class using the DenseAt-
tNet and to quantify engagement levels in terms of continu-
ous value, the MSE loss function in (10) is used. MSE tries
to minimize the difference between the pi predicted value
and yi ground-truth value of the i-th sample. The definition
of the MSE is as follows:

MSE(p, y) = 1

D

D∑

i=1

(pi − yi)
2
2. (10)

Where D represents the batch size. The C ∈ {0.0, 0.33,
0.66, 1.0} represents the total number of classes. Because
the DAiSEE engagement prediction regression task contains
just four target values C that the model needs to predict,
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the same CB loss parameter is used with MSE, which is
defined as:

CB − MSE(p, y) = 1 − β
1 − βny

1

D

C∑

y=1

D∑

i=1

(pi − yi)
2
2. (11)

4 Experiments and results

This section begins with an overview of the DAiSEE and
EmotiW-EP datasets. We presented the experimental setup,
training strategy as well as the the ablation experiments
to select the best model and hyper parameters. On the
DAiSEE, we present our experimental results in terms
of numerous performance measures, including accuracy,
precision, recall, and F1-score [70, 71]. All of the metrics
presented above for affective state classification are derived
from the confusion matrix of the validation set, which is one
of the most intuitive and descriptive measures. In our next
set of experiments, the model is used to train on DAiSEE
and EmotiW-EP datasets as a regression problem where the
labels are pseudo-continuous (mapped in between 0-1). The
MSE value is used as an evaluation metric.

4.1 Dataset details

This section describes the DAiSEE and EmotiW-EP datasets,
which contain user affective states captured in the wild.
These datasets are used to evaluate our models’ perfor-
mance.

4.1.1 DAiSEE

DAiSEE is a collection of 112 peoples’ 10-second video
snippets captured at a resolution of 1920 × 1080 pixels
at 30 frames per second. It includes four affective states,
namely boredom, confusion, engagement, and frustration.
Each affective state is labelled with one of four levels:
very low, low, high, and very high. Each emotional state is
crowd-annotated and linked with a gold standard annotation
generated by a team of psychologists [21]. Individual
DeneseAttNets are trained on each affective state while
addressing the DAiSEE as a multi-class classification
problem. In the case of multi-label classification, each
affective state label is binarized (low and very low to “0”,
high and very high to “1”). For the regression problem, the
four engagement levels are assigned to the values “0.0”,
“0.33”, “0.66”, and “1.0”.

4.1.2 EmotiW-EP

The EmotiW-EP is a sub-challenge of the EmotiW, which
is an engagement in the wild challenge. [42, 43]. Faces of

the individuals watching an instructional video (MOOC)
are recorded using a Microsoft Life camera at 640 × 480
pixels at 30 frames per second. The video is 5 minutes
duration on average. The dataset includes 147, 48, and 67
videos for the train, validation, and test sets, respectively.
The engagement levels are split into four categories: 0, 0.33,
0.66, and 1 with “0” denote full disengagement while “1”
denote high engagement of the user. EmotiW-EP 5-minute
training and validation set are split into several 10-second
video clips excluding the initial and final 10 seconds of
the video to avoid unnecessary noise and to justify the
persons’ stabilization time, which is then pre-processed in
the same way as DAiSEE for the evaluation of our method
and the average results reported on a 10-second segment of
a 5-minute video clip.

4.2 Classification experiments

A 30-frames clip is used as input to train the model from
scratch with a batch size of 16 clips. During training, we
used Stochastic Gradient Descent (SGD) optimizer [72].
The hyper parameters for the SGD are as follows: the
initial learning rate (LR) as 0.001, the momentum of 0.9,
and a weight decay of 1× e−5 after every 15 epochs. 5-fold
cross-validation is used to measure the performance of
the model. All the experiments have been implemented
on the PyTorch framework and executed on an NVIDIA
Tesla V100 with 32 GB GPU memory. Our model contains
19.3M parameters, 53G floating-point operations per second
(FLOPs) approximately, and 76.7 MB model size.

4.2.1 Ablation study of DenseAttNet

The performance and results of 3D DenseNet, 3D DenseNet
with self-attention, and 3D DenseNet with self-attention
and fully connected layers, namely FC1, FC2, and Output
for the engagement class using CE loss are shown in
Table 1. As described in Section 3.2.2, the attention
mechanism is good at modelling long-term dependence
of emotional states; the model with the self-attention
module outperforms DenseNet without self-attention by
0.04% improvement in the accuracy term, and self-attention
becomes more prominent when it is trained with class-
balanced losses to address the DaiSEE imbalanced problem
discussed in Section 4.2.2. The Grad-CAM visualization
in Fig. 10 shows attention maps, adoption of the self-
attention module in the DenseAttNet model for more
locally-focused attention, highlighting the utility of using
self-attention blocks to predict engagement. Furthermore,
DenseAttNet with self-attention and FC layers improved
accuracy by 0.72% and 0.003 reductions in loss term.
The FC layer acquires the activation maps produced by
the previous Conv layers, and the FC layer weights
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Table 1 Performance evaluation of a four-class engagement classification on DAiSEE for architecture selection

3D DenseNet 3D DenseNet + SA 3D DenseNet + SA + FC

Loss F1-Score Accuracy (%) Loss F1-Score Accuracy (%) Loss F1-Score Accuracy (%)

0.373 0.59 61.39 0.372 0.59 61.43 0.369 0.60 62.15

Where SA and FC stand for self-attention and fully connected layers, respectively

combined with the built-in non-linear activation form a
possible stochastic probability representation for each class,
resulting in improved performance.

4.2.2 Evaluating models’ performance on CB loss functions

DenseAttNet has been trained on DAiSEE’s engagement
class. The CB-FL parameters are β ∈ {0.9, 0.99, 0.999} and
γ ∈ {1.0, 2.0}, while the CB-CE parameter β ∈ {0.99}.
Based on the confusion matrix obtained from the 5-fold
cross-validation experiment given in Figs. 5, 6, and 7 and
the resultant accuracy presented in Tables 2, 3, and 4 the
following observations can be made: Due to the significant
imbalance in the sample distribution, our model using CE
loss is unable to categorize the “low engagement” and
“very low engagement” samples because of the loss caused
by misclassifying samples with “high engagement” and
“very high engagement” outweighed the loss caused by
misclassifying samples with “very low engagement” and
“low engagement”. Neither the spatial self-attention module

nor the temporal self-attention module used in DenseAttNet
correctly predicts the “low engagement” samples, and with
the spatial self-attention module, not even a single “very
low engagement” sample is correctly classified, whereas
temporal self-attention does as seen in Fig. 6b.

The hybrid self-attention DenseAttNet using CB-FL loss
with β = 0.9 and γ = 1.0, along with the predictions for
“high engagement” and “very high engagement” levels, the
model has shown improvement in the predictions for “low
engagement” illustrated in Fig. 7b. The model achieved an
all-time state-of-the-art accuracy of 63.59% in the problem
of four-class engagement classification displayed in Table 4.
The model correctly classifies some “very low engagement”
samples with β = 0.99 and γ = 1.0, but the overall
classifier performance decreases to 62.38%.

The model performance degrades with higher β values,
such as β = 0.999, since the effective number of samples
approaches the number of samples, and it is the same as
re-weighting by inverse class frequency [68], results in a 7-
21 times rise in the “very low engagement” loss term, the

Fig. 5 Confusion matrix of the proposed DenseAttNet with a spatial self-attention module tested on DAiSEE with (a) Cross-Entropy loss (CE) (b)
CB-FL (β = 0.9, γ = 1.0) (c) CB-FL β = 0.9, γ = 2.0) (d) CB-FL (β = 0.99, γ = 1.0) (e) CB-FL (β = 0.99, γ = 2.0) (f) CB-FL (β = 0.999,
γ = 1.0)
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Fig. 6 Confusion matrix of the proposed DenseAttNet with a temporal self-attention module tested on DAiSEE with (a) CE (b) CB-FL (β = 0.9,
γ = 1.0) (c) CB-FL (β = 0.9, γ = 2.0) (d) CB-FL (β = 0.99, γ = 1.0) (e) CB-FL (β = 0.99, γ = 2.0) (f) CB-FL (β = 0.999, γ = 1.0)

classifier over-fits and trains harder on the minority “very
low engagement” class lowering overall classifier accuracy
to 57.24%, as illustrated in Fig. 7f confusion matrix and
in Table 4. In our studies, we observed that γ = 1.0
is the optimum value. DenseAttNet model utilizing the

hybrid self-attention module delivers the best results for
the engagement prediction. The overall performance of the
classifier is improved by using CB-FL.

The binary conversion of engagement dataset for binary
engagement classification resulted in an imbalance ratio

Fig. 7 Confusion matrix of the proposed DenseAttNet with a hybrid self-attention module tested on DAiSEE with (a) CE (b) CB-FL (β = 0.9,
γ = 1.0) (c) CB-FL (β = 0.9, γ = 2.0) (d) CB-FL (β = 0.99, γ = 1.0) (e) CB-FL (β = 0.99, γ = 2.0) (f) CB-FL (β = 0.999, γ = 1.0)
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Table 2 Spatial self-attention four-class engagement classification results using CB losses and optimum hyper parameter search

Loss Type CE CB-CE CB-FL CB-FL CB-FL CB-FL CB-FL

β - 0.99 0.9 0.99 0.9 0.99 0.999

γ - - 1.0 1.0 2.0 2.0 1.0

Precision 0.59 0.58 0.59 0.60 0.60 0.58 0.57

Recall 0.62 0.61 0.62 0.63 0.63 0.60 0.59

F1-Score 0.60 0.59 0.59 0.61 0.61 0.58 0.56

Accuracy (%) 62.15 61.64 61.60 63.25 62.89 60.33 58.48

Table 3 Temporal self-attention four-class engagement classification results

Loss Type CE CB-CE CB-FL CB-FL CB-FL CB-FL CB-FL

β - 0.99 0.9 0.99 0.9 0.99 0.999

γ - - 1.0 1.0 2.0 2.0 1.0

Precision 0.58 0.57 0.58 0.58 0.58 0.58 0.56

Recall 0.60 0.58 0.60 0.61 0.60 0.61 0.57

F1-Score 0.57 0.54 0.59 0.59 0.58 0.59 0.56

Accuracy (%) 60.19 61.15 62.54 61.65 60.71 61.10 57.52

Table 4 Hybrid self-attention four-class engagement classification results

Loss Type CE CB-CE CB-FL CB-FL CB-FL CB-FL CB-FL

β - 0.99 0.9 0.99 0.9 0.99 0.999

γ - - 1.0 1.0 2.0 2.0 1.0

Precision 0.59 0.59 0.61 0.60 0.58 0.59 0.56

Recall 0.61 0.52 0.64 0.63 0.61 0.62 0.57

F1-Score 0.60 0.60 0.62 0.61 0.59 0.60 0.56

Accuracy (%) 61.67 61.73 63.59 62.38 61.30 61.77 57.24

Fig. 8 Confusion matrix for
binary engagement prediction
on DAiSEE using the proposed
DenseAttNet method. We have
used hybrid self-attention
module with (a) CB-FL (γ = 1,
β = 0.9) (b) CB-FL (γ = 1,
β = 0.99)
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of 1:18 between the “not-engaged” and “engaged” classes.
We obtained 94.78% accuracy using hybrid self-attention
DenseAttNet and CB-FL (β = 0.9 and γ = 1) as reported
in Table 5. The confusion matrix of the cross-validation
result is presented in Fig. 8, and it can be observed that
the model is able to predict the “not-engaged” minority
class samples and deal with the data imbalance problem.
Grad-CAM, a standard gradient-based localization method
is used to generate visual explanations for classification
decisions to gain a better understanding of the model. We
present a mean visualization of DenseAttNet’s self-attention
layer activation for engagement classification. In Fig. 9
each column represents the temporal relationship of the
engagement obtained in the 6th, 12th, 18th, 24th, and 30th
frames. Whereas each row represents a level of engagement
ranging from “very low” to “very high”. It is obvious
from Fig. 10 that adding a self-attention module to our
architecture has resulted in a finer attention map in the input
image, leading to better engagement prediction results.

4.2.3 Comparison with existing methods

Table 6 reports the results and comparison of the
proposed DenseAttNet trained on DAiSEE with the current
state-of-the-art methods. In four-class classification, the
DenseAttNet model utilizing self-attention module with
CB-FL (β = 0.9 and γ = 1) has outperformed the
baseline result attained by LRCN [21]. The proposed model
achieved an improvement of 5.35% for the engagement
state and 0.57% for the boredom state. For the binary
engagement classification, on the other hand, it achieved
a boost of 0.35% in accuracy compared to LRCN.
Besides, the proposed model has improved the best-
published accuracy reported by DERN [27] for the four-
class and binary class engagement classification from
60% to 63.59% and 94.2% to 94.78%, respectively. In
four-class engagement, the DFSTN [28] method achieves
58.8% accuracy. Furthermore, the I3D model [30] has
registered a superior accuracy of 98.82% percent for
binary class engagement; it performs poorly in four-
class engagement classification and attains an accuracy of
52.4%. Also, the DenseAttNet model using self-attention
module with CB-FL (β = 0.9 and γ = 1) attained
competitive accuracy of 69.22% and 78.58% for confusion
and frustration, respectively. The LRCN [21] has recorded
the best performance for the confused state, with an

accuracy of 72.30%. While for the frustration state, the fine-
tuned C3D model [21] with an accuracy of 79.10% has
registered the best performance. Nevertheless, compared
to LRCN and C3D, the proposed DenseAttNet model is
computational efficient and more suitable for real-world
applications.

4.2.4 Multi-label classification of DAiSEE

As discussed, in Section 4.2 SGD optimizer and the CB-FL
loss function is used to train the multi-label DenseAttNet
for all four affective states. In Table 7, the DenseAttNet
trained with CB-FL (γ = 1, β = 0.99) as binary multi-label
classification for all four classes produces an acceptable
accuracy of 81.17% for boredom, 94.85% for engagement
(only 0.1% less than multi-class binary classification),
90.96% for confusion, and 95.85% for frustration. As
illustrated in Fig. 11, the learned features of the model
create clusters that correlate to distinct affective states, such
as B - boredom, E - engagement, and so on. The overlap
clusters indicate more than one affective state is present;
for example, BECF-boredom, engagement, confusion, and
frustration states are all high at the same time. The features
in each cluster are scattered due to intra-class variations
in emotional states. It is clear that our model is capable
of distinguishing all possible permutations of a learners’
emotional states.

4.3 Regression experiments

The regression task is carried out by modifying the
network’s last layer and employing the MSE function. The
CB parameter β has been introduced into the MSE function,
as presented in (11). Setting β = 0.9 and β = 0.99,
yields weight balancing terms equal to “1.01”, “0.99”,
“0.99”, “0.99”, and “1.88”, “0.71”, “0.69”, “0.69”, for
“very low engagement (0)”, “low engagement (0.33)”, “high
engagement (0.66)”, and “very high engagement (1)”. The
model trained with weighted MSE outperforms the model
trained just with MSE because weight component allows
punishing more on the minority “very low engagement
(0)” and “low engagement (0.33)” samples, allowing the
model to generalize the engagement prediction better. In
Table 8 with a CB parameter β = 0.9, for the DAiSEE
engagement class, our technique has the lowest MSE of
0.0347, outperforming all earlier methods.

Table 5 Binary engagement
classification results with
CB-FL loss

Loss Type Precision Recall F1-Score Accuracy (%)

CB-FL (γ = 1.0, β = 0.9) 0.95 0.96 0.95 94.78

CB-FL (γ = 1.0, β = 0.99) 0.94 0.95 0.94 94.66
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Fig. 9 Grad-CAM results on
DAiSEE (a) engagement level
“0” (b) engagement level “1” (c)
engagement level “2” (d)
engagement level “3”

Fig. 10 Models’ Grad-CAM visualization of engagement prediction on DAiSEE
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Table 6 Performance comparison with the benchmark results on DAiSEE

Method Affective State Accuracy (%)

Boredom Engagment Confusion Frustration

Four Four Binary Four Four

InceptionNet Frame [21] 36.5 47.1 70.3 78.3

InceptionNet Video [21] 32.3 46.4 66.3 77.3

I3D [30] 52.4 98.82

C3D FineTuning [21] 45.2 56.1 66.3 79.1

LRCN [21] 53.7 57.9 94.6 72.3 73.5

DFSTN [28] 58.8

DERN [27] 60.0 94.2

DenseAttNet (Ours) 54.27 63.59 94.78 69.22 78.58

The best results are highlighted in bold

Table 7 Multi-label binary
classification of DenseAttNet
on DAiSEE

Multi-label classification accuracy (%)

Loss Type Boredom Engagement Confusion Frustration

CB-FL (γ = 1, β = 0.9) 78.58 94.81 91.74 96.37

CB-FL (γ = 1, β = 0.99) 81.17 94.85 90.96 95.85

Fig. 11 An illustration of the multi-label DenseAttNet models’ deep features learned from a multi-label DAiSEE dataset. Model trained using
focal loss (a) β = 0.9 and γ = 1 (b) β = 0.99 and γ = 1. Where boredom (B), engagement (E), confusion (C), frustration (F), and None (-)

Table 8 DenseAttNet model
performance comparison on
DAiSEE

Method Metric Error

C3D (Scratch) [28] MSE 0.0421

C3D (Fine Tuned) [28] MSE 0.0442

DFSTN [28] MSE 0.0422

DenseAttNet (Proposed) MSE 0.0352

DenseAttNet (Proposed) CB-MSE (β = 0.9) 0.0347

DenseAttNet (Proposed) CB-MSE (β = 0.99) 0.0362
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Table 9 DenseAttNet model
performance comparison on
EmotiW-EP

Method Metric Data Splits Error

Dhall et al. (Baseline) [42] MSE val test 0.1 0.15

Yang et al. [33] MSE val test 0.0398 0.0626

DFSTN [28] MSE train + val 0.0736

DenseAttNet (Proposed) MSE train + val 0.0974

DenseAttNet (Proposed) CB-MSE (β = 0.9) train + val 0.0978

DenseAttNet (Proposed) CB-MSE (β = 0.99) train + val 0.0877

Fig. 12 This figure illustrates
instances of non-frontal and
occluded faces

Fig. 13 Ten consecutive
sequential frames of the same
subject taken from DAiSEE,
each labeled differently. a
Sequence with “very low
engagement”, b sequence with
“low engagement”, c sequence
with “high engagement”, and d
sequence with “very high
engagement”
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Fig. 14 Multi-label
DenseAttNet
algorithm-generated graph
analytics samples of students’
engagement during a lecture in a
traditional classroom setting

To validate the efficiency of our method, similar to Liao
et al. approach, DenseAttNet pre-trained on DAiSEE is used
to predict engagement on EmotiW-EP. Table 9 compares the
performance of the proposed DenseAttNet model to existing
methods on the EmowitW-EP training and validation set.
The proposed method obtained the best MSE of 0.0877 with
β = 0.9 as compared to the DFSTN [28] method as well
as the current state-of-the-art methods based on the fact that
DenseAttNet has no prior experience with EmotiW-EP.

4.4 Discussion

We conducted a rigorous analysis of engagement prediction
in DAiSEE to establish the optimal model and hyper
parameter value for CB loss. The results obtained by the
proposed method on DAiSEE engagement classification
outperformed all previous methods in terms of accuracy
and generalizing ability to predict all four levels, ranging
from “very low engagement” to “very high engagement”,
despite the labels having a high imbalance ratio. Even
after removing some strongly hand-over-face gestures and
non-frontal faces in Fig. 12 during the data processing
step, the models’ engagement accuracy is less than
65% because different labels sequences, particularly the
“low engagement”, “high engagement”, and “very high
engagement” are quite similar, as shown in Fig. 13.

In addition to finding a method that can separate these
similar-appearing different labels of sequences and to learn
the hand-over-face gestures features, there is a need for
more data with balanced and discriminative labels to
improve the accuracy of engagement prediction [28].

Following that, we have trained and tested DenseAttNet
on multi-label DAiSEE using CB-FL with γ = 1 and
β = 0.9, 0.99. As shown in Fig. 11, the feature maps
of the last dense layer form a cluster for each emotional
state, which means that the classifier correctly predicts the
emotion. Thereafter, in the regression experiment, the MSE
for DAiSEE and EmotiW-EP is evaluated and it is found that
the use of a CB-MSE helped the proposed model to achieve
a lower MSE.

We also built a pipeline for the real-time deployment of
the multi-label DenseAttNet in a classroom environment.
Real-time video sequences of students in the classroom are
captured using a Logitech HD webcam. The video clips are
sampled every 10-seconds at regular intervals, the students’
faces are cropped and aligned, and the processed image
cube is provided to the model for prediction. Once obtained,
the prediction results are saved in a Comma-separated
values (.CSV) file in order to project engagement analytics
for individual students as well as the entire class. Using
the affective state as a binary label (present/absent) alone
may not be the best option, as it may even influence the
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instructors’ decision in practical applications. For example,
if a students’ emotional state is halfway between 0.4 and
0.6, the binary classifier will assign it as either “low” or
“high”. Hence, it appears more logical to define engagement
levels in terms of continuous values [28]. To display the
likelihood of each affective state, we used the models’
last layer raw value. Figure 14 depicts qualitative results
of our algorithm-generated graphs, which featured both
e-learning and a traditional classroom situation, with bar
graphs representing individual levels of involvement, a pie
chart indicating overall student involvement, and a scatter
plot highlighting when students were most engaged (or not).

5 Conclusions

The paper introduces a three-dimensional DenseNet Self-
Attention neural network (3D DenseAttNet) for automatic
detection of students’ engagement in e-learning platforms.
The self-attention module in the proposed 3D DenseAttNet
model helps to extract only the relevant high-level intra-
inter frame dependency features of videos obtained from
the 3D DenseNet block. Evaluated on the DAiSEE
dataset, the proposed neural network outperformed the
previous state-of-the-art and attained recognition accuracy
of 63.59% and 54.27% for four-class engagement and
boredom, respectively. The paper employs class-balanced
(CB) losses to address the DAiSEE data imbalance
problem for engagement prediction, which has never
been adequately addressed in previous research. Besides,
to test the robustness of the proposed framework, we
tested the pre-trained 3D DenseAttNet performance on
EmotiW-EP and obtained a competitive MSE of 0.0877.
In addition, a multi-label variation of the proposed 3D
DenseAttNet model is used, which is an end-to-end
feedback system for identifying the student’s all four
emotional states in e-learning and traditional classroom
settings: boredom, engagement, frustration, and confusion.
In future work, we will explore more efficient deep learning
algorithms and advanced loss functions that can account
for data imbalances and multi-class multi-label emotion
categorization in DAiSEE.
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