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Abstract 

This paper presents three-dimensional (3D) direct numerical simulations (DNS) 

of flow past a circular cylinder over a range of Reynolds number (Re) up to 300. The 

gradual wake transition process from Mode A* (i.e. Mode A with large-scale vortex 

dislocations) to Mode B is well captured over a range of Re from 230 to 260. The 

mode swapping process is investigated in detail with the aid of numerical flow 

visualization. It is found that the Mode B structures in the transition process are 

developed based on the streamwise vortices of Mode A or A* which destabilize the 

braid shear layer region. For each case within the transition range, the transient mode 

swapping process consists of dislocation and non-dislocation cycles. With the increase 

of Re, it becomes more difficult to trigger dislocations from the pure Mode A structure 

and form a dislocation cycle, and each dislocation stage becomes shorter in duration, 

resulting in a continuous decrease in the probability of occurrence of Mode A* and a 

continuous increase in the probability of occurrence of Mode B. The occurrence of 

Mode A* results in a relatively strong flow three-dimensionality. A critical condition 

is confirmed at approximately Re = 265 – 270 where the weakest flow 

three-dimensionality is observed, marking a transition from the disappearance of 
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Mode A* to the emergence of increasingly disordered Mode B structures. 

 

1. Introduction 

Steady incoming flow past a long circular cylinder at relatively low values of the 

Reynolds number (Re) has been the topic of extensive studies due to its fundamental 

and practical significance. It is well known that the flow is governed by a single 

dimensionless parameter Re, which is defined based on the approaching flow velocity 

U, the cylinder diameter D and the kinematic viscosity of the fluid ν. Methods of 

investigation have included physical model testing, direct numerical simulation (DNS) 

and linear (and non-linear) stability analysis. Comprehensive reviews on 

investigations of flow with different methodologies can be found, for example, in 

Williamson (1996a, 1996b) and Posdziech and Grundmann (2001). Based on these 

investigations, it has been shown (e.g. Williamson, 1996a) that for flow past a circular 

cylinder the flow structure in the wake will undergo a transition sequence of: (1) 

emergence of primary wake instability at Re ~ 47, (2) onset of Mode A instability with 

large-scale vortex dislocations (i.e. Mode A*) at Re ~ 190, (3) the gradual transition 

from Mode A* to Mode B over a range of Re from 230 to 250, and (4) development 

of increasingly disordered Mode B structure beyond Re = 260. 

Many previous studies have focused on identifying the critical Reynolds number 

Recr at which Mode A* wake instability emerges. The Recr values identified by some 

experimental studies are: 150 by Roshko (1954) and Tritton (1959), 165 by Norberg 

(1994), 178 by Williamson (1988, 1989), 194 by Williamson (1996b), and 205 by 

Miller and Williamson (1994). It was discovered that the low values of Recr identified 

by early experimental studies were largely due to the “end effect” (Williamson, 

1996b). Williamson (1996b) extended the Recr value to 194 by eliminating end effects 

using non-mechanical end conditions. This value is very close to the Recr values of 

188.5 (±1.0), 190.2 (±0.02) and 190.5 predicted through linear stability analysis by 

Barkley and Henderson (1996), Posdziech and Grundmann (2001), and Rao et al. 

(2013), respectively. 
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According to the experimental study by Williamson (1996b), Mode B wake 

instability first emerges at Re ~ 230, which is much lower than the critical Re of 259 

and 261 (±0.2) for Mode B instability predicted through linear stability analysis by 

Barkley and Henderson (1996) and Posdziech and Grundmann (2001), respectively. 

According to Henderson (1997), this is because the existence of Mode A* instability 

would destabilize Mode B in the non-linear interaction between the two modes. In 

contrast, the linear stability analyses by Barkley and Henderson (1996) and Posdziech 

and Grundmann (2001) were performed based on a two-dimensional (2D) base flow. 

Based on non-linear stability analyses, Barkley et al. (2000) and Sheard et al. (2003) 

predicted Re ranges for the transition from Mode A* to Mode B of 230 – 265 and 230 

– 260, respectively, which are in good agreement with the transition range of Re = 230 

– 250 observed by Williamson (1996a) through experiments. 

The experimental study by Williamson (1996b) has revealed that the wake 

transition from Mode A* to Mode B is a gradual process with intermittent swapping 

between the two modes. In this transition regime, two distinct vortex shedding 

frequencies corresponding to each of the two modes can be observed (Williamson, 

1996b). 

Investigations of the wake transitions of flow past a circular cylinder have also 

been attempted using three-dimensional (3D) DNS to account for the non-linear 

behaviours of the flow. Williamson (1996a, 1996b) and Posdziech and Grundmann 

(2001) provided extensive reviews of DNS studies on the flow and these will not be 

reviewed again in this study. In brief, two approaches have been employed to 

investigate the flow. One is the spectral element approach which employs Fourier 

expansion to model spanwise variations in pressure and velocity, on the assumption of 

spanwise periodicity in the flow structure. The second is based on the conventional 

finite volume method (FVM) and finite element method (FEM) formulations which 

are routinely applied to flows involving complex geometries. Henderson (1997) and 

Braza et al. (2001) confirmed the existence of natural vortex dislocations at Re = 220 

using a spectral element method and FVM, respectively, with relatively large span 

lengths of more than 12D. Henderson (1997) also examined the vorticity field and 
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found mixed modes A* and B at Re of 220 and 265. On the other hand, Behara and 

Mittal (2010) studied the energy transfer from Mode A* to Mode B by analysing the 

power spectra of the velocity signal in the near wake, and found the transition 

occurred at Re ~ 270 (while only Mode A* appeared at Re = 250), which was higher 

than the transition range of Re = 230 – 250 reported by Williamson (1996a). 

In light of these earlier works, the primary aim of this study is to investigate the 

wake transition from Mode A* to Mode B. This aim has been pursued because 

although the fundamental mechanisms of the wake transition from Mode A* to Mode 

B are well understood, the actual transition process has not been studied in great detail. 

Due to the rapid increase of computing power in recent years, it has become possible 

to use a high computational mesh resolution within a large domain size to run 

simulations for a sufficiently long flow time for the investigation of the fully 

developed flow. The rest of this paper is organized in the following manner. In § 2, the 

governing equations, numerical model and model validation are presented. The Mode 

A* and Mode B vortex structures are discussed in § 3.1. The gradual wake transition 

from Mode A* to Mode B and a critical condition at Re = 265 – 270 are discussed in § 

3.2 and § 3.3, respectively. Finally, major conclusions are drawn in § 4. 

 

2. Numerical model 

2.1. Numerical method 

Numerical simulations have been carried out with OpenFOAM 

(www.openfoam.org) to solve the continuity and incompressible Navier-Stokes 

equations: 
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where 1 2 3( , , ) ( , , )x x x x y z  are the Cartesian coordinates, ui is the velocity 

component in the direction of xi, t is the time, and p is the pressure. Equations (2.1) 

http://www.openfoam.org/
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and (2.2) are solved with the FVM approach and the PISO (Pressure Implicit with 

Splitting of Operators) algorithm (Issa, 1986). The convection term is discretized 

using the fourth-order cubic scheme, while the diffusion term is discretized using a 

second-order linear scheme. A blended scheme consisting of the second-order 

Crank-Nicolson scheme and first-order Euler implicit scheme is used to integrate the 

equations in time. 

 

2.2. Boundary conditions 

 A hexahedral computational domain of 50D×40D×12D, as shown in Fig. 1(a), is 

adopted for the FVM simulations. At the inlet boundary, a uniform flow velocity U is 

specified in the x-direction. At the outlet, the Neumann boundary condition (i.e. zero 

normal gradient) is applied for the velocity, and the pressure is specified as a 

reference value of zero. A symmetry boundary condition is applied at the top and 

bottom boundaries, whereas a periodic boundary condition is employed at the two 

lateral boundaries perpendicular to the spanwise direction. A non-slip boundary 

condition is applied on the cylinder surface. 

 

  

(a)                                    (b) 

Fig. 1. (a) Schematic model of the computational domain, and (b) Close-up view of 

the reference mesh near the cylinder. 
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2.3. Computational mesh and domain 

The computational mesh and domain size have been chosen based on a thorough 

parameter dependence check, which is reported separately in Appendix A. The 

selected 2D mesh and the resulting 3D mesh are referred to as the standard meshes 

and are used throughout the present study unless otherwise stated. The numerical 

results obtained with the standard meshes have been demonstrated to be generally 

converged and consistent with independent numerical results reported by Posdziech 

and Grundmann (2001) based on a mesh dependence check. 

 

2.4. Model validation 

The numerical model used in this study was further validated with the simulation 

results of flow past a circular cylinder over a range of Re from 40 to 300. Based on 

the standard 2D and 3D meshes, the predicted St–Re (St being the Strouhal number, 

see equation (A.4)) relationship over the laminar and 3D wake transition regimes is 

shown in Fig. 2, together with previous independent experimental and numerical 

results reported in the literature. The present 2D results agree well with the 2D results 

reported by Barkley and Henderson (1996). The unsteady 2D flow appears at Re = 47, 

which is consistent with the numerical results by Henderson (1997) and Posdziech 

and Grundmann (2001), and very close to the experimental result of Re = 49 by 

Williamson (1996a). The present 3D results are also in good agreement with the 

experimental results reported in the literature (Fig. 2). It is noticed that the predicted 

sudden drop of St occurs at a considerably higher Re (~ 194) than the Re (~ 178) 

reported by Williamson (1996a). The Re corresponding to the sudden drop of St in the 

St–Re relationship is often identified as Recr in the literature. As stated by Williamson 

(1996b), the earlier transition point in Williamson (1996a) is largely due to end 

contamination in the experiments. By eliminating the end contaminations, Williamson 

(1996b) obtained an Recr of 194. The Recr from the present DNS study based on the 

standard 3D mesh is also 194. This value is also close to the Recr values of 188.5 

(±1.0), 190.2 (±0.02) and 190.5 predicted through linear stability analysis by Barkley 
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and Henderson (1996), Posdziech and Grundmann (2001), and Rao et al. (2013), 

respectively. 
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Fig. 2. The St–Re relationship over the laminar and 3D wake transition regimes. 

 

3. Numerical results 

Numerical simulations have been carried out for Re up to 300 in order to predict 

the wake transitions beyond Recr, including the interactions of Mode A* and Mode B 

structures, and the disappearance of Mode A* and transition to pure Mode B states. 

The wake transitions are identified qualitatively through numerical flow visualizations 

and quantitatively through examining the dependence of various flow properties on 

Re, e.g. Strouhal number, drag and lift force coefficients (equations (A.2–3)), base 

pressure coefficient (equation (A.5)), streamwise vorticity, streamwise enstrophy, 

spanwise flow velocity, and spanwise disturbance energy. The normalized streamwise 

vorticity ωx is defined as: 

yz
x

uu D

y z U


 
    

 (3.1) 
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The streamwise enstrophy εx and spanwise disturbance energy Ez are defined as: 

21
d

2
x x

V
V    (3.2) 

 
21

/ d
2

z z
V

E u U V   (3.3) 

where V is the volume of the flow field of interest. 

 

3.1. Vortex structures of Modes A* and B 

Before the examination of the complicated transition process from Mode A* to 

Mode B which involves a mixture of the two modes and a mode swapping process, 

the vortex structures of the two modes are examined separately at Re = 220 and Re = 

300, respectively, through numerical flow visualizations. The vortex cores are 

captured by the second negative eigenvalue λ2 of the tensor Ψ2 + Ω2, where Ψ and Ω 

are the symmetric and antisymmetric parts of the velocity gradient tensor, respectively 

(Jeong and Hussain, 1995). Fig. 3 and Fig. 4 show the iso-surfaces of λ2 = –0.05 

(coloured by ωx) at Re = 220 (Mode A) and Re = 300 (Mode B), respectively. From 

the visualization of the vortex structures, some particular features of the two modes, 

which are consistent with the experimental results reported in the literature (e.g. 

Williamson, 1996b), are summarized as follows: 

1. The 3D wake patterns are characterized by the development of a pure Mode A 

structure (Fig. 3(a)) and a pure Mode B structure (Fig. 4(a)) at the early stages. 

However, the pure Mode A structure only lasts for a short period of time before it 

evolves into a more stable pattern with large-scale dislocations, i.e. Mode A* (Fig. 

3(b)), as observed by Williamson (1996b) and confirmed by numerical studies 

with different mathematical formulations (e.g. Henderson, 1997; Braza et al., 

2001; Behara and Mittal, 2010). After the evolution of dislocations, the primary 

vortices and streamwise vortex pairs become less regular and exhibit phase 

differences in the spanwise direction (Fig. 3(b)). The dislocations can also be 

observed from the comparison of the Kármán vortex streets in the z-normal view 

(Fig. 3(c,d)). In contrast, the Mode B structure does not contain large-scale 

dislocations (Williamson, 1996b). For instance, for the Re = 300 case, only pure 
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Mode B structure is observed for the whole simulation process (t* = Ut/D = 0 – 

2440 with an output interval of 10) (see, e.g., the vortex structures at two distant 

steps shown in Fig. 4). 

2. It has been demonstrated in Williamson (1996b), Leweke and Williamson (1998), 

and Thompson et al. (2001) that the occurrence of Mode A is due to an elliptic 

instability of the primary vortex cores and the formation of streamwise vortex 

pairs through Biot-Savart induction, whereas the occurrence of Mode B is due to a 

hyperbolic instability of the braid shear layer region. In Fig. 3(a) (Mode A), the 

wavy pattern of the primary vortex cores (labelled from 1 to 9) can be observed, 

and the streamwise vortex pairs are originated from the primary vortex cores. In 

Fig. 4(a) (Mode B), the primary vortices (labelled from 1 to 10) are more stable, 

without large-scale spanwise waviness. It is also seen from the z-normal view that 

for Mode A, the primary vortex cores have stretched projections due to spanwise 

waviness (Fig. 3(c)), while for Mode B, the projections of the primary vortices are 

in the shape of hollow circles, and the primary and streamwise vortices are largely 

independent of one another. 

3. At Re = 220 (Mode A), three streamwise vortex pairs are observed within the 12D 

spanwise range (Fig. 3(a)), indicating a spanwise wavelength of approximately 4D. 

As pointed out by Williamson (1996b), the spanwise wavelength of the wavy 

primary vortex cores is naturally equal to the wavelength of the streamwise vortex 

pairs. In contrast, at Re = 300 (Mode B), 14 streamwise vortex pairs are observed, 

resulting in a spanwise wavelength of approximately 0.86D (Fig. 4(a,b)). It is 

found that the vortex pairs can be better visualized and counted from the 

iso-surfaces of ωx 
shown in Fig. 5. 

4. The streamwise vortices of Mode A exhibit an out-of-phase sequence between the 

neighbouring braids (Fig. 3(a)), whereas an in-phase pattern is found in Mode B 

(Fig. 5). This is consistent with the experimental findings reported by Williamson 

(1996a, 1996b). 

5. Mode B can only be observed in the near wake (e.g. less than x = 10D in Fig. 4(a)), 

whereas Mode A is sustainable for a much longer distance than Mode B in the 



10 
 

downstream direction (e.g. more than x = 20D in Fig. 3(a)). This is also consistent 

with the experimental findings reported by Williamson (1996a, 1996b). 

 

  

(a)                                            (b) 

  

(c)                                            (d) 

Fig. 3. Iso-surfaces of λ2 = –0.05 (coloured by ωx) 
at Re = 220: (a) t* = 200 (with high 

mesh resolution for the entire wake), (b) t* = 2600, and (c) and (d) are the z-normal 

views. The flow is from the left to the right past the cylinder on the left. 
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(a)                                            (b) 

  

(c)                                            (d) 

Fig. 4. Iso-surfaces of λ2 = –0.05 (coloured by ωx) 
at Re = 300: (a) t* = 160 (with high 

mesh resolution for the entire wake), (b) t* = 1820, and (c) and (d) are the z-normal 

views. The flow is from the left to the right past the cylinder on the left. 

 

  

 (a)                                           (b) 
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Fig. 5. Iso-surfaces of ωx = ±0.5 at Re = 300: (a) t* = 160 (with high mesh resolution 

for the entire wake), and (b) t* = 1820. Dark and light grey denote positive and 

negative values, respectively. The flow is from the left to the right past the cylinder on 

the left. 

 

The iso-surfaces of the pressure for Re = 220 (Mode A) and Re = 300 (Mode B) 

are shown in Fig. 6. It is seen that for both cases the high positive pressures occur at 

the front of the cylinder, while the negative values dominate the cylinder wake. The 

largest negative pressures mainly occur at the locations of the primary vortex cores. 

For Mode A, the same wavy pattern for the primary vortex cores (Fig. 3(a)) can be 

observed for the iso-surfaces of the pressure (Fig. 6(a)), and the same locations where 

three streamwise pairs develop along cores 2–4 in Fig. 6(a) are the locations of the 

streamwise vortex pairs in Fig. 3(a). For Mode B, compared with Mode A, the 

negative pressure is more concentrated at the primary vortex cores, and the 

streamwise pairs are less obvious. 

 

(a)    
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(b)    

Fig. 6. Iso-surfaces of pressure p (with high mesh resolution for the entire wake): (a) p 

= ±0.11 at Re = 220 and t* = 200, and (b) p = ±0.20 at Re = 300 and t* = 160. Dark 

and light grey denote positive and negative values, respectively. The flow is from the 

left to the right past the cylinder on the left. 

 

Williamson (1996b) demonstrated with 2D DNS results at Re = 200 that the 

tearing of the primary vortex cores for Mode A (see Fig. 3(a)) is associated with the 

location of the saddle point observed in the flow. The saddle point indicates the 

location where strong straining occurs, causing part of the primary vortex downstream 

of the saddle point to be pulled back upstream (Williamson, 1996b). Williamson 

(1996b) stated that in the case of Mode A, this primary vortex deformation occurs at 

particular spanwise locations where vortex loops are forming. 

The above findings are confirmed in the present study using 3D DNS. Fig. 7 

shows the instantaneous locations of the saddle point and vortex centre identified 

from various x-y cross-sections (some are shown in Fig. 8) along with the iso-surfaces 

of vortex cores determined by λ2, for the case of Mode A at Re = 220. On combining 

the two perspectives shown in Fig. 7, it is seen that the locations of the saddle point 

along the span are regular periodic and have a spanwise periodicity of the same value 

(4D) as for the wavy primary vortex cores and streamwise vortex pairs. When the 

saddle point gradually moves towards the cylinder, the primary vortex cores are also 

pulled back towards the cylinder, and the streamwise vortex pairs are developed at 
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such spanwise locations (Fig. 7(b)), which is consistent with the findings by 

Williamson (1996b). Fig. 8 shows four instantaneous 2D cross-sectional flow fields 

within half of a spanwise wavelength (z/D = 2.7 – 4.7), overlaid with contours of 

spanwise vorticity which is defined as: 

y x
z

u u D

x y U


 
    

 (3.4) 

At z/D = 4.7, the saddle point is furthest away from the cylinder. As the saddle point 

moves back towards the cylinder for z/D from 4.7 to 3.3, part of the negative spanwise 

vortex as shown in Fig. 8 is pulled back towards the cylinder. The positive spanwise 

vortex also moves towards the cylinder, as well as being pushed downwards by the 

backward movement of the negative vortex. The tearing of the spanwise vortex was 

also observed by Williamson (1996b) with 2D DNS results. For z/D from 3.3 to 2.7, 

the saddle point is not observed in the flow. The negative spanwise vortex moves 

further back towards the cylinder. As the vortex centre within the positive vortex is 

already very close to the cylinder, a more drastic downward movement is observed 

(see Fig. 7(a)). 

 

(a)   
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(b)   

Fig. 7. Locations of the saddle point and vortex centre identified from various x-y 

cross-sections at Re = 220 and t* = 200: (a) projections in the x-y plane (with 

iso-surfaces of λ2 = –2.0), and (b) projections in the x-z plane (with iso-surfaces of λ2 

= –1.0). 
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Fig. 8. Cross-sectional flow field (with arrows indicating the flow direction) and 

spanwise vorticity contours at different spanwise locations for Re = 220 and t* = 200. 
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The spanwise vorticity contours are shown at |ωz| = 2.0 – 3.0 (illustrated in figure (a)) 

with an interval of 0.1. The saddle point is marked by a cross in the figure. 

 

In the case of Mode B, a regular Mode B structure within z/D = 2.0 – 7.8 at Re = 

270 and t* = 3140 (Fig. 9) is used for identifying the location pattern of the saddle 

point along the span. It will be shown in § 3.3 that Mode B is most regular at 

approximately Re = 270. Fig. 10 shows the instantaneous locations of the saddle point 

and vortex centre identified from various x-y cross-sections along with the 

iso-surfaces of vortex cores determined by λ2. From the close-up view of the x-z plane 

(Fig. 10(c)), seven cycles of the variations of the saddle point and second vortex 

centre are observed within z/D = 2.0 – 7.8 along the span, which is consistent with the 

seven streamwise vortex pairs shown in Fig. 9. Although the periodic cycles for Mode 

B are not as regular as for Mode A, it is still evident that the tearing of the primary 

vortex cores is associated with the location of the saddle point in very similar phase 

variations (Fig. 10(c)). It is observed from the projections in the x-y plane that the 

variation range of the location of the saddle point for Mode B (Fig. 10(a)) is much 

smaller than that for Mode A (Fig. 7(a)). As a result, the primary vortex cores of Mode 

B display much smaller spanwise waviness amplitudes. 
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Fig. 9. Iso-surfaces of ωx = ±0.5 at Re = 270 and t* = 3140. Dark and light grey 

denote positive and negative values, respectively. The flow is from the left to the right 

past the cylinder on the left. 

 

(a)   
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(b)   

(c) 
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Fig. 10. Locations of the saddle point and vortex centre identified from various x-y 

cross-sections at Re = 270 and t* = 3140: (a) projections in the x-y plane (with 

iso-surfaces of λ2 = –2.0), (b) projections in the x-z plane (with iso-surfaces of λ2 = 

–1.5), and (c) close-up view of the x-z plane with the locations of the saddle point and 

vortex centre. 

 

3.2. Transition from Mode A* to Mode B 



20 
 

3.2.1. Transition range 

The second discontinuous change in the St–Re curve (Fig. 2), i.e. the transition 

from Mode A* to Mode B, occurs at approximately Re = 230 – 260. The frequency 

spectra of CL over the transition range are shown in Fig. 11. For Re ≤ 220, a distinct 

peak which corresponds to Mode A* exists in the spectrum. With the increase of Re, a 

second peak with higher frequency which corresponds to Mode B starts to grow. 

Meanwhile, the amplitude of the first peak decreases. The two peaks have similar 

amplitudes at approximately Re = 250. At Re = 260, the second peak becomes 

dominant, whereas the first peak decays further. Beyond Re = 265, the peak 

corresponding to Mode A* vanishes almost completely and the one corresponding to 

Mode B dominates the spectrum. The gradual energy transfer process from Mode A* 

to Mode B with the increase of Re observed here confirms the experimental finding 

by Williamson (1988). A similar process was also observed in a recent numerical 

study by Behara and Mittal (2010). The numerical results shown in Fig. 11 indicate 

that the transition process from Mode A* to Mode B occurs in the range of Re from 

230 to 260, which is quite close to the range of Re = 230 – 250 reported by 

Williamson (1996a) through experiments and the ranges of 230 – 265 (Barkley et al., 

2000) and 230 – 260 (Sheard et al., 2003) based on non-linear stability analysis. 

It is also seen from Fig. 11 that the frequency peaks are accompanied by small 

fluctuations for Re ≤ 260. According to Henderson (1997), this is due to the 

occurrence of vortex dislocations associated with Mode A* which leads to a 

broad-band frequency spectrum. In particular, in the mode swapping regime, small 

fluctuations are observed around the two frequency peaks. At the beginning and end 

of the transition process (i.e. at Re = 230 and 260), the secondary shedding mode is 

rather weak. Therefore, only the primary peak frequency is identified and plotted in 

the St–Re curve shown in Fig. 2. For the three cases in between, both peak frequencies 

can be captured and are thus plotted in the St–Re curve (see the close-up view in Fig. 

2).  

It is worth noting that an accurate determination of the relative importance 
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(probability of occurrence) of Mode A* and Mode B is difficult to achieve based on 

the frequency spectra shown in Fig. 11. This is because the broad-band frequency 

spectra due to Mode A* (Henderson, 1997) may interfere with the frequency peak of 

Mode B. For example, the frequency spectra of Re = 200 and 220 (Fig. 11) are due to 

Mode A* only, but contain small fluctuations spanning a range of St from ~ 0.16 to 

0.21, covering the St range for Mode B. Therefore, it is difficult to decouple the 

frequency peaks contributed by the two modes and to divide the range of St for the 

two modes precisely. Alternatively, the probability of occurrence of Mode A* and 

Mode B may be determined through numerical flow visualization, which will be 

examined later on in this section. 

Nevertheless, since the Mode A* frequency peak becomes relatively weak at Re ≥ 

250, the Mode B frequency peak becomes less contaminated by Mode A* and better 

distinguished, and thus the concentration of the energy in the Mode B peak can be 

roughly quantified. Fig. 12 shows the variation of the energy concentration ratio for 

Mode B with Re. The energy concentration ratio is defined as the ratio of the area 

under the Mode B peak to the area under the entire frequency spectrum of St between 

0.16 and 0.24 shown in Fig. 11. The width of the area under the Mode B peak is 

chosen as ΔSt = 0.01 (so that the Mode A* peak is not incorporated), with the centre 

located at the peak frequency point. It is seen in Fig. 12 that the energy concentration 

ratio for Mode B generally increases linearly with Re for Re = 250 – 270 but 

decreases slightly with further increase of Re (as the Mode B structure becomes 

increasingly disordered at Re > 270, which will be shown later on in § 3.2.3). 

As Re increases from 200 up to 280, the frequencies corresponding to both peaks 

increase gradually. The frequency corresponding to Mode B experiences a slight drop 

as Re increases from 280 to 300 (see Fig. 2 and Fig. 11). It is also noticed that the St 

values predicted by the 2D and 3D simulations are closest to each other at Re = 270 

after the onset of Mode A* instability (see Fig. 2). The physical reasons behind this 

feature will be discussed in § 3.3. 
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Fig. 11. Frequency spectra of CL for Re in the range of 200 to 300. 
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Fig. 12. Variation of the energy concentration ratio for Mode B with Re. 

 

The transient vortex structures in the transition from Mode A* to Mode B are 

examined visually. Fig. 13 shows the variations of the probability of occurrence of 

two vortex patterns with Re: (a) Mode A* (with large-scale dislocations, not pure 

Mode A), and (b) Mode B structures. The probability of occurrence of Mode A* or 

Mode B structures is defined as the ratio of the accumulated time of appearance of the 

mode to the total sampling time. The statistics for the probability of occurrence 

normally starts at t* = 1000 (with an output interval of 10) where the flow is fully 

developed. For the cases in the transition regime, normally 175 – 355 snapshots of the 

ωx field are examined for each case to achieve meaningful (sample-independent) 

statistics. For each case, the statistics is carried out by visually examining the 

existence of the above vortex patterns in each snapshot. The large-scale dislocations 

are spotted easily as they appear in the form of continuous periods and normally take 

up the entire span width. The Mode B pattern, on the other hand, is largely scattered 

around across the span width and is less obvious. It should be noted that the Mode B 

pattern is only counted when there exist at least two successive Mode B streamwise 

vortex pairs along the span width. For further clarity, a few examples are given in 

Table 1 to illustrate the identification of Mode A* and Mode B with reference to the 

wake patterns shown in Fig. 14 and Fig. 20. 
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Fig. 13. Probability of occurrence of Mode A* and Mode B structures. 

 

Table 1. Examples of the classification of wake patterns based on the streamwise 

vorticity field. 

Figure Mode A* structure Mode B structure 

Fig. 14(a,d) No No 

Fig. 14(b) No Yes 

Fig. 14(c) No Yes 

Fig. 14(e) No Yes 

Fig. 14(f) Yes No 

Fig. 20(a,b) No Yes 

 

It is found that for Re ≤ 220, only dislocation patterns exist in the domain and 

there is no sign of Mode B (see, e.g., Fig. 3(b)). For Re ≥ 270, vortex dislocations do 

not occur, whereas only Mode B (and sometimes together with scattered pure Mode A) 

can be observed in all of the snapshots examined (see, e.g., Fig. 4). During the 

transition process of Re between 230 and 265, however, both vortex patterns can be 

detected in the simulations. The two patterns usually occur at different time instants as 

the dislocations can normally occupy the whole span width. Occasionally, they may 

coexist in the same domain (but at different spanwise locations). With the increase of 
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Re, the probabilities of occurrence of Mode A* and Mode B exhibit monotonic drop 

and growth, respectively. The two probability curves intersect at approximately Re = 

253 with the probability of occurrence of either mode of approximately 50% (Fig. 13). 

This point is thus considered as the separation point beyond which Mode B becomes 

dominant. 

Based on the observation of a sharp decrease of the statistical width of wake 

structure at Re ~ 250 when Mode B appears, Williamson (1996b) suggested that this 

“possibly corresponds with a decrease in the presence of dislocations”. Through 

numerical visualization of the transient vortex structures, the present study confirms 

clearly the decrease of probability of occurrence of dislocations (i.e. Mode A*) with 

increase of Re. However, unlike the indication of a discontinuous decrease of the 

wake width as shown in Williamson (1996b), the decrease of the probability of 

occurrence of dislocations observed in Fig. 13 is a continuous process. Considering 

that the decreasing trend mainly occurs in a narrow Re range of 240 – 265 (Fig. 13), 

the experiments carried out in Williamson (1996b) with an Re interval of ~ 15 may be 

the reason why a continuous decreasing trend was not identified. 

The transition process observed visually (Fig. 13) shows some similarities with 

that observed through examining the frequency spectra of CL (Fig. 11) in terms of the 

transition range and relative importance of the two modes. At Re = 265, the frequency 

spectra of CL cannot capture the Mode A* peak, whereas based on visualization, the 

Mode A* pattern has a very small probability of occurrence of 3.5%. It should be 

noted that in this case the dislocations only occur during t* = 1540 – 1630, and cannot 

be observed during the remaining simulation period of more than 2000 

non-dimensional time units. Based on the present simulation results, it is reasonable to 

say that Re = 265 is just within or beyond the range of the transition process from 

Mode A* to Mode B. 

 

3.2.2. Mode swapping cycles in the transition range 

In the transition process from Mode A* to Mode B, mode swapping occurs 
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cyclically in each case. Each mode cycle begins with the emergence of a nearly pure 

Mode A structure along the entire span width. The pure Mode A structure develops in 

strength for a short period of time, followed by one of the following two routes: 

1. Dislocation cycle: The pure Mode A structure evolves into a continuous stage of 

Mode A* (i.e. with large-scale dislocations). The dislocation stage may last for 

some time before it is replaced by the pure Mode B structure or a mixture of 

Modes B and A (without dislocations). It should be noted that in the mixture of 

Modes B and A, Mode A emerges intermittently at random spanwise locations, but 

cannot fill up the whole span width, and will be replaced by Mode B shortly. 

2. Non-dislocation cycle: The pure Mode A structure is replaced by Mode B directly, 

followed by the persistence of the pure Mode B structure or a mixture of Modes B 

and A (without dislocations). It should be noted that for a non-dislocation cycle, 

there are no dislocations throughout the whole cycle. 

At the end of each cycle, all of the Mode B structures die off. If the cycle ends with 

the pure Mode B structure spanning the entire span width, the wake will become 

almost 2D. If the cycle ends with a mixture of Modes B and A (without dislocations), 

the Mode B structure in the mixture will die off while the Mode A structure in the 

mixture will form part of the pure Mode A structure in the next cycle. Eventually, a 

new cycle with the development of a pure Mode A structure along the entire span 

width begins. 

Fig. 14 shows a typical short sequence of the development of ωx field extracted 

from the case of Re = 240. In the first cycle (Fig. 14(a–c)), after the formation of a 

pure Mode A structure with three streamwise vortex pairs (Fig. 14(a)), Mode B starts 

to develop within the three vortex loops (Fig. 14(b)) and gradually fills up the whole 

span width (Fig. 14(c)). In the second cycle (Fig. 14(d–f)), after the emergence of the 

same Mode A structure as that in the first cycle (Fig. 14(d)), vortex dislocation starts 

to occur in the middle loop (as marked by a solid rectangle frame in Fig. 14(e)) and 

propagates towards both ends of the span until the whole span is occupied by 

large-scale dislocations (Fig. 14(f)). It is seen that although the upper loop is fully 

occupied by Mode B structures in Fig. 14(e), which is similar to the process observed 
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in the first cycle, the dislocation originated from the middle loop eventually engulfs 

all Mode B structures, leading to a dislocation structure across the entire span area. 

 

 

 

Fig. 14. A short sequence of the iso-surfaces of ωx = ±0.5
 
at Re = 240. Dark and light 

grey denote positive and negative values, respectively. The flow is from the left to the 

right past the cylinder on the left. 

 

The two cycles described in the previous paragraph actually take two different 

routes despite the similar initial conditions shown in Fig. 14(a,d). As long as 

dislocations occur within any of the three Mode A vortex loops, the mode swapping 

cycle will follow the dislocation cycle, no matter what happens to the rest of the loops. 

A non-dislocation cycle can only occur when all of the loops are filled with Mode B 
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structures, either simultaneously or successively. This conclusion is found to be valid 

in the entire transition process from Mode A* to Mode B, and all of the large-scale 

dislocations observed in the transition process from Mode A* to Mode B are 

initialized with the local dislocation (spanwise modulation) of a specific vortex loop 

in the domain (after the pure Mode A structure develops in strength for a short period 

of time). 

As stated in Henderson (1997), the Mode B structures observed during the 

transition process from Mode A* to Mode B (Re = 230 – 260), prior to the onset point 

of Mode B instability predicted through linear stability analysis (e.g. Re = 259 by 

Barkley and Henderson (1996)), are due to the fact that the existence of Mode A* 

instability would destabilize Mode B in the non-linear interaction between the two 

modes. Through numerical flow visualization of the whole transition process from 

Mode A* to Mode B, it is found that all of the Mode B structures are developed based 

on the streamwise vortex pairs of Mode A (see, e.g., Fig. 14) or streamwise vortices of 

Mode A*. Since the physical mechanism for Mode B instability is a hyperbolic 

instability of the braid shear layer region (Williamson, 1996b; Leweke and 

Williamson, 1998; Thompson et al., 2001), it is believed that the streamwise vortices 

of Modes A and A* developed in the braid shear layer region are the destabilization 

factors for an early development of the Mode B structures. After the replacement of 

the streamwise vortices of Mode A or A* by Mode B, the Mode B structures may 

decay in time, as the source for the destabilization of Mode B disappears. However, 

due to the intermittent emergence of the Mode A streamwise vortex pairs which fill up 

the locations where Mode B disappears, a mixture of Modes B and A is sustained 

before the end of a cycle. 

Fig. 15 shows the mode swapping process as a function of time for the cases in 

the transition process from Mode A* to Mode B. The starting point of each 

dislocation and non-dislocation cycle is denoted by a solid dot and open circle, 

respectively. For each dislocation cycle beginning with a solid dot, a shaded 

dislocation period is followed (Fig. 15). For Re ranging from 230 to 245, the 

non-dislocation cycles are very short in duration while the dislocation periods persist 
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for at least 400 non-dimensional time units. As a result, the probability of occurrence 

of the large-scale dislocations is larger than 80%, whereas for the Mode B structures 

which largely occur in the non-dislocation segments, the probability of occurrence is 

smaller than 30% (see Fig. 13). At Re = 250, the average duration of the dislocation 

periods drops sharply to 284 non-dimensional time units, and more dislocation cycles 

can be observed. The cyclic mode swapping process becomes more frequent. With 

decrease of the lengths of the dislocation cycles, the probability of occurrence of 

dislocations decreases and the probability of occurrence of Mode B structures 

increases (Fig. 13). 

For Re ranging from 230 to 250, the dislocation cycles can be triggered easily 

from the pure Mode A structure within one to four cycles. For Re ranging from 255 to 

265, it becomes relatively difficult to trigger dislocations from the pure Mode A 

structure, as it is seen in Fig. 15 that there are many more non-dislocation cycles than 

dislocation cycles. In addition, compared with the average duration of the dislocation 

periods at Re = 250 (of 284 non-dimensional time units), the average durations of the 

dislocation periods at Re = 255, 260, and 265 are further reduced to 248, 167, and 100 

non-dimensional time units, respectively. For Re ≥ 260, the non-dislocation cycles 

have similar durations to the dislocation cycles. As a result, for Re ≥ 260, the 

probability of occurrence of large-scale dislocations is smaller than 25%, while the 

probability of occurrence of Mode B structures is larger than 75%. 

Beyond Re = 270, there are no mode swapping cycles. The only case with the 

occurrence of Mode A (without dislocations) is the Re = 270 case, in which a mixture 

of Modes B and A (without dislocations) is observed. 
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Fig. 15. Time-histories of the occurrence of dislocations for the cases in the transition 

process from Mode A* to Mode B. 

 

3.2.3. Time-histories of the force coefficients and vorticity 

Fig. 16 plots the time-histories of the drag and lift force coefficients for a few 

cases that contain Mode B. The horizontal dashed lines in each figure mark the 

fluctuation ranges of the corresponding 2D force coefficients. For the cases in the 

transition process from Mode A* to Mode B (Fig. 16(a–c)), it is seen that the periods 

over which large amplitudes of CL take place match the non-dislocation periods 

shown in Fig. 15. The amplitudes of CD and CL observed during the non-dislocation 

periods are close to their 2D counterparts, indicating that the flow 

three-dimensionality is weak when dislocations do not occur. During the dislocation 
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periods, the CD values and the amplitudes of CL decrease, indicating that energy is 

transferred to the third direction. In particular, oblique vortex shedding occurs 

spontaneously along the entire span at t* = 3710 – 3820 for the Re = 250 case (e.g. 

Fig. 17(a), in comparison with an example of parallel vortex shedding shown in Fig. 

17(b)). Due to the remarkable phase differences along the span, the integrated lift 

coefficient is largely cancelled out, resulting in the smallest fluctuation amplitudes in 

the time-history (Fig. 16(b)). 
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Fig. 16. Time-histories of the drag and lift coefficients for some cases containing 

Mode B. 

 

(a)          (b)  

Fig. 17. Iso-surfaces of ωx = ±0.5
 
at Re = 250: (a) oblique vortex shedding at t* = 
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3750, and (b) parallel vortex shedding at t* = 3850. Dark and light grey denote 

positive and negative values, respectively. The flow is from the left to the right past 

the cylinder on the left. 

 

The relationship between dislocation and the degree of flow three-dimensionality 

is further examined with both the largest |ωx| value in the domain and the streamwise 

enstrophy εx integrated over the near-wake region of x/D = 0 – 10. At Re = 240, for 

each of the three non-dislocation periods shown in Fig. 15, there is a sudden drop in 

the time-histories, as highlighted with a circle in the left column of Fig. 18. At Re = 

260, each of the four dislocation periods corresponds to a rapid increase of |ωx|max and 

εx, as circled in the middle column of Fig. 18. The non-dislocation and dislocation 

parts can be roughly divided by the horizontal line of |ωx|max = 4.5 as shown in Fig. 

18(a). For the Re = 265 case, the entire time-histories beyond the only dislocation 

period of t* = 1540 – 1630 are generally below the division line, as shown in the right 

column of Fig. 18. 
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Fig. 18. Time-histories of (a) the largest |ωx| value in the domain, and (b) the 

streamwise enstrophy εx integrated over the near-wake region of x/D = 0 – 10, for 

some cases in the transition process from Mode A* to Mode B. 

 

During the transition process from Mode A* to Mode B, the Mode B structure, 

which is largely observed in the non-dislocation segments with large-amplitude force 

coefficients, usually takes up part of the span and the streamwise vortices are quite 

ordered (e.g. Fig. 14(c,e)). At Re of 265 (beyond the only dislocation period) and 270, 

the large-amplitude force coefficients resemble the 2D results for the entire fully 

developed stage (Fig. 16(d,e)). The Mode B structure is also in an ordered pattern, and 

can normally occupy the majority of the span. Beyond Re = 270, Mode B becomes 

increasingly disordered with increase of Re. Correspondingly, the force coefficients 

deviate more and more from their 2D counterparts and become increasingly 

disordered (Fig. 16(f,g)). 

As Mode B becomes increasingly disordered beyond Re = 270, the largest |ωx| 

value and integrated εx in the domain, which represent the degree of flow 

three-dimensionality, also increase with increase of Re (Fig. 19). Generally speaking, 

the streamwise vortices are found to be more disordered when |ωx|max > 5.5. It is seen 

from Fig. 19 that disordered Mode B can sometimes occur at Re = 280 (when |ωx|max > 

5.5). Fig. 20 gives some examples of typical ordered and relatively disordered Mode 

B patterns at Re = 280. The corresponding |ωx|max values of the two time instants are 

pointed out in Fig. 19. For the ordered one shown in Fig. 20(a), the streamwise 

vortices are all parallel to each other in the streamwise direction and have similar 

spanwise wavelengths. In contrast, the disordered Mode B as shown in Fig. 20(b) 

contains slightly oblique streamwise vortices and their spanwise wavelengths are 

rather different. At Re = 300, disordered Mode B similar to the pattern shown in Fig. 

20(b) occurs more frequently, whereas relatively ordered Mode B structures (e.g. Fig. 

5) only occur occasionally. In this case, the majority part of the time-history of |ωx|max 

shown in Fig. 19(a) is above the horizontal line of |ωx|max = 5.5. 
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Fig. 19. Time-histories of (a) the largest |ωx| value in the domain, and (b) the 

streamwise enstrophy εx integrated over the near-wake region of x/D = 0 – 10, for 

some cases beyond the transition process from Mode A* to Mode B. 

 

(a)         (b)  
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Fig. 20. Iso-surfaces of ωx = ±0.5
 
at Re = 280: (a) ordered Mode B at t* = 1550, and 

(b) relatively disordered Mode B at t* = 2750. Dark and light grey denote positive and 

negative values, respectively. The location of the largest |ωx| value in the domain is 

denoted by a circle. The flow is from the left to the right past the cylinder on the left. 

 

3.3. Critical condition at Re = 265 – 270 

Williamson (1996b) reported a critical condition at Re = 260 where maximum 

values of the base pressure coefficient and root-mean-square flow velocity were 

observed. The critical condition is confirmed in the present study at approximately Re 

= 265 – 270 in terms of various quantities including flow velocity, vorticity, and 

hydrodynamic forces. 

Fig. 21(a) shows the variation of the time-averaged |ωx|max calculated from the 

time-histories (e.g. Fig. 18(a) and Fig. 19(a)) with Re. For Re ≤ 250, as mentioned 

previously, the relatively large |ωx|max values (i.e. strong flow three-dimensionality) 

are due to large-scale dislocations. A sharp drop of the |ωx|max is observed at Re = 250 

– 265, in line with a sharp decrease of the probability of occurrence of dislocations as 

shown in Fig. 13. The averaged |ωx|max values obtained from a dislocation period and 

two non-dislocation periods (as shaded in Fig. 18) are further plotted in Fig. 21 to 

clarify the sharp drop. The non-dislocation periods that consist of either ordered Mode 

B or Mode A induce the lowest averaged |ωx|max values which are close to the one 

observed at Re = 270. In contrast, the averaged |ωx|max value observed during the 

dislocation period is much larger and is similar to the value observed in the 

dislocation period of Re = 240 (as indicated by the shaded rectangle in the left column 

of Fig. 18). However, because the probabilities of occurrence of dislocations for Re = 

260 and Re = 240 have a drastic difference (21.2% and 88.0%, respectively), the 

overall averaged |ωx|max is very close to the dislocation value for Re = 240, but much 

closer to the non-dislocation values for Re = 260. At Re = 265, dislocations only have 

a very small probability of occurrence of 3.5% and thus only have a very small effect 

on the overall performance. Beyond Re = 270, there is no dislocation in the domain, 
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whereas the increasingly disordered Mode B becomes the reason why the averaged 

|ωx|max starts to grow again. Fig. 21(b,c) shows the variations of the time-averaged εx 

and Ez within x/D = 0 – 10 of the wake with Re. It is seen that all of the three 

quantities share similar trends in terms of predicting the three-dimensionality of the 

flow. 
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Fig. 21. Time-averaged quantities for the 3D cases: (a) the largest |ωx| value in the 

domain, (b) the integrated streamwise enstrophy within x/D = 0 – 10, and (c) the 

integrated spanwise kinetic energy within x/D = 0 – 10. 

 

Fig. 22 shows the time-averaged drag coefficient and root-mean-square lift 

coefficient for a wide range of Re. The statistics is taken after the flow becomes fully 

developed. For the time-histories shown in Fig. 16, the statistics starts at t* = 1000. 

The results calculated from the second half of the sampling period are also plotted in 

Fig. 22 to demonstrate the sufficiency of the statistical data. At Re = 194, the 

deviations of the 3D D
C  and 

L
C   results from the 2D curves mark the onset of 

Mode A* instability. It is seen in Fig. 22 that the flow three-dimensionality becomes 

weakest at Re of 265 and 270, in line with the variation trends of the time-averaged 

|ωx|max, εx, and Ez (Fig. 21). The D
C  and 

L
C   values at Re = 260 can also be 

separated into the dislocation and non-dislocation parts (Fig. 22), in the same way as 

the separation of the time-averaged |ωx|max, εx and Ez values. 
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Fig. 22. Time-averaged drag coefficient and root-mean-square lift coefficient. 

 

Fig. 23 shows the root-mean-square spanwise velocity recorded at three sampling 

points in the near wake. As the D
C  and 

L
C   values drop from their 2D 

counterparts after the onset of Mode A* instability (Fig. 22), the fluctuations of the 

spanwise velocity grow accordingly. The same sharp drop at Re of 265 and 270 is 

observed in Fig. 23 due to a weaker flow three-dimensionality, which is consistent 

with the variations observed in Fig. 21 and Fig. 22. 
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Fig. 23. Root-mean-square spanwise velocity recorded at three sampling points in the 

near wake. 

 

The same variation trends can also be observed in the St–Re (Fig. 2) and Cpb–Re 

(Fig. 24) relationships, where the 2D and 3D values are closest to each other at 

approximately Re = 265 – 270. It should be noted that in the Cpb–Re curve, the sudden 

drop observed at the transition to Mode A* instability is different from the 

experimental result by Williamson and Roshko (1990), in terms of both the critical 

point and the shape of the curve near the critical point. As reported by Williamson 

(1996b), the critical transition point should be at approximately Re = 194 if the end 

contamination effect is well controlled. Regarding the shape of the curve, since the 

St–Re curve (Fig. 2) also exhibits a sudden drop rather than a mild decrease at the 

transition to Mode A* instability, it is believed that a sudden drop may take place for 

the base pressure coefficient as well. 
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Fig. 24. Variation of the base pressure coefficient with the Reynolds number over the 

laminar and 3D wake transition regimes. 

 

The critical condition at approximately Re = 265 – 270 as discussed above has 

also been pointed out by Williamson (1996b), in which the critical point was reported 

to be at Re = 260. For example, the experimental study by Williamson and Roshko 

(1990) found that the peak in the base pressure curve was at approximately Re = 260 

(Fig. 24). Two possible causes were proposed by Williamson (1996b). One is due to 

the resonance between the shear layer oscillations and the wake oscillations at 

approximately Re = 262. The other is that the whole span becomes unstable to Mode 

B at this point, rather than the presence of patches of Mode B together with Mode A 

and dislocations. On the other hand, the numerical study by Henderson (1997) related 

this phenomenon solely to the non-linear stability of Mode B. 

According to the discussion in this section, we suggest that the critical condition 

at approximately Re = 265 – 270 marks a transition from the disappearance of the 

large-scale dislocations associated with Mode A* to the emergence of increasingly 

disordered Mode B structures, leading to the weakest flow three-dimensionality in this 

region. The present numerical results show that the flow structure at the critical 

condition of Re = 265 – 270 is characterized by a mixture of ordered Mode B and 

Mode A structures, rather than only pure Mode B structures. Similar mixed ordered 
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flow structures and weakest flow three-dimensionality are also found in the 

non-dislocation periods at Re = 260. It is the additional dislocation periods that divert 

the overall time-averaged quantities in Fig. 21 to Fig. 24 away from the critical 

condition. 

 

4. Conclusions 

This paper presents detailed 3D DNS of flow past a circular cylinder over a range 

of Re up to 300. The high-resolution vortex structures of Mode A, Mode A* and 

Mode B have been reproduced by DNS. It is demonstrated with 3D DNS that the 

periodic tearing of the primary vortex cores is associated with the spanwise 

periodicity of the location of the saddle point in the flow. It is found that the variation 

range of the location of the saddle point for Mode B is much smaller than that for 

Mode A, which is responsible for much smaller spanwise waviness amplitudes of the 

primary vortex cores of Mode B in comparison with Mode A. 

The gradual wake transition process from Mode A* to Mode B (Williamson, 

1996b) is well captured over a range of Re from 230 to 260. With the increase of Re, 

the probabilities of occurrence of Mode A* and Mode B exhibit continuous and 

monotonic drop and growth, respectively. Mode B becomes the dominant mode 

beyond Re ~ 253. For each case within the transition range, the transient mode 

swapping process consists of dislocation and non-dislocation cycles. Each cycle 

begins with a nearly pure Mode A structure, followed by a stage of Mode A* and then 

a stage of Mode B or a mixture of Modes B and A (without dislocations) for a 

dislocation cycle, or a stage of Mode B or a mixture of Modes B and A (without 

dislocations) directly for a non-dislocation cycle. With increase of Re, it becomes 

more difficult to trigger dislocations from the pure Mode A structure and form a 

dislocation cycle, and each dislocation stage becomes shorter in duration, resulting in 

a continuous reduction in the probability of occurrence of Mode A* and thus an 

opposite effect for Mode B. The occurrence of large-scale dislocations results in a 

decrease of the drag coefficient, a decrease of the amplitude of the lift coefficient, and 
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an increase of the largest streamwise vorticity and integrated streamwise enstrophy in 

the domain, indicating strong flow three-dimensionality. 

The Mode B structures in the transition process are developed based on the 

streamwise vortices of Mode A or A* which destabilize the braid shear layer region. 

After the replacement of the streamwise vortices of Mode A or A* by Mode B, the 

Mode B structures may decay in time, as the source for the destabilization of Mode B 

disappears. However, due to the intermittent emergence of the Mode A streamwise 

vortex pairs which fill up the locations where Mode B disappears, a mixture of Modes 

B and A is sustained before the end of a cycle. 

A critical condition (Williamson, 1996b) is confirmed by the present DNS at 

approximately Re = 265 – 270 where the weakest flow three-dimensionality is 

observed. The weakest flow three-dimensionality at this point is reflected by the 

smallest time-averaged |ωx|max, εx, and Ez values in the domain, the smallest 

root-mean-square spanwise velocity in the near wake, and the closest 2D and 3D 

results of the mean drag coefficient, root-mean-square lift coefficient, Strouhal 

number, and base pressure coefficient. A transition from the disappearance of Mode 

A* to the emergence of increasingly disordered Mode B structure is responsible for 

this critical condition. 
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Appendix A. Mesh convergence 

The computational mesh and domain size were chosen based on a parameter 

dependence check, which was carried out in two steps: (i) First, the adequacy of mesh 

resolution and domain size in the x-y plane (i.e. the plane perpendicular to the cylinder 

span) was examined by a number of 2D simulations. (ii) A 3D mesh was generated by 

replicating an adequate 2D mesh along the z-axis, resulting in an identical mesh 

resolution in all planes perpendicular to the cylinder span. A mesh dependence study 

on this mesh was then undertaken. The selected 2D mesh and the resulting 3D mesh 

are referred to as the standard meshes throughout this paper. 

A reference 2D mesh was constructed first based on a preliminary parameter 

dependence study, which is not detailed here. The domain size for the reference mesh 

is 50D×40D. The cylinder perimeter is equally discretized with 132 nodes. The radial 

size of the first layer of mesh next to the cylinder is 0.001D. The cell expansion ratio 

in the whole domain is kept below 1.1. A close-up view of the reference mesh near the 

cylinder is shown in Fig. 1(b). 

The reference mesh was used to simulate flow at Re = 300 (Case 1 in Table 2), 

which is representative of the highest Re adopted in this study. A total of six variations 

to the reference mesh were also used to simulate flow at Re = 300 (Case 2 to Case 7 in 

Table 2) so as to properly assess the adequacy of the mesh and domain size. Test cases 

2–4 were designed to examine the adequacy of the computational domain size while 

test cases 6–7 were designed to examine the effect of mesh resolution in the wake 

region. The variation of cell length with x-coordinate along y = 0 is shown in Fig. 25. 

Case 5 doubles the number of cells of Case 1 in both directions, which results in the 

finest overall mesh resolution among the cases considered. Specifically, the number of 

cells around the cylinder is doubled, while the radial size of the first layer of mesh 

next to the cylinder is halved. 
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Fig. 25. Variation of cell length with x-coordinate along y = 0. 

 

The time step ∆t adopted for each case is based on the criterion that the Courant 

number Co is kept below 0.5 in the entire computational domain, where Co is defined 

as: 

/Co u t l    (A.1) 

where |u| is the magnitude of the velocity through a cell, and ∆l is the cell size in the 

direction of the velocity. This results in a non-dimensional time step (defined as ∆t* = 

U∆t/D) of 6.42×10-3 at Re = 300. 

The mesh and domain size dependence was examined by quantifying the 

influence of domain size and mesh resolution on the drag and lift force coefficients 

( D
C  and L

C ), Strouhal number St , and base pressure coefficient 
pb

C  on the 

cylinder, which are defined as follows: 

2/ ( / 2)
D D z

C F DU L  (A.2) 

2/ ( / 2)
L L z

C F DU L  (A.3) 

/
L

St f D U  (A.4) 

2( ) / ( / 2)
pb b

C p p U   (A.5) 

where D
F  and L

F  are the integrated drag force and lift force, respectively,   is 
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the fluid density, 
z

L  is the spanwise cylinder length, 
L

f  is the frequency of the 

fluctuating lift force, b
p  is the time-averaged pressure at the rear stagnation point of 

the cylinder, and p  is the reference pressure at the inlet of the domain. The 

time-averaged drag and lift coefficients are denoted as 
D

C  and 
L

C , respectively. 

The root-mean-square lift coefficient 
L

C   is defined as: 

 2

,
1

1 N

L L i L

i

C C C
N 

    (A.6) 

where N is the number of values in the time-history of CL. 

The simulation results are listed in Table 2. The relative errors in the brackets are 

calculated by using the results from Case 1 as reference values. Apart from Case 5, 

the relative errors of the four quantities for each case are well within 1%, which 

demonstrates that further increase of the domain size and wake resolution has 

negligible effect on the results. Among all the cases, Case 5 recorded the largest 

discrepancies of the four quantities with respect to Case 1 (still within 1.7%). In 

consideration of the four times increase of the total cell number in Case 5, the mesh 

resolution of Case 1 is still considered as sufficient in the prediction of forces on the 

cylinder. Since high mesh resolution in the cylinder wake region is anticipated to 

result in high-quality wake structures, Mesh 6 is chosen as the standard mesh and 

used for 3D mesh dependence study. Mesh 7 is adopted occasionally in 3D 

simulations when more detailed visualization results are required. 
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Table 2. Results of the 2D mesh dependence study at Re = 300. The relative errors in the brackets are calculated by using the results from Case 1 

as reference values. 

Case Description Number of cells 
D

C  
L

C   pb
C  St 

1 Reference mesh 18,488 1.3768 0.6407 1.1940 0.21068 

2 Double the domain length from inlet to cylinder 

centre (from 20D to 40D) 

19,251 1.3719 

(-0.36%) 

0.6376 

(-0.48%) 

1.1883 

(-0.48%) 

0.21021 

(-0.22%) 

3 Double the domain length from cylinder centre to 

outlet (from 30D to 60D) 

19,251 1.3767 

(-0.01%) 

0.6392 

(-0.23%) 

1.1939 

(-0.01%) 

0.21093 

(+0.12%) 

4 Double the domain length in the y-direction (from 

40D to 80D) 

20,070 1.3717 

(-0.37%) 

0.6371 

(-0.56%) 

1.1862 

(-0.65%) 

0.21031 

(-0.18%) 

5 Double the amount of cells in both directions 

(nodes around cylinder from 132 to 264) 

73,952 1.3837 

(+0.50%) 

0.6511 

(+1.62%) 

1.2073 

(+1.11%) 

0.21160 

(+0.44%) 

6 No cell expansion in the x-direction within 5.5D 

of wake (see Fig. 25) (Standard mesh) 

26,445 1.3775 

(+0.05%) 

0.6423 

(+0.25%) 

1.1949 

(+0.07%) 

0.21049 

(-0.09%) 

7 No cell expansion in the x-direction for the entire 

wake (see Fig. 25) 

73,969 1.3737 

(-0.23%) 

0.6420 

(+0.20%) 

1.1899 

(-0.34%) 

0.20993 

(-0.36%) 
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Table 3. Results of the 3D mesh dependence study. The relative errors in the brackets are calculated by using the results obtained from the 

standard mesh as reference values. 

Re Mesh type Number of 

cells 

St St from the second 

half of data 

D
C  

D
C  from the 

second half of data
 

220 Standard mesh (Lz/D = 12, ∆z/D = 0.1) 3,173,400 0.1861 0.1869 1.2525 1.2608 

 Extended (Lz/D from 12 to 24) 6,346,800 0.1856 (-0.27%) 0.1856 1.2539 (+0.11%) 1.2509 

 Refined in z-direction (∆z/D from 0.1 

to 0.05) 

6,346,800 0.1855 (-0.32%) 0.1855 1.2621 (+0.77%) 1.2616 

 Refined in x-y plane (nodes around 

cylinder from 132 to 198) 

7,202,400 0.1878 (+0.91%) 0.1877 1.2633 (+0.86%) 1.2637 

 Posdziech and Grundmann (2001)  0.1859 (-0.11%)  1.2511 (-0.11%)  

300 Standard mesh 3,173,400 0.2038 0.2041 1.2960 1.2985 

 Extended 6,346,800 0.2039 (+0.05%) 0.2043 1.2993 (+0.25%) 1.3019 

 Refined in z-direction 6,346,800 0.2040 (+0.10%) 0.2037 1.2907 (-0.41%) 1.2877 

 Refined in x-y plane 7,202,400 0.2035 (-0.15%) 0.2026 1.2871 (-0.69%) 1.2786 
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The 3D mesh dependence study focused mainly on the mesh resolution and 

domain size in the spanwise direction. The 3D mesh formed using Mesh 6 in Table 2 

is referred to as the standard 3D mesh in Table 3. For the standard 3D mesh, the cell 

size in the spanwise direction (∆z) is 0.1D and the spanwise domain length is 12D. 

Compared with the standard mesh, the mesh that is refined in the z-direction has a 

spanwise cell size of 0.05D, while the extended mesh has a spanwise domain length 

of 24D. It should be noted that the spanwise domain length is specified to be an 

integer multiple of 4D. The value 4D is very close to the most unstable spanwise 

wavelength for Mode A structure at Recr obtained from linear stability analysis, e.g. 

3.96D by Barkley and Henderson (1996), and 3.966D by Posdziech and Grundmann 

(2001). This is necessary for the accurate determination of the Recr value in this paper. 

Furthermore, 3D simulations were also carried out with a mesh that was refined in the 

x-y plane. This mesh has the number of cells in both x- and y-directions 1.5 times that 

for the standard 3D mesh. Specifically, the number of cells around the cylinder is 

increased by 1.5 times, while the radial size of the first layer of mesh next to the 

cylinder is reduced by 1.5 times. 

The 3D mesh dependence study was carried out for Re in both Mode A (Re = 220) 

and Mode B (Re = 300) regimes. It is found that a relatively long non-dimensional 

flow time (defined as t* = Ut/D) is required to achieve a fully developed 3D flow. 

After that, the calculation is continued for at least 1000 non-dimensional time units to 

obtain results that are in statistical equilibrium where St and 
D

C  calculated from the 

second half of the sampling data are close enough to those determined from the whole 

sampling data sets (see Table 3). For the 3D analysis, St is determined using the peak 

frequency derived from the fast Fourier transform (FFT) of the time-history of the lift 

force coefficient. It is seen from Table 3 that the two quantities obtained from the 

refined and extended meshes are very close to the ones obtained with the standard 

mesh (relative errors are within 1%). In addition, Fig. 26 shows the streamwise and 

transverse velocity profiles at a few streamwise locations in the near wake (x/D = 1, 2, 

3, and 5) calculated with the four meshes listed in Table 3 for Re = 300. The velocity 
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profiles are averaged over the same period of flow time (of more than 1000 

non-dimensional time units) and over the cylinder span. It is seen in Fig. 26 that the 

differences of the averaged velocity profiles calculated with the four meshes listed in 

Table 3 are negligibly small. The above results demonstrate that the standard mesh 

listed in Table 3 is precise enough for the numerical simulations of the present study. 

Hence the standard mesh is used in the 3D simulations in this study unless otherwise 

stated. 
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Fig. 26. Averaged velocity profiles at a few streamwise locations in the near wake 

(x/D = 1, 2, 3, and 5) calculated with the four meshes listed in Table 3 for Re = 300: (a) 

streamwise velocity profiles, and (b) transverse velocity profiles. 
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The present 3D DNS results have also been compared with independent spectral 

element method results reported in the literature. In the numerical study by Posdziech 

and Grundmann (2001) based on the spectral element method, a mesh dependence 

study was performed for flow past a circular cylinder at Re = 220, and converged St 

and 
D

C  values (Table 3) were obtained when the polynomial order was larger than 

10 and the number of Fourier modes was larger than 8. It is seen in Table 3 that the 

results reported by Posdziech and Grundmann (2001) are extremely close to the 

present results based on the standard mesh. 

It is worth noting that flow three-dimensionality in 3D DNS is normally triggered 

by small-scale numerical disturbance in the computational domain (e.g. by skewed 

mesh elements), in a similar way to the introduction of small-scale spanwise 

disturbance to the initial flow field (e.g. Henderson, 1997; Thompson et al., 2001) for 

the spectral element method to trigger flow three-dimensionality. In the present 3D 

DNS, the spanwise disturbance level observed in the computational domain is 

approximately 5×10-4
U for all of the 3D cases considered in this study (with Re 

ranging from 100 to 300). Since the spanwise velocity beyond the secondary 

instability will grow to a much larger level (close to U) after the flow is fully 

developed, the disturbance level introduced in the present study will not influence the 

simulation results noticeably. 

The present DNS has been carried out with a Cray XC40 system supercomputer. 

For a typical 3D case with approximately 3.2 million cells, 360 processors have been 

used for parallel computation based on a scalability analysis. This leads to ~ 120 

hours of wall-clock time for the numerical simulation of up to ~ 4000 

non-dimensional time units. 
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