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Three-dimensional dissipative structures 
in reaction-diffusion Systems 
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We study analytically and numerically the tridimensional pattern sélection problern for reaction-diffusion Systems. 
Qualitative agreement is found with the récent expérimental results. 

1. Introduction 

Diffusion induced instabilities have been pre-
sented as the paradigm for modelling the onset 
of pat terns in driven Systems in fields as diverse 
as chemistry [1], biology [2,3] and materials 
science [4,5]. Among thèse, the Turing instabili­
ty [6] that had been proposed in 1952 as the 
"Chemical Basis for Morphogenesis" , has re­
ceived spécial attention because of its biological 
relevance. This spontaneous space symmetry­
breaking instability that arises solely from the 
interplay between diffusion and chemical re­
actions gives rise to stationary periodic concen­
tration patterns, "chemical dissipative crystals". 
The beauty of Turing's idea lies in the fact that 
diffusion plays here a counter­intuitive rôle, 
leading to a spontaneous ordering of the System 
instead of smoothing ail inhomogeneities. Since 
40 years, a lot of theoretical and numerical 
analysis of reaction­diffusion models have cor­
robora ted the generality of such a structuring 
mechanism. The status of expérimentation in the 
field was however far less satisfactory. Indeed, 
ail the steady concentration pat terns that had 
been previously reported in close reactors were 
due to convective or surface effects [7,12]. 
Fur the rmore , to maintain the System out of 

equilibrium, fresh reactants have to be injected 
continuously in the reactor interfering with the 
formation of the stationary pattern. Résides, the 
conditions of appearance of thèse structures (e.g. 
the différent chemical species should diffuse at 
différent rates) are rarely fulfilled in the com­
monly used aqueous solutions of non linear 
chemical reactions. More recently, the design of 
open "gel reactors" [8­11] has finally allowed 
the observation of the first sustained steady 
"chemical dissipative crystals" in the chlorite­
iodide­malonic acid (CIMA) reaction [8,9]. The 
reaction takes place in a thin flat pièce of permé­
able inert gel, two opposite edges of which are in 
contact with open chemical réservoirs of différ­
ent well­controlled compositions. The ex­
périmental results may be divided into two séries 
depending on the orientat ion of the feeding of 
the gel: 

­ Ouyang et al. [9] report the case where the 
vizualisation is parallel to the feeding direction. 
According to the value of the parameters, ex­
tended quasi­twodimensional (2D) concentration 
patterns in the form of bands or hexagons are 
observed. A large number of defects (disloca­
tions and disclinations) resulting from the nuclea­
tion processes are présent in thèse chemical 
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Structures presenting striking similarities with the 

numerous examples of structurations observed in 

hydrodynamical Systems. 

- In another set of experiments performed by 

Castets et al. [8], the vizualisation is perpen-

dicular to the feeding direction. When the con-

trol parameter of the experiment becomes higher 

than a given threshold, a breaking of the feed-

ing's symmetry appears through dots organized 

as an hexagonal pattern. Because of the présence 

of concentration gradients, this pat tern is local-
ized in a subregion of the reactor. Besides, as the 

wavelength of the pattern is smaller (=200 |xm) 

than any géométrie size of the System, thèse 

structures are actually three-dimensional (3D). 

Contrary to the well studied hydrodynamic in-

stabilities one must therefore deal with the fuU 

3D pattern sélection problem [13-15]. We do so 

in the weakly nonlinear régime, when the 

distance from the bifurcation point is small and 

for a uniform feeding (pool chemical approxi-

mation). Here we describe the compétition 

among the possible 3D structures and use thèse 

analytical solutions to put our numerical results 

on a reaction-diffusion model into proper per-

spective. The resulting pat terns présent close 

similarities with those obtained experimentally. 

2. Pattern sélection 

The basic équations for Turing's reaction-

diffusion mechanism can be written in the form 

^ = / ( C ) + DV^C , 

where C is a vector of concentrations, / repre-

sents the reaction kinetics and D is the diagonal 

matrix of positive diffusion coefficients. The 

kinetics in any practical situation is always non-

linear. The relevant initial and boundary condi-

tions should be added to this System. If, in the 

absence of diffusion, C tends to a linearly stable 

uniform state C,, then, under certain conditions, 

spatially inhomogeneous periodic patterns can 

evolve by a diffusion driven instability if the 

diffusion coefficients are différent. 

For extended (of size much larger than the 

wavelength of the structure) isotropic Systems, as 

are chemical Systems in liquid solutions, the 

linear stability analysis shows that ail perturba-

tions of with wavevectors k such that |A:| = A:̂  

are equally amplified at )u, = 0. The compétition 

among the varions excited modes that arise be-

cause of this orientational degeneracy can be 

studied by considering the various superpositions 

of such modes [16] 

m 

C{r, 0 = C o + S ( > l , e ' * ' ' + ^*e-^* ' ' ) , 

where y4, = /?, e"''' is the complex amplitude of 

the excited mode with wavevector Each pat-

tern is thus characterized by m pairs of 

wavevectors. 

Using the standard techniques of bifurcation 

analysis [1,17] leads to the following équations 

determining the amplitudes v4, (in absence of 

spatial modulat ion): 

^ = + 2 S A*Al8{k, + + *,) 
Ût j k 

-\A,\'A,-J,y,.\A^\'A, 
i 

- S S S l3,.,,A*AtA*S{k, + + k, + k,). 

The coefficients 7,̂  are functions of the angle O^j 
between the wavevectors kj and Jfcy. The simplest 

solution to this équation (m = 1) represents a 

smectic-like ordering of lamellae (or walls). For 

m = 2, one has a set of two intersecting lamellae 

Systems. A section, parallel to k^ x Jtj, yields a 

lattice of rhombs. As we assume here, in relation 

with the numerical results to be presented, that 

�y, (0) > 1 for ail d, this m = 2 structure is un-
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Stable. The case w = 3: A:, + + = 0> corre-

sponds to a rodlike structure with 2D hexagonal 

symmetry. For m = 4, the basic wavevectors can 

be arranged to form a non-coplanar quadrangle 

(*i + ifc2 + Jtj + ifĉ  = 0). The ji^ie) > 1 condition 

also insures the lack of stabiUty of the triperiodic 

patterns built on non-coplanar wavevectors 

(leading to se and fcc lattices). When m = 6, the 

basic wavevectors are parallel to the edges of a 

regular octahedron, each vector participating in 

two triangles. The corresponding structure in 

real space has a body centered cubic symmetry 

(bec). The study of the relative stability of thèse 

pat terns allows us to draw the bifurcation dia-

gram (see fig. 1) associated to the stability hmits 

of thèse structures given in table 1. On increas-

1^ 

hex. 

prisms 

bec 

/ lameilae 

Fig. 1. Bifurcation diagram in 3D. Full and dotted Unes 

represent respectively stable and unstable steady states. 

Table I 

Stability ragions of the 3 D structures. 

Structure 

bec lattice 

(m = 6) 

hex prisms 

(m = 3) 

lameilae 

(m = l ) 
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ing the value of (JL the following séquence of 

patterns may thus émerge: a bec structure for the 

maxima of concentrations is the first to appear 

subcritically. It is followed, also subcritically, by 

hexagonal prisms and then supercritically by 

lameilae. The stabihty limit points are fur ther-

more interconnected by unstable mixed mode 

branches. Reversing the variation of the bifurca-

t ion parameter one backtracks through the vari-

ous structures but by undergoing hystérésis loops 

at each transition. Thus for a wide range of 

values of the parameters varions structures may 

coexist and the System may even exhibit spatial 

tristability. The degree of subcriticality may be 

shown to be small with respect to the stability 

domain in agreement with the experiments [9]. 

O n e should however bear in mind that suffi-

ciently far beyond the threshold higher order 

te rms come into play in eq. [2]. They may alter 

the nature of the stable solutions for high fx and 

fur thermore could lead to quasiperiodic struc-

tures with for instance local fivefold symmetry 

[18]. 

3. Numerical results 

Thèse prédictions have been checked in a 

séries of 3D numerical intégrations of the équa-

tions of the Brusselator model that has been 

extensively used in studies of chemical dissipa-

tive structures [1]. The choice of this model is by 

Domain of stability 

iT ^ ^ c;-[4y(2Tr/3) - y(iT/2) + 3] 

[Ay(2�^l^) + y ( ir /2 ) + 1] " " H-nl2) - i f 

^ i>^[y(2Tr/3) + 2] 

[8'y(2-ir/3) + 4] ^ [y(2iT/3) - 1]' 

V' 

[ y ( 2 7 T / 3 ) - l ] ^ 
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no means a restriction to the generality of the 

results. Indeed , the particularities of a spécifie 

model affect only the précise values of the 

thresholds and the relative widths of stability 

régions and not the succession of structures in a 

particular scénario. 

In terms of scaled variables the corresponding 

équations take the form 

— = A-{B + l)X + X^Y + DXX , 
dt 

^ = BX - X^Y + D^V^Y , 

where A and B are the control pool species 

and the concentration of B is taken as the 

bifurcation parameter. This System exhibits a 

Turing instability at S = = [1 + A^DJDyf 

with k]^ AlyjD^Dy when DY>DXA-I 

(Vi + A ' - i f . 
In 2D, this model exhibits hexagons and roUs. 

In large Systems, we have also observed the 

présence of defects (see fig. 2) analog to those 

observed in the extended quasi-2D expérimental 

results. 

In 3D and for the values of the parameters 

given in the captions, numerical intégrations 

lead, on increasing B, to the theoretically pre-

dicted succession of structures: bec, hexagonal 

prisms and lamellae (figs 3 - 5 ) . 

Fig. 2. Examples of 2D pattems for the concentration of species X in the Brusselator in an extended System. The intégrations 

were carried out on a square grid of size 256 x 256 in (a) and 90 x 90 in (b) imposing periodic boundary conditions. A s the 

intégration is started from random initial conditions, the orientational degeneracy leads to the formation of competing patches. 

Their compatibility is solved through the génération of defects. Thèse patterns remain time dépendent over very long times 

(driven by the slow évolution of the phases 4)^) and indeed may never settle down at ail. The parameters are A = 4.5, = 2.8, 

Dy = 22.4 and B is respectively 7.1 for the "hexagonal" (a) and 8.0 for the "striped" structure (b). The wavenumber is of the 

order of k^. The defects are respectively of the hepta-pentagon pair (a) and disclination (b) types. A s thèse patterns présent no 

further structuration when extended to 3D, they are relevant to the interprétation of the expérimental results if only their 

alignment with respect to the imposed feeding gradient is correct. This analysis remains to be done. 
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[ 1 1 0 ] I 

(b) [001] (c) [110] or [no] 
Fig. 3. Stable stationary 3D pattern with bec symmetry for the concentration of species X in the Brusselator (Eq. 3). The darker 
and lighter shades respectively represent minima and maxima of concentrations with respect to the référence uniform state 

{X^^ = A, y„ = B/A). The intégration of eq. (3) was performed on a 20 x 20 x 20 grid imposing periodic boundary conditions on 

each face of the cube. Selected modes are excited in the initial condition in order to partially orient the resulting structure for 

visuahzation purposes. The chosen initial condition leads to a bec structure rotated by TT/4 around the z axis. The parameters are 

A = 4 .5, = 1, Dj, = 8 (thus = 6.71) and B = 6.8 (/x =0 .0134) . (a) Schematic représentation of the bec primitive cell serving 

as a visuahzation aid. (b), (c) The symmetry of the structure obtained by intégration is made explicit by exhibiting three 

characteristic orthogonal planes noted by their Miller indices. The wavenumber is of the order of k^. 
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[001] 

[100] [010] 

Fig. 4. A 3D pattern of hexagonal prisms for the concentration of species X for the Brusselator obtained as in fig. 3 for B = 7.0 

{fjL = 0 . 0 4 3 ) . The initial conditions give rise to hexagonal prisms that are inclined by 17/4 with respect to the z axis. The structure 

is made expHcit by showing the ordering in the three planes [100], [010] and [001]. 

4. Conclusions 

Our numerical simulations of the Brusselator 

model have thus shown the theoretically pre-

dicted succession of patterns in 3D and présent 

striking similarities with the experimentally pro-

duced structures. However the expérimental pat-

terns are obtained in the présence of concen-

tration gradients of the control species, due to 

the feeding of the reactor, and are thus of the 

localized type [19,20]. Interestingly such a local-

ized pattern was also obtained for a realistic 

model of the C I M A reaction in ID space [21]. 

We have nevertheless also obtained ail the above 

discussed 3D structures in the présence of gra-

dients such as those due to latéral feeding fluxes. 

For some conditions the three structures may 

even coexist spatially in the System, each appear-

ing in the région where the bifurcation parame-

ter B locally exceeds the corresponding threshold 



A. De Wit et al. I Three-dimensional dissipative structures in reaction-diffusion Systems 295 

[0 01] 

[1 0 0] [01 0] 

Fig. 5. A 3D pattern of lamellae for the concentration of species X for the Brusselator when fi = 8.5 [/x « 0 . 2 6 7 ] . The 

représentation is as in fig. 4. The sharpness of the transition between the régions of high and low concentrations as attested by the 

color scales (hence the name lamellae) is related to the high content in harmonies because /J. is already large. 

and separated by transition fronts of complex 

nature . 

We may thus conclude that the analytical and 

numerical results pave the way to a large under-

standing of the expérimental phenomena. The 

study of the pattern sélection and orientation 

with respect to such gradients [22-25], that par-

tially lift the orientational degeneracy, is under 

study. The nature and the rôle of 3D fronts and 

defects in the transition between structures of 

différent symmetries or in the disorganization of 

such patterns remain to be assessed. 
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