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Three-dimensional double-diffusive Marangoni convection in a cubic cavity is studied in the present paper.

Both the temperature and solute concentration gradients are applied horizontally. Direct numerical simulations

are carried out for surface-tension Reynolds number 10�Re�500, surface-tension ratio −2�R��1, and

Lewis number 1�Le�200. Symmetry-breaking pitchfork bifurcation is observed, which does not exist in the

pure thermocapillary case, and the flow field is essentially three dimensional. The evolution of the flow

structure, as well as the dependence of the heat and mass transfer rates on the different parameters, is inves-

tigated systematically. The simulations are performed until the temporal chaotic flow regime is reached and an

atypical bifurcation sequence is identified. Namely, as the thermal forcing of the system increases, the flow can

undergo a reverse transition from a temporal chaotic to a steady state. Multiple solution branches exist in some

parameter ranges, and these are depicted in terms of the heat and mass transfer rates. Corresponding two-

dimensional simulations are also performed to clearly illustrate the deviations from the three-dimensional

model. The onset of oscillatory flow from the quiescent equilibrium state is also considered. The present work

intends to initiate the study of double-diffusive Marangoni convection in three-dimensional confined cavities

with horizontal temperature and concentration gradients.
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I. INTRODUCTION

Double-diffusive convection, which is driven by a combi-

nation of temperature and solute concentration gradients, has

been the subject of intensive study. The system is known to

display a wealth of dynamical behaviors whose properties

depend on the direction and magnitude of the imposed gra-

dients �1–3�. The earliest work was motivated by oceano-

graphic applications and focused on situations in which both

the temperature and concentration gradients are in the verti-

cal direction. In contrast, in solidification convection is fre-

quently induced by horizontal gradients �4�, and this is the

configuration of interest in the present study.

Both opposing �buoyancy ratio N�0� and augmenting

�N�0� cases with parallel horizontal gradients have been

studied experimentally �5,6�, using electrochemical systems,

and numerically �7,8�. The special case when the thermal and

solutal buoyancy forces are equal and opposing �N=−1� is

interesting since in this situation there exists a pure conduc-

tion state with linear profiles of temperature and concentra-

tion, and linear stability analysis can be used to identify the

primary instability. This was first studied numerically by

Krishnan �9� and was the topic of many more recent research

efforts �10–13�. For a similar configuration it was shown

very recently by Chen et al. �14� that the broken centrosym-

metry of the system can lead to supercritical Hopf bifurca-

tions near a series of codimension-2 bifurcation points.

In crystal growth and many other industrial processes, a

liquid surface in contact with air is often present and Ma-

rangoni effects need to be taken into account. Like buoyancy

force, liquid surface tension can also be simultaneously in-
fluenced by temperature and solute concentration. Double-
diffusive Marangoni convection in a rectangular cavity with
horizontal temperature and concentration gradients was first
simulated by Bergman �15�. The most important result of this

study is that, in the absence of buoyancy, convection may

occur, even though the overall surface-tension difference

along the free surface suggests stagnant fluid conditions �so-

lutal to thermal Marangoni number ratio R�=−1�. The nature

of the first primary instability of the equilibrium had long

time remained unknown, and very recently this was investi-

gated systematically by Chen et al. �16�. The onset of both

steady and oscillatory flows was studied by these authors,

and further transitions to chaos were considered by Li et al.

�17�.
All the above mentioned studies were performed in two

dimensions. Double-diffusive buoyancy convection in a cu-

bical cavity with no-slip boundary conditions on all sides

was first simulated by Sezai and Mohamad �18�. The param-

eter ranges −2�N�0, 10�Ra�2�105, and 0.1�Le

�150 were considered, where Ra is the thermal Rayleigh

number and Le is the Lewis number, and complicated three-

dimensional �3D� flow structures were obtained. The special

opposing case N=−1 was studied in much more detail by

Bergeon and Knobloch �19� using some bifurcation and sta-

bility analysis techniques. Sezai and Mohamad �18� focused

on water-based solutions �Prandtl number Pr=10�, while the

situation for a binary gas �Pr=0.71� was studied by Verhae-

ghe et al. �20� using a lattice Boltzmann model. The influ-

ence of the horizontal diffusive walls on the three-

dimensional flow was considered by Abidi et al. �21�.
However, to the best of the authors’ knowledge, three-

dimensional analysis of double-diffusive Marangoni convec-*Corresponding author; cejmzhan@gmail.com
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tion in a cubic cavity subjected to horizontal temperature and

concentration gradients has not been reported. This provides

direct motivation for the present work. We consider the same

physical model as that of Sezai and Mohamad �18�, except

that the upper boundary is a free surface rather than a solid

wall. The following parameter ranges are considered: 10

�Re�500, −2�R��1, and 1�Le�200. Each of these

three parameters is varied in order to study the influences on

the heat and mass transfer rates and on the three-dimensional

flow structures. Direct numerical simulations are performed

until the temporal chaotic regime is reached and an atypical

bifurcation sequence is identified. Namely, a reverse transi-

tion from chaotic to steady flow is observed with the increase

in Re. The onset of convection when R�=−1 is also consid-

ered. Section II provides a detailed description of the physi-

cal model studied. The numerical techniques used for simu-

lations are explained in Sec. III. Then the results and

discussions are given in Sec. IV, followed by some conclud-

ing remarks in Sec. V.

II. PROBLEM DEFINITION

The geometry under consideration is a cubic cavity filled

with a binary fluid, with a nondeformable liquid-air surface

on the top boundary �Fig. 1�. Different temperatures and con-

centrations are specified at the left �T1 ,C1� and right �T2 ,C2�
vertical walls, where T1�T2 and C1�C2, and zero heat and

mass fluxes are imposed on the remaining boundaries. The

no-slip boundary condition is adopted for all velocity com-

ponents on the rigid walls, and on the top surface the Ma-

rangoni boundary condition is applied. The flow is assumed

to be laminar and the binary fluid is assumed to be Newton-

ian and incompressible. The Boussinesq approximation is as-

sumed to be valid except for the surface tension �, which is

allowed to vary linearly with the liquid temperature and sol-

ute concentration. Thus,

��T,C� = �0 − �T�T − T0� − �C�C − C0� , �1�

where �0=��T0 ,C0�, �T=−��� /�T�C, and �C=−��� /�C�T.

Thermophysical properties of the fluid are estimated at the

reference temperature T0 and concentration C0, which are set

to be equal to T2 and C2, respectively. For the majority of

mixtures, liquid surface tension increases with the concentra-

tion of an inorganic solute and decreases for an organic sol-

ute. Since we are discussing double-diffusive convection in a

broad sense and T and C are referred to components with

higher and lower diffusivities, respectively, �T and �C can

assume both positive and negative values. Buoyancy effects

are neglected in the present study.

By choosing the cavity length L as the unit of length and

� /L as the unit of velocity, where � denotes kinematic vis-

cosity of the fluid, the nondimensionalized equations govern-

ing the conservations of mass, momenta, energy, and solute

concentration can be written as
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together with boundary conditions

x = 0, y � �0,1�, z � �0,1�: u = v = w = 0, 	 = c = 1,

�8�

x = 1, y � �0,1�, z � �0,1�: u = v = w = 0, 	 = c = 0,

�9�

y = 0, x � �0,1�, z � �0,1�: u = v = w = 0,

�	

�y
=

�c

�y
= 0, �10�

y = 1, x � �0,1�, z � �0,1�: u = v = w = 0,

�	

�y
=

�c

�y
= 0, �11�

z = 0, x � �0,1�, y � �0,1�: u = v = w = 0,

FIG. 1. Physical model and the coordinate system.
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There are four dimensionless parameters in the above sys-

tem:

Pr =
�



, Le =




D
, Re =

�T�TL

��
, ReS =

�C�CL

��
,

�16�

which are, respectively, the Prandtl number, the Lewis num-

ber, and the thermal and solutal Reynolds numbers due to

Marangoni effects. 
 denotes thermal diffusivity and D is the

molecular diffusivity. Equations �14� and �15� are the so-

called Marangoni boundary conditions, which equate the

change in surface tension due to temperature and concentra-

tion variations across the surface to the shear stress experi-

enced by the fluid at the surface. Re and ReS are related to

the classic thermal and solutal Marangoni numbers by Ma

=Re Pr and MaS=ReS Pr. In analogy with the buoyancy ratio

N in double-diffusive buoyancy convection, the surface-

tension ratio in double-diffusive Marangoni convection is de-

fined as

R� =
MaS

Ma
=

�C�C

�T�T
. �17�

A positive value of R� results in augmenting convection �co-

operative Marangoni forces� and a negative value leads to

opposing Marangoni forces. In the present study both aug-

menting and opposing cases are considered. The average

heat and mass fluxes at the left vertical wall are given by the

Nusselt and Sherwood numbers as

Nu = �
0

1 �
0

1 � �	

�x
�

x=0

dydz , �18�

Sh = �
0

1 �
0

1 � �c

�x
�

x=0

dydz . �19�

III. NUMERICAL METHOD

Equations �2�–�7� together with the boundary conditions

�8�–�15� are discretized using nonuniform control volumes.

Finer grids cluster near the boundaries in order to improve

the numerical accuracy. Colocated variable arrangement is

used and the SIMPLE algorithm is adopted to couple momen-

tum and continuity equations. In searching for steady-state

flow, initially very large time step is used for fast conver-

gence. For cases where convergent steady solutions cannot

be obtained small time steps are used to detect possible un-

steady behavior. The time stepping is realized by the second-

order implicit three-time level scheme. Details of the imple-

mentation of the numerical procedures can be found in work

of Ferziger and Peric �22�.
The two-dimensional �2D� version of the code has been

carefully verified and successfully used to study the onset

and further transitions of Marangoni convection �16,17�. Due

to the absence of three-dimensional numerical results for

double-diffusive Marangoni flow, we validate our 3D code

by the buoyancy flow data of Sezai and Mohamad �18�,
where the counterpart problem is considered. Table I shows

the Nusselt number for different grid resolutions and gives a

comparison with that of Sezai and Mohamad �18� obtained

with 803 nonuniform grids for Ra=107, Le=1, Pr=0.71, and

different opposing buoyancy ratios. It can be seen that our

results produced by the grid 803 agree very well with those

by Sezai and Mohamad �18�. The maximum difference for

all the buoyancy ratios considered is less than 0.6%. Also,

the results by the grid 603 agree within 0.8% of those by the

grid 803. To strike a balance between numerical accuracy and

efficiency, the grid 603 is adopted for the present 3D study.

IV. RESULTS AND DISCUSSIONS

In the present study we investigate a moderate Prandtl

number fluid, Pr=5. The development of 3D flow structures,

TABLE I. Grid resolution test and comparison with the results of Sezai and Mohamad �S&M� �18�
�Ra=107, Le=1, and Pr=0.71�.

Grid

Nu for −1.5�N�−0.01

−0.01 −0.1 −0.2 −0.5 −0.8 −0.9 −1.5

403 17.20 16.72 16.15 14.08 10.77 8.79 14.08

503 16.64 16.20 15.68 13.74 10.61 8.69 13.74

603 16.48 16.06 15.54 13.65 10.56 8.67 13.65

703 16.41 15.99 15.48 13.60 10.54 8.66 13.60

803 16.36 15.94 15.44 13.58 10.53 8.65 13.58

S&M �803� 16.27 15.87 15.37 13.53 10.51 8.64 13.54
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as well as the heat and mass transfer rates, is investigated as

each of the parameters Re, R�, and Le varies. The effects of

initial conditions on the resulting flow structures have also

been investigated. For this purpose mainly three procedures

have been used. In the first case the diffusive solution is used

as the initial condition for all the calculations: temperature

and concentration decrease linearly from 1 at the left vertical

wall to zero at the right vertical wall and the velocities are all

zero. In the second case the all-zero field is used as the initial

condition for all the calculations: temperature, concentration,

and all the velocity components are initially set to zero. In

the third case a continuation type of procedure is used, where

one of the parameters is increased in steps using the current

solution as the initial condition for the next step. The se-

quence is then traversed backward by starting from the maxi-

mum value of the parameter until the initial value is reached.

The resulting solution branches of Nu and Sh have been

constructed and the deviations from the 2D model are illus-

trated. However, no attempt was made to uncover all pos-

sible bifurcating branches or to find out the mechanisms by

which bifurcating solutions lose or gain stability.

A. Influence of Re

The influences of Re are summarized in Fig. 2 for R�=

−0.5 and Le=10. In addition to the 3D solutions, 2D results

are also provided to clearly depict their deviations. Up to

Re=500, while the 2D results always correspond to steady-

state flows, the 3D results consist of four different steady

flow branches, one oscillatory flow branch and two different

chaotic regimes �not plotted in Fig. 2�. The evolution of the

flow field is detailed below.

At Re=10 the flow, temperature, and concentration fields

are shown in Fig. 3. The flow on the upper surface is almost

parallel to the x axis and the whole flow field consists of a

primary vortex, whose axis of rotation is parallel to the y

axis. Furthermore, the flow field is symmetric with respect to
the vertical plane y=0.5 �back-front symmetric�. This is ap-
parent when considering the geometry of the physical model
and the boundary conditions imposed. Even at this small
Reynolds number the three-dimensional nature of the flow is
obvious, as can be seen from the stream slice on the mid-y-z
plane �x=0.5� in Fig. 3�b�. The isosurfaces of the tempera-
ture field are almost parallel to the left and right vertical
walls, while those of the concentration field are much more
distorted. It can be seen that, on the upper surface, the tem-
perature gradient in the x direction is dominant over that of
the concentration gradient for most part of the surface, and it
is only near the right vertical wall that the concentration
gradient is dominant. This explains the flow directions on the
top surface �Fig. 3�a��.

As Re increases the flow on the upper surface diverges
toward the back and front sidewalls and two secondary
counter-rotating vortices develop on the mid-y-z plane. This

is shown in Fig. 4 for Re=120. The flow structures are still

back-front symmetric and we refer to this solution as the

two-roll symmetric solution. The hollow square and circle

points in Fig. 2 connected by solid lines represent this solu-

tion branch. Due to the increased intensity of the primary

vortex, the isosurfaces of the temperature field are now more

distorted than those in Fig. 3�c�. In order to see through the

volume we plot in Fig. 4�d� the contour slices, rather than the

isosurfaces, of the concentration field. It can be seen that

boundary layer forms near the left and right vertical walls.

While the contour lines on the upper surface in Fig. 3�d� are

shifted toward the right vertical wall, those in Fig. 4�d� are

clearly deflected toward the left. This is because relatively

fresh water has been brought from near the right vertical wall

to below the top surface, creating adverse horizontal concen-

tration gradient there. On the top surface, from the tempera-

ture and concentration gradients in the y direction it can be

inferred that the two secondary vortices �Fig. 4�b�� are driven

by solutal Marangoni effect.

When Re is increased from 120 to 140 a bifurcation is

encountered and the back-front symmetry of the solution is

broken. The asymmetric solution is presented in Fig. 5 for

Re=200. The secondary flow on the mid-y-z plane no longer

consists of two symmetric vortices, but has an asymmetric

pattern, with the dominant vortex on the left side and the

other limited to the upper-right corner of this cross section.

Depending on the initial condition, another asymmetric flow

pattern can be obtained, as presented in Fig. 6, which corre-

sponds to exactly the same heat and mass transfer rates as

those of Fig. 5. In fact, there is no physical reason why the

dominant vortex is on the left- or right-hand side of this cross

section, where both possibilities are equal, i.e., pitchfork bi-

furcation. That the figures show a preferred bias can be ex-

plained by numerical errors, which perturb the dominant

flow to a certain side. The resulting two-roll asymmetric so-

lution branch is denoted by the scattered hollow square and

circle points in Fig. 2. We also performed corresponding

simulations in the absence of solutal Marangoni force �R�

=0� and no pitchfork bifurcation was observed. The flow is

always back-front symmetric, which is in agreement with the

study of Sass et al. �23�. Thus, it might be concluded that the

pitchfork bifurcation is due to the existence of a solute com-

FIG. 2. Variations of Nu and Sh with the increase in Re for

R�=−0.5 and Le=10. The solid circle and square points denote time

averages of oscillatory flow results, while the others represent

steady flow results. The steady 3D results connected by solid,

dashed, and dotted lines represent two-roll, four-roll, and six-roll

symmetric solutions, respectively, while those scattered points rep-

resent two-roll asymmetric solutions.
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ponent, which diffuses much slower than the heat does.

In addition to the asymmetric secondary flow, one more

important feature of Fig. 5 is that on the mid-x-z plane a

solute-rich fluid core has developed below the upper surface

�Fig. 5�d��. As Re increases this fluid core further develops,

and at Re=400 the two-roll asymmetric flow becomes oscil-

latory, as can be seen from the temporal responses of

u�0.5,0.5,1� and v�0.5,0.5,1� shown in Fig. 7. The y veloc-

ity component has a much larger oscillation amplitude than

that of the x component. The onset of oscillatory flow may

be explained as follows. A disturbance that takes a fluid par-

cel from the interior to the free surface simultaneously cre-

ates a solute-rich spot due to the solute concentration distri-

bution just described. Thus, surface tension is increased

locally pulling surface fluid in and then back into the interior

by continuity. Hence, the perturbation triggers a restoring

mechanism conducive to overstability, and an oscillatory

wavelike motion develops. The present oscillatory flow is

stable up to Re=500, which is the maximum Re value con-

sidered in the present study. Since 3D oscillatory flow simu-

lation is very time consuming, we did not continue the simu-

lation much further. The oscillatory solution branch is

denoted by the scattered solid square and circle points in

Fig. 2.

For low Re values, using either the all-zero field or the

diffusive solution as the initial condition leads to the two-roll

symmetric solution, and then the above-mentioned bifurca-

tion sequence is obtained by the continuation type of proce-

dure using the current result as the initial field for the next

run. When the diffusive solution is used as the initial condi-

tion for 260�Re�380 another steady solution branch can

be obtained, as denoted by the hollow square and circle

points connected by dashed lines in Fig. 2. The flow field at

Re=340 is shown in Fig. 8. Back-front symmetry is regained

and the secondary flow on the mid-y-z plane consists of two

pairs of counter-rotating vortices. We refer to this solution as

the four-roll symmetric solution. It is more efficient in heat

and mass transfers than the two-roll asymmetric solution co-

existing in the same parameter range �Fig. 2�.
When Re is increased from 380 to 400 the solution be-

comes temporal chaotic, as can be seen from the temporal

responses of u�0.5,0.5,1� and v�0.5,0.5,1� shown in Fig.

9�a�. The correlation dimension �24� is adopted for comput-

ing the fractal dimension d of the corresponding strange at-

tractor and this gives d=2.52. Thus, indeed the time series

shown in Fig. 9�a� correspond to deterministic chaos rather

than random signals. The snapshot of the flow field on the

mid-y-z plane is shown in Fig. 9�b�. It is still quite organized
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FIG. 3. �Color online� Re=10, R�=−0.5, and Le=10: �a� stream slices on the mid-x-z and the top x-y planes, �b� stream slice on the

mid-y-z plane, �c� isosurfaces of the temperature field, and �d� isosurfaces of the concentration field. The values of 0.1, 0.3, 0.5, 0.7, and 0.9

are used for contours in both �c� and �d�.
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spatially and consists of four rolls. Such temporal chaotic
dynamics is sometimes termed weakly turbulence since fully
developed turbulence involves both temporal and spatial
chaos. The present four-roll chaotic solution is very different
from the two-roll asymmetric oscillatory solution presented
in Fig. 7, which is obtained for exactly the same parameter
�Re=400�. We also tried meticulously by using very small
step of Re to determine any possible four-roll oscillatory
solution but failed. It seems that the dynamics is chaotic once

the four-roll steady solution gets unstable.

When Re is further increased to 430 the dynamics under-

goes a reverse transition from chaotic to steady flow and

another steady solution branch in the range 430�Re�475 is

obtained, as denoted by the hollow square and circle points

connected by dotted lines in Fig. 2. The reverse transition

with the increase in Re appears to be counterintuitive. Usu-

ally the expectation is that the dynamical behavior of the

flow would become more and more complex as the Reynolds

number is increased. The flow field for Re=450 is shown in

Fig. 10. Back-front symmetry is regained and the secondary

flow on the mid-y-z plane consists of three pairs of counter-

rotating vortices. We refer to this solution as the six-roll sym-

metric solution. It is more efficient in heat and mass transfers

than the two-roll asymmetric oscillatory flow coexisting in

the same parameter range �Fig. 2�. It is now apparent that the

bifurcation to steady state also results in a change in the

spatial structure to a more complex three-dimensional form.

Thus, the apparently paradoxical reverse transition can now
be reconciled within the existing dynamics theory. Essen-
tially, the reduction in the temporal complexity �from chaotic
to steady� is accompanied by an increase in the spatial com-
plexity �from four rolls to six rolls�. It can then be argued
that the overall complexity increases after the bifurcation, so
there is no paradox or anomaly. Another way to look at this
reverse transition would be that the formation of the six-roll
secondary flow stabilizes the chaotic behavior existing be-

fore the bifurcation. A real paradox would have arisen if it

was found that the transition did not change the flow pattern

and yet reverted to steady state, in which case our under-

standing of the transition phenomena would require revision.

Similar reverse transition phenomenon, from two-frequency

quasiperiodic to steady state, in three-dimensional Rayleigh-

Bénard convection for small aspect ratio enclosure was also

observed experimentally by Gollub and Benson �25� and

later reproduced numerically by Mukutmoni and Yang �26�.
When Re is further increased from 475 to 500 the dy-

namical behavior is again chaotic, as shown by the time sig-

nals of u�0.5,0.5,1� and v�0.5,0.5,1� in Fig. 11�a�. Regular

oscillations are interrupted from time to time by irregular

noisy behavior �turbulent bursts�. It seems that the flow is

undergoing an intermittency route to chaos �25,27�. Again by

correlation dimension calculation we obtain d=2.84, which

gives the fractal dimension of the corresponding strange at-

tractor of this chaotic regime. The snapshot of the flow field
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on the mid-y-z plane shows that the secondary flow still con-

sists of six rolls �Fig. 11�b��.
2D model results are also presented in Fig. 2. It can be

seen that the 2D model significantly overpredicts the heat

and mass transfer rates. This suggests that the back and front

sidewalls have some retarding or stabilizing effects on the
main flow. However, due to the presence of these sidewalls,
complex secondary flow �up to six rolls� forms and the so-
lution becomes chaotic much earlier, in the sense of a smaller
Re value. Thus, it can be seen that the effects of these side-
walls are quite complex. Totally seven dynamical behaviors,

including two different chaotic regimes �Figs. 9 and 11�, are

observed up to the maximum Re value investigated, and thus
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solution.

FIG. 7. Temporal responses of the horizontal velocity compo-

nents at the center of the upper surface for Re=400, R�=−0.5, and

Le=10.
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very rich dynamical behaviors will be missed when the 2D

model is used.

B. Influence of R
�

The influence of R� is studied for both opposing �R�

�0� and augmenting �R��0� flows, as shown in Fig. 12 for

Re=200 and Le=10. Both 2D and 3D heat and mass transfer

rates are shown and all the results represent steady flow re-

sults. The most important feature of this figure is that, in

addition to the two-roll asymmetric solution �Fig. 5� in the

range −1�R��−0.5 �square and circle points connected by

solid lines�, there coexists another symmetry-breaking solu-

tion branch in the range −1�R��−0.6 �square and circle

points connected by dashed lines�. The flow field of this

second asymmetric solution is shown in Fig. 13 for R�=

0

0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

xy

z

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y

z

0

0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

xy

z

0

0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

xy

z

(a)
(b)

(c) (d)

FIG. 8. �Color online� The same as Fig. 4 but for Re=340.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y

z

(a) (b)
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R�=−0.5, and Le=10.
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−0.8. As can be seen, the secondary flow on the mid-y-z

plane consists of only one large vortex. This is different from

the two-vortex structure of the first asymmetric solution �Fig.

5�. The flow pattern on the upper surface �Fig. 13�a�� sug-

gests that the secondary flow should be as strong as the pri-

mary flow �x-z plane�, and this indicates that the flow is

strictly three dimensional.

All the scattered square and circle points in Fig. 12 rep-

resent back-front symmetric solutions. The evolution of the

secondary flow with R� is shown in Fig. 14. As can be seen,

all the three opposing cases are qualitatively the same as the

two-roll symmetric solution �Fig. 4�, with two counter-

rotating vortices circulating near the surface. As R� in-

creases, the vortices near the surface disappear and two new

counter-rotating vortices form in the lower half of the cavity.

The transiting state with a four-vortex structure is shown at

R�=0.1. Similar to Fig. 2, the 2D model overpredicts the

heat and mass transfer rates in the range −1.0�R��1.0,

0

0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

xy

z

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y

z

0

0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

xy

z

0

0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

xy

z

(a) (b)

(c) (d)

FIG. 10. �Color online� The same as Fig. 4 but for Re=450.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y

z

(a) (b)

FIG. 11. �a� Temporal responses of horizontal velocity components and �b� snapshot of the flow field on the mid-y-z plane for Re

=500, R�=−0.5, and Le=10.
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especially at R�=−1. But this is not the case in the range

−2.0�R��−1.1, where the 2D and 3D predictions almost

coincide. Although with the presence of the back and front

sidewalls and the formation of the secondary flow, the 3D

predictions do not differ much from the 2D predictions. The

heat transfer rate in this range remains very close to that of

the pure conduction state, while the mass transfer rate in-

creases linearly with the increase in the opposing solutal Ma-

rangoni force.

When R� approaches −1 the flow intensity decreases, and

thus the heat and mass transfer rates decrease. This is be-

cause at R�=−1 the thermal and solutal Marangoni forces are

opposing and of equal magnitude. Actually such a condition

would suggest a motionless equilibrium state. The onset of

convection for this special case in a 2D cavity has been sys-

tematically investigated by Chen et al. �16�, where it was

shown that, due to small disturbances, the quiescent equilib-

rium loses stability via a supercritical Hopf bifurcation and

near the bifurcation point there coexists a steady solution

branch, which is induced by finite-amplitude disturbance.

For the present cubical cavity the simultaneous existence of

multiple solution branches is shown in Fig. 15 by plotting the

maximum u�0.5,0.5,1�. The quiescent equilibrium solution

encounters a primary Hopf bifurcation at H and then an os-

cillatory solution branch �branch 5� occurs. Linear stability

analysis for the 2D case �16� predicts that the critical bifur-

cation point is located at Rec=362, while in the present 3D

computations, by using a step of � Re=10, we determine

that Rec	300. A snapshot of the oscillatory flow near the

onset of convection �Re=320� is shown in Fig. 16. Counter-

rotating vortices travel from the right vertical wall to the left

FIG. 12. Variations of Nu and Sh with R� for Re=200 and Le

=10. The scattered square and circle points represent back-front

symmetric solutions. The points connected by solid lines represent

the two-roll asymmetric solutions �Fig. 5�, while those connected

by dashed lines represent another type of symmetry-breaking solu-

tions �Fig. 13�.
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FIG. 13. �Color online� The same as Fig. 4 but for Re=200 and R�=−0.8.
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vertical wall. The stream slice on the mid-x-z plane �Fig.
16�c�� shows that this is the mode II oscillatory flow identi-

fied by Chen et al. �16�. The flow patterns on the upper

surface �Fig. 16�a�� and the mid-y-z plane �Fig. 16�b�� sug-

gest that this oscillatory flow is back-front symmetric and

basically two dimensional �flow in the y direction is almost

vanishing�. The temperature and concentration fields are al-

most identical, with the isotemperature and isoconcentration

surfaces nearly parallel to the left and right vertical walls,

and thus only the concentration field is plotted �Fig. 16�d��.
In Fig. 15 there also coexist two different steady asymmetric

solution branches �branches 3 and 4� that are induced by

finite-amplitude disturbances. While their x-component ve-

locities at the center of the upper surface first decrease and

then increase with Re, the corresponding y-component ve-

locities both increase monotonically �not shown�. It should

be noted that branches 3 and 4, respectively, correspond to

two different steady asymmetric solutions that are produced

by a pitchfork bifurcation, e.g., branch 3 corresponds to the

solutions shown in Figs. 5 and 6, which have exactly the

same u�0.5,0.5,1� value. Thus, near the primary bifurcation

point there actually coexist five nontrivial solution branches:

four steady asymmetric solutions plus one oscillatory sym-

metric solution. In the 2D case only one steady and one

oscillatory solution coexist �16�.

C. Influence of Le

The influence of Le on the heat and mass transfer rates is

shown in Fig. 17 for Re=200 and R�=−0.5. Both 2D and 3D

results are shown, and these all correspond to steady flow

results. The square and circle points connected by solid lines
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FIG. 14. Secondary flows on the mid-y-z plane for different R� values in Fig. 12: �a� R�=−1.5, �b� R�=−0.4, �c� R�=−0.1, �d� R�

=0.1, �e� R�=0.4, and �f� R�=0.8.
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represent the two-roll symmetric solutions �Fig. 4�, while

those scattered square and circle points represent the two-roll

asymmetric solutions �Fig. 5�. When Le is in the range 1

�Le�6, the flow field is qualitatively the same as that

shown in Fig. 4. When Le is increased from 6 to 7, a pitch-

fork bifurcation is encountered and the two-roll asymmetric

solution is obtained. This further verifies the result in Sec.

IV A that it is the presence of the slowly diffusing solute

component that induces the pitchfork bifurcation. The heat

transfer rate remains almost constant for large Le values,

while the mass transfer rate keeps growing almost linearly in

this log-log scale. For Le�6 the 2D model slightly overpre-

dicts the mass transfer rate, while the overprediction be-

comes more significant when the 3D flow develops an asym-

metric pattern. Finally, although different initial flow fields

were used for starting the simulations, no additional solution

branch could be identified in Fig. 17.

V. CONCLUSIONS

In the present work we attempt to model the three-

dimensional aspects of double-diffusive Marangoni convec-

tion in a cubic cavity filled with a moderate Prandtl number

fluid. Both the temperature and solute concentration gradi-

ents are applied horizontally. The direct numerical simulation

procedure is carefully verified before being used. The main

controlling parameters such as Re, R�, and Le are varied to

gain new insights into the formation of different flow pat-

FIG. 15. The maximum u�0.5,0.5,1� vs Re, showing multiple

solution branches near the onset of convection for R�=−1 and Le

=10:1, stable equilibrium solution; 2, unstable equilibrium solu-

tion; 3, steady asymmetric solution �Fig. 5�; 4, steady asymmetric

solution �Fig. 13�; 5, oscillatory symmetric solution �Fig. 16�. H

denotes the supercritical Hopf bifurcation point.
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FIG. 16. �Color online� A snapshot of the oscillatory flow field for Re=320, R�=−1, and Le=10: �a� flow pattern on the upper surface,

�b� stream slice on the mid-y-z plane, �c� stream slice on the mid-x-z plane, and �d� isosurfaces of the concentration field �contour values: 0.1,
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terns. Different initial flow fields were used in order to detect

possible multiple solution branches.

The main findings of the present study can be summarized

as follows: Upon increasing Re a two-roll symmetric second-

ary flow is first set up in the transverse �mid-y-z� plane,

superimposed on the main flow rotation, which cannot be

detected by the 2D model. A typical pitchfork bifurcation is

encountered in the range 120�Re�140 and the back-front

symmetry of the solution is lost. The resultant steady flow

exhibits a two-roll asymmetric pattern on the transverse

plane and a solute-rich fluid core develops below the upper

surface. When Re is further increased from 380 to 400 the

flow becomes oscillatory and a possible physical explanation

is provided. In the range 260�Re�380 there coexists an-

other solution branch, which corresponds to steady flows

with a four-roll symmetric pattern on the transverse plane. It

later becomes chaotic at Re=400 and a reverse transition

from chaotic to steady flow is encountered when Re is fur-

ther increased to 430. Examination of the transverse flow

field shows that this counterintuitive reverse transition is ac-

companied by a change in the spatial structure from a four-

roll to a six-roll pattern. The flow becomes chaotic once

again at Re=500 and the temporal responses of the velocity

components are characterized by intermittency. The presence

of the back and front sidewalls can retard the main rotating

flow and thus reduce the heat and mass transfer rates. How-

ever, the presence of such sidewalls gives rise to complex

secondary flow �up to six rolls in the present study�, which

cannot be obtained by the 2D model. Totally seven dynami-

cal behaviors, including two different chaotic regimes, are

observed up to the maximum Re value investigated. Such

rich dynamical behaviors would be missed if the 2D model is

used.

For given values of Re and Le the influence of R� is

investigated for both opposing and augmenting cases. Two

different asymmetric solution branches are obtained in the

range −1�R��−0.6, while for R��−1 and R��−0.5 the

solutions are always back-front symmetric. While the 2D

model significantly overpredicts the heat and mass transfer

rates for R�
−1, the results by the 2D and 3D models al-

most coincide for R��−1. When R� gets close to −1 both

heat and mass transfer rates decrease due to the reduction in

the convection intensity. The onset of convection for the spe-
cial case R�=−1 is also investigated and the results are com-
pared to the 2D analysis �16�.

As Le increases at fixed Re and R� a pitchfork bifurcation
is encountered and the critical Le value is accurately deter-
mined. For different initial fields, all the simulations con-
verge to the same solution and no additional solution branch
was identified. The overpredictions of the heat and mass
transfer rates by the 2D model are more significant for the
asymmetric solutions than for the symmetric solutions.

The present study can be relevant in a zero or low gravity
environment. However, we are aware that under normal
gravity environment, for convection in a cube buoyancy ef-
fect should be important, and combined buoyant Marangoni
flow is part of our further studies that are currently under-
way.
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