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Non-equilibrium quantum phenomena are ubiquitous in nature. Yet, theoretical predictions on the
real-time dynamics of many-body quantum systems remain formidably challenging, especially for high
dimensions, strong interactions or disordered samples. Here we consider a notable paradigm of strongly
correlated Fermi systems, the Mott phase of the Hubbard model, in a setup resembling ultracold-gases
experiments.We study the three-dimensional expansion of a cloud into an optical lattice after removing the
confining potential. We use time-dependent density-functional theory combined with dynamical
mean-field theory, considering interactions below and above the Mott threshold, as well as disorder effects.
At strong coupling, we observemultiple timescales in themelting of theMott wedding-cake structure, as the
Mott plateau persist orders of magnitude longer than the band insulating core. We also show that disorder
destabilises the Mott plateau and that, compared to a clean setup, localisation can decrease, creating an
interesting dynamic crossover during the expansion.

A
large part of our understanding of the physical world concerns the equilibrium state, where macrosco-
pical observables are constant in time. However, most phenomena surrounding us are instead non-
equilibrium phenomena, where systems evolve towards new equilibrium states once perturbed away

from their initial conditions. For condensed matter systems, ultrafast techniques are now becoming available
to probe the non-equilibrium dynamics at the typical electronic scales1,2. Even so, the intrinsic complexity of real
materials still makes their theoretical understanding extremely difficult, because the electronic effects are usually
interwoven with phononic contributions, inhomogeneities, etc.

In contrast, idealised solids realised by loading fermionic ultracold atoms into optical lattices feature several
advantages over the corresponding solid-state systems. The accurate control of the system parameters permits
experimental realisations ofmodel fermionicHamiltonians, e.g. the single-bandHubbardmodel3,4, where higher-
bands contributions, phonons, lattice defects are absent or can be introduced separately and in a controlled way.
In fact, most system parameters can be tuned independently in time and in a very wide range, allowing for the
exploration of regimes beyond what is feasible in condensed matter5,6. Moreover, the typical timescales of
ultracold-gases dynamics are much longer (<ms) than those in condensed matter systems7. This has made
possible, for example, the observation of interesting phenomena like the crossover from ballistic to diffusive
behaviour in a fermionic cloud expanding into an optical lattice8. Although the physics in these experiments is
much simpler than in condensed-matter ones, the theoretical understanding is still in general impaired by the
absence of reliable tools to address the non-equilibrium behaviour of these simple model fermionic systems.

Indeed, among the well established approaches, perturbative techniques are only suitable for weak- and strong-
coupling regimes, while non-perturbative schemes scale unfavourably with system size and simulation time. On
the whole, it is fair to say that using any of the methods above for large inhomogeneous samples does not appear
immediate, because of rather prohibitive computational costs. Lastly, exact techniques like the time-dependent
density-matrix renormalisation group are currently mainly restricted to one dimension, while QuantumMonte-
Carlo approaches can be severely limited by the fermionic sign-problem. Therefore, progress in the field requires
new methods to cope with higher dimensions, large inhomogeneous systems irrespective of the interaction
strength.

For these challenging situations, we advocate here the use of a recently developed approach9, i.e. the combina-
tion of Lattice Time-Dependent Density-Functional Theory and Dynamical Mean-Field Theory (Methods).
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Within this method, one can properly describe the Mott transition
within a density-functional theory framework9. Here, we show its
potential by addressing the real-time dynamics of a large inhomo-
geneous three-dimensional system (up to 473 lattice sites) in different
regimes of interaction strengths and also in presence of disorder.
Our setup resembles a recent experiment8 on ultracold Fermi

gases, consisting of a confined cloud, which expands into an optical
lattice after the trap is removed. Our initial density profile is the

ground-state density of the trapped interacting cloud. The corres-
ponding initial state is the (Kohn-Sham) ground state of density-
functional theory (Methods). To describe the expansion of the
system, we study the time-dependent one-particle density, which
can in principle be obtained exactly within our approach (Methods).
We considered two interaction regimes, corresponding to a

strongly-correlated metal and to a Mott insulator in the homogen-
eous case, and different protocols for switching off the trapping

Figure 1 | Cloud expansion into a homogeneous lattice. (a), (b), (c): Density profiles along the z5 0 plane for different times and setups. The colour bar

represents the density scale.
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potential. At strong coupling, the ground-state density exhibits the
peculiar wedding-cake structure due to the presence of the Mott
plateau where the local density is commensurate10. As we release
the trapping potential, the high-density metallic domain immedi-
atelymelts, while theMott plateau remains remarkably stable against
the expansion, over much longer timescales than below the Mott
transition. Thus the intrinsic inhomogeneity of confined ultracold
gases displays the multi-scale dynamics of different phases in a single
experiment.
We also considered the role of disorder on the cloud expansion.

Compared to the static case11–15, the effect of disorder on interacting
Fermi systems out-of-equilibrium is much less understood, espe-
cially for dimensions larger than one. Our results show that disorder
earlier makes the Mott plateau less stable, decreasing the melting
time, while slowing down the expansion at long times. This induces
a noteworthy crossover in real-time.
As commonly done within the ultracold-atom community, the

system is described in terms of an inhomogeneous and time-depend-
ent Hubbard model. In standard notation,

H~{J
X

i,jh i,s

c{i,scj,szU
X

i

ni:ni;z
X

i,s

V0 tð Þr2i {ei
� �

ni,s ð1Þ

with J the hopping parameter andU the contact interaction strength.
The trap strength V0(t) determines the switching-off protocol in
time, and ei is nonzero in the disordered case (Methods). We take J
as energy unit, thus t is in units of /J.
In our simulations, we consider a simple-cubic lattice with U5 8

and U 5 24. In the homogenous case, these values correspond
respectively to a strongly-correlated metal and to a Mott insulator
(the critical interactionUc< 13). Starting from the trapped system in
the ground state, we examine three different expansion scenarios: For
U5 8, we study a sudden expansion (t5 01), as well as a slow one (t
5 80), where t controls the trap removal speed (Methods). For U5

24, instead, we choose to consider only the slow expansion.
Indeed, the current implementation of our approach is expected to

give a reliable description for slow and moderately-fast expansions,
even at strong coupling. However, for fast trap removals, its perform-
ance significantly deteriorates for increasing interaction, and large
deviations occur well above theMott (gapped) regime. Instead, in the
metallic (gapless) regime at U5 8, our results should remain robust
in a qualitative sense. This is further addressed in the Methods
section.

Results
Expansion into a homogeneous lattice.The qualitative behaviour in
time of the density profile in the z5 0 plane for the chosen setups is
shown in Fig. 1. Even within a cubic lattice, the initial cloud profiles
appear to be in very good approximation spherical, due to
the symmetry of the trapping potential. In Fig. 1a–b, for U 5 8,
the initial density profile smoothly decreases as a function of the
distance from the centre in every direction. At strong-coupling
instead (U 5 24, Fig. 1c), the repulsion is large enough to induce
an insulating phase in the homogeneous system at half-filling.
Accordingly, the trapped system develops a Mott plateau, i.e. a
region where the density is n 5 1 to a very good approximation,
due to the incompressible nature of the Mott phase.
It is immediatelymanifest that theMott physics has striking effects

on the dynamics. Indeed, for U 5 8 the cloud expands smoothly
(Fig. 1a–b), while for U 5 24 (Fig. 1c) the band insulating core
immediately melts to get rid of the large interaction energy, and
the upper part of the wedding-cake structure at n. 1 collapses over
the Mott plateau. At the same time, the underlying Mott plateau is
remarkably stable against the trap opening and, after some time, the
system exhibits a largeMott region surrounded by ametallic domain
(Fig. 1c, t5 40). Only on a much larger timescale (t. 60), also the
Mott plateau melts and the system fully relaxes into the lattice.

Different switching-off protocols are compared in Fig. 1a–b. For
the sudden case, the system evolves only according to the homogen-
eous Hamiltonian, which (together with the initial state) sets the
expansion timescales. As a consequence, the metallic dome melts
much faster, and the shape of the cloud develops clear signatures
of the lattice symmetry (t . 2). Conversely, in the slow case, the
expansion rate is controlled by the trap-removal speed, and thus
the cloud anisotropy remains small.
In Fig. 2, we analyse the expanding cloud in a more quantitative

way.We start by looking at the density as a function only of the radius

r~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

i2xzi2jzi2z

q

(Fig. 2a–c). For the slow expansion (Fig. 2b–c), at t

5 0 the cloud core is basically spherical (i.e. the density is a single-
valued function of r) and tends to maintain this symmetry.
Significant anisotropy is instead observed in the low-density region
around the cloud boundaries for the sudden setup (Fig. 2a). In this
case one expects the tail expansion to be ballistic8, with the cubic
symmetry of the underlying lattice.
These considerations are further supported by the analysis (not

shown) of an asymmetry parameter c 5 (Rmax 2 Rmin)/(Rmax 1

Rmin), where Rmax and Rmin are the maximum and minimum radial
size of the cloud (cg [0, 1]). The cloud radius Rmax(Rmin) is defined as
the largest (shortest) distance from the centre where the density is
above 1024 (Rmax was also used to check that the expanding cloud
did not reach the boundaries of the simulation box). The maximum
asymmetry we found is c5 0.38 for the sudden case, and c5 0.05 for
the slow expansions. Finally, a notable feature in Fig. 2c is that the Mott
plateau, before collapsing, widens over a significant time interval
(0 *
v t *

v 40). This appears to be independent of dimensionality16, and
thus related to the intrinsic energetics of the Mott phase and its rigidity.
Another useful quantity to analyse is the cloud expansion velocity.

This was done in ref. 8, where, starting from an initial band-insulator
state, the dual nature of the expansion was characterised as ballistic at
the cloud edge, and, due to interactions, as hydrodynamic in the
cloud core. In our analysis, we compare the maximum Rmax and

average radius of the cloud Rrms~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Np

X

i
nir

2
i

s

, where Np is the

number of particles. Their different behaviour (Fig. 2d) can give
indications on the presence of multiple domains expanding at dif-
ferent rates. For U 5 8 and in the case of a sudden expansion, Rmax

and Rrms were fitted according to the expression
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
0zv2t2

p

, where
R0 generically denotes Rmax (Rrms) at t5 0, and the speed v is a fitting
parameter. The fit of Rmax confirms that the edge of the cloud
expands ballistically8. At the same time, taking into account the
slower interacting core, Rrms increases at a lower rate than Rmax.
For the slow expansions, also shown in Fig. 2d, no fit was attempted,
since the the slow trap opening hinders the expected ballistic beha-
viour at the cloud tails.
The effect of different trap-removal protocols on the dynamics in

theMott regime is shown in Fig. 2e forU5 24.We find it informative
to scale time according to tR t/t. In this way, simulations for dif-
ferent t:s appear very similar, and can be discussed together. This also
suggests that the intrinsic cloud relaxation timescales aremuch faster
than t. Furthermore, due to the presence of theMott plateau, we find
it insightful to describe the cloud as consisting of three domains,
naturally defined in terms of the density: a low-density (n , 1)
and high-density (n . 1) metallic region and the Mott plateau (n
5 1). For each of them, we consider a distinct Rmax and the related
expansion speed. For n, 1, we find a positive speed (for t5 80, the
low-density region Rmax is the same as the original Rmax in Fig. 2d).
Nevertheless, the speed is negative for the other domains, which
means that their outer radius is shrinking in time (note, however,
that the Mott plateau is growing inwards). Even after the high-den-
sity core has disappeared, the Mott region has only just started to
shrink, thus confirming that the different domains have qualitative
different behaviours.

www.nature.com/scientificreports
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Finally, in Fig. 2f we present results for the Kohn-Sham bond-
currents at time t 5 30. Although their physical meaning is rather
indirect, such currents can offer additional insight (Methods). From
their intensity and direction, we see that the particles are flowing out
of the high-density region in the centre. However, no particles accu-
mulate in the Mott region, consistently with the rigidity of the latter.
The foregoing discussion for a clean lattice reveals several inter-

esting dynamical features of strongly correlated fermions. Another
important element that we wish to bring into our analysis is the effect
of disorder, which we discuss next.

Expansion into an inhomogeneous lattice. To illustrate the role of
disorder, we consider one particularly interesting situation, namely
the dynamical competition between disorder and interaction in the
Mott regime. To this end, we prepared the system for U5 24 in the
same initial state as in the previous section and let it expand into a
disordered environment according to the slow trap-opening protocol
used before. Disorder was introduced via a single special quasi-
random structure (Methods), which mimics a 50% binary alloy
(ei 5 6W in Eq. 1). The ei:s, as shown in Fig. 3b, are chosen to be
non-zero only where the initial density is negligible, and thus we can
specifically address the role of disorder on the cloud dynamics.

In Fig. 3a, we show the density profile along the z5 0 plane for the
homogeneous (W 5 0) and the disordered case (W 5 4). For this
setup, the effect of disorder on the density profile is hardly visible on
the scale of the figure for t *

v 50, due to the peculiar Mott plateau
dynamics. This is easily understood by noting that, initially, the
expansion is mostly characterised by an internal rearrangement of
the high-density region n $ 1 and the formation of the extended
Mott plateau, as in the clean case. This has a relatively small effect on
the low-density region.
The influence of disorder is instead much more pronounced for

t . 50 when the Mott plateau begins to collapse and the particles
around its boundaries flow towards the low-density region. A first
more evident effect is that the cloud expansion at large times is
now hindered by the scattering against the binary disorder, which
causes an irregular density accumulation close to the inner edge of
the disordered region. At large times t $ 70, the disorder induces
a kind of dynamical localisation of the cloud as the density profile
is significantly reduced in the trap centre (in fact more than in the
W 5 0 case) but at the same time the expansion far away from the
centre is considerably slowed down. The final density profile at t
5 80 shows a large particle accumulation in a roughly annular
region at the beginning of the disordered zone, in contrast to the

Figure 2 | Quantitative analysis of the homogeneous expansion for different times and setups. (a), (b), (c): Density as a function of radius only. The

magnification in (a) details the cloud anisotropy. The inset legend also applies to the rest of (a). The legend in (b) is shared with (c). (d): Rmax (solid lines)

and Rrms (dashed-dotted lines). For U 5 8, sudden expansion, fits are shown (dashed lines). (e): Rmax for U 5 24 as a function of rescaled time t/t.

Densities for different trap protocols (t 5 70, 80, 90) have distinct symbols; different density domains have distinct colours. (f): Bond currents and

densities in the z 5 0 plane for U 5 24, t 5 30. Blue (red) arrows correspond to large (intermediate) currents, whilst small currents are not shown.

www.nature.com/scientificreports
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clean case, which is almost uniform (Fig. 3a). A second and more
subtle effect, hardly visible on the plot scale and discussed further
below, is that the disorder accelerates the melting of the Mott
plateau.
To quantify the effect of disorder on the size and symmetry of the

expanding cloud, we also analysed both the minimum Rmin and
maximum Rmax radial size of the cloud with and without disorder.
Not unexpectedly, in presence of disorder Rmin and Rmax rapidly
diverge from each other, since disorder destroys the spherical sym-
metry observed in the clean case. Rmax separates from its clean-setup
counterpart in the first stages of the cloud expansion, indicating that
disorder earlier favours some particles to flow away from the cloud in
a faster way. Interestingly, disorder induces a larger and more asym-
metric cloud at every step of the expansion.
The inverse participation ratio f, shown in Fig. 3d forW5 0 and

W5 4 as a function of time, is a convenient indicator of the degree of
localisation resulting from competing disorder and interactions
(Methods). Since a smaller f implies a smaller degree of localisation
for the particle cloud, in the first stage of the expansion (t *

v 65) we
observe a rather interesting and counterintuitive result: forW5 4, f
stays smaller than for the homogeneous case (whereas disorder in
general is expected to increase the degree of localisation), resulting in
a more delocalised cloud at small expansion times. The dynamical
localisation in Fig. 3a takes over at large times and the trend is
inverted for t . 65.

This dynamical crossover is an intriguing consequence of the
competition between disorder and interaction in the Mott regime.
Indeed the disordered lattice offers in the early stages of the expan-
sion additional energetic pathways compared to the W 5 0 case,
which accelerate the melting of the Mott plateau. This is also why
the expansion initially occurs earlier and faster than in the clean case
(thus we observe a smaller f and a larger Rmax). However, after the
Mott plateau has melted, the cloud expands faster (on average) in the
clean setup, since the particle flow is not hindered by disorder (hence
the larger f at t *

> 70 for the disordered case). We verified that the
overall features shown here for W 5 4 are robust against distinct
quasi-random structures and disorder strengths. In particular,
results up to W 5 6 (not shown here) indicate that increasing dis-
order further favors the onset of additional pathways for the collapse
of the Mott plateau.

Discussion
We have studied the dynamics of an interacting fermionic cloud
expanding into clean and disordered optical lattices by using a
recently developed approach which merges lattice Time-
Dependent Density-Functional Theory with Dynamical Mean-
Field Theory. With this method, we have been able to describe the
real-time dynamics of large three-dimensional (in)homogeneous
Fermi systems up to an unprecedented size (N , 105 lattice sites,
i.e. comparable with current experiments in cold gases), in different

Figure 3 | Mott wedding-cake expansion in clean and disordered systems. (a): Comparison between the density profiles in the z 5 0 plane for the

disordered (W 5 4) and clean W 5 0 (same as in Fig. 1c) systems. (b): z 5 0 section of the used special quasi-random structure. (c): Relative trends

between the clean and disordered expansions for theminimum and themaximum cloud radii. (d): Time evolution of the inverse participation ratio (IPR)

for the clean and disordered expansions.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2570 | DOI: 10.1038/srep02570 5



regimes of interaction and even in presence of disorder. Our work
unveils important aspects of the fermionic dynamics, such as the
central role of the Mott physics at strong-coupling and the interplay
between disorder and interaction in 3D (since we are primarily inter-
ested in Mott physics, only nonmagnetic systems are considered).
Above the Mott threshold, the timescales and features of the clean

expansion are markedly different from the metallic regime. We
observe an earlier increase in size of theMott plateau against the trap
opening at the expense of the metallic domain. Compared to lower
dimensions, this finding is even more surprising, due to the larger
number of runaway paths in 3D: thismainly arises from the universal
features of Mott physics. The 3D nature of the system is instead
crucial i) in the observed dichotomy between the weak- and
strong-coupling dynamics, which reflects the presence of a finite
Mott threshold in the homogeneous system. Our findings also sug-
gest a convenient description of the cloud expansion in terms of
multiple domains with positive and negative expansion speeds ii)
in the rich phenomenology observed in presence of disorder.
Disorder introduces notable changes in the dynamics above the

Mott threshold, altering expansion time-scales, but also resulting in
interesting temporal patterns. For example, we observe a dynamic
crossover in the localisation properties, as the disordered system is
less localised than the clean one at the beginning of the expansion,
whilst disorder increases in general localisation, as expected, at large
times.
Our results shown here are just an example of how rich and inter-

esting the real-time dynamics in the presence of disorder and inter-
actions is. We have already considered (not shown) different
disorder strengths and interactions, and observed intriguing features
like, e.g., density revivals due to dynamical localisation. These find-
ings, as well as the inclusion of proper configuration averaging and
disorder in the initial state, are deferred to future publications.
In conclusion, we hope our work will stimulate further improve-

ments of our approach, as well as new experiments on ultracold gases
in optical lattices, to deepen the understanding of many-body
quantum systems in many regimes of interest.

Methods
To describe the properties of the inhomogeneous Hubbard model in Eq. (1), we use
static17,18 and Time-Dependent19 Density-Functional Theory (DFT and TDDFT,
respectively). These are in-principle-exact reformulations of themany-body problem,
and we use them in their (static20–24 and time-dependent9,16,25–33) lattice versions.

Here, we briefly recall the essentials of our treatment (for a recent review, see Ref.
32). In this approach, the (time-dependent) number of particles per lattice site n, is the
basic variable and the physical observables of the system are functionals of n. In
operational terms, one introduces a non-interacting image system, the so-called
Kohn-Sham (KS) system, and the exact many-body density is then obtained from the
KS single-particle states. A key ingredient in the KS system is the exchange-correla-
tion potential, vxc, incorporating exchange and correlation effects. In general, vxc is
not known exactly and approximations are used. A simple but effective one (used
here, and further discussed below) is the Local Density Approximation (LDA) for the
static case, where vxc at site i depends locally on the site occupation n(i), and corre-
spondingly the adiabatic LDA (ALDA) for the time-dependent case, where vxc
depends instantaneously and locally on n(i, t).

In a recent work, a lattice DFT treatment of simple-cubic Hubbard model9 was
proposed, where the pivotal ingredient is an adiabatic LDA based on Dynamical
Mean-Field Theory (DMFT)34–36. There, v hom

xc for the reference homogeneous system
was obtained within DMFT according to

v hom
xc nð Þ~

L

Ln
EDMFT nð Þ{T0 nð Þ{Un2

�

4
� �

, ð2Þ

where EDMFT is the ground-state energy, T0 is the non-interacting kinetic energy
and Un2/4 is the Hartree energy. DMFT properly describes the Mott metal-
insulator transition35, and gives a good variational estimate of the energy37,
although the self-energy only depends on the frequency and not on quasi-
momentum.

A crucial feature of the method is the occurrence of a discontinuity in vxc at n5 1
above a critical value Uc < 13 of the Hubbard interaction. This is how the Mott-
Hubbard metal-insulator transition manifests within a DFT framework. The dis-
continuity is the origin of the Mott plateaus in Fig., for U 5 24 . Uc.

In our calculations, we considered simple-cubic clusters of 47 3 47 3 47 lattice
sites with open boundary conditions.We choseNp5 542 (Np5 1862) particles when

U5 8 (U5 24) to avoid ground state degeneracies in the density region of interest.
The ground state was computed by solving self-consistently the KS equations:

T̂zv̂KS
� �

Qk~ kQk, ð3Þ

where the effective potential (i labels the lattice site) vKS(i)5 vext(i)1Un(i)/21 vxc(i),

with T̂ the kinetic energy operator on the lattice, and Un(i)/2 the Hartree contri-

bution, with n ið Þ~2
P

k[occ Qk ið Þj j2 (the sum is over all occupied KS orbitals, and the

factor 2 accounts for spin degeneracy). vext ið Þ~V0 tv0ð Þ~Kri
2 is the external trap-

ping potential. We chose K 5 0.55 (K 5 0.60) for U 5 8 (U 5 24). In the LDA,

vxc ið Þ~v hom
xc n ið Þð Þ. The large-scale self-consistent eigenvalue problem of Eq. (3) was

made computationally manageable by using symmetry-adapted orbitals via the point
group Oh. Also, for U 5 24, vxc was slightly smoothened for numerical convenience
(see e.g. ref. 16). As a result, the Mott domain is not perfectly flat. The threshold for
self-consistency in the density was #1025.

On removal of the trap, the system was evolved in time via the time-dependent KS
equations

T̂zv̂KS tð Þ
� �

Qk tð Þ~iLtQk tð Þ, ð4Þ

where vKS(i, t) 5 vext(i, t) 1 Un(i, t)/2 1 vxc(i, t), with (in the ALDA)

vxc i,tð Þ~v hom
xc n i,tð Þð Þ, and n i,tð Þ~2

P

k[occ Qk i,tð Þj j2 . The time-dependent external
potential is vext(i, t)5 vtrap(i, t)2 ei. When present, the disorder ei is static, whilst the

trap is removed according to vtrap i,tð Þ~V0 tð Þr2i . We chose V0 tð Þ~K cos2
pt

2t

� �

for t

# t and V0(t) 5 0 when t . t ensuring a smooth time dependence. The numerical
time propagation was performed via the short iterated Lanczos algorithm38, with a
time-step Dt 5 0.01.

It is perhaps useful to remark at this point that, in our work, DMFT is exclusively
used to compute the ground state energy of the 3D reference Hubbard model. Due to
its nonperturbative and variational nature, single-site DMFT is expected to give a very
good estimate of the ground state energy. In fact, its estimate of the energy is very
accurate in many cases even in two-dimensions, e.g. being indistinguishable from the
Dynamical Cluster Approximation and even from diagrammatic Quantum Monte
Carlo for the setup studied in ref. 37. It is reasonable to expect that in the three-
dimensional case, which is the case of our paper, the agreement would be even better.
Thus, using single-site DMFT in our approach is not an important approximation.
Such role pertains to the (A)LDA, which neglectsmemory effects and the (dynamical)
broadening of the discontinuity in vxc for inhomogeneous systems (in general, these
limitations become more severe at lower dimensions). As shown by recent bench-
marks16,27,29,32,39,40, where non-locality in time and space is fully taken into account, the
(A)LDA performs poorly for strong interactions (e.g. in gapped Mott systems) when
the perturbations are fast. However, the same benchmarks have shown that, for fast
fields and not very strong interactions or slow fields irrespective of the interactions,
these shortcomings appear to be much less important, and ALDA can give reliable
results. Looking at the calculations in the paper, one would then expect that a sudden
removal of the confining trap is the situation where the range of validity of our results
is less clearly defined.

To simulate a disordered 50% binary alloy, we used a single disorder configuration
chosen according to the special quasi-random structure approach, to effectively
describe the random arrangements of sites at short range41. This still provides sig-
nificant insight in localisation trends, while avoiding demanding numerical averaging
over many configurations42. As an indicator of de/localisation, we used a modified
inverse participation ratio f:

f~

P

i n
2 ið Þ

P

i n ið Þ
� 	2 , ð5Þ

exactly accessible within lattice (TD)DFT.
Finally, we examined the KS currents. In TDDFT, the meaning of the KS current-

density jKS(r, t) is rather indirect. It is in fact its divergence which, via the continuity
equation, can be exactly determined (and thus the exact current out a region can be
obtained). The same holds in lattice TDDFT: rigorous physical content should not be
assigned to the KS bond currents

jbondKS m; nð Þ~{4
X

k[occ

= yk mð Þyk nð Þ
h i

, ð6Þ

but rather to their divergence on the lattice (m, n label the nearest neighbour sites

defining the bondmn). Even so, it may be instructive to consider jbondKS as an auxiliary,
albeit non-rigorous tool to illustrate the dynamics.
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