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DEFINITION OF THE PHYSICAL PARAMETERS
radial coordinate
azimuthal coordinate
axial coordinate
time
radial component of velocity
azimuthal component of velocity
axial component of velocity
radial component of the divergence of the viscous stress tensor
azimuthal component of the divergence of the viscous stress tensor
axial component of the divergence of the viscous stress tensor
density
gravitational potential
pressure
instantaneous angular velocity of rotating frame
entropy variable
specific internal energy
ratio of specific heats
bulk viscosity coefficient
kinematic viscosity coefficient
second viscosity coefficient; only in Eq. (I1-9)
free-scaling parameter

normalization parameter
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radius of toroid from central axis
characteristic cross-sectionai radius of toroid
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total mass

interpolated maximum density
radial position of pﬁax
maximum cell density
radial position of Prmax
total gravitational potential energy

total kinetic energy of radial and axial motion
total internal energy

total rotational kinetic energy

total energy

total angular momentum

temperature

polytropic index



I. INTRODUCTION



A. BINARY STARS
1. Historical Background
The Greek equivalent of the term double star was first used by

Ptolemy to describe the appearance of Y Sagittarii.] Many double
stars are optical pairs rather than true binary systems. In 1767
Rev. John Michell read a paper2 before the Royal Society in London in
which he presented a statistical argument suggesting that many of the
double stars then known were the result of physical rather than optical
association. His controversial paper prompted astronomers to intensify
their search for double stars. In an address to the Royal Society in
1802, Sir William Herschel first used the term binary star to designate
3

the physical union of two stars in one system.

The first known observation of a close binary (e.g., component

separation comparable in magnitude to component dimensions) may date
back to the days of nomadic life in the Arabian pem‘nsu]a.4 The second
brightest star in the consteiiation of Perseus was given the name
Al_ghglg which means "changing spirit." Although it is questionable
whether one should assign any specific significance to the name, it is
appropriate because Algol, as it is now called, js an eclipsing binary.
In 1783 John Goodricke, Junior, made the first observations of a
minimum of Algol and successfully measured its periodicity. He even
cenjectured that it might be an eclipsing double star system in which

the components were physically bound.5



2. Significance
Conservative estimates indicate that 30 to 50% of the total star
population in the vicinity of the solar system occurs in double or
multiple systems.6 Approximately .2% of these stars are eclipsing

7

binaries. If one considers the random distribution of orbital

inclinations, approximately 1% of the stars may be in close binary
systems. This argument implies that if a similar ratio holds for our
galactic system as a whole, one might expect it to contain some 109
close binaries.

The astrophysical data that can be deduced from a study of
eclipsing binary systems provide the theoretician with a method for
looking into the very heart of stars. For a single star one has no
way of gauging its external gravitational field or of Tearning any-
thing about the distribution of its surface brightness. In close
binaries, however, the properties of the combined gravitational field
can be deduced from the characteristics of the motion. Knowing the
gravitational field one can then check calculational models of inter-
nal pressure and density distributions. The variation of brightness
caused by axial rotation of the distorted components or exhibited
during their mutual eclipses permits one to measure the distribution
of surface brightness. WNon-radial tidal oscillations can demonstrate
whether stellar configurations behave like perfect f]uids.8 These
considerations and others demonstrate the important role that multiple
star systems nlay in our understanding of astrophysical phenomena.

The theoretical complexities associated with the interpretation
om such cbservations are nen-trivial. Previous

work has employed complicated models of the material properties and



and transport processes believed to be operative and has generally made
extremely simplifying assumptions regarding the dynamics of the motion.
The present work emphasizes the solution of the nonlinear dynamics
while using less detailed models of the other physical processes. In
the following chapters a fully three-dimensional finite difference
methodology is developed specifically for application to rapidly
rotating, highly distorted, self-gravitating binary systems.
B. PROTOSTARS
1. Early Stages of Star Formation

In 1692 Newton suggested that stars might form through gravita-
tional condensation of diffuse matter in space. Although Newton's
jdea is widely accepted as being basically correct, many details of
star formation remain highly speculative and controversial. The
earliest stages of the star formation process are less well understood
than the intermediate collapse stages. Thermal and magnetic instabil-
jties as well as large scale galactic shock have been proposed as
possible mechanisms through which interstellar clouds are formed of
sufficient mass and density to be gravitationally bound.10 Once a
cloud is gravitationally bound it is called a protostar. It is at
this point in the evolution that our investigation begins. A compre-
hensive review of this theory of the early stages of star formation

11, 12

is given by Spitzer, and shorter discussions are provided by

Fie]d]3 and Penston.]4 A somewhat different point of view is pre-

18

sented by MciNaiiy.'~
If a cloud is to condense into a star or a cluster of stars,
T PR 3 I T
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principle dispersive mechanisms include



1) thermal gas pressure

2) magnetic pressure

3) centrifugal force if the cloud is rotating

4) the effects of internal turbulent motions
For simplicity one generally neglects the magnetic pressure and
includes the turbulent effects as an added thermal pressure.
Spitzer16 states and derives the Jeans criterion in a number of ways;
however, La\rson]7 proposes the following succinct statement:

"In essence, the Jeans criterion simply states that in order for
collapse to occur, the gravitational potential energy of a cloud must
be comparable to or greater than the kinetic energy of thermal or
turbulent motions within the cloud.”

For a rotating cloud one makes a modification in the above state-
ment to allow for the inclusion of the rotational kinetic energy as a
dispersive mechanism.

2. Collapsing Protostars
a. Spherical models

In recent years a large number of authors have calculated the
early stages of the collapse of a spherically symmetric, nonrotating
gas c]oud.]g'22 A brief review of these studies is given by Penston.23
Although the various calculations are based upon assumptions that are
considerably different from one another, there is remarkable agreement
on the qualitative features of the collapse. For example the collapse
is always found to be very nonhomologous, and the density distribution
becomes very rapidly peaked at the center.24

To better understand the nature of the collapse one can consider

the free fall time of a uniform density, zero pressure spheroid given



be]ow.25

1,
_f 3% \*
te = <32Gp> (I-1)

The free fall time varies inversely as the square root of the density.

Therefore, as the local density increases, its free fall time de-
creases; and the collapse around a local center of condensation
proceeds more rapidly than in the more diffuse regions of the cloud,
producing a separation of the material into a central condensed region
that is well separated from the outer regions of the cloud. If the
system were not spherically symmetric, the resulting configuration
would be strongly unstable, leading therefore to fragmentation.
b. Axisymmetric models

If the system is rotating, the most restrictive assumption in the
above is the spherical symmetry constraint. 1In 1972 Larson26 reported
two-dimensional calculations in which he imposed only axial symmetry
on the collapse. For the purposes of this present investigation it s
useful to emphasize two of his conclusions. First, since one does not
know what initial conditions and boundary conditions are appropriate
for a condensing protostar, it is reassuring that Larson finds the
qualitative features of the late time collapse to be insensitive to
these detai]s.27 Second, Larson finds that in the presence of rapid
rotation the central portion of the cloud always appears to condense
into a rotating toroid with a density minimum at the center.

The formation of such a ring is physicaliy reasonabie, as demon-
strated by the following scenario. Depending on the rate of rota-
tion, central densities may or may not increase at first as the

collapse proceeds. In either case conservation of angular momentum



requires that the azimuthal velocity of the material falling toward
the axis of rotation increase; and eventually, the centrifugal forces
exceed the forces of gravity. In the central regions the equatorial
collapse near the axis of rotation ceases. Collapse along the axis

of rotation continues unimpeded toward the center and finally rebounds
outward into the equatoriai plane. At the same time material from the
outer part of the cloud continues to fall inward and to accumulate in
a ring-shaped torois around the central region where collapse has been
halted. Once the ring has formed, it becomes a center of accretion
for the remaining inward falling material.

Subsequent to Larson's pioneering work two similar two-dimensional
numerical studies have been published. Tscharnuter29 has repeated the
work of Larson using a different numerical scheme, and he has not
found ring formation. His results indicate that for rapid rotation
the cloud reexpands after the initial collapse. Black and
Bodenheimer,30 on the other hand, have aiso pubiished calculations
treating rapidly rotating collapsing protostars, and they obtain
rotating toroids qualitatively similar to those of Larson.

To follow the collapse further one must study the fragmentation
of these rotating toroids. The full three-dimensional equations of
motion must therefore be solved. It is this aspect of protostellar
evolution that forms the central theme of this research.

¢c. Additional models

o . i [} et R B

L o T, P Y mrmiat bhaAd A b
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w
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(9]
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nor has it been the primary source suggesting the existence of rings

in the universe. Modern observations show that rings commoniy occur

in spiral galaxies of both the ordinary and barred types.3]’ 32



Minkowski and Osterbrock33 have observed rings in certain planetary

nebulae. Underhi]]34

mentions rings as possible models for the
extended atmospheres of early-type stars, and Maltby and Moffet35
suggest ring models in their extragalactic radio source studies.

The earliest work36 on the theory of equilibrium rings dates back
to Laplace (1789). Contributions have also been made by MaxweH37 and
Poincaré.38 The comprehensive treatment of the equilibrium and stabil-
ity of fluid rings by Dyson39 in 1893 essentially completes this class
of studies, which can be characterized by the following assumptions.

1) slender rings; i.e., minor axis < < major axis
2) uniform rotation
3) homogeneous liquid rings

In his 1964 study of equilibrium rings Ostriker40

replaces the
third and most restrictive assumption (liquid rings) with the require-
ment that the fluid be a polytropic gas. He finds that for certain
mass-to-length ratios stable toroidal configurations should exist.
Larson and Black and Bodenheimer find values of this ratio in their
respective works that agree fairly well with the predictions of
Ostriker.
C. THE PRESENT THREE-DIMENSIONAL MODEL
1. Basic Approach

The next improvement one might naturally make in the numerical
studies of collapsing protostars is the extention to large amplitude
non-axisymmetric motions. Most of the authois cited above comment
that nothing definitive can really be concluded until one has inves-

tigated the stability of rotating toroids subjected to large non-

axisymmetric perturbations. As is often the case, however, the most



obvious improvement is not always the easiest to implement. In this
situation one must have access to the largest, fastest computers
available today; and in addition one must develop a methodology
made possible only through modern techniques in numerical fluid
dynamics.

In order to facilitate the development of a fully three-
dimensional numerical fluid dynamics capability for application to
rotating, self-gravitating bodies, one chooses, at least initially,
to simplify the models of the physical processes to the greatest
possible degree while maintaining contact with reality. Such an
approach also allows one to develop a thorough understanding of the
methodology, which will prove useful as the complexity of the physical
modelling progresses. With this motivation in mind, the following

assumptions are made in the work described in this text.

w——t

) adiabatic fluid motions

) negligible physical viscosity

N

w

) polytropic gases
4) no radiation effects
5) no electromagnetic effects
The first assumption permits one to avoid solving an energy
equation. In the absence of strong sources and sinks, as is the case
for the early stages of protostellar evolution, it is a reasonable

constraint. The negligible physical viscosity assumption is likewise

P S N Jd20o0. .
Palsi-Kallal i ad
¢ othe qitruse

- as b,
s Lrin

(¢4]

gas equations of state have been used rather successfully in many
astrophysical applications over a wide range of densities. For a

general discussion one is referred to texts such as those by C]ayton4]
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and Chandrasekhar.42 Larson and Black and Bodenheimer include radia-
tion pressure in their respective calculations and find that this term
is negligible over the range of densities occuring in this phase of
protostar development. Each of the above assumptions can be replaced
by more complicated modelling of the physical processes.

The fifth assumption can not be so easily dismissed. Because of
the mathematical complexities involved, the possible role of frozen-in
magnetic fields in collapsing clouds remains one of the principal
unsolved problems in the theory of star formation.43 During early
stages of the collapse the field is thought to be frozen into the gas
because of the ionization produced by high energy cosmic rays. However,
as the density increases the cloud becomes optically thick to such
radiation; and the ionization decreases, decoupling the cloud from the
magnetic fie]d.44 Observations of magnetic field strengths in inter-
stellar clouds are generally consistent with the hypothesis of the
frozen-in fie1d.45 However, some dense clouds have magnetic fields
that are much weaker than one would expect;46 and in the dense Taurus
dust cloud, a region of active star formation, no magnetic field has
yet been detected.47

2. Numerical Solution of the Model Equations
KORYO is a three-dimensional Eulerian computer code designed to

solve the equations of motion for rotating, self-gravitating fluids.

The equations are written in cylindrical coordinates, and the plane

at z = 0 i3 ass o be 2 nlane of symmetry. Densities and pressures

=il
v N,

are treated implicitly. Donor-cell fluxes are used throughout with

the fluxes in the azimuthal direction being convected relative to 2
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frame rotating with an instantaneous angular velocity selected so that
the net angular momentum relative to it is zero. A central core
boundary region avoids pie-shaped cells and the resulting severe time
step restrictions. Mass is allowed to leave the system through the
outer radial boundary. To obtain the gravitational potential at each
jnstant in time, Poisson's equation is relaxed iteratively. These
characteristics of the methodology and others are developed in detail

in Chapter III.



II. THEORY AND PROCEDURE



13

A. EQUATIONS OF FLUID DYNAMICS
1. Equation of Continuity
The motion and general behavior of the fluid are governed by the
fundamental laws of mechanics and thermodynamics. The equation of con-

~ tinuity is developed by applying the law of conservation of mass to a

small volume element within a moving f]uid.48 For a compressible fluid

this equation takes the following form in cylindrical coordinates.49
30 4 1 dpur . 1 20V, BoW i
ot ¥ r ar ¥ r 98 ¥ z 0. (11-1)

*/5. Equations of Motion
a. Non-conservative form
The equations expressing the conservation of momentum are derived
in a similar fashion.50 For a fluid system moving under its own self-
gravity, the components of the body forces in the equations are the re-
spective gradients of the gravitational potential. Incorporating these
and the other forces the equations in cylindrical coordinateSS] for a

rotating, self-gravitating fluid system are customarily written

2

du 3u , V 3u u _voN 3y _ 3p

ou du  vau, ou_V o0 Py -
at P (“ ar | r a6 " 3z r) oo "ar T Vr (11-2)
v V., v 3V 3V . uv p 9 1 ap

—_ —_— — e —_— T m m - — + -
3t T P (” T T PR ) ras ~raet Yy  (11-3)
W, W v AW w3y 9Py -
g TP \u ar © v 36 " Bz ) %z ez Vz’ (11-4)

The viscous stress components will be discussed below in conjunction with

the physical viscosities.
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b. Conservative form

The convective pérts of the momentum equations given above are not
written in conservative form. They should be expressed such that if one
integrates over the total volume of the fluid, the change with time of
any conserved quantity is just equal to the net gain or loss of that
quantity through the boundaries. Multiplying Eq. (II-1) by the radial

velocity and adding the result to the momentum equation, one obtains

2 2
dpu , 1 3pur 1 3puv  dpuw _pv _ 3y _3p _
5t Ty ar v 80 oz r "~ P o (11-5)

This expression is the form of the radial momentum equation that furnish-
es the basis for the calculations presented in this paper. Equations

(11-3) and (II-4) can be altered in an exactly analogous fashion to yield

2 2
r
and
ot r or r a8 ¥4 P32~ 3z z

The specific form of Eq. (II-6) combines the coriolis and convective
terms in a manner that is conservative of angular momentum as discussed
in Appendix B.
¢. Viscous stress component

If adjacent layers of a fluid are in relative motion, a shear stress

can develop. The constant of proportionality between the shear stress
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and the velocity gradient is called the first viscosity. Since the

fluid is compressible another viscous stress, which is proportional to
the volumetric change, can arise. The proportionality coefficient for
this stress is called the second or the bulk viscosity.52 The viscous
stress components for a compressible fiuid are expressed in cylindrical

coordinates as follows.23

2 o, N (1_:c>_r_u_ 13v , 3w
Yy ar[z“ar‘wr r Y e+z)]

r \ar "r " r 20 30 ar  r 90
o |, [3u , oW -
* YA [“(az * r)] (11-8)
18 {2 3v (lﬁr& 1av _%_VL)
Y rae[r 5% " A \rar Treet az

2p (v, 13u vy, 2 ouu -
T ( r v ¥)”t ;7'36 (11-9)
3 I 2w (1 aru 1 3w ow\l
V2 =5z |25z M v e T rae ez
1 3 U , oW 1 9 1'aw oV

The viscosity effects are negligible in the physical systems that
are studied in this work. Nevertheless, for the incorporation of ade-
quate dissipation in the numerical solutions, one has used a simplified

model for the viscous stress components. The basis for the particular
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differential form these components are the following

_ [ (paru), 1 3 ( 3u\_20v, 2 ( 2 ]
Vr'\’[ar(r ar)+:Zae (p ae) A TIMET (p azﬂ (11-11)
C a2y v\l (2 (o), 2], 2 [, vyl
Ve“’%:far ["” (5% r)]*?[ae [ ae)+2 ae]*az (° az)g

(11-12)
C [l fawy, 1 (W), 2 ( i
Vz‘“[r 31 (‘“' ar)+:iae (" ae)*az (p az)} (11-13)

It is important to note that the density has been put into Eq. (II-12) in
such a way as to maintain the conservative form; so that linear and an-
gular momentum are neither gained nor lost.
3. The Equation of State

Contained within the four conservation equations, Egs. (II-1),
(11-2), (11-3), and (II-4), one has six unknowns. Two more equations are
therefore needed to solve the system. One additional equation is pro-
vided by the equation of state of the fluid. The equation of state is
usually eypressed as some function relating pressure, density, and tem-
perature. For an adiabatic system one has merely to connect the pressure

and the density as for example in the polytropic equation of state.
n=AapY (11-14)

For the reasons discussed in Chapter I one uses this very simplified de-

scription of the material in the present study.
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B. GRAVITATIONAL POTENTIAL
Self-gravity provides the "container" for the fluids of astrophys-
ics. The final equation needed to form a complete set is provided by
Poisson's equation relating the gravitational potential to the fluid con-

figuration. In cylindrical coordinates one has

N
3% , 3

Ll 90z

[oB] (o]
-

19 1 -
W(” )+;7 = 4nGp . (I1-15)

Many attempts have been made to construct models of rotating, self-
gravitating bodies. In cases dealing with compressible masses almost
every attempt has involved a series expansion of ¢ in Legendre polyno-

54 These methods

mials to account for departures from spherical symmetry.
suffer from the uncertainties of truncating series and products of series
after a finite number of terms.

The present work uses a finite difference approach, but avoids ma-
trix inversion comp]exitie555 by relaxing Poisson's equation iteratively

(Chapter III) subject to the boundary conditions at each boundary point

(rg, 8 Zz)’ calculated by performing a numerical integration over all

emmm moadada [ [a
mass pUInS \rs Vs

m

-o(r , 8 ,2)r drdodz
1:)(7-2” e,Q,’ Z,Q,) =/ff > n m m m m
["z *

0%
- 2r£rmcos|e£-em| +(zg-zm)

l.m[-

(I11-16)
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C. ROTATING REFERENCE FRAME
1. Coordinate Transformations
The evolution of rapidly rotating asymmetric seif-gravitating bodies
can be most accurately studied with numerical techniques in a reference
frame that is itself rotating with the average angular velocity of the
system. Otherwise one would have a high mass transport through the cal-
culational grid, resulting in the introduction of large diffusional ef-
fects. In a properly selected rotating frame the transport due solely to
the rotation of the system is minimized. A further reason for choosing
to work in a rotating frame is suggested by the nature of the iterative
method used to relax Poisson's equation for the gravitational potential.
If the mass motion relative to the calculational mesh is small, the con-
vergence of the numerical solution is much more efficient.
The transformations to a frame (indicated by primes) rotating with

the instantaneous angular velocity, w, are given as follows.

r=r'
8=0"+uwt
(11-17)
z=12"
t=1t'
so that
3.3 _ 2
3t ot' 387
9. . 9
or or'
(11-18)
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9 - 9
9z az'

where
w = w(t)

In the following section the primes are dropped from the independ-
ent variables. The value of w is determined so that the instantaneous
angular momentum of the system is zero in the rotating frame.

2. Transformed Equations

The transformations must now be applied to the equation of continu-
ity, the momentum equations, and the Poisson equation. Using Eq. (11-18)
to transform Eqs. (II-1), (1I-5), (II-6), and (II-7) and rearranging so

that the resulting expressions are conservative, one has

9p . 1 3pur . 1 3p(v-rw) ., dpw _ )
st trar Ty 5 taz 0 (11-19)

apu , 1 8pu2r + %_apu(v -rw) . dpuw _ pv2 _ o3Py

ot :? ar 30 3z r P T or T Yy

(11-20)
v , 1 mw£+lﬁww-m)+mw=_ggy_lng
ot ;’2’ ar r 230 5z r36 v o

(11-21)
apw , 1 dpuwr 1 3pw(v - ruw) doW” _ _ 30 _ 3D -
3% TF ar T r . %0 oz e A (I1-22)
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Poisson's equation and the viscous stress terms remain unchanged un-
der the transformation. It is important to emphasize that the azimuthal
velocity appearing above is referred to the rest frame. Nevertheless
the azimuthal convection takes place at a rate proportional to the net
velocity of the fluid relative to the rotating frame, thereby reducing
the net convection of the fluid to a minimum.

D. LIMITATIONS OF THE COORDINATE SYSTEM

For solving problems in a rotating frame it is valuable to use a
fully three-dimensional cylindrical coordinate system. To visualize the
restrictions imposed on the studies by such a coordinate system, one can
first imagine that the investigations are confined to a cylindrical an-
nulus; that is, a central core region has been excluded from the coordi-
nate system along the z-axis. For such a region it is of course neces-
sary to supply boundary conditions at every point on the confining sur-
face. In contrast, the investigation of the dynamics in a Cartesian sys-
tem would be free from the specification of boundary conditions along the
inner region defined by the core. As a result the Cartesian calculations
would allow for a general class of motions (e.g., those passing through
the axis) that are precluded by the choice of a cylindrical system. Al-
though this limitation is somewhat restrictive, it will become evident
that for the large class of problems of interest in this research effort,
the advantages of the cylindrical coordinate system are decissive.

In the discussion of the numerical solution techniques, it will
emerge that the definition of a small central core is of great conven-
jence with 1ittle resulting sacrifice of physical reality. In addition,

ems at this stage of the investigation

LR

for which there is perfect symmetry across the equatorial plane. The
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boundary conditions that represent the configuration of our domain of

study are described as follows:

1)

2)

On the equatorial plane and on the core boundary, the normal
velocity vanishes; and the normal derivative of any velocity

is calculated from the requirement of vanishing viscous stress.
On the top and lateral boundaries the normal derivatives of the
velocities are also determined by the condition of vanishing
viscous stress. The normal component of velocity, however, is
specified in such a way as to allow for the convective loss of
mass in those circumstances in which appreciable mass loss re-
sults from explosive expansion and/or the necessity to expel

excess angular momentum.



III. NUMERICAL METHODOLOGY
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A. INTRODUCTION
The equations of motion are solved by the finite difference tech-
niques developed in this chapter. To proceed one must decide on
1) the appropriate finite difference approximation to the equations
of motion
2) the proper representation of the fluid within the context of
these finite difference approximations
3) the establishment of a logical procedure for developing the ap-
propriate solutions from prescribed initial conditions.
The first question is handled in the discussions that follow of how to
represent various terms in the equations. The second question is answer-
ed by defining the calculational mesh. The third point is discussed in
terms of a subdivision of time into a sequence of steps counted by the
index n and of each step into a sequence of phases treating different
parts of the necessary logic for the time advancement. Phase 2 of each
cycle consists of an iterative process that requires an initial guess
and that uses a corrective process to lead to convergence. Because of
the way the variables appear in the equations of motion, the finite dif-
ference formulation can be termed implicit, and it is because of this
implicit formulation that an iterative solution procedure is required,
These ideas are further developed and axpanded in the remainder of this

chapter.

B. CALCULATIONAL MESH

KORYQ ic desi

({m]

ned for the studvy of three-dimensional problems in

cylindrical coordinates. The calculational mesh is described graphical-

T.. . L ey, et 1 T
! v [ [

y by the two mutua lanes in Fig, 1. In Fig. Ta, one

sees an r-9 slice perpendicular to the z-axis. The inner boundary
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consists of a core of cells removed from the mesh to avoid the radial
singularity as r-~0. Figure 1b is a representation of an r-z plane.
The cell size along any given coordinate is constant. The integer in-
dices (i, j, k) define the cell centers while the half-integer indices
(it%, j*s, kil) denote cell interfaces. The i index increases with in-
creasing r; the j index, with increasing 6; and the k index, with in-
creasing z.

A typical zone is enlarged in Fig. 2, and the centering of the var-
jables is indicated. Densities, pressures, and scalar gravitational po-
tentials are cell-centered quantities. The radial, azimuthal, and axial

velocities and the r, 8, and z coordinates are interface variables.
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C. CALCULATIONAL SEQUENCE

The manner in which the variables are advanced in value from one
computational cycle to the next is summarized schematically in Fig. 3.
The gravitational potential for each cell to be used in advancing the
other dependent variables to time cycle number n+l are calculated at the
beginning of each cycle, based on the mass distribution at time n.

Given the scalar potential field at time n, the phase 1 portion of the
calculation is commenced. In this section the so-called "bar" quantities
are calculated. The "bar" quantities serve as initial guesses, when the
pressure gradients are added, for the iterative solution of the axial,
azimuthal and radial momenta of each cell at the next time level. In
phase 2 of the calculation one solves for the pressures, the densities,
and the three components of mementum by an iterative procedure.

Finally, in phase 3 the axial, azimuthal and radial velocities are
separated from their respective momenta. The new average angular veloci-
ty of the system is determined in such a way as to reduce the average an-
gular momentum relative to a rotating frame to zero. The entire cycle is

then repeated.
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D. DIFFERENCE TECHNIQUE
1. Donor-Cell Fluxes
Donor-cell fluxing of the mass and momentum convective fluxes can
help ensure numerical stability for problems in which violent disconti-
nuities are present either initially or at various stages of the calcula-

56

tion. In the present methodology the convection terms are written so

that one may weight the donor-cell averages by varying the parameter o.

Equation (III-1) defines the basic donor-cell nomenclature.

CUQ> gy = gy (72 48) Qg+ (172 - 8) Q1+1jk] (I1-1)
where

£ =q Sign (ui+%jk)
and

0<ax11/2

In the above expression Q is the physical quantity being convected
by the velocity u. In the rotating coordinate system where the convec-
tion is controlled by the quantity v-rw, it is this net quantity that
determines the sign of £ and that appears as the coefficient in Eq.

(I11-1). It is the use of this net quantity in the donor-cell terms that

+

44}
3]

.
[P O
nnlnnn-te_} IR

rtificial diffusign. For full donor-cell differencing one
would choose a=1/2.
Donor-ceii

depends on the direction and magnitude of the fluid flow can be performed
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on the physical variables. If a physical quantity to be fluxed appears
in a product with a coordinate, the coordinate should be taken out of
the brackets along with the convecting velocity. That is, there is no
logical reason for performing a flow-weighted average on a variable that
is not moving with the fluid. If, however, the physical quantity being
convected contains a coordinate within its definition (such as angular
momentum), the quantity should not be decomposed, and the donor-cell av-
erage is applied to the product. These rules are exhibited for some se-
lected donor-cell terms, which are specifically expanded in Appendix B.
From an examination of Eq. (III-1), one sees that the donor-cell
flux is not space-centered unless £=0. As a result Tow order trunca-

tion errors in &r, 86, and &z are introduced.57’ 58

These terms provide
a positive diffusion that tends to automatically stabilize the numerical
calculations. The advantage of the donor-cell technique can also be
its disadvantage because the magnitude of the positive diffusion can in
certain circumstances be significant enough to obscure real diffusive
effects.
2. Averaging Schemes

In numerical calculations one must often perform simple averages 10
obtain values of the physical variables at the mesh locations demanded
by the difference equations. This requirement is independent of the ac-

tual differencing scheme (i.e., donor-cell, space-centered, ZIP,59

etc.)
used. For example, if two quantities occur in a product such that nei-
ther quantity appears as it is naturaiiy centered, one can either average
the products or take the product of the respective averages. Except

where specifically indicated, the latter technigue is employed throughout

this methodology.
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E. PHASE 0: GRAVITATIONAL POTENTIAL
1. Tilde Notation
Given npijk’ nwijk’ and the new values for y on the outer and upper
boundaries and in the central core region, one relaxes Poisson's equation
jteratively. To simplify the representations, one can develop a tilde
notation to indicate iterated values. One can write
Qjp = Qi * 845 (111-2)
with the convention that this statement is not an equation but rather an
expression for the way in which the new value on the left is calculated
from the old value on the right.
2. Relaxation of Poisson's Equation
One can represent the finite difference version of Eq. (II-15) by

means of the statement tijk = 0, in which

~ _ 1 ~ ~ ~ _ ~
“igk 22 [’“mi (“’iﬂjk - 1"ijk) "y (“’ijk ‘”i-]jk)]
1

- . \
SN N -
*"7"?(%ﬁw*ww4k‘wwd

1~ ~ ~ n
e (“’ijk+1 t ViK1 " zwijk) - A6 Cogs - (111-3)

Given a first approximation to a root of the equation Eijk = 0, one can
60

-----

~ bk (111-4)
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where

~

oL .
“igk o 2( | 12) .

The updated potential follows
bigk T Vigk t i (111-5)

With the improved scalar potential, one now recalculates tijk and tests

for convergence according to the following prescription.

105 5|
IT... | <A (4ne o .+ 1] ) (111-6)
ijk max 6r2+r 2 e2+ 522

where A is a constant that controls the tightness of the convergence and
hence the accuracy of the root.
F. PHASE 1: THE BAR QUANTITIES
1. Axial Equation
In this section and the subsequent one, the equations developed in
the previous chapter are presented in difference form. In Phase 1 the
"bar" quantities are calculated. Beginning with the axial momentum equa-

tion one first calculates the z-component of the viscous stress tensor,

Eq. (1I-13).

.,

, { r _
R z)13k+1 ] vi ryor’ L”(p”)i+zjk+a (Wingiess = Wigio )

" n \ ]
" n "
- (pr)i-%jk+g ( Wiskeg T Mie1ke) |
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1

n n
¥ Y [ P4 jH3ke+; ( WigHtkey ~
i

n
Wijkw)

n (nw _n, )
P 5ttty \ Wijk#y ij-Tk#s

PRI (nw _n, )
52 | Pidket \ Migkes2 T igkens
n n n
T Pijk ( Wik " wijk-%)]} : (111-7)

The initial guess for the new axial momentum of each cell follows direct-

1y from the Vz's and from the y's. Deleting the pressure term in Eq.

(11-22), one defines

n ‘ n
(pw)ijk-ﬂi = (pw)ijkﬂi t ot ll" ér ( <puwr>1"lijk+l'§

- \ /n
n | "
- <puwr>1+11Jk+%) + s ( <oW(V=rw)> s i
N <pw{v-ru)> .. \4.- ]—/n <f~'.'.'2> _<,“_._,2 >
ijHsk+y) Sz \ 7 1J : 1JK+1/
np
'I!'lk'p"i n L + n -
P\ gk k) T Y2 (1-g
2. Azimuthal Equation
The S-component of the viscous stress from Eg. (II-12) is
n ] { "or®) ek o ny )
=y - .,
VB)'IJ'F%K v (r.zsr' |_ or ‘\ V~.+’.3+L;k *.3+1‘k,}
i
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n(pr‘2). )
"(or) v itk
itk ViHgjtsk 8r
n n n n
(Vimk V1'-1J'*‘1k)+ (or) i sggak ¥ 1153k
+ ] n n, _ny _n n,
2552 | Pigric\ Vigessak T Tigeek Pisk | Vijhsk

1

n 2 n n
- Vij-%k)] t—— [ (ou) 541k - (pu)ijk]

ry 60
+ 1 _|In n, _ny
o2 | Cidndkes | Vignekel T Tigegk
n n n
- pij+‘4k-l5(v1’j+45k' Vij%k-])]} (I11-5)

Omitting the pressure terms from Eq. (II-21) and using Eq. (III-9), one
defines the explicit part of the azimuthal momentum equation in differ-

ence form.

P - 2
(pv)ij+%k z (pv)13+%k dtl'-TT_— \ < puvr >i-%j+%k

1

n 2 n_

n 1
< pv(v -rw)> 1]+1k) t s ( <pvw>13+1§k’»~5

D s
ij+Hsk (n _n )
"< o> )” o8\ Vidk T Viiek
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n
3. Radial Equation

For the r-component of the viscous stress one has from Eq. (I11-11),

n n
("1‘+3/2 Uir3s2ik ~ Tivg u1'+‘»zjk)

n
n i} sl Pi+13k
rlink "w[ i

(r nu -r nu ) + 1
r it “itsjk i-%  Ti-%jk 2 2

n n

n n n
[ Ptz ik ( Yisgerk " ui#»;jk) T Piag-k (ui'*'%jk

n
Dsiy s
o _ itk (0 _n )
ui#»gj-]k)] ZT_L (Vi#4j+ak ViHs5 -5k

ri+%69

4 [n n, - Ny ) _n
E;Z'Lpii-‘»;jkﬂi JHs K+ iHsik PiH,jk-%

|

n n
(Mg - “wﬁ'mﬂﬁ : (111-11)

—_

From Eqs. (II-20) and (III-11) one has for the explicit portion of the

radial momentum equation again with the pressure terms absent

- n ‘ 1 n 2
(pu)i"‘lgjk = (pu)i%jk + 6t .. or ( <pur >‘i.jk

<ot o) e
<o i) T\ <oulv-ro)> g
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n ] n
- "< oulv -Y‘w)>1‘+1,5j+1,5k)+ I3 ( < PUN > kb

Dsag s
n ithik [n _n
- < °”W>1+ajk+15) M ( Y13k "’i+1jk)
np nv 2
ik Vitgik  ,on
+ —5 . . . -
— + (vr)ﬁ,ﬁk‘ (111-12)

4. The Difference Equations
From all of the segments introduced and defined in this section we
are now in a position to exhibit the full finite difference version of

the equations used for the calculations.

n+1p A
ijk = Pijk, 1 (n#l n+1
5t tyoE ( S PUP > ik <PUr >4 kik
1 n+1 n+1
+ m ( < o(V-Y‘m) > _iJ Lk - < p(V-Y‘w) > "J'=lék\
i /
1 (n+1 n+l i
5z S OW > ko SO kg ) 0
7
(I11-13)
n+1 - = st (n#l o n+l ) )
(o) g1 = (P 500 * 52 ( Pigk = Pijkel (111-14)
n+i —_ 5t {ntl 4] |
(V)i = P50 * oY U Pisk m T Pigak) (111-15)

n+1 - (o 8t [nti _ n+i _
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G. PHASE 2: ITERATIVE RELAXATION OF THE MASS
AND MOMENTUM EQUATIONS
1. Initialization
During this phase of a computational cycle, the continuity equation

and the momentum equations are solved simultaneously using an iterative
relaxation scheme. At the beginning of phase 2 the components of axial,
azimuthal and radial momentum are initialized using the newly obtained
"bar" quantities and the pressure field at time n. Using the tilde nota-

tion developed in the gravitational potential section,

~ (= stfn_n )
(ow) s spas = (PW) g0, + 7 ( Pk pijk+1) (111-17)

~ I ers st [n _n _
(V)35 = (PV) g0y oY ( Piik pij_'_.lk) (111-18)

~ - (= 8t [n _n _
(0U)snggk = (W 5aggk * 5 ( Pijk ijk) ' (111-19)

2. Calculating New Pressures and Densities
One now commences the implicit portion of the phase by defining a
function Bijk that goes to zero when the equation of continuity is sat-

isfied. From Eq. (III-13)

~ n

O:st, = Pas ~

P Pagk, 1 (e - < fur

i3k e (< PUT > jaggj = = P! >i->2jk)

b=

[ - \
5 k< oW >'ijk+45 - < oW >1'jk-15) . (I11-20)



38

The procedure used to obtain the roots of D is again that of Newton,
although the process is somewhat more involved here than in the solution
of Poisson's equation described earlier. One must form the partial de-
rivative of Bijk with respect to Bijk' To avoid a fairly complicated
derivative, one can define a function ﬁijk that is identical to the func-
tion Bijk except for the replacement of the donor-cell fluxes with simple
cell-centered fluxes.

n

BivL = N0ss
- _ijk ijk , 1 ~ - (&
ijk 5t * r o [(p””)wﬂ'k (p‘”)i-%jk]

=

~

1 ~ ~
"1' ) [p(v-rw) 1j+k - p(v-row) ij-%k]

+

+

1 ~ ~
52 [(pw)ijkﬂg - ("W)ijk-%] (111-21)

Forming the partial derivative of ﬁijk

Pisk _ 1 %Pijk, 1 Bl g 20
55 5T 35, | roor | i i an
ik Pigk " ? P © Py

P35k 9P 5k

(G, W)y
+ _1__[ ijk+s _ ijk 55] (111-22)

945k P45k

in which the derivative of the w terms has been neglected. From the

, -

equation of state, Eq. (II-14)
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%P5k 2(055,)" ~ -1 053k

9P 3k Pk Pk
or

45k _ 1

~ = Y1 (111-23)
ap'ijk Yy A (p.le)

From Eqs. (III-14), (III-15), and (III-16) with the pressures at time

n+1 replaced by the "tilde" pressures Eq. (III-22) becomes

apijk = ! 7 + ]6 [Y‘ 1 §£+ rs %t']
~ R r. or i+ or i-% or
ap'ijk GtYA(pijk) 1

1 5t st 1 [st, st
+r1. 55 [ri 66+r1. 59]*'&‘2’[’<§Z+EE]

or
Pijk _ 1 , 20t , 28t 28t (111-24)
ap sthAy (s )Y 27 0252 5gP
Pige Oy o
The new GBijk'S follow from Eqs. (I11-20) and (III-24)
. 5..k
Py = - SRLNL I (111-25)
3”1'k
9Py 3k
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Once the solution has converged it will not matter that the equa-
tions have been relaxed substituting the approximate expression, Eq.

oD; ;
(I11-24), for the exact ,=Lﬂ£. In addition to being less complicated,

Jk
Eq. (III-24) tends to relax the system in fewer jterations than the cor-
90k
responding expression for —T;JL- . From Eq. (III-25) one sees that this
ijk

latter conclusion is reasonable because, as skown in a subsequent sec-
tion, the approximate derivative is always smaller than the exact one.
If, however, the equations do not converge, the correct derivative or a
closer approximation reflecting more of the nature of the fluid flow can
serve as a remedy. For certain situations it is necessary %p use this

3 ijk

more nearly correct expression. A detailed discussion of 551——
ijk

J
served for the section of this chapter entitled Special Methodological

is re-

Developments.

From Eq. (I1I-25) the new pijkls follow directly.
(111-26)

With these new pressures and the equation of state, the new densities are

_ si,k 1/y
5., = —J—A (111-27)

ijk
3. Momentum Equations
The "bar" quantities and the new pressures allow one to solve for

the momentum components.

= = st (~ ~
(pw)'ijk“‘lf - (Bm'l‘]k‘i'k__ + 57 (p.le = p1Jk+]) (111-28)

\
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~

N = (o 8t Y )
(pv)'ij-l'lik - (pv)ij-{»lﬁk + ri 50 (p'ijk pij'*']k) (III 29)

~ _ — Gt ~ ~
(ou) a5 = (PU)5ungk * 57 (pijk - pi+1jk) (111-30)

One now tests for convergence according to the simple prescription

< max

Dijk —5t (111-31)

The quantity Pmax

and € is a factor controlling the tightness of the convergence. If any

Dijk fails to satisfy the criterion defined by Eq. (III-31), the calcu-

is a maximum density obtained at each iteration level,

Tation returns to Eq. (III-20) and the whole process begins again. When
the convergence test has been satisfied the tilde quantities become the
n+l quantities.

H. PHASE 3: VELOCITY COMPUNENTS AND
THE NEW FRAME

One can now separate the velocity components from their respective

momenta. The following equations are used.

n+l
n+l T (111-32)
iHgjk  ntl
Pivsik

n+l
(ov)..
ijtsk -
Vi 545k n+l (111-33)
P j+sk

n+1

n+l } i jk+s
WijkHs T AT (111-34)
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The angular velocity of the rotating frame to which the variables are re-

ferred is selected by requiring the net angular momentum relative to it

be zero.

n+l n+l -
Z r 8r 66 8z (plr')ij+l5k ( Vijesk " riw) = 0 (I111-35)

Solving for w

2 n+l
C3 N P
w = 3] (111-36)

I. REPRESENTATION OF THE VARIABLES

In order to follow the general evolution of the physical system and
to isolate significant characteristics, one must have a way to represent
the field variables in a useful and convenient fashion. The difficulties
attendent to the successful analysis of three-dimensional resuits are
non-trivial. The approach taken in this work utilizes two types of
printout and three types of graphical representation to exhibit system
properties.

A short print summarizing certain aspects of the problem at each
cycle is used to provide a frequent monitoring of the evolution. Quan-
tities presented in the short print include the cvcle number, the prob-
lem time, the current time step, the number of jterations in the gravita-

tional potential and in the phase 2 calcuiation respective
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pressures, densities, and velocities, the angular velocity of the rota-
ting frame and its variation with time, the total gravitational, kinetic,

rotational and internal energies, the total angular momentum relative to
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both fixed and rotating frames, and the total mass. At selected edit
times a long print yields the value of all dependent variables at every
mesh point.

The graphical display of such a complicated system is also desir-
able in analyzing the results. At selected edit times contour plots of
density, pressure, gravitational potential, and angular velocity relative
to the fixed frame are plotted in mutually perpendicular planes. The r-6
plots are in the z=0 plane. The r-z contours are along a ray through
the most massive regions of the fluid. Velocity vector plots are also
provided in these planes. One of the most useful forms of graphical re-
presentation is the computer movie. A movie allows the researcher to ob-
serve the total system in continuous stages of evolution, making it less
easy to overlook significant developments and perturbations. Movies are
therefore made to follow the progress of selected problems.

J. SPECIAL METHODOLOGICAL DEVELOPMENTS
1. Symmetry

In order to gain confidence in the physical significance of the re-
sults produced by the methodology for general three-dimensional problems
for which it is either difficult or impossible to make direct ties to an-
alytic theory or to observation, one can make a series of calculations
that have simple symmetries and can check the conservation of symmetries
as the systems evolve. If, for example, one initiates a collapse problem
with an initial spherical configuration and no rotation, the system
chould retain this symmetry throughout its evoiution and the azimuthal
velocities should remain zero. Several such studies have been made, and
recults indicate that the convergence of the gravitational potential

must be rather tight (about 10 significant digits are required) if the
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symmetric characteristics of the problem are to be maintained at late
time. If the convergence criterion is relaxed, a substantial azimuthal
velocity field develops with velocities comparable in magnitude to radial
and axial collapse velocities. By requiring the same degree of accuracy
during the evolution of asymmetric self-gravitating systems, one ensures
that the observed dynamical phenomena are more likely to be real in the
sense that they result from natural physical processes rather than from
numerical inaccuracies.
2. Numerical Stability

a. Classical considerations

The next facet of special methodology concerns a difficulty with nu-
merical stability. To describe this difficulty one must first consider
the classical aspects of numerical instability as follows. Three-dimen-
sional problems are very time consuming and expensive. One reason that
these are slow arises from the fact that one is trying to resolve a vol-
ume of space in some detail with a discrete calculational mesh. Many
cells are utilized even for coarsely resolved problems. The three-dimen-
sional methodologies are more complicated because one is dealing with
more coupled nonlinear partial differential equations, and the added com-
plexities result in slower problem evolution. To speed the calculation
one must force the system to evolve using the largest possible time steps
subject to numerical stability requirements. The time step is controlled

by the condition

v___ 8t
max -
S <1 (111-37)
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Vinax is the maximum velocity component in the system at time n and &x is
the corresponding coordinate zone size. For the azimuthal velocity, one

uses (v=-rw) and réo for v X and 6x, respectively. The above expres-

ma
sion is a statement that the fluid cannot traverse more than one zone in
a given time step. To be cautious during the rather violent dynamical
stages of evolution of the fluid systems studied in this work, the left-
hand side of Eq. (III-37) is restricted to being 1/5 or less.

There are other constraints that must be considered in this discus-
sion of numerical instability. These constraints 1imit the magnitude of

the artificial viscosity. From stability ana]ysis,61 one must satisfy

the following condition

vt <

r2 r; 86 6z

(111-38
T T, )
- 2 2

whereas the lower 1imit of the viscosity is constrained by the require-

ment

v 8x
v>1§v§]ax 5t +1§"‘—a"ﬁ-— (111-39)

where n is the number of cells necessary to define the width of the gra-
dients. Typically, one selects an n of 2. The above three conditions
are not independent; and if 8x is selected appropriately, Eq. (I11-39) is
automatically satisfied when Eq. (II1-37) is used to determine the time
step and when Eq. (III-38) is used to obtain the kinematic viscosity.
Note that Eg. (II1-38) illustrates the motivation for a central core in
the calculation, which excludes some zones which would otherwise be very
small value of

rs 66 would introduce severe restrictions on the time step. Since
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calculations in three space dimensions are very time consuming with even
the fastest modern computers, the added time step restriction should be
avoided.

b. Local viscosity instabilities

Despite adherence to the restrictions described in the preceding
paragraphs, difficulties can arise from a somewhat different type of
local viscosity instability. Density discontinuities in adjacent cells
can be many orders of magnitude in the regions of the mesh far removed
from a center of gravitational attraction. If in four adjacent cells one
cell has a relatively high density compared to that of the other three,
the average density required at the common nodal point by the viscous
stress components would be that of the high density cell if a straight
linear average of all four were used. The resulting momentum flux would
then be too great for the low density zones. Experience with this four-
cell-average approach shows indeed that the velocity at such interfaces
can grow catastrophically in magnitude, changing sign every time step.

A fairly simple solution to this difficulty can be implemented. One
forms a linear two-cell average of the densities on either side of the
viscous flux direction and then selects the lower vaiue for use in the
viscous stress components. This procedure is conservative of momentum
because the value of density assigned to a node is the same when viewed
from either side of the flux. The fact that this technique is applied
throughout all regions of the mesh is of no consequence to this research
because the viscous stress components and the kinematic viscosity are not

used as physical properties of the fluid, but are instead numerical arti-

facts emnloved for stability.
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3. Partial Derivative of Dijk

For certain dynamical systems the equations may not converge using
the %%;;5- approximation given in Eq. (111-24). In these instances the
conver;%ﬁce can be regained by using the correct expression, formed by
the partial derivative of Eq. (III-20) rather than of Eq. (111-21).

From Eq. (III-20) one has

aD. . 30, »
il L S i . S 1 3 (<5[1r>. Qo= <opur >, )
apijk 6t apijk risr apijk itsjk i-%jk
19 ( ~ = )
+ e e (< (V= Pw) > - <oplv-rw)>..
riGG apijk ol ) ij+sk ol ) ij-%k
1 3 ( ~ ~
4+ — < .. - < >.. -
5 gy L gk S igkcs) (111-40)

The first term in Eq. (III-40) is simply Eq. (III-23). To obtain
the partial derivatives of the donor-cell terms, these must first be ex-

panded. Consider for example the < pur:>i+%jk term.

A
~ o 1 5 Loe)s
<our> g = W)y _(2 * 51) Pijk * <2 51) p1'+'|jk]

—
~

'l ~ ~ ~ ~
CLOFTY 2 (pijk ¥ piﬂjk) t g (pijk - p1‘+1jk)]

~

(P gt * &1 @) iange (Pigi - Prarge) (111-41)

where £, = asign {us,. 5,0 O<a<1/2 . Therefore

<OUP > auys ~ ~
o<pur itsik _ oy a(pu)-;.u 41 ~ 305 51
~ sl ' oL !
35 ik s — R By Py Yl 5
ijk ijk
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By s
~ = iHsik
+ E-l (p‘ijk pi"']jk) Y‘_H_% aﬁ-ijk

From Eqs. (I1I-30) and (III-23), Eq. (III-42) becomes

a<pur>1._p@._|i=r gc_+€1ri+—‘4ui+45‘k
~ ‘+1 ~ -I
3p'i.]k 1 6r v A (p1Jk)Y
ve (5. -3 ) 361@'1(
1 (pijk Pi+1k i3k

To evaluate the one remaining partial derivative, one uses Egs.

and (III-30) and the chain rule.

a(pu)_i!% k _ - 30345k s TP

~ s 43 r~s o] 453 —
3P4 jk ik apyg TPk o
sto.g. o 2Pl o Mgk
or 1+5JK BE'IJk ik aB'IJk
or
Winggk _ 1 (_6_1_:__ 1 Yk 1 )
3p1Jk i+sik r 2 v A (51Jk)Y-

d<pur >, . o EaPi Uy, s

T Ao ¢ 3T H G ,,.»'_
25 — Ad + . [ 3 [ FRES

r.
] +1 ~ -
Pk T+ or yA @)Y

(111-42)

(111-43)

(111-23)

(I11-44)
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~

28, (pijk B p1'+1jk)r1‘+14 (5_t_ 1 Uik )

~ éor 2 ~ Y-l
ikt P14k YA (04 5¢)

(I11-45)

By aralogy the other partial derivatives follow.

d<pur >i- ik _ ] st EZri-%uié&jk
ajk .y — =
O AT

9P jk ijk

~

) 285 (Py_14k = Pigk) iy [ 6t I
r 2 )Y-]

~ ~ (S ~
(pi-]jk + p'ijk) YA (pijk
(111-46)
where
£y = asign (ui-lgjk) 0 <a<1/2
2 <BO-r) >iay st EaVigmk |, %3 Pigk T Pigaid
= r. 66 ~ -l ~ ~
%P1k AR O (Py3c * #4541k

( st .1 Vijesk )_ {172+ &g)ryw
" % 2 YA (pijk)Y-1 YA (o )Y-]

ijk
(111-47)

where
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ok . st 5 Vij-uk . 264 (05-1k ~ Pik!
~ r. &0 ~ Y-
ap'ijk 1 YA (p )

ijk (py5-1k * P4k

st L1 Y-k _(1/2-54)r‘1.w
2 Xi

r. &6 ~ ~ -1
1 YA(p'ijk YA (p'ijk)
(I111-48)
where
£q = ozsign(vi\]._;ﬁk - riw) 0<ax1/2
3 < pw >'i,]k+;5 _ §'_t_+ £5w'l\]k+;§ : . 255 (DTJk- pTJk+]) (gt_
= 52 ~ Y- ~ ~ 52
9P ik YA (o5 (035 * P33
W. .
S A L (111-49)
2 v-1
YA(pijk)
where

£g = asign(wijk+%) 0<ax<1/2

~

> oW >inn st SeMigkl 256 Pigke1” Pige! (_G_t_
~ 8z ~ Y-l ~ ~ 8z
P15k VA (o) (04 31 * 0135
W, .
+a le-%Y_]) (111-50)

where

Eg = as1gn(wijk_%) 0<a<1/2
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As a first approximation to this improved form one may neglect the terms
involving density differences in Eqs. (I1I1-45), (111-46), (111-47),

(I111-48), (III-49), and (III-50) and substitute the resulting express1ons

aD;
into Eq. (III-40), arriving at a much closer approximation to -—Lﬂi

Pisk
without much additional complexity. ;

~

ik . 1 , 28t , 26, 28t
ap sty A (p; )Y'] 6r2 r.© 56° 52°
ijk ijk i
+ 1 = (El itk 1153& (&52 i- k i- @igl
YA (p.le)

r. 60 89 Y4

, B3 Vigug * B Vigand  (B3tEa)e | (s Vigin * 86 Yijiy )]
i

(111-51)

Equation (III-51) is identical to Eq. (111-24) except for the terms in
brackets. These terms are all positive definite with the exception of
the w term, which can be positive, zero, or negative. In general the net
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sitive, serving to slow down
the relaxation of the equations and thereby improving the propensity for
convergence.
4. Velocity Zeroing

One may want to set the high velocities in the relatively rarefied
regions to zero. This procedure does little to effect the physics be-
cause of the low fluxes associated with the lower densities of the region;
and it does allow the problem to evolve using a greater time step, as well
as giving more detail in the velocity vector plots for the more dense

fluid areas where the velocities are smaller.
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5. Pressure Halving

From Eq. (III-27) one can anticipate a difficulty arising because
of possible negative pressure excursions during the phase 2 iterations
before convergence has been achieved. It turns out that negative pres-
sures only occur in conjunction with the velocity zeroing scheme de-
scribed in the preceding section. To avoid the difficulties arising from
the resulting negative densities, one simply tests the new pressures cal-
culated each iteration from Eq. (1I1I-31) to determine if any are negative.
If a negative pressure occurs, the associated change in pressure is set

equal to half the former positive value.



IV. NUMERICAL ACCURACY
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A. INTRODUCTION

Finite difference solutions of the partial differential equations
are never exact because of the presence of truncation and coarse con-
vergence errors. The truncation terms are generally the greatest source
of inaccuracy for calculations in which one is forced to use a coarsely
zoned mesh. To aid in determining the numerical accuracy of the three-
dimensional code, KORYO, a two-dimensional computer program, TAEBEK, has
been developed. Because KORYO and TAEBEK are based on the same funda-
mental equations, comparison calculations can be easily performed.

KORYO and TAEBEK are both capable of treating initial value prob-
lems. Each can be run to a unique final steady state equilibrium con-
figuration. One can compare the final multi-dimensional steady state
solutions to a finely resolved one-dimensional hydrostatic equilibrium
calculation. If all three calculations agree, our confidence that the
numerical solution is in close agreement with the actual solution of the
partial differential equations is greatly increased.

B. PROOF TESTING OF TAEBEK
1. Two-Dimensional Time Relaxation to Steady State

Starting from an initial arbitrary non-equilibrium configuration,
the two-dimensional TAEBEK code has been used to follow the evolution of
a non-rotating, non-conducting, self-gravitating, polytropic fluid to
its steady state. From basic physical principles one expects the steady

state configuration to be spherical. For this reason the symmetry of the
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stat a qualitative check on the accuracy of the solution.
For this calculation a coarse 10 x 10 mesh is used. An individual

cell is a toroid with a square cross section that measures 107 cm on each
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side. The mass is initially distributed in two regions of space. A uni-
form density of 1.34 g/cm3 is put into a cylindrical region that has a
radius and a half-height, respectively, of 7x107 cm. Everywhere else in
the mesh, the density is set to half this value. The resulting total
mass of the system is 5.65x 1024 g. The adiabatic-parameter, A, in the
polytropic equation of state is held at a constant value of 109 cm7/2/

L 2 . . . e s 12
g% s°, y is 3/2, and the kinematic viscosity is 10

cmz/s.

Figures 4 and 5 are contour plots of the density and gravitational
potential at four selected times during the collapse. The r axis is hor-
jzontal; the z axis, vertical. The origin of the coordinate system and
the center of the fluid body is at the lower left of the plots at the in-
tersection of the axes. That is, one is looking at only the upper quad-
rant of the body. Z=0 is a plane of symmetry; r=0, an axis of symmetry.

In Fig. 4a at t=0 s, the initial configuration is shown by the
single contour line. The circular segment that has been drawn over some
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11ow one to better assess departures from
spherical symmetry. Based on the decrease in total kinetic energy, the
system is assumed to be in equilibrium at t=26,000 s. The excellent
agreement with spherical symmetry at this time occurs despite the coarse-
ness of the zoning. The innermost contour at later times is a straight
line because of the coarseness of the zoning. The evolution of the grav-

itational potential in Fig. 5 is similar, although visibly less dramatic.



Q\\\\\\\\\ \\\\\\\\\\\\\\\\\\\

DDDDDDDDDDDDDD



o

\

\\\\\\\

\\\\\\\\\\\




58
2. One-Dimensional Hydrostatic Equilibrium

In steady state the self-gravitating fluid body of the preceding
section is spherically symmetric. Under such conditions one can solve
for spatial density and gravitational potential profiles in a straight-
forward manner. In steady state the radial momentum equation reduces to
the following simple form.

Dot (1v-1)
Since the adiabatic-parameter is assumed to be constant, the equation of
of state can be used to eliminate p from the above equation. After re-
arranging, the result is

o Ay o™
ar vy-1 or

(1v-2)

Equation (IV-2) can be used in conjunction with the one-dimensional
Poisson's equation for the gravitational potential to solve for p and y.

In spherical coordinates one has

1 9 2 W\ _
:2"87 (r %)-%Gp (1v-3)

Substituting Eq. (IV-2) into Eq. (IV-3) and rearranging

= ¢. 0 (1v-4)

—
b

2 30"
) ar /

R
r2 or

where
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¢y = . (1v-4)

Equation (IV-4) is a nonlinear second order partial differential
equation that can be easily solved numerically. If one centers the vari-
ables as in the two-dimensional code; and if one defines an analogous in-
dexing scheme, as depicted graphically in Fig. 6, the finite difference

form of Eq. (IV-4) is

- s{”f% [C R Ol T (R UL )YJ];

(1v-5)

I |
I !
i-1/2 it1/2

i-|

FIGURE 6
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Equation (IV-5) can be solved algebraically for o, 4. The result is

- - 1/x-]
f rf Lo = (g g1 - or’ 1 o1 0 -1
g = + (p;)Y
P14 l 2 i
(1v-6)

One now obtains y(r) from the finite-difference form of Eq. (IV-2)

= .A_Y_ Y-] - Y'] -
lP.H.] w1~ + Y-1 [(Qi) (01-+-|) ] (1v-7)
To generate the solution from Eqs. (IV-6) and (IV-7) one needs the
central density (pc), the central scalar potential (wc), the constant
adiabatic-parameter, and boundary conditions that result from the assump-

tion of axial symmetry. That is,
Pp =P 3 Yo T U3 Py TRy (1v-8)

3. Comparison of the One- and Two-Dimensional Results

The one- and two-dimensional calculations are compared graphically
in Fig. 7. The solution along the axis agrees very well with the one-
dimensional result. The solution along the radius agrees nearly as well.
The apparent asymmetry in the two-dimensional result is due to the coarse-
ness of the calculational mesh. In Fig. 7b one sees that for this series
of calculations the gravitational potential has been normaiized to zero
at the center of the body.

Subsequent to the completion of this development for methodological

check purposes, a pub]ication62 has appeared that also addresses
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one-dimensional hydrostatic equilibrium with a finite difference scheme.
Although the detailed numerical techniques differ slightly, the solu-

tions produced by the respective schemes are virtually identical.



A. DENSITY

254
20
1.5
a 10
e
L
RS
QU05 —}
O BADIAL 0 2 4 (3) 8 10
R -7
o AXIAL ricm x10")
—1-D B. GRAVITATIONAL POTENTIAL
3
2
o
IQ. l
>
L
[74]
(9]
8
. i
0 3 4 6 8 0
ricmx107)

HYDROSATIC EQUILIBRIUM

FIGURE 7



63

4, Numerical Viscosity Parameter Study

In Chapter III, Sec. I the numerical stability constraints on the
kinematic viscosity have been described. There are also physical consi-
derations that can influence the selection of an appropriate viscosity.
In many applications one wishes to begin with a self-gravitating body in
equilibrium and to study phenomena resulting from various perturbations
to steady state. In such cases the transient dynamic phases in the ap-
proach to equilibrium are not of interest, and one is free to select non-
physical viscosities merely to expedite the development of the desired
steady state.

Fluids can behave in ways analogous to harmonic oscillators. If the
kinematic viscosity exceeds a certain critical value, the system is over-
damped; and equilibrium is approached very slowly because of the large
frictional resistance to fluid flow. If on the other hand, the system is

severely underdamped, it will oscillate about the equilibrium configura-

ti

(=)

n essentially forever. The goal then is to select a viscosity that
does not prove overly restrictive on the time step and that is not too
far removed from the critical value of the physical system.

For these reasons a study has been made to consider the effect of
viscosity on the self-gravitating fluid sphere described in Sec. IVB.
Each calculation is made using a numerical viscosity that is constant
over the entire mesh. The viscous stress components assumed in this
study are those taken from the stress tensor appropriate for an incompres-
sible fluid (Egs. (II-11), (11-12), and (II-13)).

One begins by perturbing the hydrostatic equilibrium configuration
' -:th

ot
YW il

n angular mementum step function. The fluid is given a sudden solid

o

body distribution of angular momentum and is allowed to expand under the
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action of centrifugal force for 1300 seconds. The angular velocities are
then re-zeroed, and the now slightly oblated body is allowed to collapse
back to its original equilibrium configuration. To monitor the approach
to equilibrium, the total kinetic energy is studied as a function of
time. The process is repeated for four different viscosities.

The results of the study are summarized graphically in Fig. 8. The
plots begin at the time when the rotation is turned off. In 1300 sec the
body has not reached rotational equilibrium. The initial decrease in
kinetic energies reflects the removal of the centrifugal force driving
the expansion and the subsequent deceleration of the fluid. Gravity
turns the velocities around and the now unstable mass distribution ac-
celerates toward the former equilibrium configuration. If the system is
not overdamped, the fluid overshoots the equilibrium point because of the
newly acquired linear momentum and oscillates about it with an e-folding
time dependent on the magnitude of the viscosity.

n cm2/s) have the same

Figures 8a (\)=5x10]0 cmzls) and 8b (v=10
period of oscillation and have similar amplitude decay rates. The dash-
dot line in Fig. 8b is a fit to the trace using the analytic form for a
damped 1inear harmonic osci]]ator.* The free parameters in the Tit are

the decay rate and the frequency. The agreement is comforting, although

* The equation of motion of a damped linear harmonic oscillator is

2 -

X=-Kk
where k2 is the spring constant; A, the frictional term; and x, the dis-
placement. Soiving, one has for the real pait

= e')\/Z(t - to)

0 cosw (t - to)

:In|2 -\2li
where o = m/(4k" = A")
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only qualitative agreement is to be expected. In Fig. 8c the viscosity

n cmz/s is approaching the critical value. Figure 8d shows the

12

of 4x10

system to be overdamped at a viscosity of 10 cmz/s.
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C. PROOF TESTING OF KORYO
1. Symmetry Considerations

The two-dimensional code, TAEBEK, and the three-dimensional code,
KORYQ, are based on very similar methodologies; and, when symmetry al-
Tows, they can be used to address identical problems. The methodological
checkout of TAEBEK has already been described in the preceding sections
of this chapter. To test KORYO, one compares it to its predecessor by
solving a problem with axial symmetry.

An obvious gquestion regarding the methodology of KORYO relates to
its ability to maintain axial symmetry if the nature of the problem de-
mands that it do so. This question has been addressed by two separate
parameter studies involving the tightness of convergence imposed, respec-
tively, on the iterative solution of Poisson's equation for the gravita-
tional potential and on the iterative solution of the equations of motion.
From these studies one concludes that the convergence criteria for the
former must be rather strict, and that for the latter it need not be so
severe.

The above result is fortunate because the iterative relaxation pro-
cess used to determine the gravitational potential is very fast, and the
increased fraction of time spent in this phase of the calculation due to
the required close convergence is minimal. One reason why this conver-
gence restraint on the potential does not require a large number of ad-
ditional iterations has already been discussed in Chapter II, Sec. D;
i.e., the initial guess to the gravitational potential is very good in a
rotating frame. For the iterative relaxation of the equations of motion,
the number of iterations reauired is, of course, a strong function of the

dynamics of the system. Since this phase of each calculational cycle 1is
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one of the most time consuming parts, it would have been costly in total
problem running time had the axial symmetry been overly sensitive to the
convergence of the phase 2 solutions.

2. Three-Dimensional Time Relaxation to Steady State

A natural choice for a comparison calculation is the problem already
described. The outer dimensions of the problems are the same; however,
because of the central boundary core in the three-dimensional mesh, the
specific zoning in KORYO must be somewhat different. A 5x12x5 mesh
with 6r=5/3x107 cm, 66=21/12, and 6z=2x10 cm has been selected.
The calculations are started with different initial conditions from those
used in the TAEBEK calculation. No artificial axial symmetry constraints
have been imposed on KORYO, i.e., the calculation is fully three-dimen-
sional.

In Fig. 9 KORYO density contours in both the r-8 and the r-z planes
are presented at very early times. The initially uniform mass distribu-
tion has begun to collapse under self-gravity. The concentration of con-
tours near the outer boundaries indicates that the mass in these regions
is being drawn rapidly inward. At the late time represented in Fig. 10
the contours are evenly distributed throughout the mesh, and the boay nas
reached a symmetric steady state.

Figures 11 and 12 summarize the evolution of the gravitational po-
tential. When the mass becomes more centrally concentrated, the poten-
tial well deepens as one would expect. The influence of the core on the
gravitational potential is very clearly demonstrated by the contour plots
in the r-z plane. The effect of the core is more pronounced at the ori-
ain of the coordinate system than it is farther up the z-axis. The im-

plication is that the influence of the core is configuration dependent



69

and that the greatest effect results when the body is concentrated near

the origin. This point is discussed in a subsequent part of this section,
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3. Comparison of the Two- and Three-Dimensional Results

A more quantitative comparison of the two- and three-dimensional
calculations is provided by the profiles of density and gravitational
potential presented in Figs. 13, 14, and 15. The comparison of TAEBEK
with the one-dimensional hydrostatic equilibrium calculation presented
earlier in this chapter is for a 10 x 10 mesh. The KORYO calculation
discussed in this section uses much coarser zoning. For these reasons
Figs. 13 and 14 include a comparison between a TAEBEK calculation that
employs a 5 x 5 mesh and one that uses a 10 x 10 mesh. The resulting
profiles are in excellent agreement; therefore, the zoning differences
do not enter significantly into the interpretation given below.

The density and gravitational potential profiles calculated with
KORYO are in fairly good agreement with those produced with TAEBEK.
The lower central density predicted by KORYO is a result of the massless
core and the resulting higher gravitational potential in proximity to
it. Naturally, the worst agreement results when one Tooks up aiong the
z-axis in zones immediately adjacent to the core. In Fig. 15 the gravi-
tational potentials are compared for a rotating self-gravitating body to
demonstrate that as the system becomes Jess centrally condensed, the
effect of the core is reduced. For the class of physical systems, that
this methodology is specifically designed to address, the effect of a
central massless core seems to be of relatively minor consequence.

The effect of the central core is related to the fraction of the to-

tal mass excluded from the system by its presence. The magnitude of th

(]

effect is therefore inversely proportional to the number of radial zones.
That is, the influence of the massless cove in a calculation using 10

radial zones instead of the 5 described in these check cases 1is reduced
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by about a factor of two. A1l of the protostar models reported in Chap-

ter V and VI do in fact use the finer radial zoning. The effect of

truncation errors and the convergence of the numerical solutions are

discussed in more detail in Appendix C.
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V. COLLAPSE OF A ROTATING
INTERSTELLAR CLOUD
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A. INTRODUCTION
As a first step in the study of the dynamics of protostellar evo-
lution, we have examined the formation of toroids from uniform and from
nonuniform distributions of interstellar gas. As discussed in Chap-
ter I, several other workers have studied the same problem and have
come to contradictory conclusions. In every case the calculations,
upon which the conclusions are based, have been two-dimensional, with
forced axial symmetry. Our goals with the fully three-dimensional cal-
culations have been
1) to investigate whether or not stable toroidal rings can
be formed from the collapse of a three-dimensional con-
figuration
2) to see if the formation of such rings can be inhibited
or prevented by the existence of perturbations in the
initial gaseous distribution

In selecting initial conditions one uses the limited cbservational
guidance available. The assumption is made that the early protostar
can be modelled by a cylindrical region of space, characterized by an
average uniform density. The dimensions of the cylinder are chosen to
be consistent with the size of observed dark globules and other dense
interstellar clouds.63 The primordial cloud is assumed to be initially

in solid body rotation with a counterclockwise sense. In choosing a

rate of rotation one is guided by the observation that neither the

e+niiar watatinn avae nav the avaees agf bhinary syvstems Show any
Steiiay VvOTation axges nir nc axXEs CF pinary SysSiens Sagw an

orientation relative to the galactic plane. This random orientation
implies that the rotational motions originated in random turbuient

motions in the interstellar medium and that the rotational velocities
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of protostellar clouds are comparable to the measured translational
ve]ocities.64 One therefore chooses angular velocities greater than
or approximately equal to galactic rotation rates.

The collapse calculations have been performed in a grid that has
10 radial, 12 azimuthal and 5 axial cells resolving the space above an
equatorial plane across which symmetry has been assumed. The 12 azi-
muthal zones divide the region into 30° segments. In an r-z plane the
cell surfaces are rectangles. The axial dimension of a zone is
1.4 x 1016 cm; the radial dimension is exactly one-half the axial value.
The upper boundary is 7.0 X 10]6 cm above the reflecting plane. The
inner radial boundary required by the central core and the outer radial

15

boundary are 7.0 x 10"~ cm and 7.7 X 10]6 cm, respectively, from the

axis of rotation.

The results are summarized using contour plots of density, gravi-
tational potential, and angular velocity in both the r-6 and the r-z
planes. The r-o piane contours represent conditions in the equatorial
plane. Plots in the r-z plane are selected to pass through the most
massive azimuthal ray of the system. Velocity and momentum-density
vector fields in the r-6 and r-z planes, as referred to both the lab-
oratory and the rotating frames, are used to summarize fluid motions.
A1l vectors originate at cell centers; so the tails can be easily iden-
tified either by visual inspection or by using a straight edge to line

them up. The r-6 plane vector plots contain linearly interpolated

L

U LI T R 1 O -E L N T ~ dee.r s+ T Toandivthe +A
additional azimutnai vays OT TWOG divrierent iengins o

-=h
{f
-
emad
]
]
«t

L.
n
i

[§¢]

-
1

verging areas, facilitating pattern identification.
A density, called the maximum interpolated density, and a radius,

called the position of maximum interpolated density, are used to
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summarize the time evolution of a system. These variables are given

the symbols o

max and R , , respectively. They are obtained from a

max
three-point parabolic fit to the maximum cell density and the two
adjacent densities. Except where specifically indicated, all quanti-

ties are reported in the cgs system of units.

B. RING CHARACTERIZATION
1. Assumptions and Constraints

The 1iterature on equilibrium rings, as well as the generally re-
strictive assumptions upon which these works are based, is summarized
in Chapter I. We continue to assume that a polytropic gas equation of
state is valid. One is constrained by the calculational mesh to study-
ing rings that have dimensions comparable to or greater than the dimen-
sions of an individual cell. The viscosity chosen for the calculations
is limited to that amount necessary for numerical stability; therefore,
the systems are not significantly constrained from rotating differen-
tially. Examples of the patterns of differential rotation that develop

in the various calculations are presented in the form of angular veloc-

The only symmetry constraint imposed on the system is the reflec-
ting plane at z = 0. This assumption Timits the problems one can ad-
dress to a specific, but rather large, class. The reflecting plane can
be easily removed at the expense of increased computing times or of re-
duced spatial resclution.

We reemphasize the three-dimensionality of the calculations. With
the finite difference techniques used throughout, the potential sur-

faces and the mass configurations of highly distorted objects can be
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more accurately determined than with any analytical solutions that are
currently available. The distortion scales of interest must, however,
be comparable to or greater than the computational zone size if they

are to be resolved.

2. Geometric Properties

To describe the structural appearance of a ring, one needs to con-
sider two separate geometric features. The radius of the toroid, de-
fined as the distance from the axis of rotation to the maximum density
contour, is the first of these features. Figure 16 graphically illus-
trates this concept. The second feature depends on the cross-sectional
characteristics of the region of high mass concentration in the ring.
If the configuration is that of a circular toroid, one can characterize
the cross section by a single linear dimension, the radius of the cir-
cular cross section. In general, rotating rings are flattened into the
equatorial plane; so the cross sections can not even be accurately rep-
resented as ellipses with well-defined major and minor axes. One
therefore defines an average dimension, which in all subsequent sec-
tigns ic called the characteristic cross-sectional radius. a. of the
ring. To determine a for distorted toroidal systems one measures the
diameter of the ring in the equatorial plane, divides by two, and aver-
ages this result with the measured axial radius. The cross-sectional
radius of a ring section is graphically illustrated in Figure 16.

The radius, R, of a toroid is a uniquely and well-defined concept
if one uses the definition given above. The characteristic cross-
sectional radius, on the other hand, requires that one know the loca-

PRy
tion of th

i he ring surface. As a matter of convention we define the
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surface of the ring to lie on the contour that represents one order of
magnitude decrease from the maximum density in the ring.

Both of the geometric features described above depend in a compli-
cated way on the partitioning of en2rgy in the system. The radius of
the toroid is most sensitive to the gravitational potential energy and
to the kinetic energy of rotation. The characteristic cross-sectional
radius of the ring is likewise influenced by these energies; but in
addition, the area and shape of the ring depend very strongly on the
thermal pressure.

The geometric characteristics of rotating toroids result from a
very complicated interaction of centrifugal and gravitational forces
with forces arising from the internal thermal pressures of the ring.

As a means for estimating the characteristic cross-sectional radius,
one assumes that a section of the toroid can be represented by an infi-
nite cylinder; and one non-dimensionalizes the cylindrical equation

of hvdrostatic equilibrium. Combining Egs. (11-14), (Iv-1), and the
one-dimensional form of Eq. (II-15) and expanding the inner radial

derivative, one has

Defining the following change of variabies
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3y-4

12 y-2f\ . _AiG A -
X 93X <Xf ax> YA My-2 f (V-3)

The dimensionless quantity above can be scaled by writing

3y-4
47G a _ b -
YA -2y A (V-4)

where A is a free scaling factor. Setting y = 5/3 and solving for a,

one has
A
a= A (v-5)
RYE

Once the free scaling parameter is chosen, Eq. (vV-5) provides a
very convenient and surprisingly consistent means for predicting the
characteristic cross-sectional radius of a self-gravitating system.

The selection of the free-scaling parameter, A, is discussed in Section
G of Chapter VI.

In the following discussions, systems are classified as dispersed,
intermediate, or compact purely as a matter of convenience. A dis-
persed gas is characterized by thermal pressures that significantiy
resist local self-gravity. For a fixed ratio of specific heats the
designation can be qualitatively defined in terms of the entropy vari-
able, A. Systems with higher values of A are more dispersed than those
having lower values. Dispersed toroids are those for which the charac-
teristic cross-sectional radius, a, of the ring is comparable to the
radius, R, of the toroid. Compact toroids are those for which a is

much less than R, Intermediate toroids lie in between.
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C. RING FORMATION
1. The Collapse of a Uniform Cloud
An initial density of 1.38 x 10'18 is distributed uniformly over
the calculational grid. The total mass in the system is 1.81 solar
masses. The entropy variable, A, is assigned the value of 1.5 X 1020.
The azimuthal velocity is initially that of a solid body rotating with

an angular velocity of 6.0 x 10713,

The radial and axial velocities
are initialized to zero. For these assumed jnitial conditions the
cloud satisfies the Jeans criterion and begins to collapse under its

own self-gravity.

Figures 17 - 22 summarize the early-time configuration and flow
of the fluid. Although the variation is only about 20%, the r-6 plane
density contours of Fig. 17a show that a toroidal buildup of mass has
already begun. The lowest-density contour in that plane is greater
than the initial density of the system. The net increase results from
the gas in the upper regions of the cloud collapsing down toward the
equatorial plane unimpeded by the action of centrifugal forces, as
shown in the r-z plane contours of Fig. 17b. The toroidal structure
is also evident in both the r-e and r-z plane angular velocity contours
of Fig. 19a, b. One notices that patterns of differential rotation
have begun to develop. The ring jtself shows the highest angular ve-

locities, while the fluid elements near the axis of rotation and those

near the lateral boundary lag behind. The gravitational potential con-
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2. b do not visually indicate the ring configuration.
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In the r-8 plane the potential well is centered on the axis of rotation,

rather than on the ving civcumferance.
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The velocity and momentum-density vector fields summarize the
fluid motion. The accretion onto the ring is best illustrated in the
rotating-frame plots shown in Fig. 21a, b. The largest radial veloc-
ities occur in the fluid outside of the region of ring formation. This
velocity pattern is consistent with the axis-centered gravitational
potential contours of Fig. 18a. The picture one has of the accretion
process is that of gas in the upper and outer regions of the cloud
falling toward a toroidal core that has begun to form at a radius where
centrifugal and gravitational forces are in balance.

The r-z velocity and momentum-density vector fields of Fig. 22a, b
illustrate the collapse toward the equatorial plane. The vectors higher
up the z-axis have a slight positive radial component. Two independent
mechanisms contribute to produce this outward motion. First, since
there is less mass near the axis in the upper regions of the cloud, the
radial gravitational potential gradient js small; and the centrifugal
forces resulting from the assumed initial conditions can dominate.

This effect increases with time as the upper regions become more and
more rarefied near the axis. Second, the downward falling gas en-
counters a pressure gradient that accelerates the material outwards as
it impacts the spherical surface of the high pressure toroidal core.
As a result of these processes, the system loses mass out the lateral
boundary during the early and intermediate phases of the collapse.

Figure 23a, b illustrates the configuration of the system in terms
of its demsity contours at a time near the point of maximum compression.
The toroidal structure is still evident in both the r-6 and r-z planes;
but in addition, the laiter shows & daisc-like structiure. The Tinear

momentum developed during the collapse has caused the system to be
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compressed beyond the point of equilibrium, and the elevated thermal
pressures subsequently re-expand the ring. Figure 30 summarizes the
oscillation of the toroid about equilibrium.

The cloud configuration is illustrated at late time in Figs. 24 -
29. In the density contours of Fig. 24a, b, a well-defined toroidal
structure is present. The minimum density contour in the r-6 plane is
now about 24% of the maximum value in the ring. The density gradient
is greater on the outer edge of the ring than it is on the inner edge.
In fact, it is difficult to define an inner edge. Near the axis the
density is 85% of the maximum. This system is a disc with a toroidal
bulge. The maximum density at this time is reduced from the value at
maximum compression; and the ring is less flattened into the equatorial
plane, as shown in Fig. 24b. In Fig. 25a, b, one observes that even
at late time the gravitational potential well of a toroidally bulging
disc is centered on the axis of rotation, rather than on the ring it-
seif.

The differential rotation is shown in the angular velocity con-
tours of Fig. 26a, b. The ring structure is no longer visible in this
variable. The average angular velocity of the late-time system is
greater than that assumed for the initial cloud. As the protostar has
become more concentrated the conservation of angular momentum has
worked to spin it faster. The angular velocity decreases away from the

axis of rotation. The sharp gradient in the axial direction shown in
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the r-z plane of Fig.
the velocities in very low density regions.
The vector fields are summarized in Figs. 27 - 29. In the r-6

plane, the laboratory velocity and momentum-density vector fields are
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shown in Fig. 27a, b. The positive radial component indicates that the
system is still losing mass. The momentum density representation re-
flects the concentration of mass in the toroidal system. In the rotat-
ing frame of Fig. 28a, b, the vector fields emphasize the mass loss in
the outer regions. In Fig. 29a the r-z plane velocity vector field
shows the high residual collapse velocities in the less dense regions
of the protostar. The accompanying momentum density representation in-
dicates a small positive radial flow in the equatorial plane.

Figure 30 is a plot of the maximum interpolated density and of the
radius of that density as functions of time. The maximum ring density

is oscillating about an average value of 6 x 10']8. One would estimate

the average toroidal radius to be about 2.9 x 1016. The characteristic

cross-sectional radius of this ring as measured from the graphs is
4.11 x 1016. At this time the system has lost 31% of the mass in the

original cloud.
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2. The Collapse of Nonuniform Clouds
a. Initial conditions
Two collapses have been followed that start from a nonuniform
cloud. One system is identical to the dispersed uniform cloud dis-
cussed in the preceeding section, except for the perturbation applied
initially to its azimuthal velocity field. The following prescription

defines the mode 2 perturbation applied.

vrvg|l+B sin (26) (V-6)

B is the amplitude of the perturbation; and for all cases described in
this work, it has a value of 1/100. The perturbation is applied only
at £ = 0. The second system is an intermediate cloud having an A of

9.0 x 1019, but is otherwise identical.

b. Dispersed cloud

The collapse for the dispersed cloud is summarized in the r-o
plane density and angular velocity contours of Figs. 31 and 32, respec-
tively. The perturbation, evident in both density and angular velocity
contours at early times, decays as the system evolves. No significant
visible expression of the original asymmetry remains in the late time
density contours of Fig. 31b. The angular velocity contours in Fig. 32b
are slightly elliptical, indicating the presence of the still decaying

initial perturbation.
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c. Intermediate cloud

The response of the intermediate cloud to the perturbation at
very early times is virtually jdentical to that of the dispersed cloud
described above. The late-time configuration of the intermediate cloud
is presented in Figs. 33 - 37. The r-6 plane density contours shown in
Fig. 33a indicate the cloud has collapsed to a binary system. The bina-
ry configuration is also reflected in the gravitational potential con-
tours of Fig. 34a, b and in the angular velocity contours of Fig. 35a,
b. The detailed interpretation of such patterns is differed to the
next chapter.

The laboratory velocity vector field of Fig. 36a indicates that
this system has almost ceased to Jose mass. At this time the system
has lost 11% of the original cloud mass. The momentum-density repre-
sentation of Fig. 36b shows the extent of the bodies, as well as their
orbital motion. In the velocity vector field referred to the rotating
frame, one observes well-defined vortices centered at angles of approx-
imately 97° and 277°, respectively. The vortex motion is counterclock-
wise. The initial perturbation favors binary component formation at
105° and 285°, respectively, as shown in Fig. 3la. The drift of the
fragments to the 165° and 345° Jocations shown at this time induces
spin in the outer envelope through the viscous coupling. Each body
has a spin angular velocity equal to its orbital angular velocity, and

the velocity field near the axis indicates that momentum is being trans-
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d. Comparison

It is apparent that a cloud must be sufficiently intermediate in
order to collapse into a stable toroidal ring, but more work will be
required before a precise criterion can be given for this type of
collapse. Although the intermediate cloud progressed directly from
a uniform-density configuration with a perturbed azimuthal velocity
field to a condensed binary system without forming an intermediate
toroidal stage, it is never-the-less useful to investigate the stabil-
ity of toroidal systems as a means for understanding the overall sta-
bility of protostellar collapse. Indeed, this investigation is the

central theme of the next chapter.



VI. NON-AXISYMMETRIC PERTURBATION
OF ROTATING RINGS
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A. INTRODUCTION

It has been demonstrated in Chapter V and in the publications dis-
cussed in Chapter I that under certain reasonable conditions rotating
toroids may exist as an intermediate stage in protostellar evolution.
It has also been demonstrated in Chapter V that initial asymmetries
can either grow or decay during collapse of the cloud. In this chapter,
we develop a quantitative theory of the fragmentation processes in
collapsing protostars.

The prediction of protostellar cloud stability can be addressed
from two different viewpoints. The most direct approach would be to
perform a series of collapse calculations, in which the initial condi-
tions and the initial perturbations are systematically varied. There
are, however, serious difficulties with this direct method. If a cloud
is in a nonequilibrium state, the initial conditions almost surely can
not be characterized by a single dimensionless parameter; so that there
are a virtually limitiess number of initial conditions to be considered.

The indirect approach involves understanding the response of a
set of initially unperturbed toroids to applied perturbations. These
calculations are performed for six different representative examples
and the dynamics of the fragmentation process are described and illus-
trated in detail. We develop a theoretical stability curve, which is
normalized to the numerical results and allows one to predict the prob-
able modes of fragmentation of arbitrary toroidal systems in terms of
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ditions. The resulting stability diagram and its interpretation are

discussed in Section G of this chapter.
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In all problems discussed in this chapter the mass is initially
concentrated in toroidal configurations. The initial conditions for
each calculation are produced by a preliminary calculation through
which a rather coarse set of prescribed conditions is allowed to relax
to an equilibrium state. The initial cross section of the rings is
approximated by a square region of the calculational mesh, which con-
sists of two radial zones above the plane of symmetry. This study
uses systems having three solar masses and an initial angular velocity
of 2.45 x 10']2 S-]. For such toroids the gravitational and centrif-
ugal forces are balanced. To vary the properties of the toroids, one
changes the entropy variable, A. Throughout this chapter the value of
A is expressed in the cgs system of units. These units are omitted in
the text for convenience. Depending on the value of A, the forces due
to the thermal pressures in the toroid may or may not be in balance
with the forces of self-gravity. The initial toroidal configuration
is therefore allowed to expand to an equilibrium state before the
application of the perturbation. If the gas expands to form a more
diffuse ring with a larger cross-sectional area, the average angular
velocity of the system decreases and differential rotation develops.
By this means one obtains the six unique toroidal configurations that
are used in the subsequent fragmentation studies and stability analyses.
In all discussions below it will be these toroids that are defined as
initial conditions at the time of perturbation. It should be noted
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figuration adjusts itself during approach to steady state.
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In the calculations a 10 x 12 x 5 grid is used. The 12 azimuthal
zones divide the upper region into 30° segments. In an r-z plane the
cell surfaces are squares 7.0 x 10]5 cm on a side. The upper boundary
is 3.5 x 1016 cm above the symmetry plane. The inner radial boundary
required by the central core and the outer radial boundary are
7.0 x 10]5 cmand 7.7 X 10]6 cm, respectively, from the axis of rota-

tion.

B. THE PERTURBATIONS
In order to develop a thorough understanding of the response of
rotating toroids to non-axisymmetric perturbations, one must charac-
terize not only the toroidal fluid system as previously described but
the perturbation as well.
The binary perturbation is applied to the system through the azi-

muthal velocities in a manner described by the following prescription
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B is the amplitude of the perturbation; and for all cases described in
this work, it has a value of 0.01. If the system is unstable, the asym-
metry is rapidly amplified and fragmentation results; however, if the
system is stable, the amplitude of the disturbance quickly decays and
axial symmetry is restored.

Two higher mcde perturbations have been used in developing the
stability diagram described subsequentiy in this chapter. The mode 3
perturbation is given by

[

1
v > v, |l1 + B sin (3e)l (VI-2)
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The mode 6 perturbation is
V>V [1 + B cos (69)] (VI-3)

C. COMPACT RINGS
1. Case I
a. Initial conditions
The center of the rotating toroid used in Case I is located
2.77 x 10]6 cm from the axis of rotation and has a characteristic

cross-sectional radius, a, of 1.0 x 10]6 cm. The entropy variable, A,

has a value of 5 x 10]9. This toroid is the most compact of any sys-
tem studied. Other salient properties of the system are summarized in
Table I. The initial conditions are graphically represented in Figs.
38 - 41. In Fig. 38a, b the compactness of the ring is evident in both
the r-6 and r-z planes. The high concentration of contour lines at the
inner and outer circumferences, respectively, indicates sharp density
gradients between the toroid and its surroundings. In Fig. 38b one
sees that the density in the second computational zone above the re-
flecting plane is down by a factor of 5 from that in the center of the
ring. The gravitational potential well is centered on the ring itself
(Fig. 39a) and is the deepest initial well of any toroid used in this
study.

The angular velocity distribution in this compact ring does not

differ very much from that which would occur if the system were in
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120

The condition of the toroid can also be surmised from the labora-
tory velocity vector plots in Fig. 4la. The orbital motion is in a
positive sense as one can see by lining up the tails of the vectors.
A11 velocities are contraction velocities that imply the toroid is de-
creasing in cross-sectional area. In fact it js questionable that a
body this compact can be accurately resolved by the calculational mesh.
Nevertheless we include this very compact system because of the quali-
tative information that can be derived from it. The large-scale bal-
ance between centrifugal and gravitational forces is j1lustrated in the
momentum-density plot of Fig. 41b. The momentum vectors display no net

radial mass motion either toward or away from the axis of rotation.

Table I

Initial Conditions

Case 1

Alent/g?3 %) 5.00 x 10"° M(g) 5.91 x 105
a(cm) 1.00 x 10]6 W(ergs) -5.00 x 1043
pr;]ax(g/cm?’) 1.94 x 10710 KE (ergs) 1.71 x 108
R, (em) 2.77 x 108 U{erge ) 1.36 x 107
Pmax -16 43
Prax(g/cm”) 1.75 x 10 T(ergs) 1.46 x 10
R, (cm) 2.45 x 1016 E(ergs) -2.15 x 1073

max 5 2 55
tf(yrs) 0.05 x 10 J(g cm/s) 1.19 x 10
(s 2.46 x 10712 o(°K) 18.8



121

b. Evolution of the system

In Figs. 42 - 50 the subsequent evolution of the fragmenting to-
roid is summarized. In Figs. 42a, b the density contours of the frag-
menting toroid are displayed for two intermediate times. The short
time scale on which the break-up occurs indicates the high degree of
instability present in the initial system. The Tow thermal pressures
can not effectively impede the fragmentation, and the initial pertur-
bation is quickly amplified. Rapid evolution of the system can also
be related to the local free-fall time estimate given by Eq. (I-1).
Since collapse phenomena seem to occur in a few numbers of free-fall
times and since the free-fall time for a density of this magnitude is
about 0.05 x 105 yrs, it is not surprising that the toroid has frag-
mented into well-defined components in about 0.76 x 105 yrs. In fact,
all of the calculations reported indicate that unstable toroids have
come to a stage of complete fragmentation by about fifteen free-fall
times.

In Fig. 42b one sees the presence of a higher mode in the density
contours at a time of 0.60 X 105 yrs. Although the original perturba-
tion is a pure mode 2, the higher mode has appeared. There are two
explanations that one gives to explain the coupling to higher modes.
One argument is physical; the other, numerical. First, the nonlinear
nature of the equations of motion favors the excitation of a spectrum

of modes. Second, the coarseness of the calculation grid can excite
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reverted to the more dominant binary configuration. Figures 43a, b
and 48a, b illustrate the corresponding evolution of the gravitational
potential. At a time of 0.76 x 105 yrs the well depth of the compo-
nents is almost twice that of the initial ring.

The interpretation of the angular velocity sequence for this case
is less clear than for the more extended, and hence better resolved,
components. In Fig. 44a, b the angular velocity of gas falling from
the perturbed toroid toward the axis of rotation has increased due to
the conservation of angular momentum. Regions of high angular velocity
also occur behind the newly formed components as the residual gas in
the toroid accelerates toward these new centers of attraction.

The laboratory velocity plots shown at intermediate times in Fig.
45a, b show the details of the velocity field during fragmentation.

The velocity vectors on the leading edge (leading in the sense of posi-
tive orbital motion) of the components are shortened and turned around
by the gravitational attraction of the trailing fragments. The toroidal
remnant behind a component now moves in the increased force field of
the new center of gravity, and the azimuthal velocities, already large
due to the original orbital motion of the ring, are increased. Figure
46a, b shows the same sequence in a momentum density representation so
that one can determine patterns of mass transport.

In Fig. 50a, b the late-time velocity fields relative to the

laboratory and to the rotating frame, respectively, are shown. In both
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components. At these late times the rate and extent of separation of
the bodies must be questioned because of the poor resolution of the
compact components by the calculational grid. Such a situation can
introduce inaccuracies in the solution of the partial differential
equations, which accumulate with time.

A manifestation of the inaccuracy in the late time solution for
Case I is the lack of energy conservation. The models assume that
the processes in protostellar clouds proceed adiabatically. Since no
energy balance equation is solved, one does not include the heating
effects due to the irreversible viscous dissipation. Therefore, al-
though the total energy should not be precisely conserved, it should
be approximately a constant, especially for the collapse of the more
dispersed toroids. In most of the other cases described in this
chapter the energy conservation is 1 - 2%. At the last time reported
in this calculation, however, the total energy of the system has in-

creased by almost 50%.
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2. Case II
a. Initial conditions

The toroid used in Case II, having an A of 7.5 X 10]9, is a more
dispersed body than the one used in Case I. The Case II ring has a
characteristic cross-sectional radius of 1.60 x 1016 cm. This radius
encompasses about 2 linear zone dimensions; so the resolution of the
body is greatly improved. The maximum density contour is 2.85 x 10]6 cm
from the axis of rotation. Table II presents a summary of the physical
properties of the Case II initial conditions.

Figure 5la, b shows the density contours of the system at the time
of perturbation. The density in the r-6 plane decreases from a maximum
central value of 9.47 x 10717 g/cm3 to a value of 4.74 x 1018 g/cm3,

a factor of 20, in a distance of about 2% radial zones. The gradient

js therefore fairly well resolved by the calculational grid. The cross-
sectional area of the toroid is shown in Fig. 51b to be nearly circular.
The gravitational potential for the initial configuration is illustrated
in Fig. 52a, b. The well is centered on the inner edge of the ring and
is broader and less deep than in Case I. The potential contours in the
r-z plane are similar to those in Fig. 39b, but are more diffuse, re-
flecting the more extended and less dense toroid.

During the initialization calculation the larger toroid of Case II
develops more differential rotation than jts more compact predecessor,
as displayed in Fig. 53a, b. In the r-6 plane one sees sharp gradients
only on the outer edge of the ring. The density of the gas near the
axis of rotation is high enough for the numerical scheme to have turned
on the velocities in this region; and because of conservation of angu-

1ar momentum, the orbiting mass originally in the nonequilibrium toroid

-
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moves with higher angular velocities as it falls toward the z-axis.
In the r-z plane the toroid appears to be very nearly in solid body
rotation at least in the high density regions.

The laboratory velocity and momentum-density vector fields of
Fig. 54a, b support the interpretation of the angular velocity con-
tours given above. In Fig. 54a the velocity field suggests that the
toroid will not contract to as poorly a resolved configuration as for
Case I. These velocities have almost no radial component except at
the outer edge of the toroid where some accretion is indicated. The
ring has expanded from its nonequilibrium state, has overshot the steady
state configuration due to the linear momentum gained during expansion,
and is now slightly recontracting at the outer edge. In the momentum-
density vector field, one has a graphic representation of the mass con-

centration as it is spread over four radial zones.

Table II

Initial Conditions

Case II
aentia?/3 2y 7.50 x 10" M(g) 5.91 x 10°°
a(cm) 1.60 x 10'° W(ergs) -4.09 x 10%°
p&ax(g/cm3) 9.93 x 1077 KE(ergs) 1.50 x 101
R (cm) 2.85 x 10'° U(ergs) 1.05 x 107
max

pmax(g/cm3) 9.47 x 107V T(ergs) 1.23 x 1043
R, (cm) 3.15 x 106 E(ergs) -1.80 x 10%3
tff§?s) 0.07 x 10° 3(g en’/s) 1,19 x 10>
o(s™!) 2.06 x 1071 o(°K) 18.7
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b. Fragmentation of the toroid

The time scale for the evolution of this system is greater by
almost a factor of 3 than the time scale for Case I. The local free-
fall time estimate is 0.07 x 105 yrs, and is therefore only greater
by some 40%. It is, however, expected that more compact systems will
evolve on shorter time scales, since the thermal pressures tending
to impede contraction are lower.

In Fig. 55a, b the density contours at t = 1.10 x 105 yrs and at
t=1.27x 105 yrs summarize the intermediate stages of mass accretion
from the toroid onto the newly formed fragments. The thermal pressures
are sufficient to delay the accretion and to produce moderately well-
resolved extended binary components. The gravitational potential at
these times is shown in Fig. 56a, b. The contours display the evolu-
tion and deepening of the new centers of gravitational attraction. The
apparent secondary modes in Fig. 56b are artifacts of the interpolation
scheme used to obtain the contour lines since the notential field can
not respond to instabilities more rapidly than the mass configuration

and since the density contours show only the mode 2 perturbation at

this time.

c. Spinning components

At the second of the intermediate times reported, t = 1.27 x 105
yrs, the components are elongated. This configuration demonstrates

graphically one especially noteworthy aspect of the fragmentation dy-
namics. The perturbation is applied to the initial ring through the

azimuthal velocity field. On one side of & = 90° the velocities are

increased by 1% and on the other side they are retarded by 1%.
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Exactly the same perturbation is centered on 6 = 270°, but in the
following discussion it is only necessary to consider one of the favored
centers of accretion. The mass in the region where the velocities are
increased feels a greater centrifugal force after the perturbation;

and therefore experiences a net outward radial motion. The ceﬁtrifuga]
force acting on the gas in the region where velocities have been de-
creased is reduced, and the mass can move radially inward. This effect
results not just because of the 1% change in the angular velocity that
arises from the original perturbation, but also because the continued
acceleration toward the binary centers of condensation enhance even
further the departure of angular velocities from the unperturbed initial
values.

The extended body that is forming out of the toroid now encounters
more slowly moving mass on its leading edge at a smaller radial dis-
tance from the axis of rotation than the radial separation of the cen-
tor of the object from the axis. The result is a retardation of the
azimuthal velocities in regions on the axis side of its center. Exact-
ly the opposite mechanisms work to accelerate regions of the body on
the outward side. The fragmenting bodies begin therefore to spin in
a co-rotational sense relative to their orbital motion. Many multiple
star systems do in fact exhibit co-rotational spins. 1In a satellite
system such as our own sclar system, one observes co-rotating bodies.

In fact, if retrograde motion is observed one generally hypothesizes

+

had
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-he system resulted from

L3 [

[e4)

£ capture process rather than from frag-

mentation.65 Further discussion of retrograde motion is deferred to

the next sectiom.
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Centrifugal forces are not the only forces that directly influence
the development of spin in the fragments. Coriolis forces resist the
spin-up of the objects by increasing the angular velocity of the mass
segments moving inward and by decreasing the angular velocity of the
mass moving outward. In the rotating frame momentum-density vector
fields displayed in Fig. 59a, b one sees the co-rotation of the compo-
nents.

The angular velocity plots presented in Fig. 57a, b illustrate
the same phenomenon. In reference to these more complicated config-
urations it should be emphasized that the contour plots of angular
velocity can be somewhat deceptive unless interpreted very carefully.
A11 that these contour plots exhibit are the Tocations of maximum and
minimum angular velocity, and they carry no information about the con-
current magnitudes and directions of radial velocity. As a result it
is not possible from these contours alone to determine the position of
vortices. Nevertheless, the angular velocity contours prove useful as
a means for showing the character of the spin field around the central
axis. In particular, they show several consistent trends in the rela-
tive angular phasing between the positions of maximum density and those
of maximum angular velocity. In the present case, for example, Fig. 57a
shows advancing fingers of high spin at the outer trailing edges of the
condensing objects. By comparing the contours in this figure at these

two intermediate times one observes that the magnitude of the spin is

Figure 58a, b summarizes the movement of the mass from the toroid

to the binary fraginents in the momentum density representation of the

laboratory frame. In Fig. 60a, b one observes two laboratory momentum-
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density vector fields in the r-z plane. At t =1.10 x 105 yrs, most
of the momentum flux is radially outward; at t = 1.27 x 105 yrs the
field is split at the equator, showing the bulging of the body as it

begins to spin.

d. Spirals and retrograde satellites

Figure 61a, b shows the density contours for Case II at a time
of 1.42 x 105 yrs after the perturbation. The central density of
each component has incréased to twice that of the initial toroid. In
the r-o plane a spiral structure has developed. The mass in the
streamers is gravitationally bound to the nearest component, and it is
possible that these regions provide an environment in which satellites
could form. Since the binary objects are increasing their spin in a
positive sense, it is to be expected that dynamical coupling to adja-
cent regions of fluid would result in regions of negative spin as a
manifestation of conservation of overall angular momentum. The rotat-
ing-frame velocity vector field of Fig. 65a substantiates this specu-
lation, since clockwise vortices are developing at angles of 150° and

300° in the respective spivals. Spi '

ining binaries with accompnanyin

R ]

=3

mass streamers are therefore a possible alternative to capture pro-
cesses for initiating retrograde satellite motions. The phenomenon

of spirals is considered further in Section D of this chapter.

e. Equatorial distortions

sult of two physical processes. First, the spinning components bulge

p
equatorially under the action of centrifugal force. Second, the
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protostars are modelled as very compressible fluids, which therefore
flow along the gravitational potential gradients rather freely. The
gas on the axial side of each object senses the field of the companion
more strongly than the gas on the outward side of the component centers.
The effect is a large tidal distortion. The gravitational potential
contours of Fig. 62a, b also depict the tidal elongation of the compo-
nents toward one another. The angular velocity plots in Fig. 63a, b
show the accelerating and deaccelerating effects of accretion. The
laboratory velocity and momentum-density vector fields summarized in

Fig. 64a, b also illustrate this effect.
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D. INTERMEDIATE RINGS
1. Case III
a. Initial conditions

The entropy variable for Case III is 8.25 x 1019, as compared
with 7.5 x 1019 in Case II. The ring has a characteristic cross-
sectional radius of 1.74 x 10]6 cm, approximately two and one-half
computational zones. The contour of maximum density lies at a distance
of 3.16 x 10]6 cm from the axis of rotation. The other physical prop-
erties of the initial configuration are presented in Table III.

Figures 66 - 69 graphically summarize the initial conditions of
the unperturbed system. The density contours in Fig. 66a, b illustrate
the nature of the mass configuration. The original nonequilibrium
toroid has expanded under the action of thermal pressures to such an
extent that the inner edge has reached the central core of the calcu-
lational grid. The density in this region is a factor of 20 below
maximum ring density; so the inner boundary wall has minimal effect on
the subsequent evolution of the system. In Fig. 66b the r-z contours
display a non-circular cross section.

From Fig. 67a, b one estimates that the depth of the gravitationai
potential well is less than those observed in Cases I and II by approx-
imately 20 percent. The breadth of the Case III well is also greater
and the gradients on the inner edge are more gradual. The picture
presented is consistent with the density contours described above.

The angular velocity contours of Fig. 68a, b show patterns of differ-
ential rotation that result because of the action of Coriolis forces

smnis
i (]

FYeN
nwu

3
¢t
[&]

g increase the angular velocity of the gas that falls inward

toward the axis of rotation and to decrease the angular velocity of
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the gas that expands outward away from it.

With the laboratory velocity and momentum-density vector fields
as a monitor of the orbital equilibrium of the fluid, Fig. 69a, b
implies that the whole system is still moving slightly outward. It
is therefore not in as precise an orbital equilibrium condition as
the previous studies have been, but it is very close. Figure 69b
demonstrates the greater spatial extent of this ring, showing sig-

nificant momentum densities distributed over five radial zones.

Table III

Initial Conditions

Case III

Aen/g?/3 s%)  8.25 x 107 M(g) 5.91 x 1053
a(cm) 1.74 x 1016 W(ergs) -3.63 x 1043
p;nax(g/cm3) 7.13 x 107 KE(ergs) 1.12 x 109
R, (cm) 3.16 x 10'° U(ergs) 8.98 x 1072

a3 -17 42
pmax(g/cm ) 7.13 x 10 T(ergs) 9.84 x 10
R (cm) 3.15 x 1019 E(ergs) -1.74 x 10%3
Y 0.08 x 10° g and/s)  1.19 x 10%
[ ACARY J - .
o(s™h) 1.66 x 10712 0(°K) 17.0

b. Intermediate fragmentation and higher modes
The intermediate stages of the growth of the perturbation are

shown in Figs. 70 - 73. The time scale within which the dynamical

contours 0O

associated with large toroidal remnants on both the leading and the
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trailing edges. By the time shown in Fig. 70b, t = 1.61 x 105 yrs,
each element of this structure has itself fragmented to form a two-part
system. The split configuration is only a transient intermediate state
that returns to the binary structure, as shown at a later time in

Fig. 74a. The split configuration is nevertheless significant because
it appears at a fairly advanced time in a well-resolved physical system.
Its appearance is the result of the nonlinear physical models rather
than of inaccuracies arising from coarse calculational zoning. The
elongation of the centers of gravity in Fig. 71b indicates the response
of the potential field to the quaternary configuration. The angular
velocity contours in Fig. 72a, b show the characteristic pattern de-
scribed previously in Section C.

In the rotating-frame momentum-density sequence of Fig. 73a, b,
one again observes the development of co-rotational spin in the compo-
nents. By comparing the configuration of the vectors in Fig. 73a and
Fig. 73b, one has a graphic illustration of the time dependent trans-
port of mass and momentum from the remnant regions at approximately

80° and 260° to the binary fragments.

c. Spirals

In Fig. 74a the density contours at t = 1.77 x 105 yrs show that
a spiral structure has developed from the residual toroidal gas. The
p-z contours in Fig. 74b indicate tidal bulging on the inner surfaces
of the components similar to that observed for Case I1. The gravita-
tional potential contours in Fig. 75a, b are radially elongated, show-

ing the response of the field to the density distribution.
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The structure in the angular velocity contours discussed for
Case II is present in Fig. 76a, albeit not so dramatically. The
laboratory velocity and momentum-density vector fields are shown in
Fig. 77a, b. In the velocity vector field the regions in the trailing
spirals where accretion increases the already large orbital velocities
of the toroidal remnant are clearly contrasted with the regions on the
leading edge of the components where the gravitational attraction re-
duces the original orbital velocities of the residual gas. The momen-
tum density representation indicates the Tocation of the binary frag-
ments and outlines the spiral structure of the system. The retrograde
velocity vortices at 90° and 270°, respectively, in Fig. 78a are simi-
lar to the ones discussed for the Case II binary spirals. The spin of

the components is shown at late time in Fig. 78b.
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2. Case IV
a. Initial conditions

The entropy variable for Case IV has a value of 9.0 x 10]9. The

characteristic cross-sectional radius of the ring is 1.80 x 1016cm,

and the maximum density contour is located at a distance of 3.01 x 1016
cm from the axis of rotation. Other relevant system parameters summa-
rizing the initial conditions are 1isted in Table IV.

The graphic representations of the properties of the Case IV ring
are presented in Figs. 79 - 82. The system is qualitatively similar

to that of Case III.

Table IV

Initial Conditions

Case IV
Aert/g®3 %) 9.00 x 10" M(g) 5.91 x 10°°
a(cm) 1.80 x 10'° W(ergs) -3.68 x 107
. 3 _
Pax (9/Cm ) 6.70 x 10717 KE (ergs) 1.17 x 10¥
Rp. (cm) 3.01 x 10]6 U(ergs) 9.41 x 1042
max 3. Y e 43
pmax(g/cm') 6.65 x 10 T\EVgs) 1.06 x 10
16 43
R (cm) 3.15 x 10 E(ergs) -1.66 x 10
Pmax 5 2 55
tf(yrs) 0.08 x 10 J(g cm~/s) 1.19 x 10
wls™ 1) 1.75 x 10712 o(°K) 17.7
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b. Evolution of the system

The qualitative features of the evolution of this system under a
mode 2 perturbation are very similar to those described in the Case III
discussion. The dynamical time scale is not significantly longer for
Case IV. The free-fall time estimate for both cases is approximately
0.08 x 105 yrs. The contour plots and vector fields summarizing the
evolution of the Case IV system are presented in Figs. 83 - 92. The
Case IV toroid is the only system that has been subjected to mode 2,
mode 3, and mode 6 perturbations, as will be discussed in a subsequent

section.
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E. DISPERSED RINGS
1. Case V

a. Initial conditions

The first of our high entropy rings has a value of A of 1.0 x 1020.
The Case V and Case VI toroids are classified as dispersed because
théy are relatively low density, expanded systems. The characteristic
cross-sectional radius for the Case V ring is 2.02 x 10]6 cm, a dis-
tance of nearly three linear zone dimensions. The maximum density is
located at 3.32 x 1016 cm. The initial conditions at the time of
perturbation of the Case V toroid are summarized in Table V.

Figures 93 - 96 illustrate the initial conditions graphically by
presenting the density, gravitational potential and angular velocity
contours and by showing the laboratory velocity and momentum-density
vector fields. Except for the large cross-sectional area of this ring
and its corresponding lower densities, it is similar to the other ini-
tial systems discussed in preceeding sections of this chapter. In
Fig. 94a one observes that the trend of the gravitational potential
toward less deep and broader wells as the toroids become more dispersed
is very pronounced in this system. The center of the well is not
centered on the maximum density contour of the ring but is displaced
inward toward the axis.

The velocity and momentum-density vector fields are similar to
the ones presented for Case III, indicating that as in the previous

he initial conditions have not settled to a perfectly steady

state. The entire system is still undergoing slight radial expansion.
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Table V

Initial Conditions

Case V
aentg?/3 8 1.00 x 1070 M(g) 5.79 x 1055
a(cm) 2.02 x 1016 W(ergs) -3.12 x 108
paax(g/cm3) 4.60 x 10717 KE(ergs) 1.29 x 10
R. (cm) 3.32 x 10'° U(ergs) 7.79 x 10
Pmax 5 -17 42
pmax(g/cm ) 4,56 x 10 T(ergs) 8.32 x 10
R (cm) 3.15 x 101° Eergs) -1.50 x 10%°
Pmax 5 2 55
tf(yrs) 0.10 x 10 J(g cm™/s) 1.17 x 10
(s 1.38 x 10712 o(°K) 15.3

b. Pressure-delayed fragmentation

The free-fall time estimated from the maximum density of the
unperturbed Case V ring is 0.10 x 105 yrs. To emphasize the slower
evolution of this system, density contours at four intermediate times
spanning three initial free-fall epochs are shown in Figs. 97a, b and
98a, b. In this sequence the component densities gradually increase
with time, and the general appearance of the configuration changes
slightly. The shape of the mass distribution around the components
remains qualitatively unaltered, and one observes only a small de-
crease in the densities of the toroidal remnant. Case V, commencing
sixteen free-fall times after the initial perturbation, shows far less
evolution in the succeeding three free-fall epochs than Case I shows
for a similar span of time commencing only nine free-fall times after

perturbation, as shown in Fig. 42a, b.
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In Figs. 99a, b and 100a, b the same time sequence is presented
for the gravitational potential. The depth of the two wells, now
centered on the fragments, deepens as the density increases and re-
flects the accretion of mass from the remnants. The angular-velocity
contours in Figs. 101a, b and 102a, b also demonstrate the slow move-
ment of the fluid from the residual toroid regions to the components.

In the momentum-density vector fields of Figs. 103a, b and 104a, b
one sees that the components have not yet developed co-rotational spins.
No higher modes have been excited during the intermediate stages of
fragmentation of the Case V toroid. Not only are the relatively high
thermal pressures effective in delaying the growth of the mode 2 per-

turbation, they actually prevent the appearance of the split config-

uration observed in Section D.

c. Large spirals

At a time of 2.12 x 105 yrs the components have developed ex-
tended spiral structures. In the r-6 density contours of Fig. 105a
one sees that the mass streamers actually begin on the trailing edge
of the orhiting fragments very close to the respective maximum density
centers. On the leading edge the shape of the contours is more circu-
lar, and the density gradient is higher. Fairly large toroidal rem-
nants still encompass the bodies in the form of large outer extensions
of the individual spirals. The r-z contours in Fig. 105b show the
tidal distortion in the equatorial plane.

In Fig. 106a the r-6 gravitational potential contours dispiay
fairly circular wells centered on the components. The density pileup

the leading edge of the objects is refiected in the Steeper

An
v
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potential gradients in these regions, and the spirals are evident in
the more gradual gradients of the trailing edges. 1In Fig. 106b the

r-z contours show a tendency to enclose the entire system in a bar-like
structure rather than to remain centered on the individual components.
This phenomenon, characteristic of the dispersed systems, is discussed
in more detail in subsequent sections of this chapter.

The angular-velocity contours in Fig. 107a, b are similar to those
seen in intermediate stages of evolution for the more compact systems.
The thermal pressures in the large spirals are effectively retarding
the accretion build up of the velocities in the remnant. The labora-
tory momentum-density vector field at this time is illustrated in
Fig. 108a. The significant momentum density content in the spirals
is consistent with the relatively high mass concentrations observed in
these regions. The momentum-density vector field in the rotating
frame, Fig. 108b, shows that co-rotational spin of the components has
been established. In addition there is an elongated region of outward
radial flux in the spirals, and double mass exchange near the axis that

streams between the fragments.
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2. Case VI
a. Initial conditions

The entropy variable of the Case VI toroid has a value of
1.25 X 1020. The characteristic cross-segtiona] radius is not accu-
rately delineated because the high densities at the axis make the
definition of an inner edge obscure (Fig. 109b). One estimates a
value of 2.76 X 10]6 cm, which is nearly four Tinear zone dimensions.
The distance of the maximum density from the axis of rotation is
3.12 x 1016 cm. Table VI summarizes the physical properties of the
Case VI toroid.

The density contours of Fig. 109a, b show that the initial toroid
£i11s almost the entire calculational mesh. The distortion of the
inner edge of the ring has produced densities near the axis that are
about half as large as the ring maximum. In Fig. 110a the r-6 gravi-
tational potential contours display a broad well centered on the axis
rather than on the maximum density of the ring. The r-z contours
shown in Fig. 110b suggest the system more closely resembles a disc
than a ring. The mass distribution together with the structure of
the potential field present the picture of a toroidaily buiying disc
for the Case VI initial configuration.

In the r-6 angular-velocity contours of Fig. 111a one observes
the typical patterns of differential rotation. The gradient that
indicates the position of the low-density, zero-velocity region is
near the lateral boundary of the calculational mesh. In Fig. 111b
the r-z angular-velocity contours show an elliptical pattern across

+ho axis of rotation. The higher density gas near the axis in the

equatorial plane is more strongly coupled to the main body of the



213

toroid through the viscous terms than the less dense, higher velocity
regions directly above. The laboratory velocity and momentum-density
vector fields in Fig. 112a, b show the system to be very close to

orbital equilibrium. The physical extent of the ring and the higher

densities near the axis of rotation are also evident in these plots.

Table VI

Initial Conditions

Case VI
aentrg?3 %) 1.25 x 102 M(g) 5.79 x 1053
a(cm) 2.76 x 10'° W(ergs) 2,92 x 107
max(g/cm ) 3.18 x 10717 KE(ergs) 1.32 x 1070
Rp. (cm) 3.12 x 10'8 U(ergs) 7.44 x 10%2
max -17 42
(g/cm ) 3.18 x 10 T(ergs) 7.94 x 10
R (cm) 3.15 x 1016 E(ergs) -1.38 x 10%3
Pmax 5 2 55
tf(yrs) 0.12 x 10 J(g cm“/s) 1.17 x 10
(s 1.32 x 1071 o(°K) 15.0

b. Binary components within dispersed toroidal envelopes
The dynamical processes of this very dispersed system develop

even more slowly than in Case V. The free-fall time estimate is

0.12 x 105 yrs. In Fig. 113a, b one sees the very slow development

of binary fragments over a time span of five free-fall times, commenc-

ing fourteen free-fall times after the perturbation. The components

+aly onclosed by the toroidal remnant. The axial densities

o
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remain approximately equal to half the maximum values at the center of

the components for the entire timc sequence. One gees a nonuniform

bar rotating in an envelope. This picture is supported by the
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gravitational potential contours shown in Fig. 114a, b at these same
intermediate times. No well-defined binary structure in the potential
field is apparent even at a time of 2.51 x 105 yrs.

In Fig. 115a, b the development of the familiar structure in the
angular-velocity contours is sequentially traced. The pattern is con-
sistent with the concept of the rotating bar described above. The
rotating-frame momentum-density vector-field sequence presented in
Fig. 116a, b also supports the bar-like image. At the earlier time
of 1.72 X 105 yrs one sees an elliptically shaped field; five free-
fall times later the momentum-density flux indicates a double mass
transfer parallel to a line through the component centers, again
generating the image of a bar.

In Figs. 117 - 121 the fluid properties are summarized at the
last time before mass loss from the surrounding cloud begins for
this system. In Fig. 117a the very high axial densities remain, sug-
gesting that the system is still evolving toward a rotating bar con-
figuration. The apparent toroidal or binary component cross section
in the r-z contours of Fig. 117b reflect the density variation along
the Tength of the bar. The effect of the massless core is now be-
coming less negligible in the central regions as the mass develops
appreciable concentrations near the axis. If mass were allowed to
flow into the core boundary cells, the net effect would in this in-
stance be to raise the central densities by 10% or less, as shown in
Chapter IV, and hence to enhance the formation of a fairiy uniform
bar. The bar structure is graphically i1lustrated in both the r-8

and r-z gravitationai potential contours of Fig. 118a, b.
P o
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In Fig. 119b very little differential rotation along the length
of the bar is implied by the r-z angular-velocity contours. Figure
120b shows the same mass transfer discussed above. No co-rotating
components are observed. Figure 121a, b summarizes the r-z vector

fields. The bar is stretching radially outward at this time.
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F. BARRED SPIRALS

In each of the stability studies reported in this chapter, one
uses a toroid in a near equilibrium state to define the initial condi-
tions. During the subsequent fragmentation of the system under per-
turbation the mass is conserved until the gas contacts the free-mass-
flow lateral boundary of the calculational mesh. In all of the sec-
tions of this chapter except the present one, the descriptions of the
respective evolutions are terminated as soon as the system begins to
lose mass. The discussions are therefore as independent of the pre-
scribed boundary conditions as possible. If however one allows a 5%
mass loss from the spirals of the Case V system and follows the evo-
Jution to a slightly later time than has been reported in Section E,
some interesting phenomena become evident.

The r-6 density contours are presented at a time of 2.44 x 105 yrs

in Fig. 122a. In the plot one observes four local density maxima. The

[¥2]

vstem closely resembles a revolving barred spiral. The densities of
the bar are the highest in the system, and the variation along the
length is only 15%. The bar structure js also discernable in the r-z
density contours of Fig. 122b. The elongated gravitational potential
contours in Fig. 123a, b support the interpretation of the configuration
as a rotating barred spiral.

In Fig. 124a the overall barred structure is visible in the pat-
tern as a region of relatively low angular-velocity contours at angles
of 135° and 315°, respectively. Examining the contours along this
barred region, one observes that the bar is not in solid body rotation
rthor that it seems to he hreaking up. The regions near the

local density maxima at the ends of the bar are characterized by higher
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angular-velocity contours than the regions around the high density
centers close to the axis of rotation.

The momentum-density vector fields are presented in Fig. 125a, b.
The field in the r-e plane shows less of a tendency toward the forma-
tion of a co-rotating binary system than it did earlier. The flow at
this time is predominantly along the length of the entire bar, with
some cross flow in a counterclockwise sense near the axis at the cen-
tral regions of the bar. In the r-z plane one sees appreciable flow
toward the axis and some flow from the gas in the plane at z =
1.4 x 10]6 cm outward toward the newly forming fragments at the ends

of the bar. This pattern suggests the ends may be separating from the

bar.
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G. GENERAL STABILITY CONSIDERATIONS
1. Introduction

The toroidal systems described in the preceding sections have all
proven unstable to a pure mode 2 perturbation. One would not expect
to observe such idealized disturbances in actual physical systems. A
more general random perturbation represented by a Fourier series expan-
sion containing a spectrum of modes of varying amplitudes would be more
realistic. There are, however, two primary reasons for choosing per-
turbations of relatively simple form. First, one wishes to examine the
linear growth and nonlinear couplings associated with a single pure
mode. Second, the available numerical resolution precludes the study
of higher modes for which the physical scales are smaller than the
computational zones. In addition to mode 2, we have studied modes 3
and 6 because they are the two higher modes that can be fit into the

chosen calculational mesh.

2. Higher Modes
a. Mode 3

The initial Case IV toveid has been subiected to the pure mode 3
perturbation, Eq. (VI-2). The qualitative features of the evolution
are analogous to the mode 2 systems already described. The Tate time
properties of the resulting tertiary system are summarized in Figs.
126 - 129. In the r-o6 density contours of Fig. 126a one sees three
spherical fragments connected by fairly high density streamers. The
r-z density contours in Fig. 126b pass through one of the spiral re-
gions on the right, as well as through one of the components on the

left.
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The gravitational potential is presented in Fig. 127a, b. The
field responds to the density distribution as expected. The smalier
gradients on the trailing edge of all three fragments reflect the pres-
ence of the spiral streamers, an effect already observed in the pre-
ceeding mode 2 studies. The r-6 angular-velocity contours in Fig. 128a
present a picture analogous to that seen in the binary systems. Such
patterns are consistent with co-rotating objects; and one observes in
the momentum-density vector field of Fig. 129b, the spin of the compo-
nents. Referred to the laboratory frame in Fig. 129a the momentum-
density representation indicates the location of the bodies and the

extent of the spiral regions.
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b. Mode 6

The Case IV toroid has also been subjected to a pure mode 6 per-
turbation. The maximum effect of the perturbation on the system is
shown in the density contours of Fig. 130a at a time of 0.37 x 105 yrs.
At the late time shown in Fig. 130b, the disturbance has decayed under
the action of thermal pressures and axial symmetry has been restored.
The Case IV toroid is therefore stable to a mode 6 perturbation.

The Case I toroid is, however, unstable to the mode 6 perturbation
as Figs. 131 - 133 indicate. The system evolution is analogous to that
observed for the mode 2 and mode 3 instabilities. The laboratory
momentum-density vector field of Fig, 133b indicates the location and

compactness of these fragments.
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3. The Stability Condition
In order to generalize our understanding of toroid stability, we
derive a heuristic stability condition. As a starting point, it is
necessary to characterize the equilibrium of the system before pertur-
bation. For this purpose we require expressions for the gravitational,
rotational and internal energies. The expressions given below for

these energies are appropriate for a thin polytropic hoop,66

but are
nevertheless useful for our purposes even when the material of the hoop
has been expanded by thermal pressure. The gravitational potential
energy of the system is

w4
w=-2tm Bl +) (VI-T)

The total internal energy can be written as

U= 397 ar (VI-2)

The toroidal systems under consideration in this work are in or-
bital, or near orbital, equilibrium at the time of the perturbation;
therefore the rotational kinetic energy greatly exceeds the pulsational
kinetic energy. Neglecting the latter, one characterizes the kinetic

energy of the system by its total rotational energy,

T = 32- MwZR? (VI-3)

[«)]
~

The virial thieorem”’ provides the mathematical statement of equilibrium

needed to relate these energies. One has



247
T+W+3 (y-1)U=0 (VI-4)

Combining these four equations,

Mw R -y In—+ -+ +T=0 (VI-5)

2
2.2 GM 8R , 1 3GM
I a 4 ("p +1) ]

.
In addition, the system is characterized by the geometric features
discussed in Chapter V, in particular the expression for a, Eq. (v-5).
To proceed, a criterion is needed by which the stability response
of a toroidal system to a mode m perturbation can be predicted. As a
heuristic analogy one knows that standing waves in a string are re-
stricted to wavelengths that are longer or comparable in magnitude to
the diameter of the string itself. We therefore speculate that a
toroid of cross-sectional radius, a, can break into spheroidal compo-
nents, characterized by a spacing that can be no shorter than the
cross-sectional radius of the toroid. Therefore, one expects that the
toroid can break into m fragments if the following inequality is satis-
fied.

Z1R

—-r'n— Y 2a (VI-G)

Substituting Eqs. (V-5) and (VI-6) into Eq. (VI-5) and rearranging, one
has, at the borderline of stability

AT -%—[l]n—n'ﬂ + 1 (n +1!

) (VI-7)

-l:-lw
n

where

W

(VI-8)

] |»>
N
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and

R (VI-9)

Equation (VI-7) is the stability condition for rotating equilibrium

toroids, which is normalized and interpreted below.

4. The Stability Parameter

The parameter, A, remains undetermined in the discussion so far;
its evaluation is discussed in the next section. T is a dimensionless
quantity that characterizes the stability properties of a toroid. The
stability parameter, T', is a nonlinear function of physical quantities
that are important in categorizing the initial conditions of a ring.

The stability parameter depends strongly on the entropy variable,
A, because of the direct relation of this quantity to the thermal pres-
sures, which resist the growth of a perturbation. This relationship
implies that as A is increased the stability of the system is increased.
The numerical solutions of the preceeding sections support this con-
clusion.

In order to facilitate the ciassification of ring-shapea protostars
in terms of T, one can replace A with the more directly observable phys-
jcal parameters of density and specific internal energy. Writing the

equation of state of an ideal gas in the following form,68 one has
p = (y-1)pl (VI-10)

Combining Eqs. (II-14) and (VI-10) and solving for A, one obtains
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A = Lli%%L (vi-11)
P
Therefore, given the specific internal energy, the ratio of the specif-
ic heats, and the central density of a toroid, one can determine the
entropy variable, A. Given the latter, the angular velocity, and the
mass, one can calculate the stability parameter, T, for any arbitrary
toroidal system.

The value of I increases with decreasing mass if the other quan-
tities are held fixed. The inverse-square dependence on the mass im-
plies that a perturbation grows most readily in the presence of locally
strong gravitational fields. This growth is because the enhancement
of these fields acts yet again to contract the toroid into a more com-
pact cross-sectional area.

The dependence of T on w seems at first to be contrary to one's
physical intuition. As w is increased for fixed A and M, the relation
says the system becomes more rather than less stable. The seeming in-
consistency is related to the expectation that under these circumstances
R would become progressively larger with a remaining nearly constant.
The resolution of the paradox is contained in the fact that a would
simultaneously grow, at a rate that greatly exceeds the growth rate of
R, and the stability is accordingly enhanced. This seemingly anomalous
rapid growth of a is directly related to the fact that the compacting

gravitational force depends strongly on the mass per unit length of the

toroid, which decreases rapidiy as the radius, R, expands.
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5. The Stability Diagram
In order to interpret Eq. (VI-7) quantitatively, one normalizes
it by either of the two numerical solutions described below. The
protostars in this study have been assumed to behave like ideal
gases. The ratio of the specific heats is assigned a value of 5/3,
and the corresponding polytropic index is 3/2. The stability con-

dition therefore becomes

3 8m , 7

1 -
AT - 5 In —*3E" 0 (VI-12)
From the mode 6 perturbation studies one has examples of both stable and
unstable rotating toroids. Setting m = 6 in Eq. (V1-12) and solving

for A, one has

-3
p = 28X 10 (V1-13)

Table VII presents a summary of the stability responses of tne
rings as determined from the numerical solution of the fully three-
dimensional, nonlinear equations of motion. From the table one selects
the two closest values of T for which the systems show different stabil-
ity responses. The appropriate I''s are those for the Case I and Case
111 toroids, respectively. For Case III one obtains a value of 1.96
for A from Eq. (VI-13). The upper solid curve in Fig. 134 is drawn
using this value of A in Eq. (VI-12). If a toroidal system is charac-

terized by a T iying on it or above it for a given order perturbati

-
.
Y

Q)

the system is predicted to be stable. For Case I, one calculates a
value of 3.89 for A. The lower curve in Fig. 134 is drawn using this

value of A. If a toroidal system is characterized by a T lying on it
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or below it for a given order perturbation, the system is unstable to
that mode. The region between the two curves reflects the uncertainty
in the location of the stability edge predicted by the data available

for this normalization approach.

Table VII
Stability Responses
Case r(x103) Perturbations Responses
I 1.10 2, 6 unstable
Il 2.58 2, 6 stable to mode 6
I11 2.18 2, 6 stable to mode 6
IV 3.24 2, 3, 6 stable to mode 6
v 2.78 2, 6 stable to mode 6
VI 4.90 2 unstable

The dashed curve in Fig. 134 is derived from Eq. (VI-12) using
a different normalization technique. The A in Eg. (VI-8) is the free
scaling parameter that is developed from the non-dimensionalization of |
the cylindrical hydrostatic equilibrium equation in Chapter V to char-
acterize the cross-sectional radius of a system. If one defines the
edge of a toroid to be that point at which the density has decreased
from the central maximum value by a factor 10, one can then calculate
an average radius for each of the six toroids reported in this chapter,

using the equatorial and axial dimensions to form the average. The

- e iina v A

le VIIT, which shows the consistency of

Eq. (V-5) as a basis for predicting the cross-sectional radius.
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Table VIII
Characteristic Radii (cm x 10"]6)
Case 2ar a,, a, 3 ve A
I 2.00 1.00 1.00 1.00 2.42
II 3.20 1.60 1.60 1.60 2.57
IT1 3.72 1.86 1.62 1.74 2.54
IV 3.86 1.93 1.66 1.80 2.41
) 4.50 2.25 1.80 2.02 2.44
Vi - 3.25 2.26 2.76 2.66

Using Eq. (V-5) one now calculates a value of A in each case and deter-

mines an average value for the six systems. The result is

A = 2.51 £ 0.10 (VI-14)

The substitution of the mean value of X into Eq. (VI-8) produces
a value for A of 1.60, and the resulting dashed curve in Fig. 134. It
is clear that a suitably chosen edge point criterion very near to the
one described above can be found that would place the dashed curve at
any desired level between the two solid curves, but the Turtier verine-
ment of this type of normalization has been differed pending the avail-
ability of additional calculations more specifically delineating the
borderline mode 6 instability.

The good agreement between the curves derived from the two normal-

ization approaches, together with the small region of uncertainty



253

predicted from the numerical studies increases one's confidence in the
stability condition that has been developed. The dimensionless stabil-
ity parameter, I, apparently provides a sensitive indication of stabil-

ity and instability in rotating self-gravitating equilibrium toroids.
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In our model of protostellar formation the dynamics of the collapse
phase strongly influences the late time configuration. The details of
the dynamical processes are determined by the complex interaction of the
centrifugal forces, the gravitational forces, and the forces that result
from the thermal pressures, subject to the initial conditions of asym-
metry that may exist. The major fraction of the spin angular momentum
of a rotating, extended cloud is transfered to the orbital motion of
fragments that originate in the initial asymmetries, enhanced by the
dynamical instabilities that develop during intermediate gravitational
collapse stages. The co-rotational spin of the individual components
accounts for a relatively small amount of the initial angular momentum.

For these intermediate collapse stages observational data are
lacking, so one must rely on indirect confirmation of the theoretical
results. During this collapse phase, however, configurations develop
that closely resemble those that have been observed for much more
evolved systems. The essence of this work has been to Took at two
facets of the evolution of a protostellar system from a cloud of inter-
stellar gas. One of these facets is the collapse of the gas under con-
ditions that lead to a stable one-body configuration. The other facet
has been to examine the more common process of unstable collapse to a
system that may fragment into two or more bodies. In this latter case
we have examined the stability of a collapsing cloud by investigating
the stability of the torous to which it would have collapsed had there
been no nerturbation in the initial configuration of the gas. The
choice of this approach allows for a relatively simple characterization
of the stability properties. The investigation has utilized both a

simplified analytical model of the toroid dynamics as well as detailed
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numerical solutions. The first of these has produced

1) a dimensionless stability parameter

2) a theoretical stability edge normalized to the numerical

calculations
3) a stability diagram relating the stability parameter to
the mode of instability

In the process of carrying through the calculation of numerous examples
in the second (numerical) approach we have demonstrated the formation
of the following configurations:

1) rotating toroids

2) co-rotating binary and binary spiral systems

3) retrograde vortices in spiral regions

4) binary components with dispersed toroidal envelopes

5) barred spirals with fragmenting tips

6) tertiary and quaternary systems

Other workers in the field of protostellar evolution have gener-

ally used complicated models of material properties and transport
phenomena, and have greatly simplified the dynamics. Our approach
has been to solve the dynamics much more extensively and to simplify,
at least for this initial work, the other physical models. We have
developed a numerical methodology that solves the fully three-dimen-
sional, time-dependent, nonlinear, coupled equations of motion for
rotating, self-gravitating systems. The existing code and calcula-
tional techniaues now serve as an excellent basis for continuing
multi-dimensional studies of astrophvsical problems as well as other
diverse applications, such as the inelastic collision and fissioning

of atomic nuclei. The computer code and numerical techniques have
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been written in such a way as to allow for easy and natural extensions
including the following:

1) more complex equations of state

2) more realistic models of material transport properties
such as viscosity and heat conduction

3) generalizations to energy transport, which would include
the equation for fully dissipative flow instead of our
adiabatic case

4) heat sources representing nuclear reactions

5) diffusion of radiation and perhaps even simplified
models of full radiation transport

6) inclusion of short range forces for nuclear dynamics
problems

Two purely methodological improvements are planned for the near future
that will broaden the applicability of the code.

1} replacement of the massless core with a one-dimensional
pill box structure that will allow mass transport
through the axis

2) implementation of a scheme similar to that used in select-
ing the instantaneous rotating frame, which will allow
the radial mesh to uniformly contract and expand as the
large scale dynamics dictate.

For the immediate future the research directions are anticipated

[l
)

s

o include the following:

1) instability of other modes and further mapping of the

2) stability considerations for clouds assuming different
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polytropic indices for specific heat ratios greater
than %

3) stability considerations for clouds under nearly

isothermal conditions (effective ratio of specific
heats less than %J

The additional research projects that have been discussed are

1) mass transfer in binary stars

2) mass accretion

3) stellar collisions

4) internal buoyancy convection

5) nuclear dynamics

In all three-dimensional applications one encounters resolution
problems. With the next generation of computers many of these diffi-
culties will be partially mitigated. The present applications must
be chosen to circumvent problems of coarse resolution. For example,
in the mass transfer studies we plan to consider various models of
mass inflow from the lateral boundaries, simulating mass loss through
a Roche lobe, and to follow the details of subsequent disc formation
around and accretion onto different stellar companions. In the steilar
and nuclear collision problems one would begin the studies using the
two-dimensional TAEBEK code before going to the more coarsely zoned
three-dimensional calculations. An even simpler approach would be to
examine the collision of identical objects, so that one would allow
one body to coliide with a refiecting plane.
The principal conclusions of this study to date can be summarized

as follows:

1) Very careful numerical solutions of the full dynamical
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equations have indeed proved useful for the generation

of realistic protostellar configurations.

2) A heuristic theory of protostellar collapse stability

has been developed, and its validity has been indicated
by means of comparison with the full numerical solutions.
The calculations have demonstrated that stable collapse
can occur, but that stable toroidal configurations must
be very rare.

The calculations have also demonstrated that even the
presence of a small initial vorticity in an inter-
stellar cloud will lead to fragmentation during coliapse,
indicating that a vast majority of stellar systems

formed by that process will be multiple systems lying
somewhere in the range between a close hinary on the

one hand and a stellar and/or planetary system with far
removed components on the other. This conclusion of

the detailed calculations supports the currently
accepted belief that 30 to 50 percent of the stars in

the universe occur in muitiple systems.
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APPENDIX A
The azimuthal momentum equation, Eq. (II-6), is written in a form
that is exactly conservative of angular momentum. That is, if one
multiplies by r and by the volume element, rdrdoedz, and integrates over
all space, the gain or loss of angular momentum is equal to that amount

fluxed in or out at the boundaries. One has

-aafffjrpvrdrdedz =
- [ owr,

- (puvr*z)r ] dedz
] outer inner

- ff L(pv2)6=2n - (pvz)e=0 ] rdrdz

-

2
- (ovw) - (pvw) ] rdrde - (Paco = Papn) 1 drdz
ff 5 Zupper 21ower ff 6=2m ~ "6=0

I A9, [, e

upper "ower

f[ [("— + 20“)6=2n - (o%\é- + ZOU)6=O]drdz
\’ff [Q’%)Z - (D%)z ‘ ] rPdrdz

upper lower

fff 2 81” rdrdédz (A-1)

Since the value of the variables at 8=0 must be unchanged when evaluated

-+

-+

+

at 6=2n, all of the integrands involving differences at the azimuthal
boundary vanish identically. For rigid walls, the radial component of

velocity is zero at the inner and lateral boundaries; so the integrand
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of the first term on the right hand side of Eq. (A-1) vanishes. Similar
comments apply for w at the upper and Tower boundaries. The boundary

conditions on the azimuthal velocity are

v _ 3V - }
e) =) -0 (32
upper Tower
and
v _ vV = [y _ Vv = -
(SF r)r (ar r). 0 (A-3)
outer inner

From the above discussion, Eq. (A-1) can be written

—;Efffrpvrdrdedz = -ff[ p % rdrdodz (A-4)

To show that the integral on the right hand side of Eq. (A-4) vanishes,

we make use of the Green's function solution for the gravitational po-

tential.
fff‘; 2% rdrdedz =
r,6,z) rdrdedz-—- r'dr'de'dz’ p(r',8',2') (A-5)
JIf i

-7

Evaluating the partial derivative, one obtains

-1
T 7‘" -1 :e[rz + r'2 - 2rr'cos(e-8') + (z—z')Z] :

rr'sin(6-0")
F'z - 2rr'cos{e-6') + (Z_Z.)Z] 3/2

(A-6)
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A similar differention with respect to 6' shows that

LR e A L) (A-7)

Therefore, interchanging 6 and 6' in Eq. (A-5), we observe that the
multiple integral on the right hand side is equal to the negative of

itself and accordingly vanishes. We conclude therefore that

atﬂf 3¢ vdrdedz = 0 (A-8)

For the free-flow lateral boundary used in the calculations re-
ported in this work, the first term on the right hand side of Eq. (A-1)
is not always zero. In the case of systems that expand beyond our
radial mesh dimensions, mass and momentum are fluxed through the outer
radial boundary and lost from the system.

In the rest of this appendix we show that the finite difference
form of the azimuthal equation, even though only first order accurate,
is precisely conservative of angular momentum. Combining Eqs. (III-9),

(111-10), and (III-15), rearranging, and performing sums one has

K n+1 n
.—L J- (pv)'ij'l'l/k - (QV)-ij.*.;,k
z ri" sreesz =5 2
i=2 j=1 k=2
Jg-1 K,
N - .
= §662 ( < puvr > L4k P < puvr” > T4+ k)
j=1 k=2
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n n _n
PP ke ( VijHke] Vij+%K)] ‘

n

where I, J, K are the maximum values of the respective indices de-

scribing real calculational zones.

I K
PijHk fn n
£ 2 2 oree v 8o ("’ijk - "’ij+1k)
1=2 j: k=2

(A-9)

The boundary conditions are presented in finite difference form

in the equations below. For a rigid wall, one has

n _n
Uk T Ik

|
o

n, =N, -
ijHes '|J+1 K+

The azimuthal boundary condition requires

N <ovlv - ru) > K= N« ov(v = re) > S 0K

n_ = "n. ..
"1k "i1JK

n =N
Pitk ~ Pidk

"(ou)gyy = "(ou)ig

n = 'ﬁV
Viz/ok 7 J+55k

n, o0,
ilk Y3J-1k

(A-10)

(A-11)

(A-12)

(A-13)

(A-14)

(A-15)

(A-16)

(A-17)
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The remaining boundary conditions are determined from the form of the

azimuthal component of the divergence of the viscous stress tensor.

0, ey (a2 (A-18)

134k 2514k 2r3/2 + or

2r + or

n _n I+

VIelgHk T VIt <—___—2r1+: - ar) (A-19)

2
v = M. (A-20)
i+l ij+s2

n _n

VijHskel T VijeK (A-21)

Substituting Eqs. (A-10) - (A-21) into Eq. (A-9), one obtains
I J-1 K n+l n
(oV)sa40h = (PV) 444
jg 22 r.2 oro0sz ik ijik
1 ét

=9 i=1 b=

14 g7y NT&

I J-1 K np

- L2 i 4Lk n n
= > D D vt erseoz ( Vigk - W1j+1k\l (A-22)

i=2 j=1 k=2 L \ /

The symmetry discussion in Chapter IV emphasizes the importance of
requiring tight convergence in the iterative solution of Poisson's
Equation for the gravitational potential. Under these conditions of
strict convergence the iterative solution can be replaced by the Green's

function solution. Evaluating Eq. (II-16) numerically, we write
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K
22 pi,j,k.ri,Graesz

i'=2 j'=1 k'=2|r 2 4 r 2 _ 2vr.r.,cos(6.-6.,) + (z, -z )21/2
i i i it g k “k’

(A-23)

Substituting Eq. (A-23) and the appropriate expression for wij+1k into
Eq. (A-22), and rearranging, we obtain
J-1 K

I n+l n
i st

n

i=2 j=1 k=

(7 2 2 2%
1% + Pedt - Zriri.cos(e -9.,) + (zk-zk.) J
[ 2 2 _, ( ) ( \2]-%‘
- lfi Pye o 2ryryaces(By -8y + (z2-2p0) (A-24)

Considering only the right hand side of Eq. (A-24), we perform the

average required by npij+bk’ obtaining
2

I J-1 K I J-1 K
'] ‘_‘ v‘ v v v by Nam O A O [ wm N
758 ‘Z‘ Z‘ ‘L _)_ -’_)— 4 r‘_ior“onﬁapijkui,&-ﬁuélpi,j,k,
i=2 j=1 k=2 i'=2 j'=1 k'=2
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o

1
2 2 2172
[fi troo - 2r1ri.cos(ej_]-ej.) + (zk—zk.) ]

2 2

1
2 -2
o LY P 2riri.cos(ej-ej,) + (zk-zk.) ] (A-25)

L
where in the second sum the index j+1 has been replaced by j.

Since we sum over all values of j in both of the parts of Eq.
(A-25), the first term in the first sum is identical to the last term
in the second sum; hence, they cancel. If one notices that 6. 1°

J-
ej-ae, one can write the following identity.

ej_]-ej. = ej-ej 141 (A-26)

Eq. (A-25) becomes

1 -1 K I J-1 K
i=2 j=1 k=2 i'=2 ji=1 k'=2
[ -k )
1.2 2 _, . . 21 =
}“ L i Ty _r1r1,cos(93+l gJ )+ (7K Zk‘) j %
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J-2 J-

K I K
+ 2%6 25 22 ‘ 25 :S ZS §0768820, 5, 1L SP80820 150y

i=2 j=0 k=2 i'=2 j

—

Ar.2+ v 22 2rr. cos(6.-6.,.) + (z,-2 )2 k (A-27)
i i ify LA AR k “k'

If we interchange j and j' in the first sum of Eq. (A-27), the sums

cancel since the cosine is an even function. Equation (A-24) becomes

J-1 K n+1 n
(ov). . - (ov). .
z z 2"12 516062 14k ijHk - g (A-28)
i=2 j=1 k=2 st

The finite difference form of the azimuthal momentum equation is there-

fore precisely conservative of angular momentum.
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APPENDIX B
To illustrate the rules given in Section D of Chapter III for
expanding the donor-cell terms, the following example has been chosen
from the finite difference form of the azimuthal momentum equation,

Eq. (III-10).

: n
n 2 =N ]
< puvr® > 'i+1/2j+'/2k = (ur)1'+1/2j+!5k [(-2- + E) (DVY‘)-ij.p/zk

n
1
h o n

and 0 < a ¢ %

The arbitrary parameter, o, determines the relative proportions of
centered differencing (o = 0) and donor-cell differencing (o = %).

A1l calculations exhibited in this report were performed with (¢ = %).
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APPENDIX C

As with any finite difference approximation to a set of partial
differential equations, inaccuracies resulting from truncation errors
are present in our solutions, At the same time there is potentiality
for numerical instability. The latter is discussed in Section 2 of
Chapter III. One aspect of the accuracy is considered in Chapter IV
where we examine the relationship between the mathematical models on
the one hand and the expected physical reality on the other. In this
appendix we address the question of the accuracy of our numerical
solution of the equations used in the models. Several features of the
numerical solution lie at the heart of this question.

1) The differential equations are represented by finite
difference approximations.

2) The difference equations are solved by an iterative
procedure for which the convergence is limited by
the practicalities of available computer time.

In discussing the first point there is considerable arbitrariness
in the choice of difference equations. Our approach has been to follow
the proven technique of requiring the difference equations to preserve
as nearly as possible the basic physical principles innate in the prob-
lem. In particular, we have considered the conservation of angular
momentum to be an especially important guideline. Rigorous conserva-
tion of mass has also been considered crucial. Conservation of Tinear
momentum and total energy are aiso desirabie, but thie iatter has not
been possible to accomplish with perfect rigor. As a consequence,
however, the degree of energy conservation provides an excellent cri-

terion by which we can access the accuracy of each calculation. In
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the Case I system of Chapter VI, the bodies are the most compact of
any reported in this study. Since the same grid is used for every
calculation, this system is the least well-resolved, and the effect
of truncation errors is greatest. The energy nonconservation is no
better than 43% at late times in the Case I calculation. The non-
conservation of total energy approaches 2% for the last three calcu-
lations as the size of the bodies increases and the resolution corre-
spondingly improves. Figure 135 summarizes the degree of energy non-
conservation in the calculations of Chapter VI as a function of rela-
tive resolution, %F-

A further related manifestation of the effect of truncation errors
is provided by the sensitivity of the late time behavior of the compact
systems to the numerical averaging scheme used for the centrifugal
force term. For example one contrasts the following schemes:

1) The centrifugal force term in the form, 9¥E-, can be
calculated at a radiai-veiocity mesh point through
the use of the average value of v from the four
surrounding azimuthal-velocity mesh points.
2) In the same form the average value of v2 can be used.
3) In the form, pwzr, one may use either the average of
w Oor the average of wz.
The averaging of squares can be rejected by considering the situation
in which the azimuthal velocity passes through zero as a function of
radius. A set o
v tends to overestimate the magnitude of centrifugal force for poorly

resolved systems; whereas the average of w tends to underestimate the

force. Thus our test calculations appear to have bracketed the
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optimal expression, and we have found that as the relative resolution,
%fa becomes small the solutions obtained with the two techniques con-
verge to each other to approximately the same degree that one observes
in the tests of energy conservation.

The second feature of the numerical solution involves a compromise
between the necessity to obtain physically meaningful solutions of the
equations and the practical limitations of time available on the compu-
ters. 1In Section C of Chapter VI we discuss the tightness of conver-
gence required in the iterative solution of Poisson's equation and in
the iterative relaxation of the equations of motion in phase 2 to main-
tain spherical symmetry during the collapse of a nonrotating, self-
gravitating cloud. As mentioned there our conclusion is that conver-
gence of the iteration solution to Poisson's equation for the gravita-
tional potential must be accomplished to within one part in 10]2 in
order to maintain the spherical symmetry. Typically this will require
475 iterations to initialize the gravitational potential field and
about 325 iterations each cycle to update the changes that have occurred
in the elapsed time since the previous cycle. Since these numbers of
jterations are large, we have selected a relatively efficient technique
with the result that the computer time devoted to this part of the
calculation is only about 10% of the total. Regarding the jterative
convergence criteria necessary for accuracy in phase 2 of the calcula-
tional cycle, we have observed by experimentation that convergence to

Q

FAY S a s
1~ 1S COmp

one part in

about 10 - 20 iterations per cycle.
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In order to further test the accuracy of the solutions a one-
dimensional code, EQUILBM, has been written to solve the equations
of hydrostatic equilibrium. This code uses very fine zoning to mini-
mize the effects of truncation error. We have varied the number of
zones and have obtained very close agreement between the solutions as
long as the relative resolution is of the same order as that required
for accuracy in Fig. 135. In Fig. 7a, b the one-dimensional results
are compared to the solution provided by the two-dimensional TAEBEK
code, which in this calculation uses only five radial and five axial
sones. The solutions are in good agreement. In Fig. 13 the two-
dimensional results for a 10 x 10 mesh are compared to those for a
5 x 5. Again the agreement is good. The two-dimensional results are
then compared to the solution obtained from the fully three-dimensional
KORYO code for a mesh consisting of five radial, twelve azimuthal and
five axial zones. The agreement is good, especially when one recog-
nizes the effect of the massless core in the three-dimensional metho-
dology. In doubling the number of radial zones the effect of the core
is decreased in a manner consistent with the mass fraction excluded
from the system. In all of the calculations reported in this work the
effects of the massless core are further decreased by the fact that
the dynamics of these rotating systems excludes mass from the region
of the axis.

Further discussions of these and related accuracy considerations

are given in a number of other papers, among them references 48, &

i
Ch

57, and 58.
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