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Three-dimensional effects in hovering

flapping flight

T. Jardin†, A. Farcy and L. David

Institut Pprime, CNRS-Université de Poitiers-ENSMA, UPR3346, Département Fluides,

Thermiques, Combustion, SP2MI, Téléport 2, Bd Marie et Pierre Curie,

F-86962 Futuroscope Chasseneuil CEDEX, France

This paper aims at understanding the influence of three-dimensional effects in hovering

flapping flight. Numerical simulations at a Reynolds number of 1000 are performed

to compare two types of flapping kinematics whose plunging phase is characterized

by either a rectilinear translation or a revolving motion. In this way, we are able

to isolate the three-dimensional effects induced by the free end condition from that

induced by the spanwise incident velocity gradient (and the associated implicit Coriolis

and centrifugal effects). In the rectilinear translation case, the analysis of the wake and

of the aerodynamic loads reveals that the wingspan can be compartmented into three

distinct regions whether it is predominantly subjected to an unstable two-dimensional

flow, a stable three-dimensional flow or both two-dimensional and three-dimensional

effects. It is found that this partitioning exhibits common features for three different

aspect ratios of the wing. In conjunction with the previous results of Ringuette,

Milano & Gharib (J. Fluid Mech., vol. 581, 2007, pp. 453–468), this suggests that

the influence of the tip vortex over the wingspan is driven by a characteristic length

scale. In addition, this length scale matches the position of the connecting point

between leading and tip vortices observed in the revolving case, providing insight

into the connecting process. In both translating and revolving cases, leading edge

vortex attachment and strong spanwise velocities are found to be strongly correlated

phenomena. Spanwise velocities (that mostly confine at the periphery of the vortices),

together with downward velocities, do not only affect the leading edge vortex but

also act as an inhibitor for the trailing edge vortex growth. As a consequence, cross-

wake interactions between leading and trailing edge vortices are locally limited, hence

contributing to flow stabilization.

Key words: low-Reynolds-number flows, vortex interactions, vortex shedding

1. Introduction

Recently, flapping wings appeared as a possible alternative solution to the

conventional fixed and rotary wing concepts for micro-air vehicles applications. The

amount of lift generated by a flapping wing is essentially driven by four mechanisms;

† Present address: Université de Toulouse-ISAE, 10 av. Edouard Belin, 31055 Toulouse

CEDEX 4, France. Email address for correspondence: thierry.jardin@isae.fr



namely the leading edge vortex suction, the wake capture, the Kramer and added mass
effects (Dickinson, Lehmann & Sane 1999; Sane 2003; Shyy et al. 2010). The Kramer
and added mass effects can directly be derived from the wing kinematics whereas
the leading edge vortex formation and wake capture are intrinsically highly unsteady
phenomena. The coupling between each of these mechanisms induces high sensitivity
of the aerodynamic loads to the flapping kinematics. In this context, numerous studies
focused on extracting two-dimensional relevant flapping parameters which could lead
to enhanced aerodynamic performance (e.g. Milano & Gharib 2005; Bos et al. 2008;
Jardin, David & Farcy 2009), sometimes to the detriment of understanding the
fundamental physics which lie behind the complex three-dimensional unsteady flow.

One of the major issues that motivates current research on flapping wings
aerodynamics concerns the stable attachment of the leading edge vortex observed
on revolving wings. As opposed to two-dimensional configurations which predict a
naturally unstable behaviour of the flow, a finite span wing revolving about its root
is subjected to both a free end condition and spanwise incident velocity gradient (the
translational velocity of the wing varies along the wingspan) that might be responsible
for the attachment of the leading edge vortex through strong three-dimensional effects.
Note that the spanwise incident velocity gradient is implicitly associated with Coriolis
and centrifugal effects involved in the non-inertial wing frame. Although several
researches greatly contributed to its understanding (Lentink & Dickinson 2009a,b), the
essence of the stable leading edge vortex attachment still remains unclear. In particular,
the analysis of the flow that develops around a revolving wing is delicate due to the
mutual interaction of free end and spanwise incident velocity gradient effects.

In view of isolating the role of the free end condition and that of the spanwise
incident velocity gradient, we investigate and compare the flow around two types
of flapping kinematics whose plunging phase is characterized by either a rectilinear
translation or a revolving motion. In a first step, the translating case sheds light on the
influence of the wing tip vortex and its dependence on the aspect ratio. Although some
researchers did focus on finite aspect ratio translating wings at low Reynolds numbers
(Ringuette, Milano & Gharib 2007; Taira & Colonius 2009; Kim & Gharib 2010),
very few studies report results based on finite aspect ratio flapping wings undergoing
rectilinear translation (Shyy et al. 2009) and virtually none of them provide details
of the influence of the wing tip vortex on global flow dynamics and specific flapping
wing mechanisms such as the wake capture phenomenon. In a second step, lessons
learned from the translating case bring insight into three-dimensional mechanisms that
occur in the vicinity of revolving wings.

The present work relies on direct numerical simulations of the flow over a flapping
NACA0012 aerofoil at a Reynolds number of 1000. The focus is on hovering flight for
which the flow unsteadiness dominates quasi-steady effects.

2. Kinematic parameters

In both translating and revolving cases, the coordinates are set such that the x- and
z-axes are collinear to the wing displacement and wingspan, respectively, the y-axis
being in the vertical direction.

2.1. Translating case

Figure 1(a) shows the trajectory followed by the wing for the translating case. The
time evolution of the wing angle of attack α, displacement δ∗ (the origin is set at
the mean wing position), rotation speed Ω∗ (the centre of rotation c0 is located 1/4
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FIGURE 1. Illustration of the flapping motions: (a) translating case; (b) revolving case.
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FIGURE 2. (Colour online available at journals.cambridge.org/flm) Evolution of the wing
displacement δ∗, speed U∗, angle of attack α and rotational speed Ω∗ as a function of the
flapping period fraction t/T .

chord away from the leading edge) and translation speed U∗ are depicted in figure 2.
Note that ∗ refers to non-dimensional values with respect to the chord c and the
maximum translation speed Umax of the wing. The flapping amplitude A is set to
six chords. Since we are concerned with the attachment of the leading edge vortex
through three-dimensional effects, the amplitude is chosen such that it ensures leading
edge vortex shedding in the absence of three-dimensional effects, i.e. A > 4 chords
(Dickinson & Gotz 1993). The aerofoil undergoes a periodic (period T) motion defined
by four distinct phases. The first (1) and third (3) phases are symmetrical with regard
to the mean aerofoil position. They are characterized by a non-constant translation
speed coupled with a rotating motion. The second (2) and fourth (4) phases extend
four chords from the mean position. They are characterized by a constant translation
speed and a fixed 45◦ angle of attack. The aspect ratios AR = 2, 4 and 6 have been
studied. Numerical simulations were conducted at a Reynolds number of 1000, based
on the chord c and the maximum translation speed Umax of the aerofoil.



2.2. Revolving case

Figure 1(b) shows the trajectory followed by the wing for the revolving case. The
flapping parameters defined for the translating case are projected on a spanwise section
located at R∗ = 0.72AR, where R∗ = 0 and R∗ = AR corresponds to the wing root
and wing tip spanwise location, respectively. The time evolution of the wing angle of
attack α, displacement δ∗, rotation speed Ω∗ and translation speed U∗ in this specific
spanwise section are therefore similar to those depicted in figure 2. The translation
speed variation along the wingspan ∂U∗(t)/∂R∗ is equal to the revolving speed φ∗

and is referred to as the spanwise incident velocity gradient. As evoked earlier, this
specificity (i.e. non-zero ∂U∗(t)/∂R∗) strongly contributes to the stability of the flow.
In this case, six chords travelling at R∗ = 0.72AR corresponds to a 120◦ flapping
amplitude. Numerical simulations were conducted for the aspect ratio AR = 4 at a
Reynolds number of 1000, based on the chord c and the maximum translation speed
Umax reached in the R∗ = 0.72AR spanwise section.

3. Investigation methods

3.1. Numerical methods

The three-dimensional time-dependent Navier–Stokes equations were directly solved
using a finite volume method. The aerofoil velocity in still air being of the order
of 1 m s−1 (for a 1 cm chord), the following formulation was used, assuming
incompressible flow:

∂ui

∂xi

= 0 (3.1a)

∂ui

∂t
+

∂

∂xj

(uiuj) = −
1

ρ

∂p

∂xi

+ ν
∂2

∂x2
j

(ui). (3.1b)

The pressure–velocity coupling was obtained using an iterative Pressure Implicit
Split-Operator scheme. The latter relies on the Euler implicit time stepping scheme
associated with explicit correctors. The temporal accuracy hence lies between the
first and the second order. The space discretization was achieved using second-order
centred differences.

An O-type non-conformal structured grid with 2 million cells was used. The cross-
sectional grid displayed in figure 3 was divided into two parts: an inner mesh which
ensures a low diffusivity and hence a coherent modelization of wing–wake interactions,
and an outer mesh introduced to avoid dependencies of the results on the far field
boundary conditions. The external diameter of the inner and outer parts was 8 and
30 chords, respectively. The cross-sectional grid was extruded according to Cartesian
and cylindrical frames to model the wingspan and wing tip/root. Figures 3(b) and 3(c)
display side views of the three-dimensional meshes used for the rectilinear translation
and revolving motion cases, respectively.

The boundary conditions at the far field were implemented as pressure Dirichlet
conditions, allowing the local flow to be inwards or outwards. The wing midplane of
the rectilinear translation case was defined as a symmetric boundary condition. It is
noteworthy to mention that this setup suppresses any possibility for asymmetric vortex
shedding as observed by Taira & Colonius (2009) for low-aspect-ratio translating
wings. The aerofoil surface was modelled as a non-slip surface. Its speed was
prescribed at each time step using a moving-mesh approach. One flapping period
was discretized into approximately 1000 time steps.



y

x
z

y

xz

y

xz

y

xz

Pressure

Pressure Symmetry

(a)

(b)

(c)

(d)

FIGURE 3. Computational domain: (a) cross-sectional mesh; (b) rectilinear translation
side-view mesh; (c) revolving motion side-view mesh; (d) wing tip close-view mesh.

In what follows, results correspond to the 7th period for which the flow is ensured
to be periodical.

3.2. Comparison with experimental data

In order to provide a comparative basis, experiments were conducted for the rectilinear
translation case shown in figure 1(a). A finite span transparent NACA0012 aerofoil
was flapped in a water towing tank using two servo-controlled motors. Choosing water
as the working fluid allows to operate at higher dimensions and lower speed, and
thus gives the possibility to perform time-resolved spatially accurate particle image
velocimetry (PIV) measurements. To reveal the three-dimensional flow structure that
develops around the finite span aerofoil, i.e. to measure the three velocity components
in a volume, we used a tomographic PIV three-dimensional 3C scanning technique.
A Quantronix Darwin-Duo Nd:YLF laser scans a volume of 8 cm depth by means
of an oscillating mirror. The volume is scanned within 25 ms (40 Hz) which is small
enough to consider the resulting particle mapping as instantaneous. It is discretized
into 100 planes, involving the laser to operate at a frequency of 4 kHz and leading to a
spanwise resolution of approximately 0.8 mm, to be compared with the 6 cm aerofoil
chord. Particle images were captured by a high-speed synchronized Photron camera
with a resolution of 1024 × 784 pixels. Cross-correlation between two successive
volumes was then employed to obtain three-dimensional velocity flow fields. PIV
processing was done using 32 × 32 × 8 pixel interrogation windows. The complex and
challenging process needed to realize such measurements is not described in detail
here since it goes beyond the scope of the present paper. A more thorough description
can be found in David et al. (2011).

Figure 4 compares the numerical and experimental non-dimensional out-of-plane
vorticity contours and in-plane velocity vectors obtained in a spanwise plane at the
beginning of the 7th stroke. The plane is located 0.3 chords away from the wing tip
where three-dimensional effects strongly influence the leading edge vortex behaviour.
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FIGURE 4. Comparison between (a–d) numerical and (e–h) experimental non-dimensional
out-of-plane vorticity contours and in-plane velocity vectors obtained in a spanwise plane
located 0.3 chords away from the wing tip at four instants (a,e) 0T/20, (b,f ) 1T/20,
(c,g) 2T/20 and (d,h) 3T/20 (from left to right). Spanwise (out-of-plane) velocity isolines
V∗

z = −0.25 and V∗
z = −0.20 are depicted in frame (d,h), respectively.

The plunging phase is here described by a rectilinear translating motion and an AR = 4
wing is considered.

The sequence alternatively shows the wake structure arising from the previous half-
stroke (figure 4a,e), its interaction with the wing (figure 4b,f ) and the development
of leading edge and starting vortices (figure 4c,g and d,h). As will be detailed in § 4,
three-dimensional effects induced by the free end condition ensures the confinement of
the leading edge vortex and attenuates wing–wake interactions. In this configuration,
three-dimensional effects primarily appear as a broad inward (−z direction) velocity
region downstream the aerofoil. Despite discrepancies in characteristic levels, similar
trends regarding the global behaviour of the main vortical structures and their interplay
with three-dimensional effects are observed.

3.3. Investigated quantities

The vortical structures of the flow are depicted using the non-dimensional λ∗
2 criteria

proposed by Jeong & Hussain (1995).
The intensity of the vortices is evaluated using the non-dimensional circulation Γ ∗

computed in a given vortex cross-section:

Γ ∗
=

1

Umaxc

∫∫

S

ωop dS (3.2)



Blade element no. 1 2 3 4 5 6

Width relative to wingspan (%) 28 22 17.5 13.5 10.5 8.5

TABLE 1. Width of the six blade elements used for local integration of drag and lift
coefficients. Values are given as a percentage of the wingspan. Here element 1 and
element 6 are respectively located at the wing midplane/root and wing tip.

where S is the area contained within the λ2 < −1 region and ωop the out-of-plane
vorticity.

In addition, the analysis is conducted on the basis of aerodynamic loads obtained
locally on predefined spanwise elements of the wing (or blade elements, el.). The lift
and drag coefficients are defined as

CD,el. =
2FD,el.

ρARel.c2U2
max

, CL,el. =
2FL,el.

ρARel.c2U2
max

, (3.3)

where FD,el. and FL,el. are the wing element’s drag and lift forces, c is the aerofoil
chord and ARel. is the wing element’s aspect ratio. The wingspan is discretized into six
elements (table 1). For the revolving case, Umax depends on the wing element:

Umax(el.) =
1

ARel. × c

∫ z+
el.

z−
el.

φmaxR dR (3.4)

where z−
el. and z+

el. are the lower and upper limits of element el. along the wingspan and
R the spanwise position (recall that, for AR = 4, R∗ = 0 and R∗ = 4 correspond to the
wing root and tip section, respectively).

The contributions of the Kramer, rotational and translational added mass effects to
the normal force FN experienced by the whole wingspan can simply be derived from
the wing kinematics (Ellington 1984):

FN,Kramer = ρUπΩc2

(

3

4
− c0

)

(3.5a)

FN,RAM =
1

4
ρπc2

[

∂Ω

∂t
c

(

1

2
− c0

)

+ ΩU

]

(3.5b)

FN,TAM =
1

4
ρπc2 ∂U

∂t
. (3.5c)

4. Translating case

4.1. Wake topology

Figure 5 shows equally spaced snapshots of the non-dimensional λ∗
2 isosurfaces

obtained numerically during half of the 7th flapping period. For sake of clearness,
the flow fields are flipped with respect to figure 1(a). The flow region extending from
the wing midplane to the wing tip is depicted for the aspect ratio AR = 4.

In figure 5(a), the aerofoil is at its leftmost position, heading to interact with
the wake generated during the previous half-stroke. The latter exhibits two pairs of
dominantly spanwise (z-direction) counter-rotating vortices as well as a dominantly
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flapping wing undergoing a rectilinear translation phase.

streamwise (x-direction) tip vortex. The first pair consists of previously shed leading
edge (LEV1) and trailing edge (TEV1) vortices. Their spanwise coherence is affected



near the free end by the formation of a wing tip vortex (TV1). During the
previous half-stroke, TV1 promoted the tilting of LEV1 and TEV1 in the streamwise
direction. The mechanism leading to these streamwise structures (similar to SS on
figure 5g–j) will be detailed later. Hence, near the free end, the flow arranges itself
into a streamwise dipole from which originates a strong downward momentum flux
(downwash). The second pair consists of a leading edge vortex (LEV2) generated
during the later part of the previous half-stroke and a rotation vortex (RV1) induced at
the trailing edge by the rotating motion. In contrast to the first vortex pair, this second
vortex pair is predominantly two-dimensional since its late formation does not allow
three-dimensional effects to affect its spanwise coherence.

As the aerofoil accelerates from left to right, it is noted from figure 5(b,c) that the
interaction with the second vortex pair strengthens the formation of both leading edge
(LEV3) and starting (SV) vortices. By locally enhancing the relative wing velocity, this
interaction promotes the production of both leading and trailing edge shear vorticity
and accelerates the natural shedding process. At this point, the newly formed structures
LEV3 and SV are clearly two-dimensional. This characteristic is due to their quick
shedding and to the two-dimensional behaviour of the wing–wake interaction. A
consistent comparison can be done with strictly two-dimensional configurations (Jardin
et al. 2009). Nevertheless, a substantial difference with two-dimensional cases arises
from the rapid downward advection of LEV1 and TEV1 under the effects of the
previously observed tip downwash. The influence of the fluid dipole jet arising from
this first vortex pair, known to be beneficial for lift production (Birch & Dickinson
2003), is hence less significant than observed for two-dimensional configurations.

The pure translating phase that follows is characterized by the concomitant
formations of LEV4, TEV2 and TV2. It is noted from figure 5(d–i) that LEV4
evolves from a confined shape at the wing tip to a nearly two-dimensional shape at
the wing midplane, revealing the influence of the free end through the formation of
the tip vortex (TV2). Furthermore, it is shown that the TV2 is connected to both
LEV4 and SV, leading to a complex vortex ring organization. Such flow pattern is
closely linked to the advection of downward momentum responsible for insect flight
(Wang 2004). A closer look at the wing tip region also reveals the connection between
the vortex ring and TV1 (figure 5l). As such, although most vortices are labelled
as independent entities to facilitate identification, one should note that the vortex
organization TV2–SV–TV1 may be considered as a single entity in the sense of
Helmholtz. The circulation of SV immediately after its shedding (at t = 2T/20, before
viscous dissipation tends to reduce its intensity) is similar to that of TV1 and TV2
just downstream the trailing edge, i.e. Γ ∗ = 0.9. In addition, an interesting feature
is the propagation of three-dimensional instabilities which modulate the leading edge
vortex (LEV4) along the wingspan, as observed with bumps of λ∗

2 isosurfaces. This
wavyness recalls the onset of hairpin vortex shedding observed in translating plate at
low Reynolds numbers (Taira & Colonius 2009).

Figure 5(g–i) show that the translating motion progressively leads to the shedding of
LEV4, dividing the flow into three distinct regions:

(i) the near-tip region;

(ii) the near-midplane region;

(iii) the transition region.

The near-tip region is dominated by three-dimensional effects and the attachment
of the leading edge vortex under the influence of the tip vortex. Since the leading
edge vortex is here confined and closely attached to the aerofoil upper surface, this



region is not very prone to severe wing–wake interactions. For instance, the leading
edge vortex LEV2 generated during the previous half-stroke does not fundamentally
alter the nascent leading edge vortex LEV3 in this region. It is shown from figure 5(c)
that LEV3 remains attached to the aerofoil near the wing tip whereas LEV2 forces its
shedding over most of the wingspan.

The near-midplane region is dominated by two-dimensional effects and the leading
edge vortex shedding. The wing–wake interactions are hence very similar to that
observed in strictly two-dimensional cases. For example, aside from the previously
described interaction between the wing and LEV2, the flow is characterized by an
increase of the aerofoil lower surface pressure due to the TEV1–LEV1 vortex dipole-
induced fluid jet.

The transition region is characterized by a streamwise structure (SS) that ensures
continuity between the attached and separated parts of LEV4. This structure is
promoted by the spanwise velocities associated with the formation of TV2. Therefore,
the transition region is highly three-dimensional while being subjected to wing–wake
interactions. It can be thought as a region of competition between three and two-
dimensional effects. It should be noted that the transition region grows towards the
wing root as the aerofoil translates, according to the development of the tip vortex.

The continuity/discontinuity observed in the λ∗
2 isosurfaces suggests that the

predominantly two-dimensional (near-midplane) region extends 2.6 chords away from
the wing midplane. In the same way, the predominantly three-dimensional (near-tip)
region extends 0.6 chords away from the wing tip. The remaining gap marks the
transition region. These dimensions will be further quantified in § 4.3.

From figure 5(i–k), the wing decelerates and rotates about its spanwise axis so
as to ensure a proper orientation of the leading edge during the subsequent half
stroke. Despite the fact that the near-midplane region is dominated by two-dimensional
effects, it still exhibits three-dimensional instabilities. Figure 5(j) indicates that a
second streamwise structure (SS) is formed in the vicinity of the wing root at the end
of the stroke. At this instant, the flow is characterized by two vortex pairs as well as a
tip vortex akin to that observed at the beginning of the stroke.

4.2. Aerodynamic loads

The evidence of two-dimensional, three-dimensional and transition regions is further
quantified by monitoring the aerodynamic loads obtained locally on predefined wing
elements. According to the spatial limits detailed earlier (table 1), wing elements
1–3 lie within the two-dimensional near-midplane region (although wing element 3
slightly overlaps the transition region), wing element 4 lies within the transition region,
wing element 5 lies within both the transition and three-dimensional regions and wing
element 6 lies exclusively within the three-dimensional near-tip region.

Figure 6 shows the time histories of the locally integrated drag and lift coefficients
resulting from the wake topology described in the previous section. In addition,
the contributions associated with the Kramer effects as well as the rotational and
translational added mass effects are plotted in figure 7 in order to distinguish inertial
forces from vortex-related forces.

At the beginning of the stroke, the loads experienced by wing elements 1, 2 and 3
(near-midplane region) exhibit successive peaks and valleys reflecting the influence of
severe wing–wake interactions. As described previously, these interactions are manifest
in the rapid growth and shedding of LEV3 and the increase of the pressure on
the lower surface of the aerofoil due to TEV1–LEV1 dipole jet. The first event is
responsible for the peak and valley observed at t = 0.04T and t = 0.1T , respectively.
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lift coefficients experienced by an AR = 4 flapping wing undergoing a rectilinear translation
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The second event occurs concomitantly with the growth of LEV4 and contributes
to the peak observed at t = 0.16T . Afterwards, a sharp decrease leading to local
minimum values of lift and drag at approximately t = 0.34T is observed, indicating
the shedding of the leading edge vortex LEV4 associated with the two-dimensional
instability. This trend is slightly counteracted by the development of LEV5 as well
as the Kramer and rotational added mass effects before drastically dropping under the
influence of translational added mass effects.

On the other hand, the loads experienced by tip element 6 increase smoothly at
the beginning of the stroke to reach strong values which persist until the aerofoil
deceleration at t = 0.4T . Such behaviour clearly indicates the absence of significant
wing–wake interactions and the continuous attachment of the leading edge vortex. In
addition, as demonstrated previously by Ringuette et al. (2007) or Shyy et al. (2009),
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the tip vortex is primarily responsible for such high local values of lift and drag. The
latter extends over ∼70 % of element 6 and exhibits levels of circulation of the order
of Γ ∗ = 0.9 (evaluated just downstream the trailing edge). In contrast, the leading edge
vortex circulation does not exceed Γ ∗ = 0.7 (see figure 8 in the next section). It is
noteworthy to mention that the small bump observed near t = 0.1T on both drag and
lift curves coincides with the end of the acceleration phase and accounts for added
mass effects. Similarly, added mass effects are responsible for the sharp decrease that
occurs after t = 0.4T .

Finally, the time histories of the drag and lift coefficients related to wing element
4 (transition region) are subjected to both sharp variation and quasi-steady phases,
induced by wing–wake interactions and flow stabilization (leading edge vortex
attachment), respectively.

Therefore, the signature of dominant vortical structures on aerodynamic loads helps
in analysing in a more quantitative way the existence of three distinct flow regions. For
the aspect ratio AR = 4, the free end condition introduces substantial changes in the
time history of total drag and lift coefficients in comparison to strictly two-dimensional
flows (Jardin et al. 2009). In particular, the presence of a highly three-dimensional
region near the wing tip is apparent through the attenuation of wing–wake interaction
peaks and the increase in leading edge vortex induced forces.

4.3. Leading edge vortex characterization

A more detailed correlation between the flow structures and the force generation
is achieved by evaluating the leading edge vortex intensity. Figure 8 displays the
non-dimensional circulation Γ ∗ of LEV4 obtained at different spanwise positions and
instants. Spanwise positions R∗ = 0 and R∗ = AR = 4 denote the midplane and tip
cross-sections, respectively. Times t = 0 and t = 0.5T correspond to the beginning
and end of a half-stroke, respectively. The time–space diagram is discretized into 21
positions and 11 instants. White contours (i.e. zero values) are used before vortex
formation and after vortex shedding so as to clearly point out the stable and unstable
regions of the flow.

It is shown that the main leading edge vortex (LEV4) forms around t = 0.1T in
both near-midplane and transition regions. Here, the vortex formation is delayed with



respect to the near-tip region where the leading edge vortex forms at about t = 0.05T .
This delay is attributable to the preliminary formation and shedding of LEV3, which
is a consequence of significant wing–wake interactions that occur in the near-midplane
and transition regions.

In the near-midplane region (two-dimensional), LEV4 is then subjected to a constant
growth and reaches a maximum intensity near t = 0.2T . This circulation threshold that
eventually leads to the onset of vortex shedding around t = 0.25T oscillates between
Γ ∗ = 1.6 and Γ ∗ = 1.9. This behaviour is reminiscent of the three-dimensional
instabilities that propagate along the near-midplane region, leading to slight spanwise
variations in the development of LEV4.

The near-tip (three-dimensional) leading edge vortex evolution is fundamentally
different. In this highly three-dimensional region, the flow evolves towards a stable
state characterized by a plateau in the leading edge vortex intensity, as indicated by
vertical isolines. The latter also suggest the increase of circulation from the wing tip
towards the two-dimensional region. Such a feature is directly related to the increase
of leading edge vortex growth time (time between vortex formation and the tilting
of horizontal isolines into vertical isolines) with increasing distance from the tip. In
particular, it is shown that the maximum circulation attained in the near-tip region is of
the order of Γ ∗ = 1.5 at t = 0.2T and 0.6 chords away from the wing tip. Interestingly,
this value does not exceed the circulation threshold that leads to vortex shedding in
the near-midplane region, i.e. Γ ∗ < 1.6. Therefore, flow stability can here simply be
ensured by inhibiting local growth of the leading edge vortex.

In the transition region, the vortex growth persists beyond t = 0.2T . The circulation
hence reaches strong values, up to Γ ∗ = 2.2 at t = 0.3T and 1 chord away from the
wing tip. While the wing is still undergoing a constant speed translation after t = 0.3T ,
the circulation does not increase further though, suggesting that the tip vortex here
again inhibits the vortex growth. This inhibition occurs lately in comparison to that
observed in the tip region due to the time needed for tip vortex effects to propagate
towards the two-dimensional region. As explained previously, this event is here again
made evident through spanwise variation of the leading edge vortex intensity depicted
by vertical isolines. However, the circulation levels are substantially higher than those
attained within the unstable region, i.e. sufficient to provoke vortex shedding. As
a consequence, an additional three-dimensional mechanism should be considered to
explain the vortex attachment in the transition region.

It is well known that the vortex shedding process behind a circular cylinder is
associated with both saturation and cross-wake interactions of upper and lower vortices
(Williamson 1996). As such, inspecting the behaviour of the trailing edge vortex
might bring insight into the physics that govern the leading edge vortex attachment
in the transition region. To this avail, the non-dimensional λ∗

2 isosurfaces coloured
by non-dimensional spanwise velocities (z-direction) are depicted in figure 9 for
two instants bounding the vortex shedding. In addition, spanwise cross-sections are
displayed in figure 10. It has to be mentioned that spanwise velocities are here used as
a marker of the intensity of the tip vortex. The latter further induces velocities in the
x- and y-directions that cannot be distinguished from two-dimensional-related x- and
y-velocities and that inevitably influence the behaviour of the leading edge and trailing
edge vortices. In particular, downward (negative y-direction) velocities are expected to
reduce the effective wing angle of attack, hence locally mitigating the production of
spanwise vorticity.

Prior to vortex shedding (figures 9a and 10a–d), the trailing edge vortex core
(represented by the dashed line) demonstrates two distinct behaviours whether it is
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located near the tip or near the midplane. Near the wing tip, TEV2 is characterized
by weak levels of circulation, of the order of Γ ∗ = 0.6, and develops in the vicinity
of the trailing edge. Strong spanwise and downward velocities arising from TV2, and
to a minor extent by the streamwise (x-direction) part of LEV3, are correlated with its
confinement. Near the wing midplane, TEV2 is not affected by significant spanwise
velocities and tends to move downstream the trailing edge, reaching circulation up to
Γ ∗ = 1.1. The frontier between these two behaviours is found to match the one that
delimits the stable from the unstable parts of the flow, i.e. 1.4 chords away from the
wing tip. These observations suggest that TV2 also acts as an inhibitor for the trailing
edge vortex in such a way that the occurrence of cross-wake interactions between
trailing and leading edge vortices is limited in the transition region, hence allowing a
stable growth of LEV4.

The inspection of the flow topology after vortex shedding confirms the strong
correlation between vortex confinement (both LEV4 and TEV2) and spanwise
velocities. Figure 9(b) indicates that the trailing edge vortex circulation grows by
0.2 in the near-midplane region while it remains constant in the near-tip region.
In addition, concomitantly to vortex shedding, it is shown that spanwise velocities
propagate towards the midplane, extending the trailing edge vortex confinement up
to 1.6 chords away from the wing tip. Spanwise cross-sections on figure 10(e–h)
show that inward (−z direction) velocities develop at the periphery of the vortices,
essentially as a broad region downstream the leading edge vortex. At t = 0.25T , values
up to 0.8V0 can be reached in the near-tip region.

4.4. Influence of the aspect ratio

A straightforward question that arises from such results concerns the influence of
the aspect ratio on unsteady flow dynamics and loads. Figure 11 displays the non-
dimensional λ∗

2 isosurfaces obtained for aspect ratios AR = 2, AR = 4 and AR = 6 at
t = 0.25T . The most prominent feature is that the flow encountered for AR = 2 and
AR = 4 seems to be truncated replicas of that observed for AR = 6. In other words, the
absolute length of the three-dimensional and transition regions are independent of the
aspect ratio. Increasing the aspect ratio is equivalent to extending the two-dimensional
near-root region. The comparison between leading edge vortex intensities computed
for each aspect ratio clarifies this observation. It can be seen from figure 12 that the
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circulation iso-lines evaluated for aspect ratios AR = 4 and AR = 6 are superimposed
from the wing tip plane to the AR = 4 midplane. In the AR = 6 case, the isolines are
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extended beyond the AR = 4 midplane and eventually undergo slight variations near
the AR = 6 midplane due to three-dimensional instabilities. The circulation isolines
evaluated for aspect ratio AR = 2 also show good agreement with the circulation
isolines of AR = 4 and AR = 6 cases up to approximately 1 chord from the wing
tip. However, in comparison to the AR = 4 and AR = 6 cases, the proximity of
the symmetrical boundary condition (imposed at the midplane) and the free end
condition slightly pushes the frontier between dominantly two-dimensional and three-
dimensional regions towards the wing tip. In addition, although it is not shown here
for the sake of conciseness, tip vortices develop in a similar way for all three aspect
ratios.

The overall comparison indicates that the relative influence of three-dimensional
effects increase with decreasing aspect ratio. Hence, the flow that develops around
low-aspect-ratio aerofoils is strongly three-dimensional and consequently not severely
affected by wing–wake interactions. In this specific configuration (i.e. translating case
with an amplitude fixed to A = 6 chords), this results in enhanced mean aerodynamic
lift and drag coefficients. Indeed, the gain associated with the leading edge vortex
attachment encompasses the loss due to the attenuation of wing–wake interaction
peaks, leading to CL = 0.99 and CD = 1.16 for AR = 2 whereas CL = 0.96 and



CD = 1.14 for AR = 4 and AR = 6. Such promotion may appear more significant
for asymmetric flapping motions where flight is achieved by taking advantage of both
lift and drag (Wang 2004).

5. Revolving case

5.1. Wake topology

An identical wake analysis is carried out for the revolving case described in
figure 1(b). As opposed to the translating case, three-dimensional effects do not solely
arise from the free end condition but from its coupling with the spanwise incident
velocity gradient. The λ∗

2 isosurfaces are displayed in figure 13 for the 7th flapping
period.

In figure 13(a), the flow is considerably simplified in contrast to that observed for
the rectilinear translation case. Three distinct vortices are identified, namely the TV1,
the LEV1 and the RV1. RV1 is generated during the later part of the half-stroke
from the rotational motion which does not involve spanwise incident velocity gradient.
Thus, it exhibits a dominantly two-dimensional behaviour. On the other hand, TV1
and LEV1 reveal the existence of highly three-dimensional dynamics. As commonly
observed in this range of Reynolds numbers (Ellington et al. 1996), LEV1 has a
conical shape and connects to TV1 near the wing tip.

It can be seen from figure 13(b,c) that these three vortices connect into a ring-like
structure which circumscribes the wing tip as the aerofoil accelerates from left to right.
This pronounced wing–wake interaction promotes the development of newly formed
TV2, LEV2 and SV. The latter are immediately highly three-dimensional due to the
three-dimensional nature of the interacting wake vortices.

In figure 13(c), it is noted that the extreme part of SV is rapidly shed into the wake.
Its connection with TV2 and LEV2 leads to the formation of a vortical annular ring
which convects a strong downward momentum flux (e–g), analogous to the production
of lift. This flow organization is comparable to that identified by Sun & Lan (2004) or
Aono, Liang & Liu (2008) for insect model wings. As a result from such downward
momentum, TV2 and SV are advected beneath the trailing edge such that they do not
significantly alter the subsequent half-stroke flow.

Meanwhile, LEV2 progressively develops on the upper surface of the wing,
revealing a stable conical shape. Its spanwise cross-section grows from the wing
root to the point where it connects to TV2. The connecting point is found to be
approximately 3.4 chords away from the wing root (85 % of the wingspan) and
is representative of a local instability. An interesting feature is the correspondence
between the position of the LEV2–TV2 connecting point and the spanwise extent of
the tip vortex dominated region (three-dimensional region) observed in the translating
case. Such correspondence suggests that the connecting process results from the
competition between tip vortex and spanwise incident velocity gradient effects. This
point will be detailed in § 5.3.

In addition, the formation of a trailing edge vortex is observed in the vicinity of the
wing tip where LEV2 attains a significant size (figure 13l). Similarly to LEV2, TEV
spanwise cross-section grows towards the wing tip and connects to a weaker secondary
tip vortex. This connection is consistent with previous experimental results (Poelma,
Dickson & Dickinson 2006).

At the end of the stroke, the pronation phase induces the generation of a rotation
vortex (RV2) at the trailing edge and the slight detachment of LEV2 from the leading
edge.
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5.2. Aerodynamic loads

The aerodynamic loads experienced by the wing emphasize the different regions of the
flow. Figure 14 depicts the time history of locally integrated aerodynamic coefficients
and highlights the role of wing–wake interactions, quasi-steady mechanisms associated
with LEV2 attachment and LEV2–TV2 connecting process.

At stroke reversal, the trend associated with the wing–wake interactions is opposed
to that highlighted for the rectilinear translation case. Here, near-tip wing element 6 is
subjected to a strong drag which originates from the formation of a fluid jet oriented
towards the lower surface of the wing. This fluid jet emanates from the presence
of the ring-like structure identified in the vicinity of the wing tip and provokes a
high-pressure region on the lower surface. On the other hand, near-root wing elements
are not very prone to severe wing–wake interactions and thus provide weak drag.

This difference is further emphasized during the supination phase. Whereas wing
elements 1–5 are subjected to slight variations typically linked to Kramer and added
mass effects, the lift and drag experienced by element 6 sharply increase towards
maximum values at t = 0.1T . This, again, is a consequence of the ring-like structure
and its associated fluid jet which modifies the wing incident velocity and accentuates
the leading edge separation, i.e. leading edge vortex formation. Yet, it is important to
note that wing elements are subjected to different added mass effects with respect to
the local wing acceleration (increasing from wing root to wing tip).

During the upstroke phase, the evolution of the lift coefficient reveals three
distinct behaviours. Near the wing root, the quasi-linear and persistent increase of
CL throughout the stroke suggests that the flow around elements 1, 2 and 3 is not
fully developed. In contrast, the flow around element 4 is associated with a more
pronounced increase of lift, followed by a broad plateau that lasts until the pronation
phase. This evolution indicates a rapid saturation of the leading edge vortex towards
a quasi-steady state. Last, near the wing tip, elements 5 and 6 show a continuous
decrease of CL. In that region, the rapid growth of LEV2, promoted by wing–wake
interactions, is counteracted by the development of the TV. This observation is detailed
in the next section.
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5.3. Leading edge vortex characterization

As previously achieved in § 4.3, the correlation between flow topology and
aerodynamic loads is revealed by the time–space evolution of LEV2 circulation
computed on the interval [0; 0.4T] (figure 15), i.e. before wing deceleration and
rotation. The evaluation of the circulation after t = 0.4T is ambiguous due to the
overlapping of λ2 isolines, which results from the proximity of leading and trailing
edge vortices and from solid-body rotation induced by the rotating wing.

In contrast to the translating case, the nascent leading edge vortex at t = 0 is not
subjected to rapid shedding under the influence of wing–wake interactions. Rather, the
interaction of the wing with the ring-like structure depicted on figure 13(a) advances
LEV2 formation such that the latter exhibits circulation exceeding 0.2 along the last
quarter of the wingspan at the very beginning of the half stroke.

Afterwards, LEV2 develops according to the distance travelled by the wing. As such,
from R∗ = 0 to R∗ ≈ 2.8, the concentric ellipses scheme depicted by the circulation
isolines reveals the spanwise variation of the vortex growth, or LEV2 conical shape,
associated with the variation of the local distance δ travelled by each wing cross-
section. At this point, it is important to note that elliptic isolines roughly evolve into
regularly spaced straight isolines if the circulation is plotted as a function of δ∗ rather
than t/T . In other words, the circulation grows linearly with the distance travelled
by the wing, such that Γ ∗ = Cδ∗. Nevertheless, non-strictly parallel isolines reveal
that coefficient C varies along the wingspan. This is due to the fact that the budget
between vorticity production at the leading edge and vorticity dissipation/transport is
not constant along the wingspan, as suggested by the experimental studies of Poelma
et al. (2006) and Kim & Gharib (2010). Beyond this region (for R∗ > 2.8), LEV2
saturates or connects to TV2.

Near the free end, figure 15 indicates that TV2 propagates from the wing tip
towards the wing root. This event is coincident with the drastic force decrease
experienced by wing elements 5 and 6. In this region, TV2 connects to LEV2, turning
spanwise vorticity into streamwise vorticity.

Similarly, it is shown that LEV2 saturation (denoted by vertical isolines) coincides
with the constant force experienced by wing element 4. Interestingly, the saturation
process and the propagation of tip effects appear to be correlated phenomena, as
was previously observed for the translating case. As such, saturation occurs lately 1.2
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chords away from the wing tip due to the time needed for tip effects to propagate
towards the wing root. Hence, maximum circulations (Γ ∗ = 2.3) are attained 1.2
chords away from the wing tip at t = 0.4T .

In order to shed light on the physics that govern the behaviour of the leading edge
vortex, we examine the non-dimensional λ∗

2 isolines superimposed to non-dimensional
spanwise velocity contours in six cross-sections at t = 0.25T .

Figure 16 demonstrates that the continuous attachment of the leading edge vortex
in the stable part of the flow (from the wing root to approximately 0.6 chords away
form the wing tip) is associated with outward velocities that confine to the aerofoil
upper surface at the periphery of LEV2, showing consistency with the experimental
results of Kim & Gharib (2010). Levels evolve from approximately 0.25V0 at the
wing root to V0 near the connecting point. It is remarkable that the location of such



outward velocities, induced by the revolving motion, coincides with the region of
strong inward velocities, induced by the free end condition, observed in the rectilinear
translation case (figure 10). In addition, it is shown that the position (along the
wingspan) of the connecting point between LEV2 and TV2 matches the limit of the
three-dimensional region observed in the translating case. Therefore, the physics that
lead to the connection between LEV2 and TV2 can be interpreted as a four-stage
process.

First, following the idea that outward velocities are responsible for leading edge
vortex attachment on revolving wings (Ellington et al. 1996), inward velocities
counteract outward velocities near the wing tip and promote local instability of the
flow. Thus, LEV2 detaches from the leading edge near the wing tip but remains
attached near the root. Akin to the formation of the SS structure in the translating case,
this leads to the tilting of spanwise vorticity into streamwise vorticity. The resulting
streamwise part of LEV2 and TV2 being co-rotating vortices, they connect into a
single entity.

In comparison to the translating case, the tip vortex is thus moved up towards
the leading edge such that continuity between outward velocities induced by both
revolving motion and free end effects is ensured.

From figure 16, it is further noticeable that no significant trailing edge vortex is
observed in the stable flow region. Similarly to the translating case, it is believed that
the absence of strong cross-wake interactions between leading edge and trailing edge
vortices contributes to the stabilization of the flow and allows LEV2 circulation to
reach values much greater than the one obtained in unstable flow regions. Here again,
spanwise cross-sections put into evidence the correlation between trailing edge vortex
inhibition and spanwise velocities.

6. Conclusion and discussion

Interest in flapping wings aerodynamics has been increasing rapidly due to its
possible application to micro-air vehicles. One of the main issues that motivates
current research concerns three-dimensional effects arising from both the free end
condition and spanwise incident velocity gradient.

We conducted numerical simulations to assess the influence of three-dimensional
effects on the leading edge vortex behaviour and their consequences on wing–wake
interaction mechanisms.

In view of isolating the three-dimensional effects induced by the free end
condition from that induced by the spanwise incident velocity gradient, we first
investigated the wake generated by a flapping wing whose translation phase was
rectilinear. The analysis revealed that the flow can be compartmented into three
distinct regions whether it is dominated by two-dimensional effects (pronounced
wing–wake interactions, leading edge vortex shedding), three-dimensional effects
(weak wing–wake interactions, leading edge vortex attachment) or by the propagation
of three-dimensional effects towards two-dimensional effects (transition region).

In the three-dimensional region, the leading edge vortex growth is inhibited by
tip effects. Its circulation saturates at levels inferior to those reached within the
unstable region, consistent with its stable attachment. On the other hand, the leading
edge vortex in the transition region is characterized by both stable attachment and
high levels of circulation, superior to those reached within the unstable region. Its
continuous attachment is here promoted by the trailing edge vortex inhibition (due
to tip effects) and, as a consequence, by the attenuation of cross-wake interactions
(between leading and trailing edge vortices). Such interactions are known to be
associated with vortex shedding behind a circular cylinder (Williamson 1996).



The dimensions of the stable and transition regions were found to be independent
of the aspect ratio. In conjunction with the previous results of Ringuette et al. (2007),
who reported similar dimensions for a translating normal flat plate, this suggests
that the influence of the tip vortex over the wingspan is driven by a characteristic
length scale. The wing portion exhibiting continuous attachment of the leading edge
vortex under the influence of tip effects extends 1.4 chords away from the wing
tip. Therefore, it is shown that stable flow cannot be obtained on a flapping wing
undergoing rectilinear translation phase for aspect ratio exceeding 1.4. This clarifies
the hypothesis of Birch & Dickinson (2001) who suggested that tip effects alone could
be responsible for leading edge vortex attachment at low Reynolds numbers.

We then focused on a flapping wing undergoing a revolving motion. As expected
(Ellington et al. 1996), the leading edge vortex exhibits a conical shape and connects
to the tip vortex near the free end.

It is shown that the position of the connecting point matches the limit of the
three-dimensional region observed in the translating case (0.6 chord away from the
wing tip). In addition, the region of strong inward velocities induced by the tip vortex
(in the translating case) corresponds to that of strong outward velocities induced by
the spanwise incident velocity gradient (in the revolving case). Thus, inward velocities
counteract outward velocities, giving rise to a local instability. As such, the leading
edge vortex detaches near the wing tip but remains attached along 85 % of the
wingspan. This provokes the tilting of the leading edge vortex into the streamwise
direction. The leading edge and tip vortices being co-rotating, they connect into a
single entity.

Beyond the connecting point (towards the wing tip), the flow is unstable and
significantly affected by wing–wake interactions. Before the connecting point (towards
the wing root), the flow is stable and weakly affected by wing–wake interactions. In
this stable region, various authors (Maxworthy 1979; Ellington et al. 1996; Lentink
& Dickinson 2009b) suggested that spanwise flow balances vorticity production at the
leading edge, hence allowing the continuous attachment of the leading edge vortex.
Nevertheless, the leading edge vortex can reach high levels of circulation, similar to
those attained within the transition region of the translating case and superior to those
attained within unstable regions. Here, again, we suggest that the trailing edge vortex
is strongly inhibited, which contributes to the attenuation of cross-wake interactions
and to flow stabilization. Such inhibition is associated with strong outward velocities
that mostly confine to the upper surface of the aerofoil and eventually extend to a
broad region downstream the leading edge vortex.

As a conclusion, analogies between translating and revolving wings brought further
insight into the mechanisms that govern the leading edge vortex behaviour. The
comprehension of these mechanisms is an essential step towards the definition of
efficient flapping wing devices as there exists a tight connection between force
production and leading edge vortex development. In particular, special attention should
be paid to the vortex interactions that alter the leading edge vortex development, for
example through the control of tip and trailing edge vortices.
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