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Three-dimensional Epigenome 
Statistical Model: Genome-wide 
Chromatin Looping Prediction
Ziad Al Bkhetan  1,3 & Dariusz Plewczynski  1,2

This study aims to understand through statistical learning the basic biophysical mechanisms behind 

three-dimensional folding of epigenomes. The 3DEpiLoop algorithm predicts three-dimensional 
chromatin looping interactions within topologically associating domains (TADs) from one-dimensional 

epigenomics and transcription factor profiles using the statistical learning. The predictions obtained by 
3DEpiLoop are highly consistent with the reported experimental interactions. The complex signatures 
of epigenomic and transcription factors within the physically interacting chromatin regions (anchors) 

are similar across all genomic scales: genomic domains, chromosomal territories, cell types, and 
different individuals. We report the most important epigenetic and transcription factor features used 
for interaction identification either shared, or unique for each of sixteen (16) cell lines. The analysis 
shows that CTCF interaction anchors are enriched by transcription factors yet deficient in histone 
modifications, while the opposite is true in the case of RNAP II mediated interactions. The code is 
available at the repository https://bitbucket.org/4dnucleome/3depiloop.

Understanding the biological function of the genome requires interrogation of two distinct aspects of Human 
genome organization. �e �rst aspect is the one-dimensional genomic structure, the position of genes, regulatory 
elements1, and epigenetic modifications such as chromatin remodelling through DNA methylation and 
post-translational histone modi�cation2,3. �e second aspect is the higher-order genome organization4, the 3D 
architecture of the nucleus in which two meters of DNA5 is �tted into a 6–10 µm diameter sphere6. �is structure, 
linking distal regulatory motifs such as promoters and enhancers, functionally in�uences cellular processes 
including protein biosynthesis7. �e 3D genomic organization could be captured by various methods based on 
chromosome con�rmation capture (3C), however these experimental methods are expensive. �ey are speci�-
cally tailored to detect either local or global spatial interactions at unprecedented resolution, however, they are 
a�ected by noise introducing false positive interactions, or by unavoidable systemic biases. 3C classical methods 
are not genome-wide, instead they are limited from ten to several hundred kilobases. Chromosome conformation 
capture-on-chip “4C” methods are genome-wide, whereas chromosome conformation capture carbon copy “5C” 
can measure many anchored pro�les in parallel, therefore, they analyse the chromatin interactions for large num-
bers of genomic loci e�ciently8. �e Hi-C method generates an all-to-all interaction map with a resolution 
depending on the sequencing depth. Some computational methods were proposed to improve the resolution of 
Hi-C heatmaps9. Chromatin conformation capture sequencing Hi-C considered the �rst unbiased genome-wide 
method, and it captures the interactions mediated by several proteins. Finally, chromatin interactions analysis by 
paired-end tag (ChIA-PET) method integrates the 3C method with chromatin immune-precipitation to detect 
interactions mediated by a speci�c protein. �e association between one-dimensional and higher order structure 
has yet to be well established and requires further investigation and analysis. Identi�cation of strategies for the 
prediction of 3D architecture may allow identi�cation of long-range non-coding regulatory elements such as 
promoters and enhancers, located thousands or millions of base pairs away from their target gene10. Attempting 
to predict genome-wide interactions is a challenging task given the number of possible pairwise interactions as 

 genome length resolution( / )2, i.e. 108 pairs of genomic segments for the human genome with 100 kb resolution. Less 
than 0.01% of these pairs are true physical interactions as con�rmed by an experimental method such as in situ 
Hi-C11,12, or ChIA-PET13–15. �e number of possible pairs may be reduced by forming pairs based on the distance 
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between interacting genomic segments (anchors), or following interactions established Topologically Associating 
Domains (TADs). However, this is still insu�cient to provide accurate statistical predictions due to the large 
number of possible formed pairs.

Another complicating factor is the diversity of biophysical characteristics of chromatin interactions. Previous 
studies have proposed interesting solutions to the problem of functional link between epigenomics and chromo-
somal organization. First, Di Pierro et al. performed de novo computational prediction of chromosomes struc-
tures and compartmentalization using epigenetic pro�les as patterns that encode multiscale spatial architecture 
of Human genome at the resolution reaching 50 kb16. Other studies focused on 3D interactions between speci�c 
regulatory elements, such as enhancers and promoters17–22. Recent study of Nikumbh and Pfeifer20 extends this 
approach by analyzing structural interactions mediated by intervening chromatin that elucidates the role of short 
tandem repeats in sequence-based prediction of long-range chromatin interactions. Finally, some approaches 
�nd possible interactions within all combinations between the genomic segments that share the same epigenomic 
pro�les23. Di Pierro et al.24 proposed transferable model of chromosome architecture that exploits novel idea of 
di�erent classes of the physico-chemical characteristic of chromatin �ber. Each type of chromatin state (con-
trolled epigenetically) is linked with the unique repertoire of its own biochemical interactions, and it is changed 
during cell di�erentiation.

In this contribution, we develop 3DEpiLoop: a tool for the prediction of 3D genome-wide chromatin inter-
actions using 1D genomic structure (mainly epigenomics and transcription factor assays). �e resolution of 
the predictions obtained by 3DEpiLoop is very high (1 kb segments). �e predictions are genome-wide and not 
restricted to the genomic segments containing regulatory elements (Enhancer, Promoters), or the motifs of the 
binding protein. In our approach, we build a universal statistical model which can be adapted to any type of inter-
actions. Our supervised learning predictor targets each cell type separately to reduce the bias towards the most 
common interactions across di�erent cell types. Moreover, it uses the peaks of the mediating protein to capture 
all possible interacting segments whether they contain regulatory elements or not. We aim to identify the impor-
tant epigenomic modi�cations and transcription factors, which uniquely characterize the interacting genomic 
segments. Further, we perform complex analysis of the epigenomic and transcription pro�les of the interacting 
anchors at di�erent genomic scales: from genomic domains to whole genome. We separately optimise and vali-
date this tool on a range of di�erent interactions types such as CTCF ChIA-PET, RNAP II ChIA-PET, in situ Hi-C 
loops, and in situ Hi-C heatmaps, and identify common predictive features.

Results
3DEpiLoop identifies efficiently the interacting genomic segments using the binding profiles 
of the mediating proteins. 3DEpiLoop uses the binding pro�le of the mediating protein to determine 
the initial set of genomic segments, which contain the interacting anchors. �e MACS peak calling method is 
applied to obtain the peaks from ChIP-seq data25. MACS identi�es the peaks from ChIP-seq data with the high 
resolution by empirically modelling the shi� size of ChIP-seq reads and using dynamic Poisson distribution to 
minimize the local biases in the genome for better prediction. We found that the identi�cation of peaks dramati-
cally reduces the number of segments being analysed while maintaining most of the interactions mediated by the 
corresponding protein. Furthermore, we determined the subset of epigenomic features enriched in the anchors of 
di�erent loops types (CTCF ChIA-PET, RNAP II ChIA-PET, and Hi-C loops). �ese features were used to rank 
the genomic segments to eliminate likely physically non-interacting segments. In the case of Hi-C heatmaps, we 
do not apply any �ltration because such frequency data (from next generation sequencing) represents spatial 
distance, therefore the majority of the segments within the same TAD are reported as proximal in addition to the 
diversity of the mediating proteins in these interactions. Using CTCF peaks and the above-mentioned �ltration 
procedure we identify 32,378 segments at 1 kb resolution covering 29,159 of 29,295 (99.5%) of experimentally 
determined CTCF-mediated ChIA-PET interactions for the GM12878 cell line13. �e same procedure captured 
87% of K562 and 90% of HeLa CTCF ChIA-PET interactions13, and 90% of MCF7 CTCF-mediated interactions 
(GSM970215). In the case of RNAP II ChIA-PET interactions and corresponding RNAP II ChIP-seq peaks the 
�ltered segments cover 93% of GM12878 interactions, 83% of K562 interactions and 92% of HeLa Interactions 
(Supplementary Methods sections 2.3.2, 4.2 and Supplementary Table 2).

�e second step in the interaction prediction procedure is to apply a supervised learning method to predict 
which pairs of the candidate genomic loci are truly interacting. 3DEpiLoop utilizes a Random Forests algorithm 
to predict the interactions within the same genomic domain (TAD), where the majority of the intra-chomosomal 
interactions are observed by experimental methods11,13,23,26. We also tried several classi�ers such as AdaBoost 
classi�cation trees, neural networks, Support Vector Machines SVM, and Stochastic Gradient Boosting in order 
to �nd the best classi�er for such problem. Figure 1 illustrates the work�ow implemented in our study, starting 
from data preparation and concluding with an in silico predictor performance evaluation procedure. See the 
Methods section for more details regarding the whole work�ow and the classi�ers used in this study.

Validation with ChIA-PET Interactions. �e 3DEpiLoop supervised learning pipeline was assessed 
in detection of the physical interactions acquired from Chromatin Interaction Analysis by Paired-End Tag 
Sequencing (ChIA-PET) experiments. Our focus in this study was on two types of ChIA-PET interactions: 1- 
CTCF-mediated looping, which is typically related to the long-range architectural interactions de�ning the 
three-dimensional higher-order genomic organization of the genome. 2- RNAP II mediated ones which are 
shorter, functionally linking the enhancers and promoters involved in the DNA transcription process27.

CTCF ChIA-PET interactions identi�ed by improved long reads ChIA-PET11 were used as true interactions 
for training in GM12878, K562, and HeLa cell lines, whereas MCF7 CTCF ChIA-PET interactions were extracted 
from GSM970215. RNAP II ChIA-PET interactions for GM12878, and HeLa were obtained from13, K562 from 
GSM970213, and mouse CH12.LX28. �e average accuracy, sensitivity, speci�city, and area under the ROC 
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curve for all these tests are greater than 0.82, 0.78, 0.82, and 0.89 respectively. Figure 2 illustrates ROC Curves 
obtained from representative predictors. �e results con�rm the success of 3DEpiLoop pipeline in recovering 
physical interactions (Supplementary Methods sections 2, 4 and Supplementary Tables 3 and 5). �e high qual-
ity of 3DEpiLoop, when training and testing across all possible combinatorial possibilities at several genomic 
scales (genomes, chromosomes, genomic domains, chromatin loops) con�rms that the anchors (i.e. interacting 
segments) from ChIA-PET interactions have very similar epigenomic and transcription factor pro�les across 
di�erent cell types, chromosomes, and topologically associating domains. We noticed that transcription factors 
play a major role in CTCF ChIA-PET interaction determination; they appear at the top of the features of impor-
tance rankings according to the Random Forests machine learning classi�er. We found that RNAP II interactions 
have di�erent epigenetics preferences as compared with CTCF interactions. We identi�ed the higher importance 
of histone modi�cations as compared with the importance of transcription factors, with a single exception for 
RNAP II protein binding pro�le, which is expected as it is the mediating protein. We believe that the better nor-
malization could be applied to further improve the results, especially when testing predictors between di�erently 
prepared experimental datasets. See �e Importance Rankings of Features used in interactions identi�cation 
section for further details.

Validation with Physical in situ Hi-C Loops. We compared the predictions of the 3DEpiLoop algorithm 
with physical interactions from in situ Hi-C that are mediated by any architectural protein. �e chromatin loops 
were identi�ed in GM12878, K562, HeLa, IMR90, HMEC, NHEK, HUVEC, and CH12.LX cell lines as physical 
interactions using the contact maps11. In brief, they searched for contacts in the Hi-C heatmaps that show closer 
proximity to each other, in comparison with their surrounding genomic segments. CTCF ChIA-PET predicted 
interactions obtained by 3DEpiLoop were highly concordant with in situ Hi-C loops for the cell lines GM12878, 
K562, and HeLa. Further, the 3DEpiLoop algorithm was successfully trained and tested on Hi-C identi�ed loops. 

Figure 1. 3DEpiLoop Supervised Learning Pipeline. (a) Transcription factors and histone modi�cation 
experimental data is provided either as bam or bed input �les. (b) MACS2 peaks calling method is applied to 
obtain the protein binding and histone modi�cations peaks. (c) Each locus is represented by the peak height 
and the distance between the peak summit and the centre of genomic segment. (d) A �ltration process is applied 
to eliminate the non-interacting segments, then all possible pairs are formed from the remaining segments 
within the same genomic domain. (e) �e experimental interactions, or any other set of veri�ed or curated 
interactions, are mapped on the genome and considered as true interactions for training. (f) 80% of the pairs 
are randomly selected as the training dataset, while the rest (20%) as the testing dataset. (g) �e training dataset 
is used to train a random forests classi�er (or any other classi�er) and to determine the ranking of important 
features for statistical prediction. (h) �e testing dataset is used to evaluate the performance of the predictor by 
comparing results with the true interactions con�rmed by experiments.
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�e average accuracy, sensitivity, speci�city, and area under the ROC curve for all these tests are 0.79, 0.67, 0.79, 
and 0.81 respectively. Figure 2 illustrate ROC Curves obtained from representative supervised learning predic-
tors (Supplementary Methods section 3 and Supplementary Table 4). �e in situ Hi-C loops reported in the 
experimental study were less abundant than ChIA-PET reported interactions. �erefore, the e�ciency of trained 
statistical models is a�ected by the number of true interactions in the training dataset. However, in general 
the predictor maintains its overall stability in the prediction even with a smaller number of training examples. 
Moreover, 3DEpiLoop uses CTCF ChIP-seq peaks to �lter out genomic segments that are tested to form the pairs. 
�is approach is not e�ective in the case of in situ Hi-C loops, because they can be mediated by the variety of 
di�erent proteins, and not only CTCF, or RNAP II. Approximately 71% of the predictions were reported with the 
experimental CTCF ChIA-PET interactions. We also compared the predictions obtained by 3DEpiLoop when 
training on CTCF ChIA-PET physical interactions. We found that CTCF ChIA-PET trained predictor could 
predict ~75% of Hi-C loops for GM12878, K562, and HeLa cell lines. See Supplementary Methods section 3.4 and 
Supplementary Figure 17.

Comparison with EpiTensor. �e primary issue with existing computational methods for the prediction of 
interactions is the high false positive rate. �is high false positive rate makes it di�cult to interpret and apply pre-
dicted interactions. In contrast to our method, EpiTensor23 interactions are obtained by an unsupervised learning 

Figure 2. Performance Evaluation using ROCs Curve. (a) ROC Curves for RNAP II ChIA-PET interactions 
predictors obtained from HeLa cell line in genomics and chromosome scales. Blue when training and testing on 
chromosome 11. Green when training on chromosome 20 and testing on chromosome 6. Orange when training 
and testing on the whole genome. (b) ROC Curves for Hi-C Loops predictors obtained from IMR90 cell line 
in genomics and chromosome scales. Blue when training and testing on chromosome 1. Green when training 
on chromosome 5 and testing on chromosome 6. Orange when training and testing on the whole genome. (c) 
ROC Curves for CTCF ChIA-PET interactions predictors obtained from GM12878 cell line in genomics and 
chromosome scales. Blue when training and testing on chromosome 7. Green when training on chromosome 
X and testing on chromosome 12. Orange when training and testing on the whole genome. (d) ROC Curves for 
genome-wide predictors when training and testing on di�erent cell types. Blue when training RNAP II ChIA-
PET Interactions predictors on HeLa and testing on K562. Green when training CTCF ChIA-PET Interactions 
predictors on MCF7 and testing on K562. Orange when training Hi-C loops predictors on HUVEC and testing 
on NHEK.
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algorithm which uses tensor decomposition to �nd the genomic loci with similar epigenomic patterns across 
cell types, later assessing the strength of the interactions using ChIP-seq peak height at both analysed anchors. 
We compared EpiTensor interactions with CTCF/RNAP II ChIA-PET interactions obtained by the 3DEpiLoop 
predictor applied on the K562 cell line13, GSM970213, and with in situ Hi-C loops for the IMR90 cell line11. �e 
results are reported in the Table 1. While both approaches obtained a lot of false positives, 3DEpiLoop captured far 
more experimental interactions, at least three times more than Epitensor. Additionally, fewer false positives were 
observed when dealing with CTCF ChIA-PET, and in situ Hi-C loops, though the false positive rate was higher 
with RNAP II ChIA-PET interactions. (Supplementary Methods sections 2.4, 3.3, and 4.5). Similar studies tried to 
predict functional interactions mediated by RNAP II and linking enhancers and promoters21,22. Both approaches 
are limited to the enhancers and promoters interactions, while 3DEpiLoop can predict larger set of interactions, 
genome-wide without any limitations. IM-PET21 targeted 2,219 interactions of 652,800 candidates. RIPPLE22 
targeted less than 1000 interactions, then the authors expanded it to cover genome-wide enhancer-promoters 
interactions. �e genome-wide predictions were compared with Hi-C contacts. We believe that Hi-C contacts and 
scores without loop calling post-processing do not provide a strong evidence for the physical interactions, and 
they are highly in�uenced by the genomic distance. 3DEpiLoop targets ~25000 physical interactions without any 
limitation, approximately 12, and 25 times what IM-PET and RIPPLE cover respectively.

Validation with in situ Hi-C Heatmaps. In situ Hi-C interactions heatmap re�ects spatial proximity 
between genomic segments. It is di�cult to identify physical interactions using Hi-C interaction strength. �e 
score of a given contact is signi�cantly in�uenced by the genomic distance between anchors29. As such, most loci, 
especially those located within the same TAD, interact to some degree. Our approach predicts physical interac-
tions with the highest possible resolution (5 kb), whereas the previous study16 analysed the interactions within the 
genomics compartments in 50 kb resolution using neural network. To account for this we de�ne the importance, 
or the interaction strength, as the score relative to the genomic distance between the anchors. In this way, we 
distinguish between the true interactions (more likely to interact because of a physical contact), and false interac-
tions (no evidence for any contact, or very low score) using an optimal threshold. �e threshold (0.15) was deter-
mined in a way that preserves high coverage of the physical interaction (i.e. ChIA-PET13 and in situ Hi-C loops11) 
within true interaction sets and takes the predictor performance into the consideration (Supplementary Methods 
section 5 and Supplementary Table 6). In the GM12878 cell line, the in situ Hi-C interactions stronger than 
the chosen threshold covered 14167/14187 (99.8%) of Hi-C loops, and 53519/55705 (96%) of CTCF ChIA-PET 
interactions experimentally reported11,13. Figure 3 illustrates the in situ Hi-C heatmap transformation procedure. 
Training and prediction were done separately on 2232 TADs13. We performed tests on GM12878, K562, IMR90, 
HUVEC, HMEC, and NHEK cell lines using in situ Hi-C heatmaps (5 kb resolution) from the study11 with the 
same set of epigenomic features. While the diversity of the proteins mediating Hi-C interactions, in addition to 
the noisy experimental data, a�ected predictive performance, 3DEpiLoop could recover most of the physical 
loops from both Hi-C and ChIA-PET. �e average accuracy, sensitivity, speci�city, and area under the ROC curve 
for all these tests are greater than 0.64, 0.51, 0.73, and 0.63 respectively. �ese measurements were calculated 
according to the in situ Hi-C proximate interactions a�er the �ltration. We calculated the coverage of the physical 
interactions in the obtained predictions in order to assess the quality of the predicted interactions. We found that 
the obtained predictions covered 70% of in situ Hi-C loops and 80% of CTCF ChIA-PET interactions.

Population Hi-C Heatmaps Analysis. In the next steps of our analysis, we assessed 3DEpiLoop on data 
from lymphoblastoid cell lines of seven individuals (HG00731, HG00732, HG00513, HG00514, and the family 
trio GM19238, GM19239, and GM19240) from 1000 Genome Project. Heatmaps for these cell types were at 
40 kb resolution (private communication from Bing Ren laboratory). 3DEpiLoop was trained on each individual 
and tested on all other individuals as well as GM12878. Using 3DEpiLoop interactions were recovered from 
the testing samples with an average accuracy of 0.87, sensitivity of 0.87, speci�city of 0.86 and precision of 0.84. 
�ese tests con�rm that the epigenomic and transcription factors pro�les are conserved between individuals 
when comparing the same cell type. In general, individuals, share very similar epigenomics and transcription 
factors pro�les and Hi-C heatmaps. Figure 4 illustrates the epigenomics and transcription factors, in addition 
to the predicted Hi-C heatmaps (strong interactions for visualization) of the cell lines GM19238, GM19239, 
and GM12878. We believe that lowering the resolution of the heatmaps makes it easier for the statistical pre-
dictor to distinguish between true interactions and non-interactions (Supplementary Methods section 5.4, and 
Supplementary Table 6).

Cell line Interactions
Experimental 
Results

Epitensor 
predictions

Epitensor 
Veri�ed

3DEpiLoop 
predictions

3DEpiLoop 
Veri�ed

K562: CTCF ChIA-PET 30,978 209,086 1,331 (4%) 93,027 18,945 (61%)

K562: RNAP II ChIA-PET 26,371 209,086 5,006 (18%) 1,044,929 15,226 (57%)

IMR90: In situ Hi-C loops 4,343 105,799 746 (17%) 92,474 3,359 (77%)

Table 1. Comparison with EpiTensor: Experimental Results column represents the interactions reported by 
experimental methods, where the anchors in the analyzed TADs, and contain the mediating protein signal. 
(EpiTensor/3DEpiLoop) Predictions column represents the total count of all prediction for both computational 
methods. (EpiTensor/3DEpiLoop) Veri�ed column represents the count and percentage of the prediction which 
are veri�ed experimentally.



www.nature.com/scientificreports/

6SCIENTIFIC REPORTS |  (2018) 8:5217  | DOI:10.1038/s41598-018-23276-8

Transcription factors and Histone modification profiles are unique to the interaction type. We 
analyzed CTCF ChIA-PET, RNAP II ChIA-PET and Hi-C interactions to assess whether anchors of each inter-
action type have preference for speci�c epigenetic features. We discovered that Hi-C loops and CTCF ChIA-PET 

Figure 3. Heatmaps transformation for analysis. (a) in situ Hi-C heatmap representing the speci�c part of 
Chr20 in GM12878 cell line (35 mb − 60 mb) including the signals of CTCF, RAD21, H3K4me1, H3K27me3, 
and H3K36me3. (b) �e heatmap of single TAD: Chr20:50255531–58072397. �e red circles surround physical 
interactions. (c) Further, we illustrate the �ltered heatmap using 0.15 as threshold, i.e. all interactions with 
genomic distance based score less than 0.15 are considered as true interactions. (d) �e training heatmap (80% 
of the original) is on the le� and it was used to train the predictor, while the testing heatmap (20%) is on the 
right. �ere is no common samples between training and testing datasets.
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interactions share similar patterns for epigenomic and transcription factors, with enrichment of transcription 
factor peaks at anchors, but depletion at the site of histone modi�cation signals. In contrast, RNAP II ChIA-PET 
anchors were enriched with histone modi�cations and depleted in transcription factors signals (with the excep-
tion of RNAP II binding). In addition, we evaluated the predictions obtained by 3DEpiLoop to check whether the 
predictions share the same feature patterns. We compared the distribution of the features between the interacting 
genomic segments (signal) and the non-interacting ones (background). Our results con�rm similar conclusions 
for Hi-C loops, CTCF and RNAP II ChIA-PET interactions. Figure 5 illustrates the distribution and the prefer-
ences according to each interaction type in GM12878 cell line (Supplementary Methods section 6).

The Importance Rankings of Features used in interactions identification. �e importance of 
di�erent epigenomics and transcription factor preferences at the interaction anchors can be evaluated by the 
Random Forest features ranking30. For further veri�cation, we applied chi-square test of independence in addi-
tion to Monte Carlo Feature selection Method31 to assess the importance of the features. �e top signi�cant 
features were highly consistent according to all feature selection methods. �e statistical signi�cance “p-value” 
calculated by chi-square test was less than 5.6 * 10–12, 1 * 10–118 and 1.9 * 10–2 for the top 35 signi�cant fea-
tures reported for CTCF ChIA-PET, RNAPII ChIA-PET, and Hi-C loops respectively. Histone modi�cations were 
ranked as more important than transcription factors in the case of RNAP II ChIA-PET interactions, whereas the 
opposite trend was observed for in situ Hi-C physical loops and CTCF ChIA-PET interactions. �e genomic 
distance between the interacting segments together with the segment order in each TAD were ranked within the 
top features in most cases. �e binding pro�le of the mediating protein such as 11-Zinc �nger protein (CTCF) 
and RNA polymerase II (RNAP II) were among the highest ranked features, when predicting their corresponding 
interactions (CTCF ChIA-PET, RNAP II ChIA-PET). Double-strand-break repair protein (RAD21), and struc-
tural maintenance of chromosome 3 protein (SMC3) binding enrichment in addition to the histone H2A encoded 
by H2AFZ gene (H2AZ), monomethylation of histone H3 at lysine 4 (H3K4me1), dimethylation of histone H3 
at lysine 4 (H3K4me2), acetylation of histone H3 at lysine 27 (H3K27ac), and �nally the trimethylation of H3 
lysine 36 (H3K36me3) signal depletion were important epigenomic/transcription factor signatures in the case of 
Hi-C physical loops prediction. CTCF ChIA-PET interactions were strongly linked with the transcription factors 
CTCF, RAD21, SMC3, and Zinc �nger protein 143 (ZNF143). In contrast, the histone modi�cation enrichment 
was the most important indicator of RNAP II ChIA-PET interactions, especially H3K27ac, H3K4me2, trimethyl-
ation of histone H3 at lysine 4 (H3K4me3), and acetylation of histone H3 at lysine 9 (H3K9ac). �e same features 

Figure 4. Epigenomics, Transcription factors, and Hi-C heatmaps (Chr1:203000000–206000000) in three 
individuals of GM12878 cell type. (a) �ree tracks represent CTCF signals in three individuals. (b) �ree tracks 
represent SA1 signals. (c) �ree tracks represent the histone modi�cation H3K4me1. (d) �ree Tracks represent 
H3K27Ac Histone Modi�cations. (e) Hi-C approximate interactions predicted by 3DEpiLoop using 40 kb 
resolution. Tracks in green are for the cell type GM19238, red for GM19239, and yellow for GM12878. Arcs in 
blue are correct predictions, while incorrect ones are in red. (f) Hi-C heatmaps for the same region of the cell lines 
(40 kb resolution) a�er the �ltration. Blue pixels are the correct predictions while the red ones are the wrong.
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were reported in previous study22. �ose complex relations identi�ed in human cells were also observed for the 
mouse cell line. Finally, the heatmaps prediction is characterized by a mixed set of preferences, where both tran-
scription factors and histone modi�cations were important. CTCF, Cohesin subunit (SA1), H3k4me1, H3K27ac, 
H3K4me3, and H3K36me3 are the most important features according to the predictors for the lymphoblastoid 
cell lines (di�erent individuals) when predicting Hi-C heatmaps. �e similar histone modi�cations were reported 
also in this study16. H3K4me1, H2AZ, H3K4me2, CTCF, H3K27ac, H3K79me2, and H3K9AC were the most 
important features according to in situ Hi-C heatmaps predictors for the GM12878, K562, HUVEC, HMEC, and 
NHEK cell lines (Supplementary Methods sections 2, 3 and 4).

Statistical Models Specificity. Some physical interactions especially the functional ones between enhanc-
ers and promoters are cell type speci�c21 while the others are conserved between di�erent cell types23,11. �is 
idea was employed by the EpiTensor algorithm23, where the data from �ve di�erent cell lines were combined and 
shown to have conserved epigenomic patterns that are the hallmarks of physical interactions. Our study trains a 
supervised predictor on single cell line separately by using only its own data in order to detect all possible interac-
tions, whether they are common and shared between cell types, or they are unique to this speci�c cell type. Such 
speci�city of the input data used for training and constructing a single statistical model for each interaction type 
and cell line allowed us to build a very sensitive statistical model, reducing the bias toward the shared interactions 
between di�erent cell types, or to the most prominent interaction types. A similar idea was employed to predict 
enhancers-promoters interactions22, while 3DEpiLoop targets genome-wide interactions which is more compli-
cated problem. For example, 29,295 and 30,978 CTCF interactions for GM12878 and K562 cell types respectively 
were reported in the TADs used in this study. Only 12,033 (41%, 38%) pairs among these interactions are com-
mon and shared between both cell types. Our approach predicted 99,912, and 85,574 CTCF ChIA-PET pairs in 
GM12878 and K562. 24,676 GM12878 interactions and 18,731 from K562 were covered by our predictions, and 
only 9237 pairs were shared between them, while the rest were interactions unique to those cell types.

Discussion
Our study con�rms the feasibility of predicting the high resolution (1 kb) three-dimensional chromatin phys-
ical interactions using 1D epigenomic and transcription factor binding pro�les. Up to the best of our knowl-
edge, 3DEpiLoop is the second attempt (a�er EpiTensor) that predicts genome-wide 3D interactions without 
any limitation or restriction related to the existence of the regulatory elements or the mediating protein motifs 
in the interacting anchors. Moreover, it shows that complex epigenomic and transcription factor signatures are 

Figure 5. Features distribution in GM12878 cell type. �e X-axis represents di�erent histone modi�cations and 
transcription factor assays, while the Y-axis represents the sum of the assay peak’s height at both anchors. (a) the 
distribution of the important transcription factors and histone modi�cations among Hi-C loops (Red), CTCF 
(Green) and RNAP II ChIA-PET (Blue) interaction anchors; (b) the distribution of the features in the anchors 
of predicted CTCF ChIA-PET interactions and the non-interacting genomic segments. Red boxes represent the 
interactions, while green represent the non-interacting ones; (c) the distribution of the features in the anchors 
of predicted Hi-C loops and the non-interacting genomic segments. Red boxes represent the interactions, while 
green represent the non-interacting ones; (d) the distribution of the features in the anchors of predicted RNAP 
II ChIA-PET interactions and non-interacting genomic segments. Red boxes represent the interactions, while 
the green represent the non-interacting ones.
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conserved across di�erent genomic domains, chromosomes, cell types and within the population of individuals. 
However, these signatures vary according to the interaction types. We found that RNAP II ChiA-PET Interaction 
anchors are enriched by epigenomics signals, while CTCF ChIA-PET and Hi-C Loops are enriched by transcrip-
tion factors. Using the mediating protein signal to prepare the initial genomic loci for the analysis reduces the 
size of the dataset dramatically whilst keeping the majority of the interacting loci. Scoring the segments using 
all important features could separate the interacting from the non-interacting segments e�ciently. We believe 
the better �ltration we do in the segments level before forming the pairs, the more accurate prediction we get. 
Some applied tests con�rmed the possibility to predict RNAP II ChIA-PET interactions in mouse cell types using 
predictors trained on human cell line and vice versa. We believe it is also true for other interaction types, but we 
couldn’t apply the veri�cation tests as the mouse interactions were not readily available. �ese Human-Mouse 
tests obtained the worst performance evaluation results which could be related to the di�erence in the quantity of 
the interactions between the human and mouse cell lines. Obtaining a lot of false positives is still an issue, but this 
is a usual problem related to the nature of the data (unbalanced data: very few interactions comparing with too 
many non-interactions pairs). Many of the false positives obtained by 3DEpiLoop were also reported in EpiTensor 
predictions, they might be veri�ed by other experimental methods. We found that 22% (16367 of 74862) of the 
false positives predicted by 3DEpiLoop when trained on K562 cell line and applied on GM12878 cell line were 
reported experimentally in a di�erent dataset. �is dataset includes only the interactions between anchors that 
don’t have CTCF motifs. �e success of our approach for detecting several physical interaction types as compared 
with previous approaches, in addition to its usability to predict other cell type interactions precisely without any 
prior knowledge about the cell type, make our approach a valuable tool to determine chromatin interactions. In 
addition to the interactions conserved among di�erent cell types, our approach is able to predict the subset of 
unique interactions for each cell type. �e high predictor speci�city is gained by including the epigenomic and 
transcription factor data for this speci�c cell type. Hi-C interactions prediction is still a challenging problem due 
to the diversity of the mediating proteins in addition to the abundance of proximity-based interactions. When 
trying to separate the physical interactions from the spatial proximity illustrated by the heatmaps, the signal of the 
epigenomics and transcription factor patterns within the physical contact anchors is more likely to be strong and 
di�erentiable compared with proximity interactions in Hi-C experiments. Our approach to de�ne the important 
Hi-C interactions relative to the genomic score helps to reduce the in�uence of the genomic distance in such 
supervised learning for those interactions. �is study assessed the in�uence of the genomic distance by training 
two di�erent models using the same features, the �rst model included the genomic distance while the second 
excluded it. �e predictors trained without the distance could predict the interaction with slightly worse per-
formance comparing with the ones including the genomic distance. Choosing the optimal threshold to separate 
the heatmap interactions in the training phase is the critical issue. Choosing threshold θ results three classes of 
interactions: important interactions when the genomic distance based score ≤ θ, not interactions when the genomic 
distance based score ≥ (1- θ), and no-class when θ < genomic distance based score < (1- θ). �e simplest is to choose 
θ = 0.5 to cancel the no-class category. We found that using 0.15 and excluding the no-class interactions from the 
training dataset allow us to cover the majority of the physical interactions without sacri�cing the performance of 
the predictor. In general, in situ Hi-C predictors obtained the worst results when predicting the high resolution 
heatmaps but they covered about 75% of the physical interactions.

We believe that such predictors or approaches should use both epigenomics and transcription factors in order 
to capture several interaction types. Using transcription factors was essential to recover CTCF ChIA-PET, and in 
situ Hi-C loops. �is gave the advantage over EpiTesnor, when dealing with these interactions. �ere is still room 
for improvement, we believe that the more features uniquely representing the pairs the better performance one 
could get (such as CTCF motif orientation features, which improve CTCF interactions prediction). Performing 
better normalization of the input data and experimental interactions collected from di�erent laboratories will 
improve the performance of the suggested approach especially when applying human cell lines trained predictor 
on mouse cell lines and vice versa. Our algorithm use training dataset with the variety of di�erent features and it 
can be easily extended to include various types of sequence-based information (such as short tandem repeats20). 
We are now working on the sequence-based predictor, the initial results are promising. �e 3DEpiLoop algorithm 
allows for adding novel physical interactions mediated by speci�c proteins into the statistical model, actually 
classifying possible chromatin binding motifs (both in terms of sequence speci�city, physical, or chemical local 
properties) could improve the accuracy of the method24.

Methods
Data Preparation. The experimental datasets used in this study were obtained from multiple online 
resources. �e epigenomics and transcription factors peaks were called using the MACS2 package25 utilizing 
previously reported parameters32. �e human genome was divided into segments with prede�ned resolution 
according to the validation data (1 kb for physical interactions prediction, 5 kb and 40 kb for Hi-C heatmaps). 
�e called peaks from all assays were assigned to the genome, and each locus was represented by the height of 
the peak, together with the distance between the centre of the locus and the summit of the peak (two features 
for each assay). �e con�ict between the assay peaks in the same genomic segment was resolved using either the 
maximum height when predicting high resolution physical interactions <5 kb, or the sum of the peaks’ heights 
when predicting low resolution heatmaps >40 kb. We analyzed eight human cell lines (GM12878, K562, HMEC, 
HUVEC, IMR90, HeLa, NHEK, and MCF7), seven lymphoblastoid cell lines (HG00731, HG00732, HG00513, 
HG00514, GM19238, GM19239, and GM19240) from the 1000 Genomes Project33. And the CH12.LX mouse 
cell line. We used epigenomic assays characterizing genomic segments by CTCF, RNAP II, RAD12, ZNF143, 
SMC and SA1 transcription factor binding pro�les, and a variety of histone modi�cations: H2AFZ, H3K27ac, 
H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K79me2, H3K9ac, H3K9me1, H3K9me3, and 
H4K20me1 (Supplementary Table 1).
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Segments Filtration. To reduce combinatorial complexity, we �rst applied a �ltration pipeline to elimi-
nate likely non-interacting loci before predicting physical interactions. We identi�ed the subset of the features, 
which are enriched in the interacting segments as compared to other loci within the available distribution of 
epigenomic and transcription factor binding assays. �e segments enriched by CTCF, SA1, RAD21, SMC3, and 
ZNF143 transcription factor signal are more likely to interact in the case of Hi-C loops, and CTCF ChIA-PET 
interactions. RNAP II physical interaction anchors are enriched by H3K4me1, H3K4me3, and H3K27Ac histone 
modi�cations. In this study, we de�ne the key-features set to refer to these most important assays. �is pipeline 
consisted of the following steps: First, loci with peaks for the mediating protein (CTCF for CTCF ChIA-PET and 
Hi-C Loops. RNAP II for RNAP II ChIA-PET interactions) were retained. Secondly, each segment was scored 
according the key features, that is the subset of the features from epigenomic and TF binding assays which were 
enriched in the interacting segments. �e segments were �ltered using an optimal threshold de�ned according 
to the availability of key-features and analysis of the distribution of interacting and non-interacting segments.

Candidate Pairs. �e �nal candidate pairs are selected from the �ltered segments by considering all possible 
combinations within each genomic domains, as the majority of chromatin interactions occur within the same 
TAD34,35. �e interacting pairs (few pairs from all possible combination within TADs that match the experimental 
interactions) together with the non-interacting pairs (a lot of pairs don’t match any experimental interactions) 
formed the �nal data for training and testing. Each pair is presented by the maximum and minimum values of 
the right and le� anchor features. �e percentage of the interacting pairs to the non-interacting ones ranges from 
0.01 to 0.1 according to the interaction types and the availability of the experimental interactions. See the sup-
plementary Table 1 for detailed information. We used chromatin contact domains (CCDs) genomic coordinates 
from the GM12878 cell line13 to maintain the position of topologically associating domains across cell lines. �e 
localization of three-dimensional domains is typically conserved among di�erent cell types and even mammals36.

Training and Testing Datasets. Training and testing datasets were prepared at multiple levels: genomic 
domains, chromosome, and whole genome. �e statistical models were constructed and evaluated separately 
at all levels for all possible combinations. In all applied tests the classi�er has no prior information about the 
testing dataset. Both training and testing sets are constructed by random selection of the samples from the same 
cell line, or by training on a cell line and testing on another one. 3DEpiLoop uses the Random Forest classi-
�er, a machine learning approach that uses multiple decision trees and voting for the �nal predictions37,38. We 
also applied di�erent classi�ers such as AdaBoost classi�cation trees, neural networks, Support Vector Machines 
SVM, and Stochastic Gradient Boosting. All of these classi�ers obtained very similar results with an exception for 
neural network (lower accuracy). �e performance of the predictors was described by the accuracy, sensitivity 
(quality of the predictor when detecting the real interactions), speci�city (quality of the predictor to detect the 
non-interacting pairs) and the area under the ROC curve (refers to the probability that the predictor will rank 
randomly chosen interacting pairs higher than randomly chosen non-interacting pairs)39. �ese measurements 
are calculated according to the confusion matrix elements (contingency table)40: We considered a prediction as 
True Positives when the le� anchors of both pairs (prediction and validation) were overlapping, and the same for 
the right anchors. �e prediction probability obtained by the Random Forest classi�er was used to calculate the 
area under the ROC curve.
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