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We study the stability range of coherent Ge quantum dots with an epitaxial Si shell. The critical
radius is evaluated as a function of Si shell thickness and Ge nanocrystallite radius by comparing the
energy of the system in the coherent and incoherent state. We find that the system is coherent up to
a Ge nanocrystallite radius of about 100 Å, irrespective of the Si shell thickness. Nanocrystallites of
radii larger than 270 Å lose coherency by the generation of perfect dislocation loops. In
nanocrystallites of intermediate radii~between 100 and 270 Å!, the coherency is lost by the
introduction of partial dislocation loops enclosing a stacking fault. As the shell thickness decreases,
the critical radius increases. ©1996 American Institute of Physics.@S0021-8979~96!00108-0#
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I. INTRODUCTION

One-dimensionally quantum confined semiconduc
thin films ~‘‘quantum well’’! structures have emerged as im
portant materials systems in today’s microelectronic and
toelectronic technologies. These lattice mismatched thin fi
heterostructures rely on the difference in band gap of
semiconductors to attain quantum confinement. A criti
factor in the technological success of these strained la
epitaxial systems lies in the ability to grow coherent inte
faces without defects, as these defects are generally d
mental to electrical and optical properties.

Theoretical treatments to describe the epitaxial relati
ships observed on mismatched thin film systems are w
developed. This extensive literature builds on the pioneer
efforts of Frank and van der Merwe,1–6 and Jesser and
Matthews7–9 who predicted that a coherent epilayer of
crystal can be grown on a substrate of different lattice
rameter. A direct result of these efforts is the communit
present understanding of the concept of a ‘‘critical thicknes
that defines the maximum size at which the misfitting lay
remains coherent with the host matrix.

Recently, experimental advances in materials proces
have permitted the fabrication of three-dimensionally qua
tum confined semiconductor nanocrystallite~‘‘quantum
dot’’ ! systems positioned within semiconductor ho
materials.10–12 In particular, Ge nanocrystallites have be
synthesized by pulsed laser ablation and subsequently c
posited into a Si host grown by chemical beam epitaxy us
disilane.13 These materials represent the three-dimension
confined analogs to quantum well heterostructures. As w
quantum wells, lattice coherency at the dot/host interfa
holds a key in defining the electronic, optoelectronic, a
photonic characteristics of these heterostructures. A theo
cal understanding of the morphological limits of thre
dimensional epitaxy in these systems is needed to acc
pany the experimental efforts as the promise of quantum
materials is further explored. An appropriate first step is
determination of a ‘‘critical radius’’ that describes the large

a!Electronic mail: shuba@mit.edu
4132 J. Appl. Phys. 79 (8), 15 April 1996 0021-8979/96

Downloaded¬29¬Dec¬2002¬to¬18.82.1.16.¬Redistribution¬subject¬
or
-
p-
lm
he
al
yer
r-
tri-

n-
ell
ng

a
a-
’s
s’’
er

ing
n-

st
n
de-
ng
lly
ith
ce
d
eti-
-
m-
dot
he
st

sphere that can be coherently supported in a mismatch
system of nanocrystallite and host.

Although nanocrystallite structures have to date not bee
studied from a point of view of coherency, the condition
under which a precipitate is coherent with its matrix has bee
known by the metallurgical community for many decades. I
1940, Nabarro14,15 determined the elastic strains develope
when a precipitate is formed in an alloy. Nabarro,15 Jesser,16

Brown17,18 and others calculated the critical size of precipi
tates. Brown17 considered the interaction of one dislocation
with coherent spherical precipitates and evaluated the critic
size from a thermodynamic point of view.

We present here the first effort to describe the critica
limits of epitaxy for three-dimensionally confined nanocrys
tallites in a crystalline host. Building simultaneously on the
principles of the quantum well strained layer epitaxy and o
the understanding of coherent precipitates in alloys, we ha
calculated the critical radius of a semiconductor of differen
lattice parameter. We choose as our representative system
epitaxial positioning of Ge nanocrystallites in a crystalline S
host.

II. THERMODYNAMIC CONSIDERATIONS

The lattice parameter of bulk Ge is approximately 4%
larger than that of Si. When a thick Si shell is grown epitaxi
ally on a Ge nanocrystallite of bulk lattice parameter, th
lattice misfit causes coherency strains to develop in the sy
tem. As the radius of the nanocrystallite increases, the stre
increases and reaches a stage where the misfit strain can
longer be accommodated coherently. At this point coheren
is lost by the formation of defects~i.e., dislocations! and the
system transforms to an incoherent state.

The coherent-to-incoherent transformation become
thermodynamically favorable if the total energy of the sys
tem after transformation is less than the total energy befo
transformation, i.e.,EIncoherent&ECoherent. However, this is not
the only requirement for this transformation to take place a
the nucleation kinetics of the defect may play an importan
role. In planar epitaxy it is found that dislocation-free inter
faces can be grown upto a film thicknesses 5–10 tim
/79(8)/4132/5/$10.00 © 1996 American Institute of Physics
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larger than the critical thickness predicted by Matthews19,20

and Van der Merwe1,6 This metastability in the system ha
been explained by the slow kinetics of the system and or
insensitivity of the experimental techniques used.21 The ther-
modynamic critical radius which is determined in this pap
can, therefore, be seen as the minimal radius at which
capped Ge particles can be kept coherent.

At the critical radius, the energy of the system in th
coherent state and incoherent state are equal. In the cohe
state, the energy of the system is the elastic strain ene
caused by the misfit,

ECoherent5EElastic. ~1!

In the incoherent state the stress field of the defect int
acts with the stress field of the misfitting nanocrystallite a
relieves part of the misfit strain, thereby releasing a part
the elastic strain energy, leaving a residual elastic energy
addition, energy is required to create the defect. Therefo
the energy of the system in the incoherent state is

EIncoherent5EResidual Elastic1EDefect. ~2!

In calculating these energy contributions, we assume t
both nanocrystallite and shell materials are elastically isot
pic and that the laws of continuum mechanics are applica
to the nanocrystallite/shell systems.

A. Coherent state

1. Elastic strain energy

We assume that the spherical Ge nanocrystallite is e
taxially capped with a concentric Si shell having the sam
orientation as the nanocrystallite. A schematic diagram of
system is shown in Fig. 1. The inner region, 0,r,a, is the
Ge nanocrystallite and the outer regiona,r,b is the Si
shell. We consider a range of Si shell thicknesses,t5(b2a),
ranging from 0 to infinity, and evaluate the critical radius a
a function of Ge nanocrystallite radius and Si shell thickne

The total elastic strain energy is the elastic strain ene
stored both in the germanium nanocrystallite and the Si sh
which can be computed from the stress and strain fields.

The system possesses spherical symmetry and the
placements and fields are only a function of the radial co
dinater . The misfitting Ge nanocrystallite produces a tens
stress on the interface, while the outer surface of the Si sh
is traction free.

The stress and strain fields inside the spherical germ
nium nanocrystallite are purely hydrostatic. The hydrosta
stress component is the interface pressure,p, between the Ge
nanocrystallite and the Si shell:

FIG. 1. Schematic diagram: Ge nanocrystallite capped with Si shell.
J. Appl. Phys., Vol. 79, No. 8, 15 April 1996
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Ge5suu

Ge5sff
Ge52p. ~3!

For a stress free outer boundary this interface pressur
given by22

p5

2ESi

3~12nSi)
e~12c!

12
2m

3
~12c!

~4!

whereESi is the Young’s modulus of Si,nSi is the Poison’s
ratio of Si,c5a3/b3 is the volume fraction of the nanocrys-
tallite, m5ESi/~12nSi!@~122nSi!/ESi2~12nGe!/EGe# is the
elastic mismatch parameter, ande5@3KGe/(3KGe14mSi!#
3@~aGe2aSi!/aSi# is the constrained strain for a spherical ge
ometry as defined by Eshelby23 and Nabarro,14 KGe is the
Bulk modulus of Ge andmSi the shear modulus of Si. The
constrained strain is calculated assuming that the lattice
rameter of the nanocrystallite is the same as in bulk.

The stress and strain fields in the silicon shell vary a
cording to the distance from the center of th
nanocrystallite:24

s rrSi5
cp

~12c! F12S br D
3G , ~5!

suu
Si 5sff

Si 5
cp

~12c! F11
1

2 S br D
3G . ~6!

The radial and tangential components of the strain fields~for
a 50 Å Ge nanocrystallite with a 350 Å thick Si shell! are
shown in Figs. 2 and 3 respectively.

For the system considered, the elastic strain energy is

EElastic5
1
2~3s rr

Geerr
Ge!~ 4

3pa
3!

1
1

2 E
b

a

~s rr
Sierr

Si12suu
Sieuu

Si !~4pr 2dr ! ~7!

where the first term is due to the Ge nanocrystallite and t
second term is due to the Si shell. Upon substitution of t
relevant terms it simplifies to

FIG. 2. Radial strain field for a 50 Å Ge nanocrystallite with a 350 Å thic
Si shell.
4133Balasubramanian, Ceder, and Kolenbrander
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EElastic5~pa3p2!F122nGe
11nGe

1

mGe
1
122nSi
11nSi

1

mSi

c

~12c!

1
1

2mSi~12c!G . ~8!

B. Incoherent state

The interface between the Ge nanocrystallite and the
shell can become incoherent when the introduction of int
facial defects lowers the energy of the system.

1. Defect energy

Our predictions of critical radius of the Ge nanocrysta
lite will depend on our judicious choice of the possible inco
herency defects. We consider both strain relief by a perf
dislocation loop and by a stacking fault bounded by a part
dislocation loop. It is reasonable to assume that a dislocat
loop is preferred over a set of dislocations that terminate
the surface.

To determine the dislocation energy we assume, that
energy required to create the dislocation loop in a finite m
dium is the same as the energy required to create the di
cation in an infinite medium. This assumption is valid un
the shell thickness becomes so small that the dislocation
teracts with the free surface.

The energy to create a circular dislocation loop in a
infinite medium, with Burgers vector perpendicular to th
plane of the loop is calculated by approximating the tru
dislocation configuration by piece wise straight configur
tions. Each segment of the loop is acted upon by a fo
caused by the stress originating from all other parts of t
loop, and the work done against all these forces is the w
done to create the dislocation loop. Thus, the interaction
ergy between all segments of loop~approximated into a
piece wise-straight configuration! can be calculated accu-
rately as25

ELoop52pr loopS mubu2

4p~12n! D lnS 8ar loop
ubu

21D ~9!

FIG. 3. Tangential strain field for a 50 Å Ge nanocrystallite with a 350
thick Si shell.
4134 J. Appl. Phys., Vol. 79, No. 8, 15 April 1996
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wherea is the dislocation core parameter,r loop is the radius
of the dislocation loop, andubu is the burgers vector of the
dislocation loop.

a. Perfect dislocation loops.We assume the disloca-
tions to be vacancy-type prismatic dislocation loops with
burgers vector (ubu51/2̂ 110&) perpendicular to the plane of
the loop. The dislocation loop is assumed to be at the inte
face between the Ge nanocrystallite and the Si shell. Furthe
the radius of the dislocation loop is assumed to be the radiu
of the Ge nanocrystallite.

As the dislocation loop is created at the interface
between the Ge nanocrystallite and the Si shell, w
use the average shear modulus of the interface26

minterface52mSimGe/~mSi1mGe! in Eq. ~9!.
The defect energy in Eq.~2! for this defect is the energy

of the dislocation loop.
b. Partial dislocations enclosing a stacking fault.An

alternate mechanism for strain relief is assumed to be by
Frank partial dislocation loop with burgers vector (ubu
5 1

3^111&) bounding an intrinsic stacking fault. The energy
required to create this partial loop is given by Eq.~9!, and
the energy to create the intrinsic stacking fault is

EStacking Fault5pr loop
2 g ~10!

whereg is the stacking fault energy of Ge. The defect energ
in Eq. ~2! for this defect is

EDefect5ELoop1EStacking Fault. ~11!

2. Residual elastic energy

The stress field of the dislocation relieves part of the
strain in the misfitting system. The energy released by loo
formation~interaction energy! is evaluated without using ex-
plicit expressions for the field of the dislocation, following
the general procedure outlined by Eshelby,23

EInteraction5pr loop
2 pubu ~12!

wherer loop is the radius of the dislocation loop formed at the
interface between the Ge nanocrystallite and the Si shell,p
the interface pressure as defined in Eq.~9! and ubu is the
Burgers vector of the loop formed. In the case of partia
dislocation enclosing a stacking fault, there is no strain relie
by the stacking fault and all the strain relief is by the partia
dislocation.

The contribution of this strain relieving mechanism to
the residual elastic energy of the system can be consider
by subtracting the interaction energy from the elastic energ

EResidual Elastic5EElastic2EInteraction. ~13!

III. RESULTS AND DISCUSSION

In calculating the energies of the states to estimate th
critical radius, we use the following values for the param
eters:mSi566.6 GPa,ESi5162.9 GPa,nSi50.22,mGe554.6
GPa,EGe5132.8 GPa,nGe50.21 ~Ref. 27!, gGe560 mJ/m2

~Ref. 28!, a54 ~Ref. 29!.
Figure 4 shows the critical radius of the Ge nanocrysta

lite as a function of the Si shell thickness. We find that, fo
very thick Si shells~.1000 Å!, the Ge–Si interface remains

Å
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coherent up to a Ge nanocrystallite radius of 100 Å. T
critical radius of the Ge nanocrystallite in a very thick she
is found to be approximately three times the critical thic
ness of a Ge film on an infinite Si substrate. This can
explained in terms of the interface area to volume ratio. F
a given volume of Ge nanocrystallite or film, the interfac
area between the spherical nanocrystallite and the Si ma
is less than the interface area between the Ge film and
substrate. Therefore, the strain relief provided by introduci
dislocations for the Ge nanocrystallite is smaller than for t
Ge film of the equal volume. Hence generating dislocatio
in a nanocrystallite becomes less favorable until much larg
radii.

For a thinner Si shell, the critical radius of the Ge nano
rystallite increases significantly as the total strain energy
the system decreases. As the Ge nanocrystallite radius
creases, it becomes energetically less favorable to create
tial dislocations enclosing stacking faults at a Ge nanocr
tallite radius of greater than 270 Å. Therefore, coherency
lost by forming a perfect dislocation loop rather than creati
a partial dislocation loop enclosing a stacking fault.

We now assess the validity of the approximations ma
in our calculations. At very small shell thicknesses, the e
ergy required to create the dislocation in a finite medium
not equal to that in an infinite medium. The effect of the fre
surface on the dislocation loop has to be considered in eva
ating the energy required to generate the dislocation. T
interaction between the dislocation and the free surface
creases the energy of the system in the incoherent st
hence the critical radius for systems with very small sh
thickness will be lower than what we have estimated.

The values used for the parameters in these calculati
are approximate. We tested the sensitivity of our results
the value used for the parameters.

In evaluating the energy required to create a dislocat
loop ~perfect or partial! we use a dislocation core paramete
a, of 4 ~Ref. 29!, which is typical for diamond cubic mate-
rials. However, other values ranging between 1 and 5 ha
been used in the literature. Therefore, the critical radius
also evaluated as a function of dislocation core paramete

FIG. 4. Contour of critical radius as a function of Si shell thickness and
nanocrystallite radius.
J. Appl. Phys., Vol. 79, No. 8, 15 April 1996
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various shell thicknesses, as shown in Fig. 5. The crit
radius is found to vary substantially with the core parame
a. The effect of dislocation core parameter on the criti
radius is more pronounced at smaller Si shell thicknesse

In evaluating the energy required to create an intrin
stacking fault, we use a Ge stacking fault energy of
mJ/m2. However, there remains some disagreement in m
surements of stacking fault energies in Ge. Intrinsic stack
fault energies of 30 mJ/m2 ~Ref. 30! and 60 mJ/m2 ~Ref. 28!
have been reported in literature. The critical radius is ev
ated as a function of stacking fault energy at various s
thicknesses, as shown in Fig. 6. The critical radius is fo

e

FIG. 5. Variation of the critical radius as a function of the core paramete
the partial dislocations.

FIG. 6. Effect of stacking fault energy on the critical radius.
4135Balasubramanian, Ceder, and Kolenbrander
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to increase as the stacking fault energy increases. The ef
of stacking fault energy on the critical radius is more pr
nounced at smaller Si shell thicknesses.

The interaction energy~energy released by loop forma
tion! can at most be equal to the elastic strain energy of
system. In our model, this condition is satisfied only for G
nanocrystallites with radii greater than 20 Å, limiting th
applicability of this method.

IV. CONCLUSIONS

The system is coherent up to a Ge nanocrystallite rad
of about 100 Å, irrespective of the Si shell thickness. Nan
crystallite of radii larger than 270 Å lose coherency by th
generation of perfect dislocation loops. For intermediate
nanocrystallite radii~between 100 and 270 Å!, the coherency
is lost by the introduction of partial dislocation loops enclo
ing a stacking fault. As the shell thickness decreases,
critical radius increases.

The significant effect of the stacking fault energy an
dislocation core parameter on the critical radius is found
be more significant at smaller shell thicknesses, indicat
the approximate nature of these calculations. Typical na
crystallite radii of experimental interest are of the order of 5
Å or less. Therefore, we conclude that extremely large G
nanocrystallites capped with Si shells can be grown witho
producing dislocations. We view this as an important det
mination in our efforts to experimentally grow these stru
tures.
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