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Abstract.

An expression-invariant 3D face recognition approach is presented. Our basic
assumption is that facial expressions can be modelled as near-isometric transforma-
tions of the facial surface. We first prove our assumption by a simple experiment.
Next, using the Elad-Kimmel bending-invariant canonical forms we construct a rep-
resentation of the facial surface, which is invariant to its isometric transformations.
The result is an efficient and accurate face recognition algorithm, robust to facial
expressions that can distinguish between identical twins (the first two authors). We
demonstrate the performances of the proposed algorithm and compare it to classical
face recognition methods.

The numerical methods employed by our approach do not require the facial
surface explicitly. The surface gradients field, or the surface metric, are sufficient
for constructing the expression-invariant signature of any given face. It allows us
to perform the 3D face recognition task while avoiding the surface reconstruction
stage.

Keywords: three-dimensional face recognition, bending invariant forms, facial ex-
pressions, differential geometry, multidimensional scaling

1. Introduction

Automatic face recognition has been traditionally associated with the
fields of computer vision and pattern recognition. Face recognition is
considered natural, less intimidating, and a widely accepted biometric
identification method (Ashbourn, 2002; Ortega-Garcia et al., 2004).
As such, it has the potential of becoming the leading biometric tech-
nology. Unfortunately, it is also one of the most difficult recognition
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tasks. So far, all existing solutions provide only partial, and usually
unsatisfactory, answers to the market needs.

In the context of face recognition, it is common to distinguish be-
tween the problem of verification and that of identification. In the first
case, the enrolled individual claims identity of a person whose template
is stored in the database. We refer to the data used for a specific recogni-
tion task as a template. A face recognition algorithm needs to compare
a given face with a given template and verify their equivalence. Such
a setup (one-to-one matching) can occur when biometric technology
is used to secure financial transactions. In this case, the user can be
usually assumed to collaborate, willing to assist the biometric system.

The second case is more difficult. Identification implies that the
enrolled individual should be compared with all templates stored in
the database. The face recognition algorithm should then match a given
face with one of the individuals in the database. Finding a terrorist in
a crowd (one-to-many matching) is one such application. Needless to
say, no collaboration can be assumed in this case.

Despite its straightforward definition, face recognition is a non-
trivial task. The facial reflectance image, acquired using a traditional
2D camera, varies due to external and internal factors. External factors
include different lighting conditions, head pose relative to the camera,
the use of make-up, facial hair, etc. Internal factors include movements
of the mimic muscles, which are responsible for facial expressions, and
the process of aging. In some cases, the variability in a facial image
due to these factors can be even greater than a change in the person’s
identity (see Figure 1). Theoretically, it is possible to recognize an in-
dividual’s face reliably in different conditions (illumination, pose, etc.)
provided that the same person has been previously observed in similar

conditions. However, in practice only few observations of the face are
usually available. Actually, in some cases only a single observation is
given.

 

     
     

 Figure 1. Face recognition with varying lighting, head pose, and facial
expression is a non-trivial task.

The difficulty to adapt to new viewing conditions is one of the inher-
ent drawbacks of appearance-based methods, which include the classical
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eigenfaces method (Turk and Pentland, 1991) and similar approaches
(Sirovich and Kirby, 1987; Hallinan, 1994; Pentland et al., 1994). These
methods use low-dimensional representations of the facial image for the
recognition task. They perform well only when the enrolled image is
acquired in conditions similar to those in which the template image
was acquired (Gheorghiades et al., 2001).

Invariant face recognition refers to methods which are insensitive
to one or all of the above mentioned factors. Such methods can be
divided into two main classes. The first is the invariant representation

approach. It attempts to find a set of features which would be invariant,
or at least insensitive, to possible changes in the facial image. In fact,
the first automatic face recognition algorithms (Bledsoe, 1966; Kanade,
1973; Goldstein et al., 1971) and follow-up works (see surveys (Samil
and Iyengar, 1992; Li and Lu, 1999) and references cited therein) were
based on the so-called fiducial points (eyes, nose, mouth, etc.) and
their geometric relations (angles, lengths, and ratios). Unfortunately,
very few fiducial points that can be reliably extracted from a 2D facial
image are insensitive to illumination and pose (Cox et al., 1996); almost
none of these kind of features are invariant under facial expressions.
Moreover, such measures are usually insufficient for accurate recog-
nition (Brunelli and Poggio, 1993). Elastic graph matching was used
in (Wiskott, 1995; Wiskott et al., 1997) to account for fiducial points
displacement due to flexibility of the facial surface. This method yield
limited success as the attributed graph is merely a flat representation
of a curved object.

The second class of methods is the generative approach. Assuming
some model of facial image formation, generative methods use observa-
tions of the face to find the model parameters, in order to synthetically
generate facial images in new poses and illumination conditions. These
approaches produce sufficiently good results when coping with variable
illumination, especially if a Lambertian reflectance model is assumed.
In their recent papers, Gheorghiades et al. (1998, 2001) showed a so-
lution based on the illumination cones model, which is insensitive to
illumination and moderate head orientations. Facial expressions appear
to be more problematic to synthesize. Approaches modelling facial
expressions as warping of the facial image do not capture the true
geometric changes of the facial surface, and are therefore useful mainly
for graphics applications. That is, the results may look natural yet fail
to represent the true nature of the expression.
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1.1. Two-dimensions vs. three-dimensions

A recent trend is the approach of three-dimensional face recognition.
These methods try to use the geometry of the human face in addition
to the conventional flat image. In 3D face recognition, the enrollment
requires a sensor which acquires depth information – usually referred
to as depth or range camera. With slight abuse of terminology, we refer
to 3D face recognition as those methods that use the facial surface
information; while the term 2D face recognition is reserved for those
using only the 2D reflectance image of the face1.

In some sense, this relatively new research direction breaks the long-
term tradition of 2D face recognition methods, that is of mimicking
the functions of the human eye. It appears that the face recognition
in the human visual system is indeed based on flat, two-dimensional
intensity information rather than the curved facial surface in three
dimensions. This can be demonstrated by a simple visual experiment,
which we named “face swap” (or “face/off”). In Figure 2, the facial
albedo of one individual (Alice) is mapped onto the facial surface of
another individual (Bob). The albedo (that represents the intrinsic
color and texture) leads us to recognize the subject at the bottom
as Alice, although the true facial surfaces of the two individuals are
significantly different.

Though practically “overlooked” by the human eye, the geometry of
a face potentially conceals useful invariant features. The facial surface
is insensitive to illumination, head pose, as well as the use of makeup.
Moreover, 3D data can be used to produce invariant measures out of the
2D data. For example, the albedo, which is insensitive to illumination,
can be estimated from the 2D reflectance, if the facial surface geom-
etry is known. Prior results prove the utility of 3D geometry for face
recognition. Gordon (1997) showed that combining frontal and profile
views can improve recognition accuracy. Beumier and Acheroy (1988)
proposed augmenting face recognition systems with a range camera
that captures the facial surface geometry, in addition to the facial
image. Improvement over traditional 2D face recognition algorithms
was also shown in (Mavridis et al., ; Huang et al., 2002).

However, facial expressions do change significantly not only the 2D
image, but also the geometric structure of the face. The basic weakness
of previous 3D face recognition approaches is the treatment of the facial

1 Gheorghiades et al. (2001), for example, use implicitly the facial surface recov-
ered from photometric stereo to generate synthetic facial images with new poses
and illumination. While Chen and Medioni (2001) used stereo vision for 3D face
recognition.
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Three-Dimensional Face Recognition 5

Figure 2. Does depth play a dominant role in face recognition in the human visual
system? Left: A frontal picture of subjects Bob (top) and Alice (bottom). Center:
Facial surface of Bob. Right: Synthetic views of Bob’s face produced using Bob’s
facial surface (top); and synthetic views of Alice’s face textured mapped onto Bob’s
facial surface (bottom). Though the facial features appear slightly distorted, most
human observers preferred to recognize the bottom pictures as Alice, rather than
Bob.

surface as a rigid object - an assumption which is inaccurate for human
faces. Consequently, these methods can not handle facial expressions.

Our approach is based on treating the facial surface as a deformable
object. Empirical observations show that the deformations of the face
resulting from mimics can be modelled as near-isometric transforma-
tions (Bronstein et al., 2003b). Consequently, the intrinsic geometric
properties such as the geodesic distances between points on the facial
surface are preserved. Thus, a representation of the face invariant to
isometric transformations would also be invariant to facial expressions.

The geodesic structure of an isometric surface is captured by the
inter geodesic distance between points on the surface. The question is
how should we efficiently compare between the geometric structure of
such large arrays of mutual geodesic distances. One computationally
efficient invariant representation can be constructed by embedding the
surface in a low-dimensional Euclidean space – a procedure known as
flat embedding or generalized map-making. Embedding into a plane
was shown to be useful in the analysis of cortical surfaces (Schwartz
et al., 1989), and in texture mapping (Zigelman et al., 2002; Grossman
et al., 2002). Embedding into higher dimensional Euclidean spaces was
shown to be an efficient way to perform matching of deformable objects
(Elad and Kimmel, 2001). This method, producing geometric signa-
tures called bending-invariant canonical forms, is the core of our 3D
face recognition system. It consists of measuring the geodesic distances
between points on the facial surface and then using multidimensional
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scaling to carry out the flat embedding. This way, the task of comparing
deformable objects like faces is transformed into a much simpler prob-
lem of rigid surface matching, at the expense of loosing some accuracy,
which appears to be insignificant in this case.

An important property of the numerical algorithms implemented in
our system, is that we actually do not need the facial surface to be given
explicitly. All stages of our recognition system, including pre-processing
and computation of geodesic distances can be carried out given only the
metric tensor of the surface, or equivalently, the surface gradients. It
allows us to use simple and cost-efficient 3D acquisition techniques like
photometric stereo. Avoiding the explicit surface reconstruction also
saves computational time and reduces the numerical errors (Bronstein
et al., 2004b).

The organization of this paper goes as follows: The second section
starts with modelling faces as Riemannian manifolds2. Such a formula-
tion serves as a unifying framework for different procedures described
later on. Facial expressions are modelled as isometric deformations of
the facial surface. A simple experiment justifies this assumption. The
presentation of the rest of the sections tracks the data flow of our algo-
rithm. In Section 3, we describe depth acquisition techniques suitable
for 3D face recognition. Section 4 is dedicated to post-processing of the
acquired 3D data. Section 5 deals with measuring geodesic distances
on discrete facial surfaces. Section 6 introduces the concept of multi-
dimensional scaling and its application to flat embedding. Section 7
unites all the building blocks in the previous sections into a 3D face
recognition system and addresses some implementation considerations.
In Section 8 we show experimental results assessing the performance of
our method. Section 9 concludes the paper.

2. The geometry of human faces

We model a human facial surface as a 2-dimensional smooth connected
parametric manifold M, represented by a coordinate chart from a
compact subset U ⊂ IR2 to IR3, given by

x(U) = (x1(u1, u2), x2(u1, u2), x3(u1, u2)), (1)

such that M = x(U). We assume that the functions x1, ..., x3 are
smooth (C∞), and that the vectors ∂ix = ∂

∂ui x (i = 1, 2) are linearly
independent at every point. We will further assume, w.l.o.g., that the
manifold can be written as a graph of a function, e.g. x3 = x3(x1, x2),

2 Hereinafter, the term “manifold” is used synonymously to “surface.”
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Three-Dimensional Face Recognition 7

such that x3 can be referred to as the depth coordinate. Also, for conve-
nience, in the following the parameterization coordinates u = (u1, u2)
will be identified with the coordinates in the image acquired by the
camera (see Section 3). Similarly, we define the facial albedo ρ(u1, u2).

The derivatives ∂ix constitute a local non-orthogonal coordinate sys-
tem on M, and span an affine subspace of IR3 called the tangent space

and denoted by TxM for every x ∈ M. In order to consider the non-
Euclidean geometry of the manifold, we introduce a bilinear symmetric
non-degenerate form (tensor) g called the Riemannian metric or the
first fundamental form. It can be identified with an inner product on
TxM. The Riemannian metric is an intrinsic characteristic of the mani-
fold and allows us to measure local distances on M independently of the
coordinates (Kreyszig, 1991). The pair (M, g) is called a Riemannian

manifold.
In coordinate notation, a distance element on the manifold can be

expressed via the metric tensor gij(x) as

ds2 = gijduiduj , i, j = 1, 2; (2)

where repeating super- and subscripts are summed over according to
Einstein’s summation convention. The metric tensor gij of the manifold
is given explicitly by

gij = ∂ix · ∂jx, i, j = 1, 2. (3)

The unit normal to M at x is a vector orthogonal to the tangent
plane TxM and can be written as a cross-product

n(x) =
∂1x × ∂2x

‖∂1x × ∂2x‖2
. (4)

Differentiating the obvious relation ∂ix · n = 0 w.r.t. uj yields another
intrinsic characteristic of the manifold called the second fundamental

form, which is given in coordinate notation as

bij = −∂ix · ∂jn = ∂j(∂ix) · n. (5)

The importance of the second fundamental form is that the maximum
and the minimum eigenvalues λmax, λmin of the tensor bj

i = bikg
kj are

the principal curvature values of the manifold at point x. The corre-
sponding eigenvectors of (bij) are the principal curvature directions.
The value bi

i = (λmax + λmin) is called the mean curvature and is de-

noted by H; the determinant det(bj
i ) = λmaxλmin is called the Gaussian

curvature and is denoted by K.
Since our manifold is connected and compact, the Riemannian met-

ric induces a distance metric. In order to define it, let x,y ∈ x(U) be
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two surface points and let c : [0, 1] → M be a smooth parametric curve
from x to y on the surface M. The length of c(t) is defined by

ℓ(c) =

∫ 1

0

∥

∥

∥

∥

dc(t)

dt

∥

∥

∥

∥

dt. (6)

Then, the distance from x to y on M is given by

d(x,y) = inf
c(t)

ℓ(c). (7)

The paths of minimum length, resulting from the extrema of the func-
tional ℓ(c) are called minimal geodesics, and d(x,y) is called the geodesic

distance.
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Figure 3. Definition of the manifold M by the mapping x : U → M and examples
of the differential geometric notions mentioned in the text.

2.1. Facial expressions as isometric transformations

Let f : (M, g) → (M′, g′) be a diffeomorphism on the facial mani-
fold M. The resulting surface M′ can be parameterized by x′(U) =
f(x(U)). We will also assume that the vectors ∂ix

′ are linearly inde-
pendent. That is, f is an allowable mapping (Floater and Hormann,
2004). The transformation f is called isometric, or an isometry, if it
preserves the metric tensor, that is g(x) = g′(x′). A classical result,
known as Theorema Egregium (Gauss, 1827), claims that the Gaussian
curvature can be expressed entirely in terms of the metric. Therefore,
K = K ′ is a necessary condition for an isometry.

From the point of view of Riemannian geometry, isometric manifolds

which are two manifolds differing by an isometry, are indistinguishable.
In the same way as g induces a distance metric on M, the tensor g′
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induces a distance metric on M′. Consequently, f preserves the distance
between every pair of points on M. That is, for every u1,u2 ∈ U

d(x(u1),x(u2)) = d(x′(u1),x
′(u2)). (8)

Next, we apply this model to faces. Facial expressions result from
the movement of mimic muscles (Ekman, 1973). We assume that nat-
ural deformations of the facial surface can be modelled as isometric
transformations. In other words, facial expressions give rise to nearly
isometric manifolds. This allows us to construct an expression-invariant
representation of the face, based on its intrinsic geometric structure
that can be captured by geodesic distances.

Remark 1. Some extreme facial expressions, specifically, an open mouth,

change the topology of the facial manifold. Such transformation can be

dealt with by enforcing a fixed topology. For example, assuming that the

mouth is shut and thereby “gluing” the lips when the mouth is open.

Alternatively, we can assume the mouth to be always open, and then

“disconnecting” the lips by introducing a cut in the surface when the

mouth is closed. For simplicity, we assume hereinafter that expressions

preserve the facial manifold topology.

Verifying quantitatively that facial expressions are indeed isometric
is possible by tracking a set of feature points on the facial manifold
and measuring how the distances between them change due to facial
expressions. Unfortunately, as noted in Section 1, there are very few
points that can be located accurately on a human face. In order to over-
come this difficulty, we placed 82 white round markers (approximately
2 mm in diameter) as invariant fiducial points, onto our subject’s face.
Such markers can be easily detected under a variety of facial expres-
sions (Figure 4, left). In this experiment, we used 17 faces with weak,
medium and strong facial expressions (see Figure 4, right)3. The refer-
ence points were manually labelled; then the Fast Marching algorithm
(see Section 5) was used to compute the geodesic distances between
them.

Figure 5 depicts a plot of the distances between the points in faces
with different expressions as function of the corresponding distances in
the reference ”neutral” face (we used an average of the distances on 4
faces with neutral expression). Each point represents a distance; devia-
tion from the diagonal represents the absolute error w.r.t. the reference
distance. Ideally, all the points should lie along the diagonal line. We
present two separate plots for weak and strong facial expressions.

3 For the sake of consistency with our assumption of fixed topology of the facial
manifold, we present here results on facial expressions with closed mouth only.
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Figure 4. Facial expressions experiment. Left: facial image with the markers. Right:
example of four facial expressions with marked reference points.
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Figure 5. Geodesic (red) and Euclidean (blue) distances between the points in faces
with medium (left) and extreme (right) expressions as function of the corresponding
distances in the reference (neutral) face. Scale is given in mm.

In order to quantify the changes that the distances undergo, we use
two measures: the absolute error w.r.t the reference distances: ǫabs

i =

di − dref
i , and the relative error ǫrel

i = (di − dref
i )/dref

i (here di denotes

the i-th distance and dref
i is the corresponding reference distance).

The relative error is a more meaningful criterion, since on non-flat
surfaces geodesic distances are larger than Euclidean ones (the mean
of the geodesic distances was 61.23mm; while the mean of the Euclidean
distances was 57.71mm, i.e. 6% smaller).

Table I presents the standard deviation and the mean absolute
value of ǫabs

i and ǫrel
i . Figure 6 presents the standard deviation of

ǫabs
i and ǫrel

i for distances divided into short (up to 50mm), medium
(50 − 100mm) and long (greater than 100mm) ones. Comparing the
behavior of Euclidean and geodesic distances (in sense of the standard
deviation of ǫrel), we observe the following trends: First, geodesic dis-
tances outperform the Euclidean ones (i.e. result in smaller error) by up
to 54.14%. Secondly, the factor by which geodesic distances outperform
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Table I. Standard deviation and the mean absolute value of the absolute error ǫ
abs
i

and the relative error ǫ
rel
i . Shown separately for weak and strong facial expressions.

Weak & medium Strong

Geodesic Euclid. Geodesic Euclid.

Absolute error std. dev. (mm) 2.95 2.76 4.07 5.35

Absolute error abs. mean (mm) 1.97 2.00 2.89 3.10

Relative error std. dev. (%) 3.13 3.59 4.07 7.15

Relative error abs. mean (%) 2.14 2.62 3.26 4.26

the Euclidean ones grows (from 14.70% to 54.14%) when allowing for
strong facial expressions. Finally, examining Figure 6 we conclude that
the inaccuracy of the Euclidean distances as opposed to the geodesic
ones appear more acutely in medium and large distances rather than
short ones; this result is explainable since locally every curved surface
is approximately flat.
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Figure 6. Standard deviation of the absolute error (ǫabs, in mm) and the relative
error (ǫrel, in %) on short, medium and long distances. Red and blue represent
geodesic and Euclidean distances, respectively.

The conclusion of this experiment is two-fold. First, the changes that
geodesic distances undergo due to facial expressions are insignificant
(up to 3.26% relative error on the average), which justifies our isometric
model. Secondly, Euclidean distances are much more susceptible to
changes due to facial expressions compared to the geodesic ones. This
observation will be reinforced by the results in Section 8, where we
compare our method based on the isometric model assumption to a
method that treats facial surfaces as a rigid objects.
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3. Three-dimensional data acquisition

We assume a Lambertian reflectance model, according to which the re-
flectance of an infinitesimal surface patch at x(u) with outward pointing
unit normal vector n(u) and albedo ρ(u) is given by

r(u) = max (0, ρ(u)n(u) · l(u)) , (9)

where l(u) is the light direction (in the general case, if the light source
is not distant, i.e. the rays are not parallel, the light direction in every
point u is different). Pixels in which r(u) = 0 are shadowed.

3.1. Surface reconstruction

A camera, described by a perspective projection, maps the point x

in the three-dimensional world coordinate system into the point xc

in the two-dimensional image plane coordinate system. All the points
lying on the ray ocxc (bold line in Figure 7) are projected to xc. In
passive stereo, a second camera is used, adding another non-collinear
view oc′xc′ , that can be used to resolve this ambiguity by triangulation.
The location of x is uniquely determined by the intersection point of
the two rays oc−xc and oc′−xc′). This procedure requires to determine
the corresponding xc′ for every xc (referred to as the correspondence

problem).
In active stereo, the second view effect is obtained by an “active”

projector rather than a second “passive” camera. A typical active stereo
setup is shown in Figure 7. The projector is also described by a perspec-
tive projection, which maps x into xp in a one-dimensional projector
coordinate system. The projector casts a light code onto the object,
which allows us to determine xp corresponding to each point xc in the
camera image plane. World coordinates x are obtained unambiguously
from the intersection of the ray oc − xc and the plane opxp, assuming
that the latter are known (and in practice, obtained by a calibration
procedure).

Active stereo techniques differ mainly by the illumination patterns
used to encode the projection plane xp. Time- (Posdamer and Altschuler,
1982; Horn and Kiryati, 1999), gray level intensity- (Carrihill and Hum-
mel, 1985), color- (Tajima and Iwakawa, 1990), and space-multiplexed
(Hugli and Maitre, 1989; Vuylsteke and Oosterlinck, 1990) codes are
commonly used. A Grey time-multiplexed coding scheme was adopted
for facial surface acquisition in this work (Bronstein et al., 2003a).
Positioning the camera and the projector in front of the subject, such
that occlusions are avoided, allows us to capture all the facial surface.
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Figure 7. Active stereo: The location of the point xw in the world coordinates cannot
be determined only by its 2D coordinated xc in the camera coordinate system. All
points with the same xc lie along a line (bold). If in addition, a 1D coordinate xp

of the point in the projector system is known, x can be computed by triangulation.

Remark 2. Extreme rotations of the head may result in occlusions.

In our current implementation, we use only a single camera, and thus

limit the head poses to bounded deviations from the frontal position.

This limitation is merely technical - if insensitivity to larger angles is

required, a multiple-view acquisition [see e.g. (Hung et al., 1999)] can

be used.

Under the assumption of a frontal view, we identify the image coor-
dinates with the parameterizations coordinates (u1, u2), which are now
partitioned into a uniform grid of N0 pixels. Then, for every pixel ui

(i = 1, ..., N0) we have an estimate of x(ui). In other words, the scanner

produces a sampled version {xi = x(ui)}N0

i=1 of the facial manifold. Note
that though the parameterizations plane is sampled on a regular grid of
pixels, the samples along x1 and x2 are neither necessarily regular nor
uniform. Specifically, in our implementation, the range data is stored in
three double-precision matrices, each of size 320 × 240, corresponding
to the values of x1, x2 and x3 in each pixel. Thereby, the scanner output
is a cloud of N0 = 76.8 × 103 points in 3D.

The active stereo setup allows albedo estimation from the reflectance
image r(ui) observed by the camera, under the assumptions of Lamber-
tian reflection and linear camera response. First, the world coordinates
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14 Michael M. Bronstein, Alexander M. Bronstein, Ron Kimmel

of a point x(ui) and the normal to the surface n̂(ui) at that point are
estimated. Next, illumination direction and relative intensity l(ui) are
extracted. The illumination direction is given by x(ui) − op, and the
intensity is dictated by the structure of the projected light code. The
albedo in pixel i is given by

ρi =
r(ui)

l(ui) · n̂(ui)
, (10)

where ri is the reflectance observed in pixel ui.

3.2. Metric reconstruction

Active stereo methods estimate the absolute location of each and ev-
ery point on the facial surface. As an alternative, it is possible to
estimate the gradient ∇x3(u), or the normal field n(u) of the sur-
face. In this case, the natural parameterizations of the manifold is
(u1, u2, x3(u1, u2)).

One of the classical method for recovering the field of normals un-
der the assumption of Lambertian model is the photometric stereo

approach. Given K reflectance images r(1)(ui), ..., r
(K)(ui) acquired

under illumination by a distant point light source at different direc-
tions l(1), ..., l(K), it is possible to estimate the unit normal vector in
every pixel (Gheorghiades et al., 2001). Proesmans et al. (1996) and
Winkelbach and Wahl (2001) proposed a method to recover the sur-
face gradient field by projecting two stripe patterns and studying their
deformations.

Given the surface gradients ∂1x
3, ∂2x

3, the surface x3(u) can be
reconstructed by solving the Poisson equation (Gheorghiades et al.,
2001; Kimmel and Yavneh, 2003). However, as we will see, our algo-
rithm does not require the facial surface in an explicit form, and thus
the gradient field integration stage can be avoided.

4. Preprocessing

The points cloud obtained from the scanner undergoes processing by
cropping and smoothing. The first stage is required to extract the
approximate facial contour and remove problematic points in which
the reconstruction is inaccurate. Those usually appear as spikes (see
Figure 8, second column). The facial contour is defined by a binary mask

image µi = µ(ui). The mask computation involves several thresholds,
defined according to the fidelity level and the value of the discrete
gradient norm ‖∇x3‖2

2 = ∂ix
3∂ix3 (both are used to remove the spikes),
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and the depth histogram, that allows us to separate the face from
the background. Finally, morphological operations are applied to the
mask in order to remove non-connected regions and isolate the facial
contour as a single object. Holes inside the facial contour are closed
by interpolation. We use Ω1 = {ui : µi = 1} to denote the pixels in
the facial contour, and denote the number of pixels in the mask by
|Ω1| = N1.

4.1. Beltrami flow

The second stage is required to remove the quantization noise of the
scanner. We use a variant of the Beltrami flow for edge-preserving se-
lective smoothing, which was proven to be a powerful method for color
image processing (Sochen et al., 1998; Kimmel, 2003). The method is
efficient and does not require the surface to be given explicitly.

Our smoothing procedure resembles the anisotropic diffusion in (Tas-
dizen et al., 2002; Fleishman et al., 2003). The key idea of such smooth-
ing is iterative minimization of the functional

S(x, g) =

∫

U
d2u

√
ggij∂ix

i∂jx
jδij , (11)

which can be considered as a generalization of the L2 norm to curved
spaces. The minimum of functional S stems from the Euler-Lagrange
conditions and results in the following gradient descent evolution equa-
tion

∂tx
i =

1√
g

δS

δxi
; i = 1, ..., 3; (12)

where t is a time parameter, and the manifold evolves in time, according
to its “mean curvature flow” towards a minimal surface. Our manifold
is given as a graph of a function x3(x1, x2), filtering just the depth
coordinate x3 according to this result gives rise to the partial differential
equation

∂tx
3 =

1√
g
∂i(

√
ggij∂jx

3); i, j = 1, 2. (13)

where gij is the inverse metric tensor. This PDE is a non-Euclidean
version of the diffusion equation (Spira et al., 2004). Smoothing is
performed by numerical solution of (13) for a time proportional to
the noise variance, a process that can be implmented very efficiently.
The processing is limited to the facial contour Ω1; Neumann boundary
conditions ∇x3|∂Ω1

= 0 are used.
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Figure 8. Pre-processing of the 3D scanner data, left to right: points cloud
(sub-sampled 1:5); facial surface before processing; extracted facial contour; Beltrami
smoothing result. Surfaces are rendered using Phong shading.

When the facial manifold is not given explicitly, and all we have is
its gradients on a uniform grid (x1, x2, x3) = (u1, u2, x3(u1, u2)), it is
possible to evolve the gradient field instead of the surface.

5. Measuring geodesic distances on the facial manifold

The next step in the processing requires measuring geodesic distances
on the facial surface. We use the Fast Marching Method (FMM), which
measures the distances from one point to the rest of the N1 surface
points in O(N1) operations.

The FMM algorithm, introduced by Sethian (1996), is based on
upwind finite difference approximations for solving the eikonal equation

‖∇ϕ(x)‖ = 1, (14)

where ϕ is the distance map from the sources s1, such that ϕ(s1) = 0.
The FMM was extended to triangulated manifolds by Kimmel and
Sethian (1998).

The classical FMM uses an orthogonal coordinate system (regular
grid). The numerical stencil for an update of a grid point consists
of vertices of a right triangle. In the case of triangulated manifolds,
the stencils used by the Fast Marching algorithm are not necessarily
right triangles. If a grid point is updated through an obtuse angle, a
consistency problem may arise. To cope with this problem, Kimmel
and Sethian proposed to split obtuse angles by unfolding triangles as a
preprocessing stage.

A variation of the FMM for parametric manifolds was presented by
Spira and Kimmel (2003, 2004). The main advantage of this method
is that the computations are done on the uniform Cartesian grid in
the parametrization plane, and not on the manifold like in the original
version of Kimmel and Sethian. The numerical stencil is calculated
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Three-Dimensional Face Recognition 17

directly from the local metric value, and therefore, no unfolding is
required (see details in (Spira and Kimmel, 2004)). In our application,
the advantage of using the parametric FMM is that the surface is not
required explicitly in order to measure distances; and the metric given
on the parametric plane is sufficient (Bronstein et al., 2004b).

5.1. Geodesic mask

The geodesic mask is defined as Ω2 = {ui ∈ Ω1 : minl d(xi, sl) ≤ R},
where s1, ..., sL are some source points. Roughly speaking, it is a the
interior of a “geodesic circle” with radius R. We denote |Ω2| = N - the
number of points remaining after all the processing stages.

The source points are chosen from some invariant features, such
as the tip of the nose or the eye sockets. Such points can be identi-
fied robustly from the geometric information. Specifically, we used two
sources: the nose tip and the bridge of the nose. The geodesic mask
is computed by measuring geodesic distances from s1, ..., sL to all the
points xi (i = 1, ..., N1) in the mask Ω1, computed at the preprocessing
stage, using the Fast Marching. Then, we crop the points for which the
distance exceeds some radius R. A typical value of R for a human face
is 90 − 110 mm.

   

 

 

 

   

      
 Figure 9. Computation of the geodesic mask. First column: Equidistant contours

from two sources located at the tip of the nose and the center of the bridge of the
nose. Second column: The resulting geodesic mask. Third through fifth columns:
Examples of the geodesic mask insensitivity to facial expressions.

6. Bending-invariant representation

A curved non-Euclidean facial manifold is not a convenient object to
process. We would like to find a better representation of the mani-
fold which would be (i) convenient to analyze (Euclidean space is one
suitable candidate); and (ii) identical for all isometric manifolds.

A similar problem arouse hundreds of years ago in the context of
map making - namely, how to map the spherical surface of the Earth
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18 Michael M. Bronstein, Alexander M. Bronstein, Ron Kimmel

onto a plane without distorting the distances between geographical ob-
jects? (see Figure 10). Such a mapping is also known as flat embedding.
From the Theorema Egregium it follows that a sphere and a plane are
not isometric manifolds, since the plane has zero Gaussian curvature,
while the sphere has a positive one. Hence, flat embedding is possible
only with some errors. Similarly, when trying to embed an arbitrary
curved manifold into any flat space, there will always exist some metric
distortion. The question then is how to minimize these distortions.

 
 

A 
B 

 
 
 
 

 

A B 

Figure 10. The classical flat embedding problem in map-making: The spherical
surface of the Earth (left) is converted into a planar map (right), trying to preserve
the distances between every pair of points (here denoted by A and B). Geodesic
distances are approximated by Euclidean ones.

We would like to find the “most isometric” embedding, the one that
deforms the manifold distances the least. In practice, we have a finite
discrete set of N manifold samples {xi}N

i=1 (represented as a 3 × N
matrix X = (x1, ...,xN )) and a set of N2 mutual geodesic distances
between these samples. The geodesic distances are represented as a
matrix D with dij = d(xi,xj). We consider a mapping of the form ϕ :
(M, d) → (IRm, d′), which maps the manifold samples xi into points x′

i

in an m-dimensional Euclidean space, such that the geodesic distances
dij are replaced by Euclidean ones d′ij = ‖x′

i − x′
j‖2.

Obviously, as isometric transformations preserve distances, dij re-
main unchanged. The problem is that the discrete set of points {xi}N

i=1

can be ordered arbitrarily, and thus the matrix D is invariant up to a
permutation of rows and columns. Moreover, when sampling a surface,
there is no guarantee to sample the surface at similar points. This makes
the computation of such an invariant impractical, though we refer to
the most recent attempt to directly compare the geodesic matrices
(Mémoli and Sapiro, 2004). Flat embedding (though inevitably being
an approximate representation of the original surface), on the other
hand, is invariant up to arbitrary rotation, translation and reflection,
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which is much easier to cope with. We will refer to the embedding result
X′ as the bending invariant canonical form of the manifold.

The embedding error can be measured as a discrepancy between the
geodesic and the resulting Euclidean distances using some norm,

s(X′;D) = ‖D − D′(X′)‖, (15)

where X′ = (x′
1, ...,x

′
N ) is an m × N matrix representing the points

in the embedding space, and D′ is the matrix of mutual Euclidean
distances depending on the points configuration X′. The function (15)
is sometimes referred to as stress.

Finding the best approximate flat embedding is possible by mini-
mization of s(X′;D) w.r.t. X′. A family of algorithms used to carry
out such approximate flat embedding is usually referred to as multidi-

mensional scaling (MDS). These algorithms differ in the choice of the
embedding error criterion and the method used for its minimization.

6.1. Multidimensional scaling

One of the first MDS algorithms proposed by Torgerson (1952) and
Gower (1966), based on earlier theoretical results of Eckart and Young
(1936) and Young and Householder (1938), is now known as the classi-

cal scaling. This method, being merely algebraic, is very efficient. An-
other advantage is that the embedding coordinates in classical scaling
can be expressed analytically.

The method works with squared geodesic distances, which can be
expressed as Hadamard product ∆ = D ◦ D (coordinate-wise product
of matrices). The matrix ∆ is first double-centered

B = −1

2
J∆J (16)

(here J = I − 1
N 11T and I is an N × N identity matrix). Then, the

eigendecomposition B = VΛVT is computed, where V = (v1, ...,vN )
is the matrix of eigenvectors of B corresponding to the eigenvalues
λ1 ≥ λ2 ≥ ... ≥ λN . Denoting by Λ+ the matrix of first m positive
eigenvalues and by V+ the matrix of the corresponding eigenvectors,
the coordinate matrix in the embedding space is given by

X′ = V+Λ+. (17)

Explicitly,

x′
i =

(

√

λ1v
i
1, ...,

√

λmvi
m

)

, i = 1, ..., N, (18)

with vi
j denoting the i-th coordinate of the vector vj where j = 1, ...,m.

The set of points x′
i obtained by classical scaling is referred to as the
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20 Michael M. Bronstein, Alexander M. Bronstein, Ron Kimmel

classical canonical form of the discrete manifold, in order to distinguish
it from canonical forms obtained by other MDS methods. In practice,
since we are usually interested in embedding into IR3 or IR2, no full
eigendecomposition of B is needed - it is enough to find only the
first three or even two eigenvectors. The method of Arnoldi iterations
(Arnoldi, 1951), for example, performs this task efficiently.

It can be easily shown [see (Borg and Groenen, 1997)] that classical
scaling minimizes the Frobenius norm

s(X) =

∥

∥

∥

∥

V

(

Λ −
[

Λ+

0

])

VT

∥

∥

∥

∥

F

, (19)

which gives the possibility to define the embedding error as a squared
sum of the eigenvalues λm+1, ..., λN ignored in the embedding proce-
dure.

However, such definition of the metric distortion is not intuitive.
One straightforward possibility is to choose the norm in (15) to be
Euclidean, and thus have the metric distortion defined as a sum of
squared differences

s(X′;D) =
∑

i>j

(dij − d′ij)
2, (20)

and the MDS is posed as a least-squares (LS) problem. Such a function
is non-convex and if minimized by conventional convex optimization
algorithms, convergence to a global minimum cannot be guaranteed. An
algorithm for stress minimization based on iterative majorization was
proposed by De-Leeuw (1977) and is known as the SMACOF algorithm.
The key idea of majorization is replacing the non-convex stress s(X,D)
by some convex (e.g. quadratic) majorizing function and minimizing
it w.r.t. X. It can be shown (De-Leeuw and Stoop, 1984) that such
optimization converges linearly to the global minimum X′, which we
call the LS canonical form.

When the embedding is performed into a space with dimensionality
m ≤ 3, the canonical form can be plotted as a surface (Figure 11,
third column). Figure 12 depicts canonical forms of one subjects with
different facial expressions. It demonstrates that while the facial surface
changes are dramatic, the changes between the corresponding canonical
forms are small. Extreme facial expressions deviating from our isometric
model make the corresponding canonical forms deviate from the neutral
one. Yet, the changes in the canonical forms are significantly smaller
than the changes between the original facial surface - this point will be
exemplified experimentally in Section 8.
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Embedding into IR2 is a special case - it can be thought of as “warp-
ing” of the facial texture (Figure 11, fourth column). This serves as a
way of performing geometry-based registration of 2D facial images.

 

  

 

 

 

 
ORIGINAL  3D CANONICAL  2D CANONICAL 

 
 
 
 
 
 

Figure 11. Examples of LS canonical forms of a face. When the embedding is per-
formed in IR2, the MDS procedure can be thought of as warping of the facial texture
(fourth column).

 
 

  

 

  
NEUTRAL  SURPRISE  DISGUST 

 

   

CHEWING  INFLATE    
 
 Figure 12. Insensitivity of canonical forms to facial expressions. The canonical forms

appear less susceptible to changes compared to the original facial surfaces. For
comparison, the face of a different subject and its canonical form are shown.

6.2. Stability analysis

An important property that makes the canonical forms practically
useful is that the embedding result X′ changes continuously with the
change of X. This guarantees that a small perturbation in the points
of the manifold does not change significantly the canonical form.

We show here stability of both the classical and the LS canoni-
cal forms; while the second is straightforward (Theorem 2), the first
requires more delicate analysis involving matrix perturbation theory.
The proofs are given in Appendices .1–.2.

Theorem 1. Let {xi}N
i=1 be samples of the manifold with geodesic dis-

tances dij, such that the double-centered matrix B has non-degenerate
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eigenvalues λ1 < λ2 < ... < λN . Then, a small perturbation of a

point xi results in a small perturbation of the classical canonical form

{x′
i}N

i=1.

Remark 3. The assumption of non-degeneracy of the spectrum of B

is valid for curved surfaces such as the facial surface.

Theorem 2. Let {xi}N
i=1 be samples of the manifold with geodesic

distances dij. Then, a small perturbation of a point xi results in a

small perturbation of the least squares canonical form {x′
i}N

i=1.

7. The 3D face recognition system

Bringing all the building blocks described above, we obtain a 3D face
recognition system with data flow as depicted in Figures 13 – 14. Fig-
ure 13 shows the basic preprocessing stages. The subject’s facial surface
is first scanned, producing the surface and the reflectance image; due
to the acquisition method used, there is a one-to-one correspondence
between each point of the surface and each pixel of the image. At
the next stage, both the surface and the image are cropped in order
to remove the background and thus reduce the number of points and
remove the spikes. On the third stage, holes in the surface, that are
created by the spike removal procedure, are closed and the surface
is selectively smoothed to eliminate the quantization artifacts of the
scanner. Using the smoothed surface, the normal field is estimated and
used to recover the facial albedo from the reflectance image. At the
fourth stage, the surface and the albedo are sub-sampled. We used a
factor of 0.35 in both axes. Finally, the surface is triangulated, the
nose is located by robust correlation with a 3D template; and a second
cropping based on the geodesic mask around the nose is performed.
As an alternative, the above stages can be done without the surface
reconstruction. Figure 14 depicts an example of such processing when
photometric stereo is used for 3D acquisition.

The surface obtained at the preprocessing stage undergoes flattening
by MDS to yield a canonical form. The corresponding albedo image
is flattened as well. However, since embedding is defined up to an
Euclidean and reflection transformation, the canonical surface must be
aligned. We performed the alignment by first setting to zero the first-
order moments (the center of gravity) m100,m010,m001 of the canonical
surface to resolve the translation ambiguity (here

mpqr =
N

∑

i=1

(x1
i )

p(x2
i )

q(x3
i )

r (21)
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SURFACE 
CROPPING 

HOLE CLOSING+ 
SMOOTHING 
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SUB-SAMPLING 

NOSE DETECTION+ 
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TEXTURE 
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NORMAL FIELD 

SCANNER OUTPUT 

Figure 13. Preprocessing stages in 3D face recognition. Geometry processing (first
row, left to right): Raw data acquisition by a 3D scanner; surface cropping; filling in
the holes and selective smoothing; sub-sampling; nose detection and geodesic mask
computation. Texture processing (second row, left to right): Cropping; illumination
compensation; texture sub-sampling; cropping by geodesic mask.

 
 
 
 
 
 
 
 
 
 
 
 

GRADIENT FIELD 
SMOOTHING 

GRADIENT FIELD 
SUB-SAMPLING 

ALBEDO 
ESTIMATION 

ALBEDO 
SUB-SAMPLING 

NOSE DETECTION+ 
GEODESIC MASK 

SCANNER OUTPUT: 
PHOTOMETRIC IMAGES 

GRADIENT FIELD 
ESTIMATION 

 
GEODESIC MASK 

NOSE LOCATION 

Figure 14. Preprocessing stages in “surface-less” 3D face recognition with photo-
metric stereo scanner. Geometry processing (first row, left to right): Gradient field
reconstruction from photometric images; gradient field smoothing; sub-sampling;
computation of the geodesic mask by fast marching on parametric manifolds. Texture
processing (second row, left to right): Albedo estimation from photometric images;
sub-sampling; nose detection and cropping by geodesic mask.

denotes the pqr-th moment); then, the mixed second-order moments
m110,m011,m101 were set to zero to resolve the rotation ambiguity.
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Finally, using the coordinate relations of three fiducial points4 on the
face (e.g. that the nose points to the positive direction of the z-axis,
and the x-coordinate of the left eye is smaller than that of the right
one) the reflection ambiguity is resolved.

7.1. Surface matching

The final stage of the face recognition algorithm is surface matching.
Since the flattening compensates for the isometric surface transforma-
tions, standard rigid matching (see e.g. (Gruen and Akca, 2004)) can
be used for comparing the canonical surfaces. One of the simplest and
most efficient surface matching method proposed by Tal et al. (2001)
is based on high-order moments of the surface. The main idea is to
represent the surface by its moments mpqr up to some degree P , and
compare the moments as vectors in an Euclidean space. Given two

canonical surfaces X = {xi}Nx

i=1 and Y = {yi}Ny

i=1, this allows to define
the distance between two faces as

dmom(X,Y) =
∑

p+q+r≤P

(mx
pqr − my

pqr)
2. (22)

This distance can be improved by allowing for some alignment trans-
formation between the surfaces, e.g.

dalig(X,Y) = min
R,C

dmom(X,RY + C), (23)

where R is a rotation matrix and C is a translation vector. However,
such metric is inefficient in practice, since an optimization algorithm is
required to find the optimal alignment.

In (Bronstein et al., 2003b; Bronstein et al., 2004a) we proposed to
treat canonical forms as images. After alignment, both the canonical
surface and the flattened albedo are interpolated on a Cartesian grid,
producing two images. These images can be compared using standard
techniques, e.g. applying eigendecomposition like in eigenfaces or eigen-
pictures. The obtained representation was called in (Bronstein et al.,
2003b) eigenforms. The use of eigenforms has several advantages: First,
image comparison is simpler than surface comparison, and second, the
2D texture information can be incorporated as a second image in a
natural way. In this paper, however, we focus on the 3D geometry, and
in the following experiments use only the surface geometry ignoring the
texture in 3D face recognition.

4 The fiducial points are not necessarily facial features; any three points with
known coordinate relations can be used.
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7.2. Implementation issues

In our implementation, a time multiplexed coded-light method with 10
bit binary Gray code was built and used. Point Grey CCD grayscale
camera (640×480 at 60 fps) was used as an acquisition device; Compaq
MP2800 DLP projector was used to project the patterns. One 3D scan
takes about 150 msec. The resulting raw data was down-sampled to a
resolution of 320 × 240, and then all the above processing filters were
applied.

The speed of the scan and the low intensity of the projected light
does not cause any unpleasant sensation. A preferable configuration,
however, should be invisible (e.g. infra- or near-infrared) light.

8. Results

The data set in our experiments contained 220 faces of 30 subjects -
3 artificial (mannequins) and 27 human. Most of the faces appeared
in a large number of instances with different facial expressions. Facial
expressions were classified into 10 groups (smile, anger, etc.) and into
4 strengths (neutral, weak, medium, strong). Neutral expressions are
the natural postures of the face, while strong expressions are extreme
postures. Small head rotations (up to about 10 degrees) were allowed.
Since the data was acquired in a course of several months, variations in
illumination conditions, facial hair, etc. present. Subjects Alex (blue)
and Michael (red) are identical twins; subjects Eyal (dark green)
and Noam (yellow) are brothers, having visually great similarity (see
Figure 15).

8.1. Experiment I - Facial expressions

The goal of the first experiment was to demonstrate the difference
between using original facial surfaces and their canonical forms for face
recognition under strong facial expressions. Surface matching based
on moments of degree up to P = 5 (i.e. vectors of dimensionality
216), according to (21), was used. In Experiment I, we used a subset
containing 10 human and 3 artificial subjects (Figure 15). Each face
appeared in a number of instances (a total of 204 instances), including
neutral, weak, medium and strong facial expressions (Figure 16).

Figure 17 visualizes the dissimilarities between faces using LS MDS.
Each face on this plot is represented by a point in IR2. Note that it is
merely a 2D representation of data originally lying in IR216 (it captures
about 88% of the high-dimensional information). The first row depicts
the dissimilarities between faces with neutral expressions only. The
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faces of different subjects (marked with different colors) form tight clus-
ters and are easily distinguishable. Canonical surface matching (left)
and facial surface matching (right) methods produce approximately the
same results.

This idealistic picture breaks down when we allow for facial expres-
sions (Figure 17, second row). The clusters corresponding to canonical
surface matching are much tighter; moreover, we observe that using
original surface matching some clusters (red and blue, dark and light
magenta, light blue, yellow and green) overlap, which means that a
face recognition algorithm based on original surface matching would
confuse between these subjects.

Table II shows the values of the ratio of the maximum inter-cluster
to minimum intra-cluster dissimilarity

ςk =
maxi,j∈Ck

ηij

mini/∈Ck,j∈Ck
ηij

, (24)

and the ratio of root mean squared (RMS) inter-cluster and intra-
cluster dissimilarities

σk =

√

√

√

√

2
|Ck|2−|Ck|

∑

i,j∈Ck, i>j η2
ij

1
|Ck|(|C|−|Ck|)

∑

i/∈Ck,j∈Ck
η2

ij

, (25)

(Ck denotes indexes of k-th subject’s faces, C =
⋃

k Ck and ηij denotes
dissimilarities between faces i and j) for facial and canonical surface
matching. These criteria are convenient being scale-invariant; they mea-
sure how each cluster is tight and far from other clusters. Ideally, σk

and ςk should tend to zero.
When only neutral expressions are used, straightforward facial sur-

face matching outperforms canonical form matching by 4.3% in sense
of σk and up to 4.5% in sense of ςk on the artificial subject Eve; on
other subjects, our algorithm shows slightly better performance than
facial surface matching. However, when allowing for facial expressions,
our approach outperforms facial surface matching by up to 94.2% in
sense of σk and up to 181.1% in sense of ςk.

8.2. Experiment II - comparison of algorithms

The goal of the second experiment was to compare our method to other
face recognition algorithms. For this purpose, we simulated a real-life
situation of a biometric identification, in which a the face of an enrolled
subject is compared to a set of templates stored in the database. The
number of templates was 65. Only neutral expressions were used as
templates.

"IJCV - 21 - Kimmel".tex; 1/06/2004; 8:24; p.26



Three-Dimensional Face Recognition 27

Table II. Description of the facial expressions in data set used in experiment I (N - neutral,
W - weak, M - medium, S - strong) and the inter-cluster to intra-cluster dissimilarity ratios
σk and ςk using original and canonical surface matching. Asterisk denotes brothers. Double
asterisk denotes identical twins. Triple asterisk denotes artificial subjects.

Subject Color N W M S σ
can
k σ

orig

k ς
can
k ς

orig

k

Michael∗∗ red 6 5 6 - 0.2376 0.2730 171.22 284.97

Alex∗∗ blue 3 1 3 1 0.1682 0.2433 88.55 171.88

Eyal∗ green 4 1 7 9 0.1740 0.3113 106.14 388.72

Noam∗ yellow 3 - - 7 0.1983 0.2136 111.27 182.90

Moran magenta 4 - 4 10 0.1405 0.2732 99.74 272.55

Ian orange 5 - 16 7 0.1237 0.2584 80.34 220.26

Ori cyan 8 - 11 10 0.2084 0.3406 158.11 352.74

Eric d. green 5 3 - 3 0.1879 0.3876 117.14 432.21

Susy d. magenta 6 - 9 8 0.1394 0.1933 109.38 224.62

David l. blue 5 2 6 5 0.2040 0.7697 142.92 1129.50

Eve∗∗∗ black 6 - - - 0.0100 0.0115 1.51 1.39

Benito∗∗∗ grey 7 - - - 0.0789 0.0923 45.33 87.35

Liu∗∗∗ l. grey 8 - - - 0.0935 0.1077 49.20 8.75

 
 

       
MICHAEL ALEX EYAL NOAM MORAN IAN ORI 

 

   

 

   
ERIC SUSY DAVID  EVE BENITO LIU 

 
Figure 15. The subjects used in experiment I (shown with neutral expressions).
Second row right: three artificial subjects.

The experiment was divided into two parts: First, faces with neutral
expressions (total of 87) were used for enrollment; next, faces with all
expressions, including extreme ones (total of 220 faces) were enrolled.
Three algorithms were tested: canonical form matching, facial surface
matching and 2D image-based eigenfaces. Eigenfaces were trained by 35
facial images that do not appear as templates. 23 eigenfaces were used
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SMILE SADNESS ANGER SURPRISE DISGUST GRIN 

  

 

   
DEFLATE INFLATE  WEAK MEDIUM STRONG 

   3 DEGREES OF SMILE 

 
 

Figure 16. Eight representative facial expressions of subject Eyal. Second row right:
three degrees of the smile expression.

for the recognition (the first two eigenfaces were excluded in order to
decrease the influence of illumination variability (Gheorghiades et al.,
2001)).

Figure 18 shows the receiver operation characteristic (ROC) curves
of three algorithms participating in the comparison. The plot represents
the tradeoff between the false rejection (FRR) and the false acceptance
(FAR) rate, as function of a threshold determining whether the enrolled
subject is accepted or rejected. Our algorithm significantly outperforms
both the straightforward 3D face recognition (rigid facial surface match-
ing) and the classical 2D algorithm (eigenfaces). Moreover, it shows
very low sensitivity to facial expressions - the equal error rate (EER)
increases from 1.71% to 2.1% when facial expressions are introduced.
This is in contrast to the eigenfaces algorithm, for example, whose
performance deteriorates dramatically (by 8.7%) when the database
contains facial images with variability due to facial expressions.

For comparison, we should note that a typical performance of a
commercial 2D face recognition system tested on about 200 faces shows
EER of at least 6% (Mansfield et al., 2001). The performance of our
algorithm (even in the very challenging situation when extreme facial
expressions are allowed for) approaches the EER typical for fingerprint
recognition (∼ 2%), a biometric technology which is traditionally be-
lieved to be more accurate than face recognition (Ortega-Garcia et al.,
2004).

Figure 19 shows the rank 1, 2 and 3 recognition errors on the full
database with facial expressions using the above algorithms. Our ap-
proach results in zero recognition error. Figure 20 (first row) shows an
example of recognition in the second setup (220 faces). The first column
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CANONICAL FORM MATCHING SURFACE MATCHING 

  
  

  
 

 �  NEUTRAL � SMILE � SADNESS � ANGER � SURPRISE � STRESS 
� THINKING � DISGUST � GRIN � CHEWING � INFLATE � DEFLATE 

 
 
 
 

Figure 17. Low-dimensional visualization of dissimilarities between faces using
canonical form (left) and original surface matching (right). First row: neutral expres-
sions only. Second row: all expressions. Colors represent different subject. Symbols
represent different facial expression. Symbol size represents the strength of the facial
expression.

depicts a subject with extreme facial expression; columns two through
four depict the matches among the 65 templates using canonical form
matching, facial surface matching and eigenfaces. The results are typ-
ical for the descried algorithms. Eigenfaces, being image-based, finds
the subject Ori 188 more similar to the reference subject Moran 129

since they have the same facial expression (strong smile), though these
are different subjects. Facial surface matching is confused by 3D fea-
tures (outstanding inflated cheeks) that appear on the face of subject
Moran 129 due to the facial expression. These features are similar to
the natural facial features (fat cheeks) of subject Susy 276 who has
fat cheeks. Finally, canonical surface matching finds a correct match
(Moran 114), since flattening compensates for the distortion of the face
of subject Moran 129 due to smile.
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Figure 18. ROC curve of face recognition based on surface matching (blue), canoni-
cal surface matching (red) and eigenfaces (green). Left: test on database with neutral
facial expressions, right: test on database with all expressions. Star denotes equal
error rate. 
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Figure 19. Resulting rank 1, 2 and 3 (left, middle and right, respectively) recognition
error in full database with all facial expressions using canonical surface matching
(black), facial surface matching (dark gray) and eigenfaces (light gray).

8.3. Experiment III - twins test

In the final experiment, we performed one of the most challenging tests
for a face recognition algorithm - an attempt to tell identical twins
apart. The full database containing all facial expressions (total of 220
faces; 17 faces of Michael and 8 of Alex) was used. Recognition was
performed between two identical twins, with the other subjects acting
as impostors. The matching was performed to templates with neutral
expressions (6 for Michael, 3 for Alex).

The eigenfaces algorithm resulted in 29.41% incorrect matches when
enrolling Michael and 25% when enrolling Alex. Facial surface match-
ing resulted in 17.64% and 0% wrong matches, respectively. Canonical
form matching resulted in 0% recognition error for both twins (see
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example in Figure 20, second row). A visualization of the dissimilarities
between the faces of twins and other subjects is shown in Figure 21.

 
ENROLLED   CANONICAL FORM  SURFACE  EIGENFACES 

  

  

  

 

  

 

  
MORAN 129   MORAN 114  SUSY 276  ORI 188 

  

  

  

 

  

 

  
MICHAEL 17   MICHAEL 2  ALEX 39  ALEX 40 

 
 Figure 20. Example of recognition using different algorithms. First column shows

the reference subject; second through fourth columns depict the closest (rank 1)
matches found by the canonical form matching, facial surface matching and eigen-
faces, respectively. Note that only the match using canonical form matching is
correct. Numbers represent the subject’s index in the database. First row exemplifies
Experiment II. Second row exemplifies recognition of identical twins in Experiment
III. Wrong matches are emphasized.

 
CANONICAL FORM MATCHING SURFACE MATCHING EIGENFACES 

   
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21. Twins test. A low-dimensional visualization of the dissimilarities between
220 faces used in the twins test. Each face is represented as a point. Red and blue
denotes the faces of Michael and Alex, respectively.

9. Conclusions

We presented a geometric 3D face recognition framework which ef-
ficiently handles illumination changes due to pose as well as facial
expressions. We experimentally proved the obvious fact that the Rie-
mannian (intrinsic) geometry of the facial surface is less susceptible to
changes due to facial expressions compared to the Euclidean (extrinsic)
geometry. This property allowed us to construct a bending-invariant
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representation which is insensitive to expressions. In other words, we
introduced an expression invariant signature.

Experimental results showed that our canonical forms approach out-
performs classical 2D and prior (rigid) 3D face recognition algorithms.
The recognition accuracy of the proposed method is very high, which
indicates that for the purpose of biometric identification, treating faces
as isometric objects is a promising direction.
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Appendix

.1. Proof of Theorem 1

Without loss of generality, we assume that the perturbed point is x1,
so that d(x1, x̃1) < ǫ. Let us denote the perturbed geodesic distances
by d̃ij . By the triangle inequality,

d̃1j ≤ d(x1, x̃1) + d(x1,xj) ≤ dij + ǫ,

whereas, d̃ij for i > 1 remains unchanged.

The perturbed geodesic distances matrix D̃ can be written as D̃ =
D + δD, where

δD =











0 ǫ2 ... ǫn

ǫ2
...

ǫN











,

and ǫi ≤ ǫ. The perturbed matrix of squared geodesic distances ∆̃ is
given by

∆̃ = ∆ + δ∆ = (D + δD) ◦ (D + δD) = ∆ + 2D ◦ δD + δD ◦ δD.
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Neglecting the second-order term δD ◦ δD, we obtain δ∆ = 2D ◦ δD.
The spectral norm of the perturbation of ∆ is

∥

∥

∥

∣

∣

∣∆̃
∣

∣

∣

∥

∥

∥

2
= ‖|2D ◦ δD|‖2 ≤ 2max dij ‖|δD|‖2

= 2 max dij max
√

λδDT δD
i = 2max dij

√

√

√

√

N
∑

i=2

ǫ2i < 2
√

Nǫ max dij .

The perturbed double-centered matrix B̃ is given by

B̃ = B + δB = −1

2
J(∆ + δ∆)J = B − 1

2
Jδ∆J.

Since ‖|J|‖2 = 1, it follows that

‖|δB|‖2 ≤ 1

2
‖|δ∆|‖2 <

√
Nǫ max dij .

Eigendecomposition of the perturbed double-centered matrix yields
B̃ = ṼΛ̃ṼT with the eigenvalues λ̃i and the corresponding eigenvectors
ṽi. The perturbed canonical form of the set of points {xi}N

i=1 is therefore

given by x′
i =

( √

λ̃1ṽ
i
1, ... ,

√

λ̃mṽi
m

)T
.

A known result from non-degenerate perturbation theory (Stewart
and Sun, 1990) states that

∣

∣

∣λi − λ̃i

∣

∣

∣ ≤ ‖|δB|‖2 <
√

Nǫ max dij ,

1

2
sin 2θ (vi, ṽi) ≤ ‖|δB|‖2

gap(B)
<

max dij

gap(B)

√
Nǫ,

where θ (vi, ṽi) is the acute angle between the vectors vi and ṽi, and
gap(B) = mini6=j |λi − λj | is the spectral gap of the matrix B. gap(B)
is non-zero, since we assume that B has non-degenerate eigenvalues.
Under a small perturbation, the order of the eigenvalues is preserved,
i.e. λ̃1 ≤ λ̃2 ≤ ... ≤ λ̃N ; from Taylor expansion

√

λ̃i −
√

λi ≈
(λ̃i − λi)

2λi
,

and 1
2 sin 2θ (vi, ṽi) ≈ θ (vi, ṽi). Since vi and ṽi have unit length, it

follows that

‖vi − ṽi‖2 ≈ sin θ (vi, ṽi) ≈ θ (vi, ṽi) <
max dij

gap(B)

√
Nǫ
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Using the triangle inequality and the above relations, the perturba-
tion of the canonical form can be bounded by

∥

∥x′
i − x̃′

i

∥

∥

2 =

∥

∥

∥

∥

√

λivi −
√

λ̃iṽi

∥

∥

∥

∥

2
≤

√

λi ‖vi − ṽi‖2 +

∣

∣

∣

∣

√

λi −
√

λ̃i

∣

∣

∣

∣

‖ṽi‖2

≤
√

λi ‖vi − ṽi‖2 +
‖|δB|‖2

2
√

λi
<

( √
λi

gap(B)
+

1

2
√

λi

)√
Nǫ max dij .

.2. Proof of Theorem 2

For convenience of the proof, we replace the matrix arguments X,D
in the stress function s(X′,D) with vector ones, s(x′,d), where x =
vec(X) is a 3N × 1 column vector obtained by parsing the matrix X in
column-stack order, and d = vec(D) is a N2×1 column vector obtained
by parsing the matrix D. Similarly, we denote x′ = vec(X′).

Since x′ is a local minimizer of the stress function s(x,d), from the
first-order optimality conditions, it follows that

∇xs(x′,d) = 0.

Now assume that the points are perturbed such that d̃ = d+δd. ¿From
Taylor expansion (neglecting the higher-order terms) we have

∇xs(x′ + δx′,d + δd) =

∇xs(x′,d) + ∇2
xs(x′,d)δx′ + ∇2

ds(x′,d)δd =

∇2
xs(x′,d)δx′ + ∇2

ds(x′,d)δd.

From the second-order optimality condition, it follows that the Hessian
∇2

xs(x′,d) is positive-definite, i.e. xT∇2
xs(x′,d)x > 0 for every x 6= 0.

By requiring that x′+δx′ is the local minimizer of s(x,d+δd) w.r.t.
the first argument, we have

∇2
xs(x′,d)δx′ + ∇2

ds(x′,d)δd = 0.

Consequently,

∥

∥δx′
∥

∥

2 ≤

∣

∣

∣

∣

∣

∣

λ
∇2

d
s(x′,d)

max

λ
∇2

xs(x′,d)
min

∣

∣

∣

∣

∣

∣

· ‖δd‖2 .

The bound is finite due to positive definiteness of ∇2
xs(x′,d) and since

the eigenvalues of ∇2
d
s(x′,d) are finite.
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