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Abstract—In this paper, we present the computational tools and a hardware prototype for 3D face recognition. Full automation is

provided through the use of advanced multistage alignment algorithms, resilience to facial expressions by employing a deformable

model framework, and invariance to 3D capture devices through suitable preprocessing steps. In addition, scalability in both time and

space is achieved by converting 3D facial scans into compact metadata. We present our results on the largest known, and now publicly

available, Face Recognition Grand Challenge 3D facial database consisting of several thousand scans. To the best of our knowledge,

this is the highest performance reported on the FRGC v2 database for the 3D modality.

Index Terms—Face and gesture recognition, information search and retrieval.
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1 INTRODUCTION

AMONG several biometric identification modalities pro-
posed for verification and identification purposes, face

recognition is high in the list of subject preference, mainly
because of its nonintrusive nature. However, from the
operator point of view, face recognition has some significant
challenges that hamper itswidespread adoption. Accuracy is
the most important of these challenges. Current 2D face
recognition systems can be fooled by differences in pose,
lighting, expressions, and other characteristics that can vary
between captures of a human face. This issue becomes more
significant when the subject has incentives not to be
recognized (noncooperative subjects).

It is now widely accepted that, in order to address the
challenge of accuracy, different capture modalities (such as
3D or infrared) and/or multiple instances of subjects (in the
formofmultiple still capturesorvideo)mustbeemployed [1].
However, the introduction of new capture modalities brings
new challenges for a field-deployable system. The challenges
of 3D face recognition, which concern the current paper, are:

. 3D Challenge 1—Accuracy Gain: A significant accu-
racy gain of the 3D system with respect to 2D face
recognition systems must result in order to justify
the introduction of a 3D system, either for sole use or
in combination with other modalities.

. 3D Challenge 2—Efficiency: 3D capture creates larger
data files per subject which implies significant
storage requirements and slow processing. The
conversion of raw 3D data to efficient metadata
must thus be addressed.

. 3D Challenge 3—Automation: A field-deployable
system must be able to function fully automatically.
It is therefore not acceptable to assume user
intervention such as for the location of key land-
marks in a 3D facial scan.

. 3D Challenge 4—Capture Devices: 3D capture devices
were mostly developed for medical and other low-
volume applications and suffer from a number of
drawbacks when applied to face recognition, includ-
ing artifacts, small depth of field, long acquisition
time, multiple types of output, and high price.

. 3D Challenge 5—Testing Databases: The lack of large
and widely accepted databases for objectively testing
the performance of 3D face recognition systems.

1.1 Related Work

Despite the introduction of commercial grade 2D face
recognition systems, 2D face recognition remains unreli-
able. Extensive experiments conducted using the FERET
data set [2] and during the FRVT 2002 study indicate that
the success rate is not sufficient for critical applications. It
appears that 2D face recognition techniques have exhausted
their potential as they stumble on inherent problems of their
modality (mainly pose and illumination differences).

With the shortcomings of the 2D approaches, a number of
3D and 3D + 2D multimodal approaches have recently been
proposed. Excellent recent surveys on this field are given by
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Bowyer et al. [1] and Chang et al. [3]. Due to the lack of
available 3D databases, the majority of these approaches has
not been extensively tested. To address this issue, NIST
introduced the Face Recognition Grand Challenge (FRGC)
and FaceRecognitionVendor Test 2006 [4], [5], andmade two
multimodal databases publicly available. The first, FRGC v1,
includes more than 900 scans, while the second, FRGC v2,
includesmore than4,000scanswith facial expressions.Below,
wepresent a small sample of relatedwork that is notmeant to
be exhaustive, and it is focused on the approaches that utilize
these databases, as we expect that the FRGC databases will
become the standard score reporting databases in Face
Recognition; this will aid both scientific research and
potential users of such systems. The performance metrics
used toevaluate theseapproachesaredescribed inSection3.2.

On the facial-expression-free FRGC v1 database, Pan
et al. [6] reported a 95 percent rank-one recognition rate
using a PCA approach, while Russ et al. [7] reported a
98 percent verification rate. Our deformable model
approach achieved a 99 percent rank-one recognition rate
for the same database [8].

On the extensive FRGC v2 database, Chang et al. [9], [10]
examined the effects of facial expressions using two different
3D recognition algorithms. They reported a 92 percent rank-
one recognition rate. Lu and Jain [11] use a generic 3Dmodel
to create user-specific deformable models in the neutral
position. In the identification phase, the distance returned by
the Iterated Closest Point (ICP) algorithm was used for
matching all theuser-specificmodels to thenewdata set,with
92.1 percent rank-one identification on a subset of FRGC v2.
Russ et al. [12] use Principal Components Analysis (PCA) on
range images generated after realigning the data to a generic
3Dmodel. The resultswere presented on subsets of FRGCv2,
and show that this improvement outperforms the pure PCA
approach, but still suffers from facial expressions. Lin et al.
[13] compute summation invariant images from the raw
3D data. Using the baseline PCA approach included in the
FRGC v2, but on manually cropped images, using the
provided annotation, they reported verification rates be-
tween 80.82 percent and 83.13 percent. Husken et al. [14]
presented a multimodal approach that uses hierarchical
graphmatching (HGM). They extended theirHGMapproach
from 2D to 3D but the reported 3D performance is lower
than the 2D equivalent. Their fusion, however, offers
competitive results, a 96.8 percent verification rate at
0.001 False Acceptance Rate (FAR), compared to 86.9 percent
for the 3D only. Maurer et al. [15] presented a multimodal
approach tested on the FRGC v2 database and reported a
87 percent verification rate at 0.01 FAR. In our previous work
on this database [16], we analyzed the behavior of our
approach in the presence of facial expressions. The improve-
ments presented in this paper allowed us to overcome
previous shortcomings, as detailed in Section 3, and we
now claim the top reported performance in 3D face recogni-
tion when tested using the FRGC databases.

1.2 Overview

In this paper, we address the major challenges of a 3D field-
deployable face recognition system. We have developed a
fully automatic system which uses a composite alignment
algorithm to register 3D facial scans with a 3D facial model,
thus achieving complete pose-invariance. Our system em-
ploys a deformable model framework to fit the 3D facial
model to the aligned 3D facial scans, and in so doing
measures the difference between the facial scan and the

model in a way that achieves a high degree of expression
invariance and thus high accuracy. The 3D differences (the
deformed facial model) are converted to a 2D geometry
image and then transformed to the wavelet domain; it has
been observed that a small portion of the wavelet data is
sufficient to accurately describe a 3D facial scan, thus
achieving the efficiency goal. Certain issues of 3D capture
devices were addressed; specifically, artifacts and multiple
types of output (range scans and polygon meshes) were
handled by suitable preprocessing. Median cut and
smoothing filters were applied to handle artifacts and the
conversion to a common format (3D polygon data), with
down-sampling where necessary, was used to address the
issues of multiple types of output from different 3D capture
devices. Concerning objective testing databases, the FRGC
database was augmented by our own 3D face capture
project, resulting in a total of almost 5,000 3D facial scans.

The proposed integrated system is based on our previous
workin facerecognition[8], [16], [17],butnewadditions toour
approach (e.g., normal maps and composite alignment
algorithm)alongwithimprovementsontheexistingmethods,
result in a significant performance gain. Additionally, multi-
ple-sensordatabases areused to thebest of our knowledge for
the first time to evaluate the performance of such a system.
Finally, a prototype 3D face recognition systemhas been built
and it is operational at the University of Houston.

The rest of this paper is organized as follows: Section 2
describes the methods utilized by our approach as well as
the specifications and challenges of the prototype system.
Section 3 presents a performance evaluation using extensive
and publicly available databases, while Section 4 sum-
marizes our approach and proposes future directions.

2 AN INTEGRATED 3D FACE RECOGNITION SYSTEM

The main idea of our approach is to describe facial data
using a deformed facial model. The deformed model
captures the details of an individual’s face and represents
this 3D geometry information in an efficient 2D structure by
utilizing the model’s UV parameterization. This structure is
analyzed in the wavelet domain and the spectral coefficients
define the final metadata that are used for comparison
among different subjects. The geometric modeling of the
human face allows greater flexibility, better understanding
of the face recognition issues, and requires no training.

Our face recognition procedure can be divided in two
phases, enrollment and authentication:

Enrollment. Raw data are converted to metadata and
stored in the database (Fig. 1) as follows:

1. Acquisition (Section 2.1.1): Raw data are acquired from
the sensor and converted to a 3D polygonal repre-
sentation using sensor-dependent preprocessing.

2. Alignment (Section 2.1.3): The data are aligned into a
unified coordinate system using a scheme that
combines three different alignment algorithms.

3. Deformable Model Fitting (Section 2.1.4): An Anno-
tated Face Model is fitted to the data.

4. Geometry Image Analysis (Section 2.1.5): Geometry and
normal map images are derived from the fitted
model and wavelet analysis is applied to extract a
reduced set of coefficients as metadata.

Authentication. Metadata retrieved from the database are
directly compared using a distance metric (Section 2.1.6).
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We first describe in detail the methods used and subse-

quently present our field deployable prototype system.

2.1 Methods

2.1.1 Data Preprocessing

The preprocessing’s purpose is twofold: to eliminate sensor-

specific problems and to unify data from different sensors.

The preprocessing consists of the following filters, executed

in the given order:

. Median Cut: This filter is applied to remove spikes
from the data. Spikes are more common in laser
range scanners, therefore stronger filtering is needed
in this case.

. Hole Filling: Since laser scanners usually produce
holes in certain areas (e.g., eyes and eyebrows) a hole
filling procedure is applied.

. Smoothing: A smoothing filter is applied to remove
white noise as most high resolution scanners
produce noisy data in real-life conditions.

. Subsampling: The deformable model fitting (Sec-
tion 2.1.4) effectively resamples the data, making
the method insensitive to data resolution. Therefore,
the resolution is decreased to gain efficiency to a
level that does not sacrifice accuracy.

In general, the current generation of scanners output
either a range image or 3D polygonal data. We implemen-
ted the above filters for both representations (Fig. 2). The
filters operate on a 1-neighborhood area for both represen-
tations. Note that with range images, there is the possibility
to first apply the filters and then convert to 3D polygonal
data or the opposite. Experiments show that the filters
perform better in the data’s native representation.

2.1.2 Annotated Face Model

Our approach utilizes an annotatedmodel of the human face
(AFM), which needs to be constructed only once and is
described in detail in our previous work [8], [16]. This model
is subsequently used in alignment and it is deformed in the
fitting stage and is the source of the metadata. Based on
Farkas’ work [18], we ensured that themodel is anthropome-
trically correct and itwas annotated intodifferent facial areas,
as depicted in Fig. 3a. The key feature of this model is its
continuous global UV parameterization, depicted in Fig. 3b.
The injective property of the specific parameterization allows
us tomap all vertices of themodel’s surface fromR3 toR2 and
vice versa. This allows the transition from the original
polygonal representation to a regularly sampled 2D grid
representation, called geometry image [19], [20], [21].

2.1.3 Alignment

Our previous work on face recognition points out that
alignment (pose correction) is a key part of any geometric
approach. In fact, an alignment error cannot be rectified in
later steps of this or other similar approaches. To this end,
we present a novel multistage alignment method that offers
robust and accurate alignment even in the presence of facial
expressions.

The general idea is that we align each new raw data set
with the AFM before the fitting process starts. The alignment
computes a rigid transformation that includes rotation and
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Fig. 1. Enrollment phase of the proposed integrated 3D face recognition
system.

Fig. 2. Sensor-dependent preprocessing. Laser range scanner: (a) raw
data (212 K triangles) and (b) processed data (13 K). Stereo camera:
(c) raw data (66 K) and (d) processed data (33 K).

Fig. 3. AFM: (a) Annotated facial areas and (b) texture used to

demonstrate parameterization.



translation. The multistage alignment method consists of
three algorithmic steps. Each step uses as input the output of
the previous one; early steps offer greater resilience to local
minimumswhile later steps offer greater alignment accuracy:

. Spin Images:The purpose of the first step is to establish
a plausible initial correspondence between the model
and the data. If we do not expect arbitrary rotations
and translations in the database, this step can be
omitted. We utilize the spin image algorithm pre-
sented by Johnson [22]. A spin image is a representa-
tion of the geometric neighborhood around a specific
point. To register two shapes, the correspondences
between the individual spin images must be found.
These correspondences are grouped into geometri-
cally consistent groups and the transformations they
yield are verified by checking if they rotate the data by
an acute angle (based on the assumption that a given
face does not have an upside down pose nor does it
have an opposite orientation from the camera). This
check is essential due to the bilateral symmetry
property of the human face.

. Iterative Closest Point (ICP): The main step of our
alignment pipeline uses the ICP algorithm [23],
extended in a number of ways. The ICP algorithm
solves the registration problem by minimizing the
distance between the two sets of points. Pairs
containing points on surface boundaries are rejected
[24]. This ensures that no residual error is introduced
into ICP’s metric from the nonoverlapping parts of
two surfaces. Finally, if the resulting transformation is
not satisfactory, we have an option of running the
trimmed ICP algorithm [25].

. Simulated Annealing on Z-Buffers: This is a refinement
step that ensures that the model and the data are

correctly aligned. The idea is to refine alignment by
minimizing the differences between the z-buffers of
themodel and data.We employ a global optimization
technique known as Enhanced Simulated Annealing
(ESA) [26] to minimize the z-buffer difference [27].
The higher accuracy of this step can be attributed to
the fact that the z-buffers effectively resample the data
which results in independence from the data’s
triangulation.

Note that the proposed multistage alignment process was
the result of extensive testing on facial databases. However,
we believe that it is a very efficient rigid object alignment
method in the general case.

2.1.4 Deformable Model Fitting

The AFM is fitted to each individual data set in order to

capture the geometric characteristics of the subject’s face

using a deformable model-based approach [8], [16]. This is

achieved using the elastically adapted deformable model

framework of Metaxas and Kakadiaris [28]. Based on the

work of Mandal et al. [29], [30], the framework is combined

with Loop subdivision surfaces [31]. The solution is approxi-

mated iteratively anddepends on simulatedphysical proper-

ties. An example of the fitting progress is presented in Fig. 4.

2.1.5 Geometry Image Analysis

Thedeformedmodel that is the output of the fitting process is
converted to a geometry image, as depicted in Fig. 5a. The
geometry image regularly samples the deformed model’s
surface and encodes this information on a 2D grid. The grid
resolution is correlated with the resolution of the AFM’s
subdivision surface. From the geometry image, a normalmap
image (Fig. 5b) is constructed. The normal map distributes
the information evenly among its three components, in
contrast with the geometry image, wheremost information is
concentrated in the Z component.

We treat the three channels (X, Y, andZ) of the normalmap

and geometry image as separate images. Each component is

analyzed using a wavelet transform and the coefficients are

stored. We use the Haar and Pyramid transforms, thus

obtaining two sets of coefficients. The Pyramid transform is

significantly more computationally expensive. We apply the

Haar Wavelets on the combined normal/geometry images

and the Pyramid transform only on the geometry images.
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Fig. 4. Fitting progress: AFM after (a) 0, (b) 8, (c) 32, and (d) 64 iterations.

Fig. 5. (a) Geometry and (b) normal map images of a subject’s face
area.



. Haar Wavelets: The first transform is a decimated
wavelet decomposition using tensor products of the
fullWalshwaveletpacket system[32] (Fig. 6).Weused
this transform extensively in our previous work [8],
[16]. The 1D Walsh wavelet packet system is con-
structed by repeated application of the Haar filters
(low-pass:g¼ 1

ffiffi

2
p ½1 1� and high-pass:h¼ 1

ffiffi

2
p ½½1� 1��).

For images, we use tensor products of these 1D filters.
This means that the filter bank operations are applied
separately to the rows and columns of the image,
resulting in a four-channel filter bank with channels
LL,LH,HL,andHH(correspondingto the filtersgt � g,
gt � h, ht � g, and ht � h, respectively). We recursively
apply this decomposition to each of the four output
channels to construct the full Walsh wavelet packet
tree decomposition. We store the same subset of
coefficients from each subject, allowing an efficient
direct comparison of coefficients without the need of
reconstruction.

. Pyramid Transform: The second transform decom-
poses the images using the complex version [33] of
the steerable pyramid transform [34], a linear multi-
scale, multiorientation image decomposition algo-
rithm. The image is first divided into high-pass and
low-pass subbands by using two initialization filters
H0 and L0. The low-pass subband is then fed into a
set of steerable bandpass filters, which produce a set
of oriented subbands and a lower-pass subband.
This lower-pass subband is subsampled by 2 and
recursively applied the same set of steerable band-
pass filters. Such pyramid wavelet representation is
translation-invariant and rotation-invariant. This
advantage is desirable to address possible positional
and rotational displacements caused by facial
expressions. To maintain reasonable image resolu-
tion and computational complexity our algorithm
applies a 3-scale, 10-orientation complex steerable
pyramid transform to decompose each component
of the geometry image. Only the oriented subbands
at the farthest scale are stored. This enables us to
compare the subband coefficients of the two images
directly without the overhead of reconstruction.

2.1.6 Distance Metrics

In the authentication phase, the comparison between two
subjects (gallery and probe), is performed using the
metadata. In this paper, we introduce a novel approach
that utilizes and combines two different distance metrics for
the two transform types (Haar and Pyramid):

HaarMetric. For theHaarwavelet coefficients,we employ
a simple L1 metric on each component independently. For
example, the X component is computed as follows:

dhxðP;GÞ ¼
X

i;j

jPx½i; j� �Gx½i; j�j;

whereP andGare theprobe andgallery images, respectively.
The total distance is the sum of the distances computed on all
components:

dhðP;GÞ ¼ dhxðP;GÞ þ dhyðP;GÞ þ dhz ðP;GÞ:

PyramidMetric. In order to quantify the distance between
the two geometry images of the probe and gallery,we need to
compare their oriented subband coefficients and assign a
numerical score to each area Fk of the face. Each Fk is defined
according to the annotation of the face model. Note that
because of the presence of facial expression, Fk may be
distorted in different ways. These distortions are mostly
scaling, translational, and rotational displacements. To that
end, based on this,we employ theCW-SSIM index algorithm.
CW-SSIM is a translational insensitive image similarity
measure inspired by the structural similarity (SSIM) index
algorithm [35]. CW-SSIM iteratively measures the similarity
indices between the two sliding windows placed in the same
positions of the two images and uses the weighted sum as a
final similarity score. In our context, a window of size 3 is
placed in the oriented subbands and moved across pixels in
each subbandone stepat a time. In each step,weextract all the
coefficients associated with Fk within the window, resulting
in two sets of coefficients Pw ¼ fpw;iji ¼ 1; . . . ; Ng and
Gw ¼ fgw;iji ¼ 1; . . . ; Ng, drawn from the probe and the
gallery, respectively. The distance between these two sets is
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Fig. 6. Haar wavelet analysis for the normal map image from Fig. 5:

(a) Zero Level. (b) First level.

Fig. 7. Prototype system using a 3dMD2 optical scanner with a 1-pod

configuration. Individual components: (a) 1-pod scanner, (b) subject’s

monitor, (c) operator’s monitor, and (d) host computer.



measured by a variation of the CW-SSIM index equation
originally proposed by Wang and Simoncelli [36]:

~SðPw; GwÞ ¼ 1�Apw;gwBpw;gwCpw;gwDpw;gw ;

APw;Gw
¼ 2

XN

i¼1
jpw;ikgw;ij þK;

BPw;Gw
¼

XN

i¼1
jpw;ij2 þ

XN

i¼1
jgw;ij2 þK

� ��1

;

CPw;Gw
¼ 2j

XN

i¼1
pw;ig

�
w;ij þK

� �r

;

DPw;Gw
¼ 2

XN

i¼1
jpw;ig�w;ij þK

� ��r

:

The first component measures the equivalence of the two
coefficient sets. If Pw ¼ Gw, then the subtrahend would be 1
anddistance 0 is achieved. The second component reflects the
consistency of phase changes, which is insensitive to the
translational changes caused by facial expressions. The
parameter r is used to tune the amount of distortions we
expect. Experimentally,we found that r ¼ 7 is optimal for our
data sets, but r should be increased if strong facial expression
between P andG is known or detected. The parameterK is a
small positive number to ensure stable behaviors in the
presence of small numbers. In our experiments, we chose K
to be 0.01.

As the sliding window moves, the local ~Sðpw; gwÞ at each
step w is computed and stored. The weighted sum of the
local similarity scores from all computed windows gives the
distance score of Fk:

epðG;P; FkÞ ¼
XN

w¼1
ðbw � ~SðPw; GwÞÞ;

where bw is a predefined weight depending on which
subband and component the local window lies on.

Experimentally, using the FRGC v1 data set, we found bw
to assume values between 0.4 and 0.8. Finally, the discrete
sum of the scores for all Fks is the overall distance ðdpÞ
between the probe image P and the gallery image G:

dpxðP;GÞ ¼
X

N

k¼1

epxðP;G; FkÞ and

dpðP;GÞ ¼ dpxðP;GÞ þ dpyðP;GÞ þ dpzðP;GÞ:

2.2 Prototype

A field-deployable prototype system has been built and
is operational at the University of Houston (Fig. 7). A
3dMD optical camera using a 1-pod configuration is
currently mounted on the system. This camera system
supports multiple pods, with each pod containing two
black-and-white cameras for stereo capture, a color camera
for texture capture, a speckle pattern projector, and a flash.
Each of the cameras has a resolution of 1.2 megapixels. The
entire capture process takes less than 2 ms, and it produces a
mesh with less than 0.5 mm RMS error (as quoted by the
manufacturer).

The system’s field-deployable characteristics are:

. Automation: All methods utilized are fully auto-
mated, requiring no interaction with a user. The
system is capable of detecting when a subject is
within range and initiating the enrollment or
authentication procedures automatically.

. Space efficiency: The raw 3D data produced by most
scanners are of several MiB. After the enrollment
phase, the system needs to keep only the metadata.

. Time efficiency: In the enrollment phase, the time delay
to convert the rawscanner data to the finalmetadata is
15seconds. Intheauthenticationphase,onlythestored
metadata are utilized. The system can compare the
metadata of enrolled subjects at a rate of 1,000/sec., on
a typical modern PC (3.0 Ghz P4, 1 GB RAM).

3 PERFORMANCE EVALUATION

3.1 Databases

We use two databases, the publicly available FRGC v2 to
allow comparison with other methods and a novel multiple-
sensor database to demonstrate the sensor-invariance of our
system.

KAKADIARIS ET AL.: THREE-DIMENSIONAL FACE RECOGNITION IN THE PRESENCE OF FACIAL EXPRESSIONS: AN ANNOTATED... 645

Fig. 8. Performance of our system using the Haar and Pyramid transforms as well as their fusion on the FRGC v2 database. Results reported using:
(a) ROC I, (b) ROC II, and (c) ROC III.

TABLE 1
Verification Rates of Our System at 0.001 FAR Using Different

Transforms on the FRGC v2 Database



3.1.1 FRGC v2

Weutilize theFRGCv2database, containing 4,007 3Dscans of
466persons. Thedatawere acquiredusing aMinolta 910 laser
scanner that produces range images with a resolution of
640� 480. The scans contain various facial expressions (e.g.,
happiness and surprise), and subjects are 57 percent male
and 43 percent female, with the following age distribution:
65 percent are 18-22 years old, 18 percent are 23-27, and
17 percent are 28 years or over [5].

3.1.2 Extended Database

We have extended the FRGC v2 database with the UH

database, which contains 884 3D facial data sets acquired

using our 3dMD-based prototype system (with 1-pod and

2-pod setups) over a period of one year. The data acquisition

protocol was the following:
For each subject:

. Remove any accessories (e.g., glasses).

. Acquire a data set with neutral expression.

. Acquire several data sets while the subject reads
loudly a predefined text (thus, assuming facial
expressions).

. Put on the accessories and acquire a data set with
neutral expression.

The UH database is more challenging, compared to the

FRGC v2, as the subjects were encouraged to assume

various extreme facial expressions and, in some cases,

accessories are present. The resulting extended database

contains a total of 4,891 data sets, 82 percent acquired using

a laser scanner, 18 percent acquired using an optical camera

and, to the best of our knowledge, is the largest 3D facial

database reported.

3.2 Performance Metrics

We employ two different scenarios for our experiments:

identification and verification. In an identification scenario,

we divide the database into probe and gallery sets so that

each subject in the probe set has exactly one match in the

gallery set. To achieve this, we mark the first data set of

every individual as gallery and the rest as probes. During

the experiment, each probe is compared against all gallery

sets, which is one-to-many matching. The performance is

measured using a Cumulative Match Characteristic (CMC)

curve and the rank-one recognition rate is reported.
In a verification scenario, wemeasure the verification rate

at 0.001 FAR. Each probe is compared to a gallery set and the

result is compared against a threshold. The results are

summarized using Receiver Operating Characteristic (ROC)

curves. For the FRGC v2 database, in order to produce

comparable results, we utilize the three masks provided by

FRGC along with the database. These masks, referred to as

ROC I, ROC II, and ROC III, are defined over the square

similarity matrix (4; 007� 4; 007), and they are of increasing

difficulty (the difficulty reflects the time elapsed between the

probe and gallery acquisition sessions). In the experiments

below, we have used parameters which maximize the rank-1

recognition rate on the FRGC v1 database. The value K was

chosen to be 0.01, while the bw weights assumed values

between 0.4 and 0.8.

3.3 Experiment 1: Transforms

Experiment 1 is performed on the FRGC v2 database and its

purpose is to evaluate the two transforms that we employ, as

well as to provide a reference score for our system using

publicly available data sets andmethods. In this experiment,

our system using a fusion of the two transforms yielded a

verification rate of 97.3percent (forROCIat 0.001FAR),while

separately for theHaar transforma rate of 97.1percent and for
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Fig. 9. A single subject with neutral, surprise, happiness, disgust, and
sadness expressions along with the corresponding fitted models.



the Pyramid transform a rate of 95.2 percent were achieved

(Fig. 8). For the fusion, we experimentally found that the

weighted sum is the most efficient rule.
Even though the Pyramid transform is computationally

more expensive, it is outperformed by the simpler Haar
wavelet transform (this can be attributed to the fact that in the
current implementation, the Pyramid transform utilizes only
the geometry images and not the normal map images). The
fusion of the two transforms offers more descriptive power,
yielding higher scores especially in the more difficult
experiments of ROC II and ROC III, as depicted in Table 1.
To the best of our knowledge, this is the highest performance

reported on the FRGC v2 database for the 3D modality.

3.4 Experiment 2: Facial Expressions

The second experiment is focused on the effect of facial
expressions on performance. An example of these facial
expressions for a single individual is depicted in Fig. 9. The
FRGC v2 database provides a categorization of the expres-

sions that each individual assumes, allowing an easy
division on two subsets: one containing only data sets
where facial expressions are present, the other containing
only data sets with neutral expressions.

The performance on the two subsets is measured and
compared to the performance on the full database utilizing a
verification scenario (Fig. 10). The analysis of Table 2 shows
that the verification rate is not decreased by a significant
amount when expressions are present. The average decrease
of 1.56 percent of the verification rate at 0.001 FAR between

the fulldatabaseand the facial expressions-only subset is very
modest (compared to other existing algorithms) given the fact
that this subset contains the most challenging data sets from
the whole database. This can be attributed to the use of the
deformable model framework.

3.5 Experiment 3: Multiple Sensors

The third experiment evaluates the performance of our
systemusing amultiple-sensor database. Verification experi-
ments depend heavily on the selected facial pairs. In the
absence of standard such experiments (e.g., FRGC’s ROC
experiments), we opted for an identification experiment.

We first measured the performance on the two parts of the
extended database separately, obtaining a 97.0 percent rank-
one recognition rate for the FRGC v2 and a 93.8 percent rate
for theUH(Fig. 11). Theexperiment on the extendeddatabase
yielded a rank-one recognition rate of 96.5 percent. The drop
in performance in the extended database compared to the
FRGCv2part ismarginal, indicating our system’s robustness
when data from multiple sensors are included on the same
database.

4 CONCLUSION

We presented algorithmic solutions to the majority of the

challenges faced by field-deployable 3D facial recognition
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Fig. 10. Division of the FRGC v2 database into two subsets, (the first containing only nonneutral facial expressions and the other one only neutral

expressions) and comparison of performance versus the full database. Results reported using: (a) ROC I, (b) ROC II, and (c) ROC III.

TABLE 2
Performance of Our System at 0.001 FAR on the Full
FRGC v2 Database, on a Subset Containing Only
Nonneutral Facial Expressions and on a Subset

Containing Only Neutral Expressions

Fig. 11. System performance for identification experiment on different
databases: FRGC v2 database with 466 gallery and 3,541 probes (laser
scanner), UH database with 240 gallery and 644 probes (optical
scanner), and FRGC v2+UH database with 706 gallery and 4,185 probes
(both scanners).



systems. By utilizing a deformable model, we map the

3D geometry information onto a 2D regular grid, thus

combining the descriptiveness of 3D data with the computa-

tional efficiency of 2D data. A multistage fully automatic

alignment algorithm and the advanced wavelet analysis

resulted in robust state-of-the-art performance on the pub-

licly available FRGC v2 database. Our multiple-sensor

database pushed the evaluation envelope one step further,

showing that both accuracy and robustness can be achieved

whendata fromdifferent sensors arepresent, throughsensor-

oriented preprocessing. Proof of concept is provided by our

prototype systemwhich combines competitive accuracywith

storage and time efficiency.
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