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Abstract— In this paper a new framework for personal iden-
tity verification using 3-D geometry of the face is introduced.
Initially, 3-D facial surfaces are represented by curves extracted
from facial surfaces (facial curves). Two alternative facial curves
are examined in this research: iso-depth and iso-geodesic curves.
Iso-depth curves are produced by intersecting a facial surface
with parallel planes perpendicular to the direction of gaze,
at different depths from the nose tip. An Iso-geodesic curve
is defined to be the locus of all points on the facial surface
having the same geodesic distance from a given facial landmark
(e.g. the nose tip). Once the facial curves are extracted, their
characteristics are encoded by several features like the shape
descriptors or polar Euclidean distances from the origin (nose
tip). The final step is to verify or disapprove requests from
users claiming the identity of registered individuals (gallery
members) by comparing their features using Euclidean distance
classifier or support vector machine (SVM). The performance
results of the identity verification experiments are reported and
a comparison is made between the two alternative curve-based
facial surface representations.

I. INTRODUCTION

A biometric feature is a measurable physiological or
behavioral attribute that can be used for automatic recog-
nition of individuals. Since the beginning of civilization,
humans have been instinctively using characteristics such as
voice and face for recognition purposes; however, the con-
cept of automated biometric systems is relatively new. The
emergence of biometric systems coincides with significant
advancement in the field of computer processing and avail-
ability of low-cost and practical acquisition technologies [1].

In recent years, biometrics has received considerable at-
tention from researchers in various disciplines, government
agencies, and private sector industries. The importance of
biometric security systems is to the extent that several
universities have already established degree programs partic-
ularly focusing on the engineering and design of biometric
systems [2]. This interest is fueled by the growing demand
for automated personal identification in applications ranging
from low to high security, including but not limited to access
control to buildings, surveillance, airport screening, and
smart cards. Improved biometric technologies are expected to
replace current, less specific methods such as pin numbers,
access codes/cards and radio frequency ID tags which are
susceptible to loss or theft. Examples of early deployments
within US government include the US-Visit program and
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the transportation worker identification credentials (TWIC)
program [3].

Several biometrics have been deployed for automatic iden-
tification including fingerprints, facial images, iris scans, gait,
retina, and facial thermograms. Although biometrics such as
fingerprints and iris scans have begun to yield reliable perfor-
mance, the human face remains the most attractive biometrics
because of its unique advantages. Facial images are easily
acquired with commonly available sensors (cameras) without
the need for physical contact (non-intrusive acquisition). It
requires minimum cooperation and does not raise any health
issues. For instance, fingerprint measurement raises health
and social concerns related to touching a sensor used by
countless individual. Iris scans are difficult to capture and
general public has inherent fears related to “scanning" the
eyes with a light source [4].

II. RELATED WORK

The majority of effort in early days of face recognition
was focused on using 2-D (luminance) facial images. While
several sophisticated 2-D solutions have been proposed,
unbiased evaluation studies show that their collective per-
formance remains unsatisfactory, and degrades significantly
with variation in lighting, face position, or non-neutral facial
expressions [5]. However, newly-developed 3-D face scans
encode the anatomical structure of the face, and hence are
independent of ambient illumination conditions and pose
variations. Using 3-D information has great potential to
overcome the shortcomings of recognition systems based on
2-D images.

Recently, several 3-D face recognition algorithms are
proposed in which three dimensional facial surfaces are
represented by unions of curves. This trend is mainly moti-
vated because a wealth of techniques are available for curve
matching and it is a much more studied problem than the
freeform surface matching [6].

One of the earliest curve-based facial surface represen-
tations is the “point signature" concept proposed by Chua
and Jarvis [7]. For any given landmark on the facial surface
(e.g., nose tip or eye corner), a 3-D curve C is extracted by
intersecting the surface with a sphere of radius R centered
at that landmark. The point signature is defined to be the
signed distances between each point on facial curve C and
its corresponding projection on plane p fitted to C passing
through the centroid.

In [8] Samir et al. represented facial surfaces using a union
of level-set curves of the depth function with respect to the
nose tip (iso-depth curves). Consequently, 3-D facial surfaces



are implicitly compared by measuring similarity between
corresponding planar iso-depth contours. One limitation of
the iso-depth curves is that they are very susceptible to
changes in gaze direction. Some Euclidean transformations
of facial surface such as in-depth rotation of facial surface
(inaccurate estimation of gaze direction) result in deformed
facial curves that are not the Euclidean transformed versions
of the original ones. To mitigate the effect of pose varia-
tion in recognition performance, an extremely accurate gaze
alignment step is required that proves to be very costly and
difficult.

Sun et al. [9] introduced a new curve-based 3-D ob-
ject representation method called the“Point fingerprints" and
successfully tested this method in surface registration and
matching applications. In this method, surfaces are repre-
sented by a set of 2-D contours that are the projection of
geodesic circles on a plane tangent to the surface at the
center, i.e., a surface landmark. These contours are called
point fingerprint because of their similarity to fingerprint
patterns. Unlike iso-depth curves [8], point fingerprints are
inherently robust against Euclidean transformations such as
in-depth rotation and translation of the 3-D surface (pose
invariance).

Motivated by the effectiveness and pose-invariance nature
of the point fingerprints (also referred to as iso-geodesic
curves in this paper), a novel automatic face recognition
system is proposed in this paper where 3-D facial sur-
faces are represented by point fingerprints extracted around
automatically pinpointed nose tip. Iso-depth contours [8]
are also extracted with respect to the nose tip and their
face recognition performance is used as a benchmark for
comparison. Curve extraction procedures are explained in
section III. Once facial curves are extracted, their appearance
is characterized by two type of attributes described in sec-
tion IV. Firstly, polar Euclidean distances from the nose tip
are sampled at multiple angles. Secondly, a combination of
commonly used shape descriptors such as ratio of principal
axes, convexity, compactness, circular variance, and elliptic
variance are calculated as defined in [10].

The validity of a user’s request claiming the identity of
an enrolled subjects in the access control application is
confirmed by comparing features extracted from the user’s
recently obtained facial scan with those from the registered
individual (having access privilege) stored in the memory
of the system using state of the art classifiers. One option
investigated in this paper is to initially reduce the features’
dimensionality using a standard linear discriminant analysis
(LDA) procedure followed by verification made by a Eu-
clidean distance decision rule. The second option is training
and verification by support vector machines (SVM). SVM
is attractive here because it can achieve high classification
accuracy using relatively small sets of training samples. SVM
works well with high-dimensional data avoiding the “curse
of dimensionality" and “small sample size" problems often
encountered in designing classifiers for face recognition.
Results are presented in section V followed by discussion
in section VI.

Fig. 1. An Example range image and its corresponding iso-depth curves.

III. CURVE EXTRACTION

In order to extract curves from a 3-D facial image, the first
step is to define real-valued functions on that surface [11].
In this paper two real-valued functions are defined on facial
surfaces presented by range images: The depth value (z
value) and the geodesic distance from the nose tip. Level
sets of each function result in closed curves on the facial
surface. Fig. 1 shows an example range image where the
value of each pixel (z value) represent the distance of that
point from the sensor.

A. Iso-Depth Curves

One suitable class of curves capable of capturing the
geometric characteristics of 3-D facial surface is the set
of contours located at the intersection of a facial surface
with parallel planes perpendicular to direction of gaze, at
different depths from the nose tip (iso-depth). In this paper,
three iso-depth curves are extracted from each range image
at empirically selected depth values z = 25, z = 50, and
z = 75. Fig. 1 shows an example range image with the
nose tip automatically detected using Gabor filters response
method described in [12]. This figure also depicts three iso-
depth curves extracted from the same range image.

B. Iso-Geodesic Curves

Another set of facial curves are defined to be the loci of
all points on the facial surface having the same geodesic



Fig. 2. Example of a range image with iso-geodesic curves marked with
red points.

distance to the automatically detected nose tip. The geodesic
distance between two points on a surface is the shortest
path between these two points along the surface. The main
advantage of these iso-metric geodesic curves is their invari-
ance with changes in gaze direction. We have implemented a
“fast marching" [13] based algorithm to extract iso-geodesic
curves around automatically detected nose tip. Fig. 2 shows
a range image with iso-geodesic contours (geodesic circles)
corresponding to geodesic distances d = 65, d = 95, and
d = 130 marked with red dots. In this paper, the 2-D
projection of these three 3-D curves on x−y plane is utilized
to represent the 3-D faces.

IV. FEATURE EXTRACTION

From each iso-depth or iso-geodesic facial curve two sets
of features are calculated:

A. Simple Shape Descriptors

Each facial curve is encoded by a set of five primitive
shape descriptors widely used in object recognition (Fig. 3)
and explained in detail in [10]. These simple shape de-
scriptors are invariant to translation and in-plane rotation
around the nose tip. Assuming that each incoming face
from the dataset is represented by a set of 3 iso-depth or
iso-geodesic curves, a 15 dimensional augmented feature
vector is constructed for each curve-based representation by
concatenating simple shape descriptors calculated from each
curve. These shape features are as follows:

1) Convexity:: The convexity measure of an object is
defined to be the ratio between perimeter of its convex
hull and the length of its contour (1). A convex hull is the
minimum convex covering of an object and can be visualized
by imagining an elastic band stretched open to encompass
the given object.

Fig. 3. Five simple shape descriptors [10].

conv =
Pconvexhull

P
(1)

2) Ratio of Principal Axes:: If each point of a curve is
considered as an instance of a 2-D random variable, the
principal component analysis (PCA) can be used to find the
orientation and length of the principle axes. Principal axes
are two orthogonal line segments that cross each other in
the centroid of the object and represent the directions that
possess the maximum variations and zero cross-correlation.
The lengths of principal axes equal the eigenvalues λ1,2 of
the covariance metrix C of a contour. Let us denote elements
of C as

C =
(

cxx cxy

cyx cyy

)
(2)

the ratio of principal axes is a reasonable measure of
elongation and can be calculates directly:

prax =
cyy + cxx −

√
(cyy + cxx)2 − 4(cxxcyy − c2

xy)

cyy + cxx +
√

(cyy + cxx)2 − 4(cxxcyy − c2
xy)

(3)
3) Compactness:: The compactness measure used in this

paper is the ratio of the perimeter of a circle with equal area
as the original object and the original perimeter. i.e.,

comp =
Pcircle

P
=

2
√

Aπ

P
, Acircle = A (4)

The compactness measure reaches its maximum in a
circular object and reaches zero in thin, complex objects.

4) Circular Variance:: A shape can be compared against
a simple and general template such as a circle. The pro-
portional mean-squared error with respect to solid circle, or
circular variance, can be defined

cvar =
1

Nμ2
r

∑
i

(‖pi − µ‖ − μr)2 (5)



Fig. 4. Polar distances from nose tip to points on facial curve.

where pi =
(

xi

yi

)
defines the contour points. The

centroid of contour points is µ = 1
N

∑
i pi while the mean

radius is simply μr = 1
N

∑
i ‖pi − µ‖.

Circular variance is zero for a perfect circle and increases
along shape complexity and elongation.

5) Elliptic Variance:: Similar to circular variance, objects
can be compared to ellipses that are simple and yet enjoying
from higher degree of freedom (compared to circles) by
allowing elongation. An ellipse is fitted to the shape and
mapping error is measured. Intuitively, it seems logical to
find an ellipse having an equal covariance matrix, Cellipse =
C. It is practically effective to apply the inverse approach
yielding

evar =
1

Nμ rc

∑
i

(
√

(pi − µ)T C−1(pi − µ) − μrc)2 (6)

μrc = 1
N

∑
i

√
(pi − µ)T C−1(pi − µ)

B. Polar Euclidean Distance

The Euclidean distances from the nose tip sampled at mul-
tiple angles creates a feature vector describing the appearance
of a facial curve. From each curve a set of polar distances,
di, are measured by finding the intersection of rays going out
from nose tip at sampling intervals Δθ = 3o with the facial
curve C (Fig. 4). The polar distance signature extracted from
each curve is saved in a 120 dimensional feature vector di

and used for recognition as explained in subsequent sections.

V. EXPERIMENTAL RESULTS

The performance of the curve-based face recognition al-
gorithms proposed in this paper are evaluated using identity
verification scenario [14]. A well-known example of verifi-
cation set-up is an access control system to a secure building
where users claim their identity by entering their username
or swiping their smart cards. Access control system then

captures user’s biometric traits (in this case a 3-D scan of the
face) and compare this fresh biometric instance with those
from the claimed identity stored in the gallery. Access is
granted if the biometrics in the probe example and gallery
instances are more similar than a required threshold level.

A. Data

A collection of 1196 range images from 119 individuals
has been used in this research. This dataset is collected
using a stereo imaging system made by 3Q Technologies
Ltd. (Atlanta, GA). Arrangements are being made to make
this dataset publicly available in near future. In this dataset
the pose problem is solved by orienting each unknown face
against a generic face located at a standard position in 3-D
space using the iterative closest point (ICP) algorithm. All
images of the dataset are of size 751×501 pixels. The pixel
spacing is 0.32 mm in X, Y, and Z. The “box" containing the
face is 160 mm (500 pixels) wide, 240 mm (750 pixels) tall,
and 82 mm (256 gray levels) deep. One advantage of this
dataset is that all subjects were asked to stand at a specific
distance from the sensor and hence all captured 3-D face
images are true to size. This dataset includes neutral and
expressive faces from subjects belonging to various racial,
age, and gender groups.

We partitioned this dataset into two disjoint training and
test sets. The training set contains 383 grayscale range
images of 10 subjects. The number of images per subject
varies between 25 and 47 in the training set. The training
set is used to enroll the subjects in the identity authentica-
tion experiment. The test set has 389 images from the 10
enrolled subjects (for whom the access should be granted)
in addition to 424 extra images from 109 subjects without
access privilege (the impostors).

B. Euclidean Distance Decision Rule

As explained in section III, 3-D faces in the dataset are
represented either by a set of 3 iso-geodesic or 3 iso-depth
curves. Polar distance signatures extracted form each single
curve produce a 120 dimensional real-valued feature vector.
Simple shape descriptors extracted from facial curve trios
(iso-geodesic or iso-depth) are also concatenated to make a
15 dimensional feature vector.

Fisher’s LDA is used to independently project the polar
distance feature vectors or the shape descriptor features to 9
dimensional feature spaces (lower dimension) that maximize
the between-class scatter, Sb, while minimizing the within-
class scatter, Sw. The projection directions were learned only
from the training portion of the dataset. The features of
the images in the test set were projected into the lower
dimensional space using the projection parameters learned
from the training set.

A Euclidean distance verifier performs identity authentica-
tion by comparing the retrieved features of the claimed iden-
tity (from the dataset) with the currently captured features of
the user and decides whether a match can be declared. This
decision is made based on the Euclidean distance between the
currently captured features of that individual and the mean



Fig. 5. ROC of Euclidean distance verifier using iso-depth based features.

Fig. 6. ROC of Euclidean distance verifier using iso-geodesic based
features.

value of the features corresponding to claimed identity in the
lower dimensional space.

In this paper, the verification performance is evaluated
using receiver operating characteristic (ROC) curves and
equal error rate (EER) values. Fig. 5 presents the ROC
curves of Euclidean distance classifiers trained with various
feature combinations extracted from the iso-depth curves.
Fig. 6 shows the ROC curves of Euclidean distance verifier
using various features extracted from the iso-geodesic curves.
Summary of the resulted EER values for both curve types
is given in Table I. It is evident that the performance of any

TABLE I

EER PERCENTAGE OF EUCLIDEAN DISTANCE VERIFIER ACROSS

VARIOUS FEATURE SETS

Euclidean Distance Classifier
iso-geodesic level-set

Shape Descriptors 2.58% 9.07%
Polar distance of first curve 2.93% 11.6%
Polar distance of second curve 3.44% 5.9%
Polar distance of third curve 4.25% 6.1%
Polar distance of all three curves 4.42% 14%

Fig. 7. ROC of SVM using iso-depth based features.

Fig. 8. ROC of SVM using iso-geodesic based features.

combination of iso-geodesic based features outperforms the
performance of its iso-depth counterpart. This results confirm
our expectation that iso-geodesic curves are more robust
against pose variations present in the dataset. Table I shows
that the Euculidean distance decision rule using features
extracted from iso-geodesic curves can achieve a remarkable
performance of EER= 2.58%.

C. Support Vector Machine

The identity verification problem explained in this project
is solved by decomposition to 10 binary problems for which
the standard one-against-all (1-a-a) SVM is used. In the
training phase 10 decision functions fm(x), m ∈ K =
{1, . . . , 10} are constructed, where the rule fm(x) separates
the training data of the m-th class from the rest of training
data. The request of a user with biometric features x claiming
the identity of class m is accepted only if the value of
function fm(x),m ∈ K is more than a predefined threshold.
In this paper we have only experimented with linear SVM
kernels. Investigation of polynomial and Gaussian kernels
are left for future works.

Fig. 7 presents the ROC curves of linear 1-a-a SVMs
trained with various feature combinations extracted from iso-
depth curves. Fig. 8 show the ROC curves of linear SVMs



TABLE II

EER PERCENTAGE OF SVM CLASSIFIER ACROSS VARIOUS FEATURE

SETS

SVM
iso-geodesic level-set

Shape Descriptors 6.82% 12.08%
Polar distance of first curve 5.22% 12.98%
Polar distance of second curve 4.36% 8.67%
Polar distance of third curve 2.79% 6.81%

using various features extracted from iso-geodesic curves.
Table II summarize the resulted EER values for both curve
types. Again, it is interesting to note that the performance
of any combination of iso-geodesic based features is better
than its iso-depth counterpart. This confirms the inherent
robustness of iso-geodesic curves against pose variations
present in the dataset. Table II shows that SVM classifiers
benefiting from features extracted from iso-geodesic curves
can achieve a remarkable performance of EER= 2.79%.

VI. CONCLUSION

In this paper we introduced novel 3-D face recognition
algorithms based on curves extracted from facial surfaces.
Their verification performance is reported and compared
using a dataset of 1196 range images of expressive and
neutral faces. The observed verification accuracies show the
highly competitive performance of our algorithm relative to
existing face recognition algorithms. For example, Pan et
al. [15] has investigated using a PCA-based approach and a
Hausdorff distance approach for 3-D face recognition. They
have evaluated their algorithms using a dataset of 360 range
images from 30 individuals and reported EER in the range
of 3 − 5% for the Hausdorff distance approach and EER in
the range of 5 − 7% for PCA-based approach.

Mpiperis et al. [6] have proposed a 2D+3D face recog-
nition algorithm where facial expression in both range and
portrait representation of the face is compensated using the
geodesic polar parameterization of facial surface. They have
tested their algorithm on a database of 1500 images from
100 subjects and reported EER in the range of 4.9− 15.4%.

Reviewing these results highlights the effectiveness of
proposed curve-based facial representations in capturing dis-
criminating facial biometrics. We have shown that by using
simple shape descriptors extracted from iso-geodesic curves,

verification performance can be significantly improved and
EER values as low as 2.58% are achiveable.

By comparing the results shown on tables I and II it
appears that LDA followed by Euclidean distance verifier
outperforms SVM. This is because we are merely using lin-
ear SVM. The next logical step to improve the performance is
to use non-linear SVMs (Gaussian and polynomial kernels).
Another choice is using iso-geodesic curves extracted from
around other fiducial points like eye corners. Finally, we are
seeking ways to combine decisions of different classifiers.
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