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SUMMARY

I have undertaken 3-D ¢nite di¡erence (FD) modelling of seismic scattering from
free-surface topography. Exact free-surface boundary conditions for arbitrary 3-D
topographies have been derived for the particle velocities. The boundary conditions are
combined with a velocity^stress formulation of the full viscoelastic wave equations.
A curved grid represents the physical medium and its upper boundary represents the
free-surface topography. The wave equations are numerically discretized by an eighth-
order FD method on a staggered grid in space, and a leap-frog technique and the
Crank^Nicholson method in time. I simulate scattering from teleseismic P waves by
using plane incident wave fronts and real topography from a 60|60 km area that
includes the NORESS array of seismic receiver stations in southeastern Norway.
Synthetic snapshots and seismograms of the wave¢eld show clear conversion from
P to Rg (short-period fundamental-mode Rayleigh) waves in areas of rough topo-
graphy, which is consistent with numerous observations. By parallelization on fast
supercomputers, it is possible to model higher frequencies and/or larger areas than
before.

Key words: ¢nite di¡erence methods, Rayleigh waves, seismic wave propagation,
topography, viscoelasticity, wave equation.

INTRODUCTION

Modelling free-surface topography e¡ects is important for
seismic pro¢ling on land, whereas in marine settings it is
usually su¤cient to specify medium parameters without
including explicit boundary conditions. However, topography
can be important for marine seismics as rough water surfaces
can produce scattering that reduces the signal-to-noise ratio.
It is, however, the air^solid Earth interface that exhibits the
strongest possible impedance contrasts. Modelling topography
along such a free surface is important for these reasons.
Any irregularities along such a surface would have con-
sequences for the results, the stronger the gradients and/or
irregularities the local topography exhibits (Hestholm &
Ruud 1998), the greater the e¡ect. Additionally, uncertain or
even undetermined parameters such as seismic velocities and
densities are used when performing a seismic simulation. On
the other hand, topographic data probably have the smallest
error margins of any of the model parameters that we use.
Also, whenever topographic data are known, they might as
well be used in seismic modelling. Performing wave modelling
with topography using the method described in this paper
involves a few extra terms in the medium equations along with
more complicated, but still explicit, boundary conditions for

the particle velocities. Except for the topography data itself,
no extra memory is required. In addition, the di¡erence in
simulation cost is negligible.
The advantage of modelling with surface topography is

that implicit e¡ects such as scattering and conversion will be
accounted for automatically in the wave¢eld synthetics. For
example, plane P or S waves incident on a plane surface of
a homogeneous medium cannot convert to Rg waves. Also,
P to SH phase conversion depends on surface topography.
Ampli¢cation and deampli¢cation of propagating waves can
be shown to occur at irregularities and in substantial areas
around them (Sanchez-Sesma & Campillo 1991). Alluvium-¢lled
irregularly shaped valleys with a plane free surface can generate
strong Love and Rg waves for some incident waves in three
dimensions (Sanchez-Sesma & Luzon 1995). Correspondence
with real data is particularly important in earthquake hazard
assessment (Pitarka & Irikura 1996).
Rg waves can mask re£ections that are the basis of

migration. Over the NORESS array in southeastern Norway
the Rg waves have amplitudes of about 10 per cent of those of
the ¢rst teleseismic P-wave arrivals (see Bannister et al. 1990;
Gupta et al. 1993; Hedlin et al. 1991). By quantitatively
accounting for these topography e¡ects, a data set better suited
for migration can be produced. To illustrate how this might be
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used in practice, consider a simulation of an initial earth model
with known surface topography. A good correspondence
with real data should be obtained to make the initial model
viable. Then, using the topography modelling algorithm to
propagate the real data backwards in time by a technique such
as inverse time migration, good results may be obtained (Sun &
McMechan 1992).
The literature on free-surface topography modelling is

relatively limited in two dimensions, and even more so in three
dimensions. Jih et al. (1988) considered di¡erent slope types
and their combinations explicitly in two dimensions. Another
2-D approach (Robertsson 1996) classi¢ed every surface point
in a way similar to Jih et al. (1988). The scheme can handle
both elastic and viscoelastic schemes and implements the ¢eld
variables at each of seven categories of surface topography
points separately. The free-surface conditions are then accounted
for by setting all velocities above the surface to zero and using a
`mirror condition' on the normal stress components (Levander
1988). A study that modelled surface topography by the FD
method in a `staircase' manner but using three dimensions
was that of Ohminato & Chouet (1997). An interesting 2-D
method considered a complete tensorial formulation of the wave
equations for modelling curved interfaces and free-surface
topography (see Komatitsch et al. 1996). This method gives
very accurate results and has the advantage of using the
same number of spatial partial derivative calculations as for a
Cartesian approach. This is 12.5 per cent less in two dimensions
and 22.2 per cent less in three dimensions than the chain rule
approach used in this study. However, it has the distinct dis-
advantage of 30 per cent extra memory requirement in two
dimensions and 60 per cent extra memory requirement in three
dimensions than the general chain rule approach. Additionally,
the memory di¡erence will often be even larger because some
partial derivatives vanish in the mapping functions due to
straight vertical gridlines in most chain rule approaches, as is
also the case in the present work. Another procedure is that of
Frankel & Leith (1992), who use a 3-D topography modelling
algorithm employing a density taper to zero starting at the level
of the free surface while keeping the P velocity unaltered.
The boundary integral method, or more usually its numerical

discretization, the boundary element method, have been used
so far only to model relatively simple geometrical features.
The reason is that the discretization applied to each structure
must be carefully chosen to avoid numerical instabilities. A
space^frequency domain representation (see Bouchon et al.

1996) calculates the Green functions in the medium for the
explicit topography surface under consideration as integrals over
horizontal wavenumbers. The di¡racted wave¢eld is the integral
over the surface topography of the Green functions multiplied by
unknown source density functions. These functions are solved
for by the conjugate gradient method. Results are shown for
an incident shear wave polarized along the minor and major
axes of a cosine-formed ellipse-shaped hill, and Bouchon et al.

(1996) investigated scattering e¡ects of this hill on the wave-
¢eld propagating towards an otherwise plane surface in a
homogeneous medium. Sanchez-Sesma & Campillo (1991) also
used a boundary integral method to investigate topography
e¡ects.
Tessmer & Koslo¡ (1994) extended their 2-D procedure

(see Tessmer et al. 1992) for elastic wave modelling with
free-surface topography to three dimensions, transforming the
velocity^stress formulation of the medium equations from a

curved to a rectangular grid. They used a spectral discretization
horizontally and a Chebyshev discretization vertically in space.
At the free topography surface, the stresses and velocities were
transformed into local systems in which the vertical coordinate
axis was parallel to the normal of the local surface element.
The free-surface conditions were then implemented by a
`characteristic' treatment of both the velocity and the stress
components before they were rotated back to the original
system. Tessmer & Koslo¡ (1994) showed results for simple
geometrical con¢gurations, but in principle any arbitrary,
smooth topography can be incorporated. The present method
is based on their method because it transforms the equations of
motion from a curved to a rectangular grid. The free-surface
boundary conditions, however, are developed in the present
work explicitly as an exact, closed set of equations for the 3-D
particle velocities.
Day & Minster (1984) were the ¢rst to replace the con-

volutional stress^strain relation for a linear viscoelastic solid
(Christensen 1982) with a set of ¢rst-order partial di¡erential
equations through their Padë approximantmethod. For constant
Q over a pre-determined frequency range their approximation
yields excellent results. Carcione et al. (1988b), however, were
the ¢rst to represent the convolutional form of the constitutive
equations by a ¢rst-order system exactly. It was already done
for the viscoacoustic case in Carcione et al. (1988a) and further
developed in Carcione (1993) for 2-D and 3-D displacement^
stress formulations of the viscoelastic wave equations. A
pseudospectral method was used here for spatial discretization
along with a Chebyshev method in time (see Tal-Ezer et al.

1990) to minimize numerical dispersion. Robertsson et al. (1994)
extended the method of Carcione et al. (1988b) by exactly
representing the convolutional stress^strain relation in the 2-D
and 3-D viscoelastic wave equations by a system of ¢rst-order
partial di¡erential equations for the particle velocities and
stresses. They used spatial fourth and temporal second-order
FD discretizations. Employing these formulations, Blanch et al.

(1995) proposed cost-e¤cient procedures for modelling constant
Q over a pre-de¢ned frequency range. The immediate advantage
of using velocity^stress formulations is that we do not di¡er-
entiate material parameters across discontinuities (Virieux 1986).
Hence, when incorporating our topography boundary conditions
in viscoelastic schemes, it is the velocity^stress formulation
of Robertsson et al. (1994) and the Q-modelling procedure of
Blanch et al. (1995) that I use as starting points. More recently,
Xu & McMechan (1998) have presented a more e¤cient way
of modelling full viscoelasticity with an arbitrary number of
relaxation mechanisms by reparametrizing the wave equations.
By assuming one set of relaxation frequencies for all mech-
anisms and all parts of the model, they reduced the total
number of necessary memory variables from seven to three.
This reduces the memory requirement by 40 per cent and the
computational time by 25 per cent.
As in Tessmer & Koslo¡ (1994) and Hestholm & Ruud

(1998), a 3-D grid that is curved in the vertical direction is
adapted to the surface topography; that is, the top surface of
the grid coincides with the surface topography. This method
was originally proposed to adapt grids to interior interfaces
using pseudospectral spatial derivatives (Fornberg 1988b). I
transform the velocity^stress formulation of the viscoelastic,
isotropic wave equations (Robertsson et al. 1994) from a curved
to a rectangular grid, in which the numerical computations are
performed. At the topography surface, the velocity boundary
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conditions for a free surface are implemented in a local, rotated
system at each point of the surface. Each of these systems has
its vertical coordinate direction coinciding with the direction of
the normal vector of the surface at the point given. The velocity
boundary conditions are then rotated back to the Cartesian
system before ¢nally being transformed into curved grid
equations in a rectangular grid. Once the boundary conditions
are given in this grid, the numerical discretization can be
performed.
In the following paragraphs, I give the connection between

the convolutional stress^strain relation for a linear visco-
elastic solid and its ¢rst-order partial di¡erential equation
representation (Carcione et al. 1988a) of velocities and stresses
(Robertsson et al. 1994). The viscoelastic equivalents to the
velocity^stress formulation of the elastic curved grid wave
equations (Hestholm & Ruud 1998; Tessmer & Koslo¡ 1994)
will be stated. I show the derivation of free-surface topography
boundary conditions as an exact closed system for the particle
velocities and give a description of its numerical solution. Next
I show a simulation comparison with a geometric example for
viscoelastic and elastic cases, as well as a viscoelastic simu-
lation of a surface trench. I then present simulated scattering
results from teleseismic P waves using a plane wave front
incident on real topography containing the NORESS array in
southeastern Norway. Snapshots and synthetic seismograms
of both elastic and viscoelastic wave¢elds clearly display Rg

waves in areas of rough topography.

VISCOELASTIC WAVE MODELLING

FORMULATION

The basic hypothesis of viscoelastic theory is that the current
value of the stress tensor depends upon the history of the strain
tensor. This hypothesis can be described as

pij~Gijkl � _ekl~ _Gijkl � ekl (1)

(Christensen 1982) for a linear isotropic material. � denotes
time convolution, and it transforms each strain history, _eij(t),
into the current stress value, pij(t). The dot denotes time
di¡erentiation and G is a fourth-order tensor of time called the
relaxation function. For a homogeneous material, G collapses
into two independent functions. This is an assumption that
is often used also for inhomogeneous materials. Each of these
functions is often assumed to have the form of a standard
linear solid,

G(t)~MR 1{
X

L

`~1

1{
qe`

qp`

� �

e{t=qp`

 !

h(t) (2)

(Carcione et al. 1988a; Blanch et al. 1995).MR is the relaxation
modulus of the medium and h(t) is the Heaviside function.
The relaxation function G(t) is equivalent to L standard
linear solids connected in parallel. Each standard linear solid
describes a dashpot and a spring in series in parallel with a
spring. qp` and qe` are the stress and strain relaxation times
of the `th mechanism.
Following Robertsson et al. (1994), the velocity^stress

formulation of the viscoelastic wave equations can be derived
from the constitutive relation (1) (Appendix A). In three
dimensions with one relaxation mechanism (one standard

linear solid), this can be written as

o
Lu

Lt
~

Lpxx

Lx
z

Lpxy

Ly
z

Lpxz

Lz
zfx , (3)

o
Lo

Lt
~

Lpxy

Lx
z

Lpyy

Ly
z

Lpyz

Lz
zfy , (4)

o
Lw

Lt
~

Lpxz

Lx
z

Lpyz

Ly
z

Lpzz

Lz
zfz , (5)

Lpxx

Lt
~n

qPe
qp

Lu

Lx
z

Lo

Ly
z

Lw

Lz

� �

{2k
qSe
qp

Lo

Ly
z

Lw

Lz

� �

zrxx , (6)

Lpyy
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~n

qPe
qp
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z
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z

Lw

Lz

� �

{2k
qSe
qp

Lu

Lx
z
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Lz

� �

zryy , (7)
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z
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� �
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� �
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� �
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z
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� �
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z
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1
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Lrxy
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~{

1
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Lx

� �
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, (15)

Lrxz
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~{

1

qp
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qSe
qp

{1

� �

Lu

Lz
z

Lw
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� �

)
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Lryz
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~{

1

qp

(

ryzzk
qSe
qp

{1

� �

Lo

Lz
z

Lw

Ly

� �

)

, (17)

where o is the density, n is the relaxation modulus for P waves,
n~jz2k (j and k are the Lamë parameters), and k is the
relaxation modulus for S waves as in the elastic case. qPe and qSe
are the strain relaxation times for P and S waves respectively,
and qp is the stress relaxation time. The same qp can be used
both for P and S waves (Blanch et al. 1995). fx, fy and fz are
the components of the body forces, u, o and w are the particle
velocity components and pxx, pyy, pzz, pxy, pxz and pyz are the
stress components. rxx, ryy, rzz, rxy, rxz and ryz are the com-
ponents of the memory variables. These are the equations
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governing wave propagation in a linear isotropic viscoelastic
medium, and they are the equations of motion, the stress^strain
relation and the memory variable equations.
I introduce a linear mapping from a rectangular (m, i, g)-

system (Fig. 1) to a curved grid in the (x, y, z)-system (Fig. 2),
where both systems are positive upwards for the vertical
coordinate. The 3-D mapping can be written as

x(m, i, g)~m , (18)

y(m, i, g)~i , (19)

z(m, i, g)~
g

gmax

z0(m, i) , (20)

where z0(m, i) is the topography function, and the rectangular
(m, i, g)-system is bounded by m~0, m~mmax, i~0, i~imax,
g~0 and g~gmax. For the curved grid in the (x, y, z)-system,
the extent of stretching is proportional to the distance from the
bottom plane of the grid (z~0). From eqs (18)^(20) we obtain,
for a di¡erentiable function f (x, y, z),

Lf

Lx
~

Lf

Lm
z

Lf

Lg

Lg

Lx
, (21)

Lf

Ly
~

Lf

Li
z

Lf

Lg

Lg

Ly
, (22)

Lf

Lz
~

Lf

Lg

Lg

Lz
. (23)

Expressions for the partial derivatives, which are needed
in the medium equations, are found from eqs (18)^(20) (see

Appendix B):

Lm

Lx
~1 ,

Lm

Ly
~0 ,

Lm

Lz
~0 , (24)

Li

Lx
~0 ,

Li

Ly
~1 ,

Li

Lz
~0 , (25)

A(m, i, g)~
Lg

Lx
~{

g

z0(m, i)

Lz0(m, i)

Lm
, (26)

B(m, i, g)~
Lg

Ly
~{

g

z0(m, i)

Lz0(m, i)

Li
, (27�

C(m, i)~
Lg

Lz
~

gmax

z0(m, i)
. (28)

The velocity^stress formulation of the equations of motion,
Hooke's law and the memory variable equations is given in the
curved grid in the (x, y, z)-system by eqs (3)^(17). Expanding
these by the chain rule (Appendix C) as for the elastic cases in
Hestholm & Ruud (1994, 1998) and substituting for Lg/Lx,
Lg/Ly and Lg/Lz, I obtain the medium equations with one
relaxation mechanism in the rectangular (m, i, g)-system:

o
Lu

Lt
~

Lpxx

Lm
zA(m, i, g)

Lpxx

Lg
z

Lpxy

Li
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~
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o
Lw

Lt
~
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(34)

ξκ

η

Figure 1. Rectangular grid surface.

x
y

z

Figure 2. Curved grid surface.
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Lryy

Lt
~{

1

qp

(

ryyzn
qPe
qp

{1

� ��

Lu

Lm
zA(m, i, g)

Lu

Lg

z
Lo

Li
zB(m, i, g)

Lo

Lg
zC(m, i)

Lw

Lg

�

{2k
qSe
qp

{1

� �

|
Lu

Lm
zA(m, i, g)

Lu

Lg
zC(m, i)

Lw

Lg

� �

)

, (39)

Lrzz

Lt
~{

1

qp

(

rzzzn
qPe
qp

{1

� ��

Lu

Lm
zA(m, i, g)

Lu

Lg
z

Lo

Li

zB(m, i, g)
Lo

Lg
zC(m, i)

Lw

Lg

�

{2k
qSe
qp

{1

� �

|
Lu

Lm
zA(m, i, g)

Lu

Lg
z

Lo

Li
zB(m, i, g)

Lo

Lg

� �

)

, (40)

Lrxy

Lt
~{

1

qp

(

rxyzk
qSe
qp

{1

� �

|
Lu

Li
zB(m, i, g)

Lu

Lg
z

Lo

Lm
zA(m, i, g)

Lo

Lg

� �

)

, (41)

Lrxz

Lt
~{

1

qp

(

rxzzk
qSe
qp

{1

� �

| C(m, i)
Lu

Lg
z

Lw

Lm
zA(m, i, g)

Lw

Lg

� �

)

, (42)

Lryz

Lt
~{

1

qp

(

ryzzk
qSe
qp

{1

� �

| C(m, i)
Lo

Lg
z

Lw

Li
zB(m, i, g)

Lw

Lg
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Eqs (29)^(43) are the momentum conservation equations,
Hooke's law and the memory variable equations given in the
rectangular (m, i, g)-grid.

FREE SURFACE BOUNDARY CONDITIONS

The 3-D free boundary conditions for the particle velocities
at a locally horizontal surface (or in a system where the
z-axis is parallel to the local normal vector of the surface)
resulting from the vanishing stress condition can be written
as

Lu

Lz
~{

Lw

Lx
, (44)

Lo

Lz
~{

Lw

Ly
, (45)

Lw

Lz
~{

j

jz2k

Lu

Lx
z

Lo

Ly

� �

, (46)

with x and y the horizontal coordinates and z the vertical
coordinate.We want to apply these conditions to a topography
surface. At each surface point, I introduce a local coordinate
system (x0, y0, z0), in which the z0-axis coincides with the local
normal vector direction of the surface. In this local system I
impose the conditions (44)^(46). Once this is done, they have to
be rotated back to the Cartesian (x, y, z)-system. This rotation
is expressed by v~A{1v0, i.e.

v0~Av , (47)

where v and v0 are the particle velocity vectors in the (x, y, z)-
and the (x0, y0, z0)-systems respectively. A is the rotation
matrix, which can be given by

A~

cos h 0 sin h

{ sin h sin� cos� cos h sin�

{ sin h cos� { sin� cos h cos�

0

B

B

B

B

@

1

C

C

C

C

A

, (48)

where h is the rotation angle between the x-axis and the
local x0-axis in the (x, z)-plane and � is the rotation angle
between the y-axis and the local y0-axis in the local (y0, z0)-
plane. We also have the relations tan h~Lz0(m, i)/Lm and
tan�~Lz0(m, i)/Li cos h, now expressed in the computational
(m, i, g)-grid (see Appendix D).
The calculations of the rotation from the local (x0, y0, z0)-

system back to the Cartesian (x, y, z)-system can be performed
as in Appendix D. Once this is done, a transformation from the
Cartesian (x, y, z)-system to the computational (m, i, g)-grid
should be performed (Appendix D) to express the boundary
conditions as curved grid equations in the rectangular, com-
putational (m, i, g)-grid. This is achieved by using the chain
rule in the same way as was done for the medium equations.
I arrive at the 3-D boundary conditions for free-surface
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topography given in the computational (m, i, g)-grid by

1

e2
(1zp2)C(m, i)

Lu

Lg
z

d

e2
(1zp2)C(m, i)

Lw

Lg

~2d
Lu

Lm
z

p

e

Lo

Lm
z(d2

{1)
Lw

Lm
z

p

e

Lu

Li
z

dp

e

Lw

Li
, (49)

{
fp

e2
(1zp2)C(m, i)

Lu

Lg
z

1

e2
(1zp2)C(m, i)

Lo

Lg

z
p

e
(1zp2)C(m, i)

Lw

Lg

~{2d fp
Lu

Lm
zd(1{p2)

Lo

Lm
z2 fp

Lw

Lm
zd(1{p2)

Lu

Li

z2
p

e

Lo

Li
z( p2{1)

Lw

Li
, (50)

d

e2
(1zp2)C(m, i)

Lu

Lg
z

p

e3
(1zp2)C(m, i)

Lo

Lg

{
1

e2
(1zp2)C(m, i)

Lw

Lg

~ f 1z
p2

e2

� �

zd2

� �

Lu

Lm
{

dp

e
(f{1)

Lo

Lm
zd(f{1)

Lw

Lm

{
dp

e
(f{1)

Lu

Li
z

1

e2
(fzp2)

Lo

Li
z

p

e
(f{1)

Lw

Li
, (51)

using de¢nition (28) and

f~
j

jz2k
, (52)

d~
Lz0(m, i)

Lm
~ tan h , (53)

e~ cos [ arctan (d)]~ cos h , (54)

f~ sin [ arctan (d)]~ sin h , (55)

p~
Lz0(m, i)

Li
e~ tan� . (56)

Eqs (49)^(56) are exact 3-D boundary conditions for an
arbitrary, smooth free-surface topography. They result from
rotating the velocity free-surface conditions from local systems
at each point of the surface topography into a Cartesian system
before transforming them into curved grid equations in the
computational grid (Appendix D). The boundary conditions
(49)^(56) are obviously not restricted to the FD method or any
other numerical discretization technique.

NUMERICAL DISCRETIZATION

To discretize the viscoelastic wave equations (29)^(43), high-
order, cost-optimized FD operators were used (see Kindelan
et al. 1990). Their method of optimal FD coe¤cients from
minimization of the total simulation cost under the constraint
of a pre-de¢ned maximum numerical dispersion is based on
the work of Holberg (1987). The schemes employ a staggered
discretization stencil of the velocity^stress formulation of the
viscoelastic wave equations as was employed for the elasto-
dynamic wave equations in Levander (1988) and Virieux (1986).
An advantage of using a staggered de¢nition of variables is
that we can avoid explicit de¢nition of stresses at the surface

topography as it su¤ces to de¢ne the velocities there. In order
to obtain the velocities and stresses explicitly de¢ned at each
time step, I stagger the vertical particle velocity component
w one half-grid length downwards. Generally, u is staggered
one half-grid length in the positive m-direction, o is staggered one
half-grid length in the positive i-direction and w is staggered
one half-grid length in the negative g-direction (downwards).
The stresses and the memory variables are de¢ned either at the
gridpoints (pxx, pyy, pzz, rxx, ryy and rzz), or at the midpoint
of the grid rectangles (pxy, pxz, pyz, rxy, rxz and ryz), that is,
one half-grid length positively in each of the directions of
their indices. The 3-D boundary conditions, eqs (49)^(51), are
discretized by second-order staggered FD operators. Below
the free surface, the central, staggered FD method's order
(Fornberg 1988a) is gradually increased with depth, via fourth
and sixth up to eighth order; the latter is the method used inside
the domain and it is dispersion-bounded and cost-optimized
(Kindelan et al. 1990).
To extrapolate velocities and stresses in time, the (second-

order) leapfrog technique is used. The equations for the
memory variables rij might become sti¡ for qp small compared
to the time step *t; therefore, the Crank^Nicholson sti¡
solver was used to propagate the memory variables in time
(Robertsson et al. 1994). Since the memory variable equations
are ¢rst-order ordinary di¡erential equations, the usually
implicit Crank^Nicholson scheme becomes explicit, and only
marginally more expensive than conventional explicit schemes.
The Crank^Nicholson scheme is unconditionally stable.
Blanch et al. (1995) described a method for approximating a

constant Q over a pre-determined frequency interval for an
arbitrary number of L standard linear solids. However, both in
the present work and in Robertsson et al. (1994), only one
standard linear solid (relaxation mechanism) is used, and then
a simpler method can be employed. Looking at the curves forQ
versus frequency for one relaxation mechanism (Blanch et al.

1995), we see that these curves are symmetric about a minimum
Q. The method I use is to set the desired Q equal to this
minimum value for the central frequency of the source and
calculate qp, qP� and qS� accordingly, possibly with a di¡erent Q
for P and S waves. This procedure was used in Robertsson et al.

(1994) and ensures a symmetric behaviour of the attenuation
and dispersion about the source's central frequency. The
expressions for the relaxation times resulting from this
principle are

qp~
1

u

���������������

1z
1

Q2
P

s

{
1

QP

 !

, (57)

qP� ~
1

u2qp
, (58)

qS� ~
1zuqpQS

uQS{u2qp
, (59)

with u~2nf , where f is the central frequency, and QP and QS

are Q-values for the P and S waves respectively.
For the viscoelastic modelling examples I found the

following procedure to work best to absorb waves along
the grid boundaries. First I calculated qp, qP� and qS� from the
above formulae with QP~2:5 and QS~2:0. I then set qp
to a very high value, i.e. qp*100, thereby attaining a much
higher order of magnitude of the stress relaxation time than
the strain relaxation times. For the elastic examples shown I
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used exponential damping according to Cerjan et al. (1985).
The stresses and velocities were multiplied by exponentially
decreasing terms towards the arti¢cial boundaries. The thick-
ness of the absorbing layers was 30 gridpoints for both the
viscoelastic and the elastic examples with real topography,
which corresponds to 2.5 times the dominant wavelength of the
source. In the viscoelastic case, 20 of these gridpoints were used
for a linear tapering of the relaxation times towards their
values along the boundaries.
To ¢nd the particle velocity components at the surface

topography from the closed system (49)^(51), I solve it directly
and simultaneously as a linear system with respect to the
velocities at the surface as they are de¢ned in the second-
order vertical derivative discretizations. In this procedure, the
horizontal partial derivatives are calculated one grid length
and one-and-a-half grid lengths below the free surface and
considered known from the medium equations. The resulting
linear system of equations for the unknown particle velocities
at the free surface has the determinant

D~
1

e6
(1zp2)4(1zd2)C3(m, i) , (60)

using de¢nitions (28) and (52)^(56). This determinant is always
positive and its minimum value is C3(m, i), which occurs for a
plane surface. Therefore, this numerical solution of boundary
conditions (49)^(51) is unconditionally stable.

SIMPLE TOPOGRAPHIES

Figs 3^5 show snapshots of the initial shotpoint of a Ricker P
source with a central frequency of 5 Hz in the focus of a 3-D
parabola (Fig. 3) and re£ected waves from its surface (t~1.4 s)
for an elastic (Fig. 4) and a corresponding viscoelastic case
(Fig. 5). The snapshots are taken along the vertical diagonal

(from small m and i to large m and i) and the vertical particle
velocity component w is displayed. According to the analytic
solution the re£ected wave in the elastic case should be per-
fectly plane and in the viscoelastic case it should have a plane
appearance. This is seen to be the case in Figs 4 and 5. The
P- and S-wave velocities of the homogeneous medium are 5.0
and 2.89 km sÿ1 respectively and the density is 2000 kg mÿ3.
The viscoelastic Q-value is 20 for both P and S waves and the
rectangular grid in each case has size of 127|127|127 with a
uniform grid distance of 0.1 km. The maximummedium height
(at the top of the parabola) is 12.6 km and the focal point
is 3 km below it (the focal point de¢nes the curvature of
the parabola). The central frequency of 5 Hz is high enough
in these cases for a visible di¡erence between the elastic and
viscoelastic cases to appear. The intrinsic attenuation causes
the viscoelastic re£ection to have a smoother appearance
and the physical dispersion leads to a broader wave front. This
dispersion combined with the high medium velocity leads the
viscoelastic wave front to propagate noticeably further than
the corresponding elastic wave front in the same time. The
snapshots of Figs 4 and 5 are scaled individually according to
their maximum value to enhance the features of each case.
Next I show results from a south^north-oriented 1-D

trench at the middle position of the west^east direction of
the domain (Fig. 6). With slight modi¢cations of parameters
(most signi¢cant with respect to scale) this example can be
compared with the simulation of the same geometry in Tessmer
& Koslo¡ (1994). A point P source is located at the surface
40 km from the south and 40 km from the west grid edges.
The domain is 60 km|60 km|20 km with a uniform grid
distance of 0.2 km, i.e. 300|300|100 gridpoints. The south^
north-oriented trench has both a depth and a width of 1.2 km,
which is half the dominant wavelength of the Ricker source of
central frequency 2.5 Hz. The medium is homogeneous with a

Figure 3. Excitation of a Ricker wavelet in a parabola's focal point. The vertical diagonal (from small m and i to large m and i) is shown.
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P velocity of 6 km sÿ1, an S velocity of 3.46 km sÿ1 and a density
of 2000 kg mÿ3. The snapshots of Fig. 6 show the vertical
particle velocity component of a viscoelastic simulation. Q is
250 for P and 200 for S waves.
At 1.5 s in Fig. 6 we see undisturbed P and Rg waves

propagatingawayfromthesourcepoint.After thePwavehits the
trench,at3.5 sweseeaPR (P toRgconversion)waveto the leftof

the trench behind the P wave in front of the Rg wave. By sym-
metry, this conversion can also be identi¢ed as a (more
smoothed) re£ection from the trenchon its right side at this time,
as well as a (similarly smoothed) PP re£ection in front of it. The
transmitted and re£ected PR waves can be followed in the last
two snapshots of Fig. 6, but here also transmitted and re£ected
RRwaves can be traced behind them. I have con¢rmed that the

Figure 4. Re£ected wave from the parabolic free surface (t~1:4 s) in the elastic case. Diagonal vertical snapshot.

Figure 5. Re£ected wave from the parabolic free surface (t~1:4 s) in the viscoelastic case. Diagonal vertical snapshot.
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amplitudeoftheRgwaveisweakenedafter transmissionthrough
the trench (Tessmer&Koslo¡ 1994) due to scattering.
Seismograms from the simulation are shown in Figs 7 and 8.

I use the receiver locations of Fig. 9, which is a map covering a
domain of the same size. This means that both the west^east-
and the south^north-oriented sensor lines displayed contain
the source at their middle positions. The stations cover lines
of 30 km and have a spacing of 0.6 km. Fig. 7 is the vertical
particle velocity component along the west^east-oriented line
and clearly displays the original P and Rg waves as well as the
re£ected ones from the trench. The trench is located between
receivers numbers 8 and 9. Because of scattering and the

e¡ects of viscoelasticity, the re£ected Rg waves appear as an
attenuated, dispersed wave train. Fig. 8 shows the south^north-
oriented receiver line. This line does not contain the trench and
hence shows undistorted P and Rg waves for some time, until
re£ected P and Rg waves from the trench (PP and PR) hit the
line in the last part of the seismogram. This is a real 3-D e¡ect
that will not occur in 2-D simulations. From Fig. 6 we see that
RR re£ections do not reach the line in the time simulated.
Compared with the results of Tessmer & Koslo¡ (1994), we
see that the present inclusion of viscoelasticity leads to some
dispersed wave patterns in snapshots and seismograms of RR
re£ections and transmissions.
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Figure 6. Snapshots of the vertical particle velocity component w at various times after a Ricker P-wave point source is released at the surface of a
trench model. The 1.2 km deep and wide trench is oriented in the south^north direction in the middle of the domain. The snapshots of the viscoelastic
simulation are taken along the surface topography.
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P TO RG SCATTERING FROM REAL

TOPOGRAPHIC RELIEF

For the present 3-D FD simulations I have used digital
elevation data from an area of 60|60 km containing the 3 km
aperture NORESS array in southeastern Norway (Fig. 9). This
hilly area was chosen because of easy access to detailed topo-
graphic data. Additionally, signi¢cant P to Rg scattering from

speci¢c hills is well documented fromNORESS record analysis
(Bannister et al. 1990; Gupta et al. 1993; Hedlin et al. 1991;
Hedlin et al. 1994). The most prominent topography present
in the data set is the steep Skreikampen hill immediately west
of the southern part of lake MjÖsa (the long south^north-
oriented dark band in the southwest area of Fig. 9). In the ¢rst
examples the source wave is a vertically incident plane P wave
simulating a teleseismic short-period P phase. The centre
frequency of the plane Ricker wavelet (point Ricker sources
implemented along a plane) is 2.5 Hz, the P and S wave
velocities of the homogeneous medium are 6.0 km sÿ1 and
3.46 km sÿ1 respectively and the density is 2000 kg mÿ3. In all
instances the given wave speeds are exact for the elastic case,
that is, in the limit of in¢nite Q and/or zero frequency. I set
Q~250 for P waves and Q~200 for S waves. I use a uniform
grid sampling of 0.2 km and a total grid size of 300|300|100.
The viscoelastic simulation corresponds to a total computer
memory of 1.4 GBytes using domain decomposition by Message
Passing Interface (MPI) and took about 1 hr on 18 processors
using the SGI (Cray) Origin 2000 parallel machine at the
Department of Informatics, University of Bergen, Norway.
The corresponding elastic simulation used a memory of slightly
more than 1 GByte and took 15 min less on the same number
of processors. Using domain decomposition parallelization
via MPI on this machine enabled me to run 3-D models
with about 108 gridpoints, as opposed to about 107 on earlier
machines. The sizes of the present simulations are far below
these maximum sizes.
The plane teleseismic P wave is vertically incident and

released right below the topography surface. The ¢rst snapshot
time of Figs 10 and 11 is t~0:5 s and there is 1 s between each
snapshot. The vertical sections of Fig. 10 are taken along the
west^east topography pro¢le (along the xz-plane) of Fig. 9.
The left series shows the vertical particle velocity component
w and the right series shows the horizontal particle velocity
component u. Fig. 11 shows snapshots along the surface topo-
graphy displaying the vertical particle velocity component w.
Figs 12 and 13 are the same snapshots for the corresponding
elastic case. An absorption thickness of 30 gridpoints is used
along the grid boundaries in both the viscoelastic and the
elastic cases, and exponential damping according to Cerjan
et al. (1985) is used with an absorption constant of 0.05 in the
elastic case. As expected, this case leads to arti¢cial boundary
re£ections of stronger amplitudes than the viscoelastic case.
I use a linear change of relaxation time over 20 gridpoints
towards Q-values of 2.5 for P waves and 2.0 for S waves
along the boundaries in strips of 10 gridpoints. This leads
the strongest grid re£ections in the viscoelastic case to be Rg

waves propagating into the domain at a later stage than in
the elastic case. The strongRg-wave boundary re£ections in the
elastic case propagate into the domain much sooner. Although
the exponential damping technique is the most e¤cient absorb-
ing boundary method I have tested (Simone &Hestholm 1998),
a wave incident at an angle of 900 to the boundary is the most
di¤cult case. It is apparent that absorption layers of low Q

along the grid boundaries in a viscoelastic scheme perform better
than exponential damping in such a thin layer. Nevertheless,
both cases generate clear grid boundary re£ections. The reason
is that the present situation of a plane wave reaching out to
all grid edges is a worst-case scenario for grid re£ection since
wave components in every direction reach all grid edges along
the surface immediately. Even so, I prefer to include these
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Figure 7. Seismogram of the vertical particle velocity component
w of the viscoelastic simulation of Fig. 6 along the locations of the
west^east-oriented receiver line of Fig. 9. The Ricker point P source is
located at the middle point of the receiver line and the trench is located
between receivers 8 and 9.
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Figure 8. Seismogram of the vertical particle velocity component w of
the viscoelastic simulation of Fig. 6 along the locations of the south^
north-oriented receiver line of Fig. 9. The Ricker point P source is
located at the middle point of the receiver line and the trench is parallel
to the line and 10 km west of it.
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examples both to show each wave modelling scheme's ability
to absorb every incident wave component and to illustrate
the behaviour of the topography boundary conditions at every
location of the real topography as soon as possible. The
viscoelastic grid re£ections from the thin absorbing strips are
clearly seen in Fig. 11 as straight lines, although the elastic grid
re£ections of Fig. 13 are more dominant and propagate into
the domain sooner. Features of scattering can be seen in both
cases, although the viscoelastic case gives more information
due to later grid re£ections.
Figs 11 and 13 show a circular wave pattern of Rg waves

emanating from the area of prominent topography at 30 km
from the south and 40 km from the west grid edges. The
scattered surface waves appear to radiate out from secondary
point sources that coincide with areas of high topographic
gradients. This scattering originates from the steep valley side
east of Bronkeberget about 10 km east of NORESS (Bannister
et al. 1990). However, the surface wave with the highest ampli-
tude in these examples is a slowly moving Rgwave propagating
from the southwest corner of the area towards the centre of the
domain. The steepest topography of the model can be found in
this area close to Lake MjÖsa (the Skreikampen hill). P-to-Rg
scattering in this area was observed by Bannister et al. (1990)
and can now be realistically synthesized.
Using a simulation time of 5.5 s there is no noticeable di¡er-

ence between the viscoelastic and elastic cases for the present
parameters. The Q-values (250 for P and 200 for S waves)
are low used together with the high P velocity of 6 km sÿ1. The
applied centre frequency of 2.5 Hz then leads to such long
wavelengths that there is no visible attenuation and dispersion
of the wave¢eld for the times and scales shown. Using
A(x)~A0 expf{nfx/(cQ)g (Aki & Richards 1980), where f is
the central frequency, c is the wave speed, A(x) is the wave
amplitude at travel distance x and A0 is the wave amplitude at
travel distance 0, leads to attenuations of Rg waves of 10 per
cent after 2.75 s and 20 per cent after 5.5 s of simulation time.
This attenuation is unnoticeable in Fig. 11. In addition, from
the dispersion curves in Robertsson et al. (1994), the present

parameters should lead to an approximate dispersion of 2 per
cent, which after 5.5 s of simulation time of Rg waves corre-
sponds to a maximum dispersion distance of 0.37 km. It is
clear that these quantities are unnoticeable at the present scales
and parameters, and so the scattering will look the same for the
elastic and the viscoelastic cases. Therefore, the predominant
argument for viscoelastic rather than elastic modelling for tele-
seismic distances and earthquake simulations is clearly the
improved absorbing boundary conditions along the grid edges.
Only six shades are used in Figs 10^13, therefore the small
numerical dispersion in front of the wave fronts is magni¢ed
unrealistically in Figs 10 and 12. However, the displays show
some of the Rg wave scattering very clearly.
I also show some seismograms from the simulations taken

along the receiver pro¢les of Fig. 9. Fig. 14 is the second hori-
zontal particle velocity component o from the viscoelastic
simulation displayed along the west^east-oriented receiver
pro¢le of Fig. 9. The seismogram shows scattering from the
topography, but after 3 s of simulation time boundary re£ections
from the northern grid boundary tend to dominate.
Figs 15 and 16 show the vertical particle velocity com-

ponent w along the south^north-oriented receiver pro¢le of
Fig. 9 of the viscoelastic and elastic simulations respectively.
Here the earlier and stronger boundary re£ections in the
elastic case are obvious, and we see clear irregular and very
localized scattering from the surface topography. In the
corresponding seismogram in the viscoelastic case of the ¢rst
horizontal particle velocity component u (Fig. 17), the scatter-
ing exhibits a broader pattern and a stronger coherence
a¡ecting many more receivers at a time. This is expected since
Rg waves travel predominantly horizontally along the sur-
face. However, grid re£ections from the eastern boundary
dominate after 3 s of simulation time. Since the medium is
homogeneous, the scattering we see is only due to the 3-D
topography. Previous work (Hestholm et al. 1999) has shown
that a great amount of scattering is due to out-of-plane e¡ects
from 3-D topography, as 2-D synthetics lead to much simpler
seismograms.
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Figure 9. Left: map shows the topography of the 60|60 km area used in the 3-D simulations. The dashed lines show the positions of the receivers in
two pro¢les and the circle outlines the NORESS array. Labels are in kilometres. The dark area to the southwest is LakeMjÖsa (123 m above sea level).
Right: topography pro¢les along the two lines each of 60 km length shown on the map. They are midway along the y- and x-directions and
cover respectively the complete x- and y-dimensions of the area. Horizontal axes are in kilometres and vertical axes are in metres above mean
sea level.
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In the ¢nal example I show a viscoelastic simulation using an
incident plane wave dipping towards the same surface topo-
graphy area using the same grid parameters and dimensions
and the same homogeneous medium as before. The example is
included to represent an incoming wave from an earthquake
or a teleseismic explosion in amore realistic way than in the last
example. Snapshots along the vertical xz-plane of the w particle
velocity component (left series) and the u particle velocity
component (right series) are displayed in Fig. 18. Snapshots
along the surface topography of the vertical (w) particle
velocity component are shown in Fig. 19. The plane wave has
the same small negative dip in both the x- and y-directions.
This case leads to fewer grid boundary re£ections than in the
case of the vertically incident plane wave.We see that the same
areas as before, that is, the area 30 km from the southern and
40 km from the western grid edges as well as the area near the
southwest corner, give rise to the most prominent topography

scattering. In this case, however, the scattering from the ¢rst
of these areas has not reached as far as it did for the horizontal
plane wave at the same times because in this case the plane
wave was not initiated as close to the surface. On the other
hand, the dipping plane wave gives rise to scattering of stronger
amplitudes than for the vertically incident (horizontal) plane
wave. The snapshots are scaled relative to each other, and
the surface topography scattering of Fig. 19 appears clearer
than before. In the last snapshots (at 5.5 s) the bottom grid
boundary re£ection reaches the surface and hence represents
an unphysical e¡ect.
Figs 18 and 19 are snapshots representing clear pictures

of the Rg scattering and the propagation of the plane wave
re£ection. They are scaled relative to the previous snapshots of
Figs 10^13 and exhibit stronger scattering amplitudes. This
illustrates the signi¢cance for local earthquake damage of
source incidence angles.
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Figure 10. Snapshots of the vertical particle velocity component w (left series) and the ¢rst horizontal particle velocity component u (right series) at
various times after a plane wave is released close to the surface topography of Fig. 9. The snapshots of the viscoelastic simulation are taken along the
west^east topography pro¢le of Fig. 9.
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Figs 20^22 are seismograms from the last simulation of the
three particle velocity components u, o and w along the south^
north-oriented receiver pro¢le of Fig. 9. Apart from the plane
wave re£ection, these seismograms exhibit predominantly
surface topography scattering. The horizontal velocity com-
ponent scattering is more coherent than the w scattering, u
more so than o.

DISCUSSION

In most land seismic pro¢ling there is one or more low-
velocity layers near the surface. 2-D investigations with the aim
of quantifying the scattering from near-surface irregularities

have been performed (Hill & Levander 1984; Levander & Hill
1985). Irregularities were introduced laterally along the bottom
boundary of a surface low-velocity layer. Comparing the results
of a plane, vertically incident wave upon such a layer and
upon a layer with a plane lower boundary, it is con¢rmed that
energy of large-amplitude motion gets trapped near the free
(plane) surface in the case of lateral corrugation of the lower
boundary. The roughness induces a strong resonant coupling
of incident P waves to Rgmodes. Irregularities along the lower
boundary are shown to cause the trapping of a large amount
of energy in Rg modes near the free surface. This energy will
stay strong and be the dominant feature of the wave¢eld after
the main pulse has radiated out of the model. Similar results
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Figure 11. Snapshots of the vertical particle velocity component w at various times after a plane wave is released close to the surface topography of
Fig. 9. The snapshots of the viscoelastic simulation are taken along the surface topography of Fig. 9.
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were obtained from a shallowly buried thin layer with random
velocity perturbations.When such strong energy concentration
along the free surface can be caused by irregularities along the
bottom boundary of a low-velocity layer along the surface, one
would think that irregularities along the much stronger dis-
continuities of a free surface would cause even stronger energy
trapping and conversions to Rgmodes in the presence of such a
low-velocity layer. These e¡ects are not seen in the case of a plane
surface and a homogeneous layer with smooth boundaries. In
this case, energy escapes from the near-surface layer and is
radiated back into the half-space after reverberation within the
layer (Levander & Hill 1985). In the present work I show
the e¡ects of surface topographies without inclusion of near-
surface low-velocity layers in order to attempt to isolate the
e¡ects of free-surface topography. 2-D FD elastic simulations
with topography, random media perturbations of the crust
and upper mantle and low-velocity layers near the free surface

have nevertheless been performed using the present method
(Hestholm & Ruud 1994; Hestholm et al. 1994). An analysis of
the results can be found in Ruud et al. (1993). Nonetheless, even
in a homogeneous medium scattering from surface topography
is quite e¡ective, as is shown in this work.
A discussion of possible topography scattering in a data set

assembled by Conoco in West Texas can be found in Imhof
(1996). Although Imhof claimed (Chapter 6) that for records
shot on top of the mesas, topography can be discarded as a
major scattering mechanism because of the very smooth topo-
graphy there, he mentioned that the record with the largest
amount of `noise' was the one shot across the roughest part of
the mesa. To perform FD simulations with topography he used
the method of Jih et al. (1988), resulting in relatively simple
snapshots, although modelling of only incident Rg waves
along the surface was performed. He attributed most of the
scattering to near-surface cavities, but if simulations were to
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Figure 12. Snapshots of the vertical particle velocity component w (left series) and the ¢rst horizontal particle velocity component u (right series)
at various times after a plane wave is released close to the surface topography of Fig. 9. The snapshots of the elastic simulation are taken along the
west^east topography pro¢le of Fig. 9.
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be done across the complete area of ¢eld data, including
the debris-¢lled valleys, topography e¡ects would surely be of
great importance in the results.
E¡ects of topography are important for earthquake hazard

assessment, and crustal studies have been pursued with this
goal in mind using central frequencies of 1^10 Hz. The topo-
graphy causes the amplitudes of seismic waves from earthquakes
to vary signi¢cantly locally. The spectral content of the waves
will accordingly be a¡ected signi¢cantly by the topography
(Pitarka & Irikura 1996). An FD algorithm for `staircase'
modelling of 3-D surface topography on top of an elastic
medium is given in the work of Pitarka & Irikura (1996) and

used to model incident waves on simple topography structures
and at the KOB^JMA site near Kobe, Japan. Low-frequency
(1^3 Hz) ampli¢cation is attributed to local topography e¡ects
and high-frequency deampli¢cation results from the decon-
structive interference of scattered waves. The results agree well
with ground motion recordings of aftershocks at the site. As
already mentioned, Bouchon et al. (1996) used the boundary
element method in the wavenumber domain and investigated
the e¡ect of a hill on the ground motion from an earthquake.
The hill was cosine shaped with an elliptical base of ratio 2 : 1.
Amplitude ampli¢cations were consistently found to occur at
and near the top of the hill over a broad range of frequencies.

-40

-20

0
0 20 40

-40

-20

0
0 20 40

-40

-20

0

-40

-20

0

-40

-20

0

0 20 40

-40

-20

0

0 20 40

0.5 sec 1.5 sec

2.5 sec 3.5 sec

4.5 sec 5.5 sec

Figure 13. Snapshots of the vertical particle velocity component w at various times after a plane wave is released close to the surface topography of
Fig. 9. The snapshots of the elastic simulation are taken along the surface topography of Fig. 9.
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The results showed that ampli¢cations are higher and stay
higher over a much broader frequency band for incident shear
waves polarized along the minor axis of the ellipse than for
incident shear waves polarized along the longitudinal axis. A
strong directivity of the scattered wave¢eld away from the
topographic feature was also con¢rmed, exhibiting strong waves
propagating along the minor axis of the ellipse, with almost no
scattering along the longitudinal direction of the ellipse. This
work is particularly interesting in that it assessed scattering
e¡ects (including frequency and directionality dependences)
from a simple topographic structure for incident S waves with

di¡erent polarities. Theoretical and numerical results con-
sistently predict ampli¢cation at topography ridge crests, but
nevertheless almost always systematically underestimate actual
ampli¢cations observed in the ¢eld. Among the explanations
for this is the 2-D nature of the topographic geometries
assumed in calculations. Seismic responses from hills exhibit
3-D behaviour and there is a current lack of 3-D theoretical
investigations.
Bannister et al. 1990) observed that some hills in the NORESS

area literally radiate Rg waves at regular intervals for incident
teleseismic waves of long durations. Array recordings are
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Figure 14. Seismogram of the second horizontal particle velocity
component o for the viscoelastic simulation of Figs 10 and 11 along the
west^east-oriented receiver pro¢le of Fig. 9.
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Figure 15. Seismogram of the vertical particle velocity component
w for the viscoelastic simulation of Figs 10 and 11 along the south^
north-oriented receiver pro¢le of Fig. 9.
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Figure 16. Seismogram of the vertical particle velocity component
w for the elastic simulation of Figs 12 and 13 along the south^
north-oriented receiver pro¢le of Fig. 9.
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Figure 17. Seismogram of the ¢rst horizontal particle velocity com-
ponent u for the viscoelastic simulation of Figs 10 and 11 along the
south^north-oriented receiver pro¢le of Fig. 9.
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just point observations in this regard, whilst the synthetic
snapshots in Figs 10^22 reveal nearly symmetric Rg radiation
from such secondary sources. However, this radiation from a
multiplicity of secondary sources becomes complex with time,
so propagation directionality from a secondary source to a
receiver can be very local and will also generally weaken with
distance. Observationally this is con¢rmed by the fact that Rg
waves rarely propagate further than 60 km in hilly areas such
as those of the NORESS and GERESS (Bavaria, Germany)
arrays, whilst across the plains of northern Fennoscandia Rg

waves from explosions occasionally propagate out to 600 km.

CONCLUSIONS

Exact boundary conditions for free-surface topography com-
bined with the viscoelastic wave equations in the velocity^

stress formulation give realistic scattering and complex wave
patterns due to out-of-plane e¡ects from 3-D topography. I
have demonstrated clear P-to-Rg scattering from prominent
topography and I ¢nd it gratifying that the strong P-to-Rg
scattering from the Skreikampen and Bronkeberget hills
observed by Bannister et al. (1990) through an analysis of
NORESS recordings can be realistically synthesized. Another
interesting phenomenon is that abrupt changes of the Rg

wave¢eld occur over relatively small distances. This is due to
the strong directivity of scattering from some topographic
features as well as destructive interference from a multiplicity
of secondary sources. Such wave¢eld characteristics are some-
times observed in recordingsöat some sensors the Rg phase is
prominent whilst it is hardly visible at nearby sensors less than
1 km away. Even in simulations of earthquakes and teleseismic
explosions, where parameters close to elastic cases are used, it
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Figure 18. Snapshots of the vertical particle velocity component w (left series) and the ¢rst horizontal particle velocity component u (right series) at
various times after a dipping plane wave is released near the surface topography of Fig. 9. The snapshots of the viscoelastic simulation are taken along
the west^east topography pro¢le of Fig. 9.
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is advantageous to use the viscoelastic code with a very high Q

because of its superior absorbing boundary conditions along
the grid edges. At longer time laps and/or lower Q-values it
also gives realistic intrinsic attenuation and physical dispersion
of all waves.
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component o for the viscoelastic simulation of Figs 18 and 19 along the
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Figure 22. Seismogram of the vertical particle velocity com-
ponent w for the viscoelastic simulation of Figs 18 and 19 along the
south^north-oriented receiver pro¢le of Fig. 9.
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APPENDIX A: FIRST-ORDER SYSTEM FROM THE CONSTITUTIVE RELATION

The constitutive relation for a linear viscoelastic isotropic homogeneous medium is (Christensen 1982)

pij~ _" � dijekkz2 _M � eij , (A1)

where Einstein's summation convention is used. " and 2M are the two independent functions resulting from the fourth-order

tensor Gijkl in eq. (1) for a homogeneous medium.We de¢ne

%~"z2M (A2)

and use the standard linear solid model for % and M, i.e.

%~n 1{
X

L

`~1

1{
qPe`
qp`

� �

e{t=qp`

 !

h(t) , (A3)

M~k 1{
X

L

`~1

1{
qSe`
qp`

� �

e{t=qp`

 !

h(t) , (A4)

where n~jz2k and j and k are the elastic Lamë parameters.% andM depend respectively on the strain relaxation time for P waves,

qPe`, and the strain relaxation time for S waves, qSe`. This allows the independent de¢nition of Q for P and S waves. Using the time

derivative of the de¢nition of strain,

_eij~
1

2
(LiojzLjoi) , (A5)
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we obtain from the constitutive relation

_pii~( _%{2 _M) � Lkokz2 _M � Lioi , (A6)

_pij~ _M � (LiojzLjoi) , i=j . (A7)

Now we insert the standard linear solid expressions for % and M and perform the time di¡erentiation for each of their factors.

We then obtain

_pii~ n 1{
X

L

`~1

1{
qPe`
qp`

� �

" #

{2k 1{
X

L

`~1

1{
qSe`
qp`

� �

" #( )

Lkokz2k 1{
X

L

`~1

1{
qSe`
qp`

� �

( )

Lioiz
X

L

`~1

rii` , (A8)

_pij~k 1{
X

L

`~1

1{
qSe`
qp`

� �

( )

(LiojzLjoi)z
X

L

`~1

rij` , i=j , (A9)

where

rii`~ n
1

qp`
1{

qPe`
qp`

� �

{2k
1

qp`
1{

qSe`
qp`

� �� �

e{t=qp`h(t) � Lkokz2k
1

qp`
1{

qSe`
qp`

� �

e{t=qp`h(t) � Lioi , 1¦`¦L , (A10)

rij`~k
1

qp`
1{

qSe`
qp`

� �

e{t=qp`h(t) � (LiojzLjoi) , i=j , 1¦`¦L . (A11)

are the memory variables.We obtain the ¢rst-order system for them by evaluating the time derivatives the same way as was done in

the previous step,

_rii`~{
1

qp`
rii`z n

qPe`
qp`

{1

� �

{2k
qSe`
qp`

{1

� �� �

Lkokz2k
qSe`
qp`

{1

� �

Lioi

� �

, 1¦`¦L , (A12)

_rij`~{
1

qp`
rij`zk

qSe`
qp`

{1

� �

(LiojzLjoi)

� �

, i=j , 1¦`¦L . (A13)

The momentum conservation equation completes the viscoelastic wave equations,

o _oi~Ljpijzf i , (A14)

where f i is the volume force and o is the density. The 3-D case for L~1 (one standard linear solid) yields eqs (3)^(17).

APPENDIX B: PARTIAL DERIVATIVES IN MEDIUM EQUATIONS

For the medium equations we need Lg/Lx, Lg/Ly and Lg/Lz. They are found from

Lx

Lm

Lm

Lx
z

Lx

Li

Li

Lx
z

Lx

Lg

Lg

Lx
~1 , (B1)

Ly

Lm

Lm

Lx
z

Ly

Li

Li

Lx
z

Ly

Lg

Lg

Lx
~0 , (B2)

Lz

Lm

Lm

Lx
z

Lz

Li

Li

Lx
z

Lz

Lg

Lg

Lx
~0 , (B3)

Lx

Lm

Lm

Ly
z

Lx

Li

Li

Ly
z

Lx

Lg

Lg

Ly
~0 , (B4)

Ly

Lm

Lm

Ly
z

Ly

Li

Li

Ly
z

Ly

Lg

Lg

Ly
~1 , (B5)

Lz

Lm

Lm

Ly
z

Lz

Li

Li

Ly
z

Lz

Lg

Lg

Ly
~0 , (B6)

Lx

Lm

Lm

Lz
z

Lx

Li

Li

Lz
z

Lx

Lg

Lg

Lz
~0 , (B7)

Ly

Lm

Lm

Lz
z

Ly

Li

Li

Lz
z

Ly

Lg

Lg

Lz
~0 , (B8)

Lz

Lm

Lm

Lz
z

Lz

Li

Li

Lz
z

Lz

Lg

Lg

Lz
~1 . (B9)
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This leads to

Lg

Lx
~

Ly

Lm

Lz

Li
{

Lz

Lm

Ly

Li

� ��

J , (B10)

Lg

Ly
~

Lz

Lm

Lx

Li
{

Lx

Lm

Lz

Li

� ��

J , (B11)

Lg

Lz
~

Lx

Lm

Ly

Li
{

Ly

Lm

Lx

Li

� ��

J , (B12)

where

J~
Lx

Lm

Ly

Li

Lz

Lg
{

Lz

Li

Ly

Lg

� �

{
Lx

Li

Ly

Lm

Lz

Lg
{

Ly

Lg

Lz

Lm

� �

z
Lx

Lg

Ly

Lm

Lz

Li
{

Lz

Lm

Ly

Li

� �

. (B13)

With our choice of mapping functions, eqs (18)^(20), we obtain

Lx

Lm
~1 ,

Lx

Li
~0 ,

Lx

Lg
~0 , (B14)

Ly

Lm
~0 ,

Ly

Li
~1 ,

Ly

Lg
~0 , (B15)

Lz

Lm
~

g

gmax

Lz0(m, i)

Lm
,

Lz

Li
~

g

gmax

Lz0(m, i)

Li
,

Lz

Lg
~

z0(m, i)

gmax

(B16)

and

J~
Lz

Lg
~

z0(m, i)

gmax

. (B17)

From this we obtain expressions (24)^(28).

APPENDIX C: MEDIUM EQUATIONS

Applying the chain rule to eqs (3)^(17) and using the properties of eqs (21)^(23) leads to

o
Lu

Lt
~

Lpxx

Lm
z

Lpxx

Lg

Lg

Lx
z

Lpxy

Li
z

Lpxy

Lg

Lg

Ly
z

Lpxz

Lg

Lg

Lz
zfx , (C1)

o
Lo

Lt
~

Lpxy

Lm
z

Lpxy

Lg

Lg

Lx
z

Lpyy

Li
z

Lpyy

Lg

Lg

Ly
z

Lpyz

Lg

Lg

Lz
zfy , (C2)

o
Lw

Lt
~

Lpxz

Lm
z

Lpxz

Lg

Lg

Lx
z

Lpyz

Li
z

Lpyz

Lg

Lg

Ly
z

Lpzz

Lg

Lg

Lz
zfz , (C3)

Lpxx

Lt
~n

qPe
qp

Lu

Lm
z

Lu

Lg

Lg

Lx
z

Lo

Li
z

Lo

Lg

Lg

Ly
z

Lw

Lg

Lg

Lz

� �

{2k
qSe
qp

Lo

Li
z

Lo

Lg

Lg

Ly
z

Lw

Lg

Lg

Lz

� �

zrxx , (C4)

Lpyy

Lt
~n

qPe
qp

Lu

Lm
z

Lu

Lg

Lg

Lx
z

Lo

Li
z

Lo

Lg

Lg

Ly
z

Lw

Lg

Lg

Lz

� �

{2k
qSe
qp

Lu

Lm
z

Lu

Lg

Lg

Lx
z

Lw

Lg

Lg

Lz

� �

zryy , (C5)

Lpzz

Lt
~n

qPe
qp

Lu

Lm
z

Lu

Lg

Lg

Lx
z

Lo

Li
z

Lo

Lg

Lg

Ly
z

Lw

Lg

Lg

Lz

� �

{2k
qSe
qp

Lu

Lm
z

Lu

Lg

Lg

Lx
z

Lo

Li
z

Lo

Lg

Lg

Ly

� �

zrzz , (C6)

Lpxy

Lt
~k

qSe
qp

Lu

Li
z

Lu

Lg

Lg

Ly
z

Lo

Lm
z

Lo

Lg

Lg

Lx

� �

zrxy , (C7)

Lpxz

Lt
~k

qSe
qp

Lu

Lg

Lg

Lz
z

Lw

Lm
z

Lw

Lg

Lg

Lx

� �

zrxz , (C8)

Lpyz

Lt
~k

qSe
qp

Lo

Lg

Lg

Lz
z

Lw

Li
z

Lw

Lg

Lg

Ly

� �

zryz , (C9)

Lrxx

Lt
~{

1

qp

(

rxxzn
qPe
qp

{1

� �

Lu

Lm
z

Lu

Lg

Lg

Lx
z

Lo

Li
z

Lo

Lg

Lg

Ly
z

Lw

Lg

Lg

Lz

� �

{2k
qSe
qp

{1

� �

Lo

Li
z

Lo

Lg

Lg

Ly
z

Lw

Lg

Lg

Lz

� �

)

, (C10)
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Lryy

Lt
~{

1

qp

(

ryyzn
qPe
qp

{1

� �

Lu

Lm
z

Lu

Lg

Lg

Lx
z

Lo

Li
z

Lo

Lg

Lg

Ly
z

Lw

Lg

Lg

Lz

� �

{2k
qSe
qp

{1

� �

Lu

Lm
z

Lu

Lg

Lg

Lx
z

Lw

Lg

Lg

Lz

� �

)

, (C11)

Lrzz

Lt
~{

1

qp

(

rzzzn
qPe
qp

{1

� �

Lu

Lm
z

Lu

Lg

Lg

Lx
z

Lo

Li
z

Lo

Lg

Lg

Ly
z

Lw

Lg

Lg

Lz

� �

{2k
qSe
qp

{1

� �

Lu

Lm
z

Lu

Lg

Lg

Lx
z

Lo

Li
z

Lo

Lg

Lg

Ly

� �

)

, (C12)

Lrxy

Lt
~{

1

qp

(

rxyzk
qSe
qp

{1

� �

Lu

Li
z

Lu

Lg

Lg

Ly
z

Lo

Lm
z

Lo

Lg

Lg

Lx

� �

)

, (C13)

Lrxz

Lt
~{

1

qp

(

rxzzk
qSe
qp

{1

� �

Lu

Lg

Lg

Lz
z

Lw

Lm
z

Lw

Lg

Lg

Lx

� �

)

, (C14)

Lryz

Lt
~{

1

qp

(

ryzzk
qSe
qp

{1

� �

Lo

Lg

Lg

Lz
z

Lw

Li
z

Lw

Lg

Lg

Ly

� �

)

. (C15)

Substituting for Lg/Lx, Lg/Ly and Lg/Lz from eqs (24)^(28), we obtain the medium eqs (29)^(43).

APPENDIX D: BOUNDARY CONDITIONS

Assume that a velocity vector v with components u, o and w is given in a Cartesian (x, y, z)-coordinate system with basis vectors i, j

and k. This system is then rotated through angles (h, �) into a new (x0, y0, z0)-coordinate system with basis vectors i0, j0 and k0. h is the

rotation angle between the x-axis and the x0-axis in the (x, z)-plane and � is the rotation angle between the y-axis and the y0-axis in

the ( y0, z0)-plane. In this new system the vector v is denoted by v0 with components u0, o0 and w0. We then have the relationships

i0

j0

k0

0

B

B

@

1

C

C

A

~A

i

j

k

0

B

B

@

1

C

C

A

, (D1)

where A is the rotation matrix given by eq. (48). Correspondingly,

i

j

k

0

B

B

@

1

C

C

A

~A
{1

i0

j0

k0

0

B

B

@

1

C

C

A

~A
T

i0

j0

k0

0

B

B

@

1

C

C

A

, (D2)

where A{1 and AT are equal (since A is orthogonal) and the inverse and transpose of A respectively.
Using the computational grid coordinates (m, i, g) instead of the Cartesian (x, y, z)-system and

jnj~

�������������������������������������������

Lz0

Lm

� �2

z
Lz0

Li

� �2

z1

s

,

a unit normal vector to a surface topography element can be written as

n̂~
n

jnj
~

1

jnj
{

Lz0(m, i)

Lm
, {

Lz0(m, i)

Li
, 1

� �T

~ { cos� sin h, { sin�, cos� cos h� �T (D3)

with our choice of rotation angles. From this we obtain

tan�

cos h
~

Lz0(m, i)

Li
, i:e: tan�~

Lz0(m, i)

Li
cos h , (D4)

cos�~ cos arctan
Lz0(m, i)

Li
cos h

� �� �

(D5)

and

sin�~ sin arctan
Lz0(m, i)

Li
cos h

� �� �

. (D6)
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The coordinate transformation for v is given by v~A{1v0, or v0~Av. Component-wise this is

u0~(cos h)uz(sin h)w , (D7)

o
0
~{(sin h sin�)uz(cos�)oz(cos h sin�)w , (D8)

w0
~{(sin h cos�)u{(sin�)oz(cos h cos�)w . (D9)

Applying the chain rule to a di¡erentiable function f , we obtain

Lf

Lx0
~

Lf

Lx

Lx

Lx0
z

Lf

Ly

Ly

Lx0
z

Lf

Lz

Lz

Lx0
~

Lf

Lx
cos hz

Lf

Lz
sin h , (D10)

Lf

Ly0
~

Lf

Lx

Lx

Ly0
z

Lf

Ly

Ly

Ly0
z

Lf

Lz

Lz

Ly0

~
Lf

Lx
({ sin h sin�)z

Lf

Ly
cos�z

Lf

Lz
cos h sin� , (D11)

Lf

Lz0
~

Lf

Lx

Lx

Lz0
z

Lf

Ly

Ly

Lz0
z

Lf

Lz

Lz

Lz0

~
Lf

Lx
({ sin h cos�)z

Lf

Ly
({ sin�)z

Lf

Lz
cos h cos� . (D12)

The last equalities are obtained from eq. (D2). The free boundary conditions (44)^(46) for the velocities have to be enforced in the

local (x0, y0, z0)-system, where the z0-axis is normal to the surface at the local point, i.e.

Lu0

Lz0
~{

Lw0

Lx0
, (D13)

Lo0

Lz0
~{

Lw0

Ly0
, (D14)

Lw0

Lz0
~{

j

jz2k

Lu0

Lx0
z

Lo0

Ly0

� �

. (D15)

If the chain rule is applied as above, we obtain

Lu0

Lx
({ sin h cos�)z

Lu0

Ly
({ sin�)z

Lu0

Lz
cos h cos�~{

Lw0

Lx
cos h{

Lw0

Lz
sin h , (D16)

Lo0

Lx
({ sin h cos�)z

Lo0

Ly
({ sin�)z

Lo0

Lz
cos h cos�~{

Lw0

Lx
({ sin h sin�){

Lw0

Ly
cos�{

Lw0

Lz
cos h sin� , (D17)

Lw0

Lx
({ sin h cos�)z

Lw0

Ly
({ sin�)z

Lw0

Lz
cos h cos�

~{
j

jz2k

Lu0

Lx
cos hz

Lu0

Lz
sin hz

Lo0

Lx
({ sin h sin�)z

Lo0

Ly
cos�z

Lo0

Lz
cos h sin�

� �

. (D18)

Now we apply the above expressions for u0, o0 and w0 that were obtained from the rotation. This leads to

cos h
Lu

Lx
z sin h

Lw

Lx

� �

({ sin h cos�)z cos h
Lu

Ly
z sin h

Lw

Ly

� �

({ sin�)z cos h
Lu

Lz
z sin h

Lw

Lz

� �

cos h cos�

~ sin h cos�
Lu

Lx
z sin�

Lo

Lx
{ cos h cos�

Lw

Lx

� �

cos hz sin h cos�
Lu

Lz
z sin�

Lo

Lz
{ cos h cos�

Lw

Lz

� �

sin h , (D19)

{ sin h sin�
Lu

Lx
z cos�

Lo

Lx
z cos h sin�

Lw

Lx

� �

({ sin h cos�)z { sin h sin�
Lu

Ly
z cos�

Lo

Ly
z cos h sin�

Lw

Ly

� �

({ sin�)

z { sin h sin�
Lu

Lz
z cos�

Lo

Lz
z cos h sin�

Lw

Lz

� �

cos h cos�

~ sin h cos�
Lu

Lx
z sin�

Lo

Lx
{ cos h cos�

Lw

Lx

� �

({ sin h sin�)z sin h cos�
Lu

Ly
z sin�

Lo

Ly
{ cos h cos�

Lw

Ly

� �

cos�

z sin h cos�
Lu

Lz
z sin�

Lo

Lz
{ cos h cos�

Lw

Lz

� �

cos h sin� , (D20)
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We divide the ¢rst of these equations by cos2 h cos�, the second by cos h cos2 � and the third by cos2 h cos2 �. These divisions assume

h=+n/2 and �=+n/2. This means that the topography cannot have vertical sections along the planes of rotation, that is, the

topography function must be single-valued. This is a reasonable assumption given that the topography function z0(m, i) is assumed to

be smooth. After restructuring, the three equations become
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The equations are now given in the Cartesian (x, y, z)-system. However, as for the medium equations, we require that the Cartesian

equations in x, y and z be valid inside the curved grid whose surface coincides with the surface topography in the Cartesian system.

We must thus ¢nd the appearance of these equations in the rectangular (m, i, g)-grid where the numerical computations are per-

formed. This results in curved grid equations given in the (m, i, g)-grid. We must therefore apply the chain rule to the boundary

conditions in the same way as was done for the medium equations.
At the free surface g~gmax, and with Lz0(m, i)/Lm~ tan h and Lz0(m, i)/Li~tan�/cos h [now using the computational

(m, i, g)-grid], eqs (26) and (27) become

A(m, i, g)~
Lg

Lx
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z0(m, i)
tan h~{C(m, i) tan h , (D25)
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~{C(m, i)

tan�

cos h
. (D26)

Eqs (21)^(23) for a di¡erentiable function f (x, y, z) at the surface then become
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. (D29)
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When this is used in the boundary conditions, together with f~j/(jz2k), we obtain
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Rearranging terms and using the trigonometric simpli¢cations
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leads to the equations
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Finally, I simplify expressions by using the trigonometric relations

1z
tan2 �

cos2 h
~

1

cos2 �
z tan2 h tan2 � , (D40)

tan2 h

cos2 �
z tan2 �~

tan2 �

cos2 h
z tan2 h , (D41)

and use the relations tan h~Lz0(m, i)/Lm, tan�~Lz0(m, i)/Li cos h and the de¢nitions (52)^(56). This leads to the closed set of

boundary conditions for the particle velocities at a free-surface topography, (49)^(51).

ß 1999 RAS, GJI 139, 852^878

878 S. Hestholm

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
3
9
/3

/8
5
2
/5

8
7
4
6
3
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2


