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This paper presents two- and three-dimensional direct numerical simulations of the flow around a

circular cylinder placed symmetrically in a plane channel. Results are presented in the Reynolds

number range (based on the cylinder diameter and centerline velocity) of 10 to 390 for a blockage

ratio (ratio of the cylinder diameter to the channel height) of 0.2. The aim of this work was to

investigate in detail the confinement effect due to the channel’s stationary walls on the force

coefficients and the associated Strouhal numbers, as well as on the generated flow regimes. Present

results suggest a transition from a 2-D to a 3-D shedding flow regime between Re¼ 180 and

Re¼ 210. This transition was found to be dominated by mode A and mode B three dimensional

instabilities, similar to those observed in the case of an unconfined circular cylinder. This is the

first time that the existence of the two modes, and of naturally occurring vortex dislocations, has

been confirmed via full 3-D simulations for the case of a confined circular cylinder in a channel. A

discontinuity in the variation of the Strouhal number St, and of the base pressure coefficient Cpb,

with Re was also observed. This was found to be associated with the onset of mode A instability

and the development of vortex dislocations, and parallels what occurs in the unconfined case, but

previous studies could not confirm its existence in the confined case. Furthermore, by analyzing the

mechanisms affecting the shape and evolution of these instabilities, it is demonstrated that they are

significantly affected by the confinement only in the far wake. VC 2011 American Institute of

Physics. [doi:10.1063/1.3599703]

I. INTRODUCTION

While the flow over a circular cylinder represents one of

the classical problems in fluid mechanics, the case of flow

over a confined cylinder in a plane channel remains rela-

tively unexplored. The extra confinement provided by the

stationary no-slip walls of the channel affects the nature and

stability of the flow. Understanding the wide variety of rich

flow phenomena that ensue in this case is of intrinsic interest

for the overall understanding of bluff body fluid dynamics.

Even more importantly, such a flow configuration represents

an idealization of several industrially important flows, where

flow inserts can be used to enhance mixing and heat transfer;

typical examples include flow past dividers in polymer proc-

essing, turbulence promoters in the liquid-metal blankets of

fusion reactors, etc. Understanding the dynamics of a three-

dimensional wake flow behind a cylinder can provide valua-

ble knowledge with practical importance, with respect to its

effect on heat and mass transfer.

Transition to three-dimensionality in the cylinder wake

for the unconfined case is well understood and a lot of work

has already been done.1–13 For this case, the flow is known to

remain purely two-dimensional for values of the Reynolds

number up to Re ’ 189.9 At even higher Re values, three-

dimensional effects appear, and Roshko1 was the first to

observe a transition regime in the wake of an unconfined cir-

cular cylinder. In this transition regime, three physically

different instabilities are observed, referred to by Williamson7

as “mode A,” “mode B,” and “vortex dislocations,” Mode A

is characterized by a discontinuous change in the wake forma-

tion, as the primary spanwise vortices become unstable and

generate large-scale streamwise vortex loops, at a wavelength

of around 3 to 4 cylinder diameters. Mode B corresponds to

the appearance of small scale streamwise vortex structures,

with a wavelength of approximately one cylinder diameter.

Finally, vortex dislocations are generated between spanwise

cells of different frequencies and evolve along the span.

Williamson4 suggests that this phenomenon is mostly respon-

sible for the low frequency fluctuations reported by Roshko1

to characterize the transition regime and the appearance of

turbulent motion. Wake transition is defined by two disconti-

nuities in the Strouhal frequency. At the first discontinuity,

the Strouhal frequency drops from the laminar curve to one

corresponding to a mode A three-dimensional shedding. As

the Reynolds number is increased further, another discontinu-

ity is observed related to mode B instabilities. This disconti-

nuity is not hysteretic. Experiments have shown that the

transition from mode A to mode B shedding takes place in the

Re range 190 to 260. According to Williamson,7 wake transi-

tion is further characterized by velocity and pressure modifi-

cations. The appearance of mode-A instability and large scale

dislocations are consistently accompanied by a reduction of

base suction, a reduction of (two-dimensional) Reynolds

stress level, and a growth in the size of the formation region.

In the case of a circular cylinder confined between paral-

lel walls, studies investigating three dimensional effects at
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low Reynolds numbers, either experimentally or numeri-

cally, are relatively scarce. Almost all three-dimensional

studies are at reasonably higher Reynolds numbers, in the

range O(104)–O(105).14–17 These studies investigate the flow

characteristics in the wake of a circular cylinder placed near

a plane wall at various gap heights, G (distance between the

cylinder and the wall). There results show that for small gap

ratios, G=D � 0.3, vortex shedding is suppressed. For larger

gap ratios, some flow quantities, such as the Strouhal num-

ber, remain remarkably constant and independent of the gap

ratio. Moreover, Wang and Tan17 found that for the interme-

diate gap ratios 0.3 � G=D � 0.6, the influence of the wall is

fairly strong, causing the flow to develop a distinct asymme-

try about the cylinder centreline.

Only two studies, quite recently, focused on the develop-

ment of three-dimensional effects for a confined circular cyl-

inder. Rehimi et al.18 carried out experimental studies in the

Reynolds number range 30–277 for a blockage ratio of 1=3.
In their work, three-dimensional instabilities were observed

having great similarities with mode A and mode B patterns of

vortex shedding found in the unconfined case. However, in

their experiments mode A appeared at Re¼ 159, which is con-

sidered premature relative to the critical value of Re ’ 189

for the onset of this instability in the unconfined case. They

attributed this behavior to wall perturbations. The second

study was that of Camarri and Giannetti19 where a three-

dimensional Floquet stability analysis was used to investigate

the three-dimensional stability of the wake behind a symmetri-

cally confined circular cylinder for a different blockage ratio

of 1=5 for Re up to 300. Their results showed that the transi-

tion to a three-dimensional state has the same space-time sym-

metries as the unconfined case. They also found that the

critical Reynolds numbers for the onset of instabilities, when

based on the centerline velocity, are similar to the ones found

in Barkley and Henderson9 for the unconfined case. However,

they observed that due to the inversion of the wake vortices,

the linear unstable modes are significantly affected, leading to

differences between the confined and the unconfined cases.

To the best of our knowledge, no published direct numer-

ical simulations of the three-dimensional flow in a channel

exists in the Reynolds number range examined here (150 to

390 based on the centerline velocity). The main objective of

this study is to investigate how the confinement provided by

the channel walls affects the onset and development of three-

dimensional instabilities in the wake of the flow at moderate

Reynolds numbers. Comparisons are made with two-dimen-

sional studies for the confined case, as well as with the exten-

sive literature available for the unconfined case.

In the sections to follow, first the complete problem is for-

mulated and presented together with a detailed grid-sensitivity

analysis (Sec. II). The main results from the 3-D simulations

together with a discussion of confinement effects are presented

in Sec. III, followed by the conclusions of the present study.

II. PROBLEM STATEMENTAND FORMULATION

A. Flow configuration

The geometry considered in this study is shown in

Figure 1. The geometry consists of a circular cylinder, of

diameter D, symmetrically placed in a plane channel. The ra-

tio of the cylinder diameter to the distance between the chan-

nel walls H, defines the blockage ratio, b¼D=H. Results for
b¼ 1=5 are presented in the present paper, allowing for a

direct comparison with the linear stability analysis of

Camarri and Gianneti.19 We decided not to use the higher

blockage ratio (b¼ 1=3) that was used in the experiments of

Rehimi et al.,18 even though that would have meant a smaller

computational domain in favour of computational cost, “in

order to avoid peculiar flow features related to a complex

interaction between the wake and the confining walls,” as

mentioned in Camarri and Giannetti.19 By choosing the

lower blockage ratio, we can bring into focus the wall-block-

ing effects without these being obscured by the more com-

plex interactions with the near-wall viscous regions.

The channel inlet is placed at a distance of Li¼ 12.5D

upstream of the circular cylinder, while the outlet is located

at Lo¼ 35.5D behind the body. This choice of parameters

ensures minimal distortion of the flow structure due to the

boundary conditions,20 while maintaining a reasonable com-

putational cost, and is in line with those used by others in the

literature.19,21 Two spanwise lengths were considered,

W¼ 8D and W¼ 12D. Based on observations from the tran-

sitional wake of open uniform flow past a circular cylinder,

the value of 8D was considered sufficient for the develop-

ment of both mode B and the larger mode A three-dimen-

sional wake instabilities. The relatively large spanwise

length of 12D has been used only in the analysis of natural

vortex dislocations. In this case, the use of such a large span

was motivated by the need to provide sufficient domain for

the development of such irregularities in the wake, and it is

in agreement with the practice followed by Braza et al.12

B. Mathematical formulation

The flow is completely described by the set of Navier-

Stokes equations for an incompressible Newtonian fluid, of

density q, dynamic viscosity l, and kinematic viscosity

�¼ l=q. Using the cylinder’s diameter, D, and the centerline

inflow velocity, Uc, as the characteristic length and velocity

scales, respectively, the non-dimensional continuity and mo-

mentum equations in a Cartesian coordinate system are given

by

@ui
@xi

¼ 0; (1)

FIG. 1. (Color online) Schematic diagram of the flow configuration and

related geometrical parameters.
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@ui
@t

þ
@uiuj
@xj

¼ �
@P

@xi
þ

1

Re

@2ui

@xj@xi
; (2)

where Re¼UcD=� is the Reynolds number.

The drag and lift coefficients were both determined by

considering the viscous and the pressure forces on the cylin-

der surface,

CD ¼
FD

1
2
qU2

cD
and CL ¼

FL

1
2
qU2

cD
; (3)

where FD and FL are the drag and lift forces per unit length

of the cylinder, defined as

Fi ¼ �pdij þ �q
@ui
@xj

þ
@uj
@xi

� �� �

nj: (4)

Here, nj denotes the unit normal vector pointing in the direc-

tion of xj. The Strouhal number, characterizing the vortex

shedding phenomenon, is based on the dominant frequency

of the lift coefficient

St ¼ f
D

Uc

: (5)

The base pressure coefficient is defined as

Cpb ¼
pb � p1
1
2
qU2

c

; (6)

where pb is the spatiotemporal average, with respect to the

time and the spanwise coordinate z, of pressure at the rear

stagnation point of the cylinder (180� from the front), and

p1 is the free-stream pressure at the inlet boundary

(x¼�12.5D, y¼ 0).

C. Numerical method and boundary conditions

The current computations have been performed using an

unstructured collocated nodal-based finite-volume code. A

second-order accurate centered-difference scheme, with

skewness corrections, is applied to discretize the diffusive

and nonlinear terms. The mass and momentum equations

[Eqs. (1) and (2)] are coupled using a fractional-step method.

The time integration of the flow equations is done using a

Crank-Nicholson scheme for the diffusive terms. The non-

linear terms are treated semi-implicitly. A very detailed

description of the numerical techniques used by this code is

reported in Ham et al.,22 and Moin et al.23

Boundary conditions are given at the domain’s inlet by

prescribing a Poiseuille, parabolic velocity profile,

uð�Li; yÞ ¼ Uc 1�
y

H=2

� �2
" #

; (7)

while a no-slip boundary condition is imposed on the cylin-

der surface, the top, and the bottom walls. At the outlet, in

order to minimize reflective effects and avoid the distortion

of the flow structures leaving the domain, a convective

boundary condition is applied,

@ui
@t

þ Uconv

@ui
@n

¼ 0; (8)

where Uconv �
Ð

uds=
Ð

ds. For the 3-D simulations, a Neu-

mann boundary condition has been adopted for the velocity

field in the spanwise direction,

@ui
@z

¼ 0; (9)

which is considered appropriate and in accordance with ex-

perimental observations of the flow regime considered in the

present study.11 A series of simulations performed with peri-

odic spanwise boundary conditions suggested that, even

though numerical results where similar, not all of the critical

physical mechanisms could be captured as accurately as with

Neumann conditions.

D. Computational grids

The influence of the grid resolution on the computed

physical characteristics of the flow was examined in detail in

order to optimize the simulation in terms of accuracy and

computational cost. For this reason, a series of two- and

three-dimensional simulations were carried out at Re¼ 300.

The parameters of the different grid configurations tested are

summarized in Table I.

First, a series of two-dimensional simulations were per-

formed using three non-uniform grids (G1, G2, G3), mainly

differing in the spatial resolution in the vicinity of the cylinder

and the channel walls. The hyperbolic tangent function was

used for stretching the cell sizes in a clustered region close to

the cylinder, and linear grid stretching was applied in the

direction normal to the channel walls, as shown in Figure 2.

Further upstream and downstream of the cylinder, a uniform

grid was used. The discrepancy between the values of mean

drag coefficient C�D, rms value of the lift coefficient C0
L,

Strouhal number St, and the base pressure coefficient Cpb

resulting from the use of different grids are shown in Table II.

Results show that a grid independent solution can be achieved

with the grids considered. For example, the percentage differ-

ence between the values predicted on the coarsest grid with

respect to the ones obtained on the finest grid is below 2.1%.

This discrepancy is further reduced to less than 0.5% when the

two finest grids are compared. Hence, one can conclude that

the intermediate grid G2 is sufficiently fine to resolve the flow.

TABLE I. Parameters used for the different grid configurations. Ncyl: nodes

along cylinder circumference; Dnwalls: grid spacing normal to the cylinder

surface and channel walls; Dz: grid spacing in spanwise direction; Nz: nodes

along spanwise direction;W: channel width.

Grids Ncyl Dnwalls Dz Nz W Total nodes

G1 2-D 120 0.020 — — — 25 531

G2 2-D 240 0.005 — — — 66 989

G3 2-D 320 0.002 — — — 112 657

G2C 3-D 240 0.005 0.4 21 8 1 406 769

G2M 3-D 240 0.005 0.2 41 8 2 726 109

G2F 3-D 240 0.005 0.1 81 8 5 426 109

G2W 3-D 240 0.005 0.12 101 12 6 765 889
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To study the effect of the spanwise grid spacing in the

numerical solution for the 3-D cases, several three-dimen-

sional grids were generated by repeating the grid G2 along

the spanwise direction. Three grids differing in the spanwise

resolution were tested, namely G2C, G2M, and G2F with Dz

grid spacings of 0.4D, 0.2D, and 0.1D, respectively. The

spanwise dimension of 8D was adopted for these meshes.

Simulations were performed over periods of at least 900

dimensionless time units, corresponding to about 180 vortex

shedding cycles, with time averaging of results performed

over the last 100 shedding cycles, when the flow had reached

a “fully developed” state.

Results obtained with the three grids are listed in Table

II and overall show good grid convergence. For example,

replacing the coarsest grid G2C with the finest grid G2F,

resulted in only 3.7% change in St and 1.4% in Cpb, whereas

the corresponding changes were only 1.1% and 0.6% when

replacing the intermediate grid G2M by the finest grid.

Based on these results, one could have opted for the interme-

diate grid G2M. However, because we were particularly

interested in capturing the details of the vortical structures

downstream of the cylinder, we decided to use the finest grid

G2F, despite the increased computational cost. For example,

a typical simulation with grid G2F required a total of 27

days of computation on a 32 node (64 processor) Linux

cluster to complete 180 shedding cycles. Each node has dual

Opteron 244 (1.8 GHz) processors with 4 GB of RAM.

In order to study the natural occurrence of vortex dislo-

cations, a case at Re¼ 240 was computed in a wider domain

with a spanwise dimension of 12D. To accommodate this

case, an additional grid (G2W) was generated, which in view

of the increased computational requirements had a spanwise

grid spacing of 0.12D, which is slightly coarser than G2F,

but still finer than G2M.

The dimensionless time step was kept constant during

each simulation but was determined independently for each

case in order to satisfy the Courand-Friedrichs-Lewy stabil-

ity criterion, CFL � 1. This yielded values in the range

7.5� 10�3D=Uc to 10� 10�3D=Uc.

III. RESULTS

A. Validation

To the best of our knowledge, the only 3-D results

reported in the literature for the case of flow over a confined

circular cylinder in a channel are from Rehimi et al.,18 who,

however, considered a different blockage ratio of b¼ 1=3.
For the blockage ratio examined in the present paper

(b¼ 1=5), the only previously available results had been

obtained from 2-D simulations. Therefore, 2-D numerical

simulations were performed first, allowing the validation of

the numerical code and the chosen parameters through com-

parisons with existing literature.

The critical Reynolds number Recr for the transition from

steady to unsteady flow, the mean drag coefficient C�D, and the

Strouhal number St were computed and compared against pre-

vious studies. Our results for Recr, and the corresponding

Strouhal number Stcr, are listed in Table III. When compared

with the values reported in Refs. 21, 24, and 25, these show an

excellent agreement. Figure 3 displays a comparison of both

the drag coefficient and the Strouhal number versus Re. As

shown, the agreement is again very satisfactory, confirming

FIG. 2. Computational grid G2. The picture on the top shows the whole domain, while the bottom picture shows an expanded view in the vicinity of the cylin-

der. Only every 4th node is plotted for clarity.

TABLE II. Mean drag coefficient �CD, rms lift coefficient C0
L, Strouhal num-

ber St, and base pressure coefficient Cpb at Re¼ 300 for the 2-D and 3-D

grids.

Grids Re �CD C0
L St Cpb

G1 2-D 300 1.210 0.551 0.2021 1.0440

G2 2-D 300 1.232 0.559 0.2023 1.0472

G3 2-D 300 1.236 0.562 0.2024 1.0488

G2C 3-D 300 1.157 0.405 0.1915 0.929

G2M 3-D 300 1.167 0.388 0.1967 0.937

G2F 3-D 300 1.172 0.376 0.1989 0.942
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the accuracy of the numerical code and the choice of appropri-

ate numerical parameters.

B. Transition to three-dimensionality

In order to carefully investigate transitional effects, a se-

ries of nine three-dimensional simulations have been carried

out for the range 150 � Re � 390, in steps of 30. A summary

of the results obtained is listed in Table IV.

It is important to note that the vortex shedding in the

present 3-D simulations is initiated without imposing or forc-

ing any artificial or external flow-disturbances. Instead, the

round-off and truncation errors, which are uniformly distrib-

uted over the whole computational domain, were allowed to

generate the self-excitation needed for the flow to naturally

develop three-dimensionalities. This choice was associated

with long computational times that became even longer for

the cases that were closer to the transitional regime, as we

discuss further below. However, it was motivated from the

lack of previously reported data on this flow configuration.

The first steps of transition to three-dimensionality are

reflected in the amplification of the spanwise velocity-com-

ponent, uz, in the near wake. Figure 4 shows the time evolu-

tion of uz in the near-wake, at Reynolds numbers ranging

from 180 to 300. For the sake of clarity, each signal is trun-

cated at a different evolution time to avoid overlaps. For the

lower Reynolds numbers considered here, namely Re¼ 180

(and Re¼ 150, which is not shown in Figure 4), the flow did

not exhibit any sign of spanwise fluctuations, an indication

that it remained completely two-dimensional. In contrast, for

higher values of the Reynolds number, Re � 210, the flow

showed a non-linear growth of uz, indicating the inception of

three-dimensionality. As a general trend, with increasing

Reynolds number, the uz amplification was found to initiate

earlier. Thus, the present simulations indicate that the transi-

tion in the cylinder’s wake occurs within the interval

between Re¼ 180 and Re¼ 210. This is consistent with the

results of Camarri and Giannetti,19 who carried out a Floquet

stability analysis for the same configuration and found a crit-

ical value of RecrA � 201 for the transition to a three-dimen-

sional state.

TABLE III. Comparison of critical Reynolds number and corresponding

Strouhal number with previous two-dimensional numerical studies.

Present

Sahin and

Owens (Ref. 24)

Zovatto and

Pedrizzetti (Ref. 21)

Chen et al.

(Ref. 25)

Recr 69.5 69.9 68.9 69.3

Stcr 0.1567 0.1567 — 0.1559

FIG. 3. Drag coefficient CD and Strouhal number St versus Reynolds num-

ber, numerically obtained from two-dimensional simulations, compared

with previous two-dimensional numerical studies (Refs. 19, 21, 26, 27).

TABLE IV. Summary of results from the current three-dimensional numeri-

cal simulations.

Cases Re W �CD C0
L St Cpb

1 150 8 1.2389 0.271 0.1850 0.8487

2 180 8 1.2253 0.342 0.1893 0.8845

3 210 8 1.166 0.25 0.1852 0.832

4 240 12 1.169 0.30 0.1895 0.880

5 270 8 1.170 0.37 0.1949 0.913

6 300 8 1.172 0.37 0.1989 0.942

7 330 8 1.139 0.33 0.2015 0.918

8 360 8 1.120 0.30 0.2035 0.895

9 390 8 1.099 0.26 0.2053 0.883

FIG. 4. Time variation of the spanwise component of velocity, uz, along the

rear axis at x=D¼ 1.5, three-dimensional case.
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Transition to three-dimensionality is also depicted on

the time history of the lift, CL, and drag, CD, coefficients as

shown in Figure 5. After a transient period, during which the

flow remains in a two-dimensional state and periodic vortex

shedding is observed, the signal eventually losses its coher-

ence and a drastic reduction in the lift and drag forces occurs,

corresponding to a three-dimensional state of the flow. The

flow develops these three-dimensional effects soon after

the amplification of the spanwise velocity uz. The length of

the transient period was particularly long for Re¼ 210,

approaching 500 time units, but it got shorter as the Reyn-

olds number was further increased. For all other cases up to

Re¼ 390, the transient period was ranging between 50 and

200 time units. This behavior bears strong resemblance to

the simulations of Mittal and Balachandar28 for the case of

an unconfined circular cylinder.

C. Effect of Re on Strouhal number St and base
pressure coefficient Cpb

As the Re number is increased, modifications in the dy-

namics of the wake structure produce distinct changes in the

shedding frequency and the pressure field. The transient na-

ture of the flow necessitates long simulation times before

reliable statistics can be collected, especially for Re values

close to the wake transition critical points. In our case, simu-

lation times were made even longer because of relying on

self excitation to trigger transition. Once a statistically sta-

tionary state was reached in the computation, the calculation

was continued for another 100 to 150 vortex shedding cycles

to obtain the time-averaged values. Strouhal numbers have

been obtained from the lift coefficient signals using Welch’s

averaged periodogram method.29 A Hamming window was

applied to each overlapping segment of data.

The variation of the Strouhal number, St, as a function

of the Reynolds number is shown in Figure 6, where results

from the present 2-D and 3-D simulations are compared to

the experimental results of Williamson2 for the unconfined

case. Dashed vertical lines indicate the critical Reynolds

numbers, which, according to Camarri and Giannetti,19 mark

the onset of different wake instabilities for the case of a con-

fined circular cylinder with the same blockage ratio as used

in the present study. As shown in Sec. III B, the flow remains

completely two-dimensional up to Re¼ 180. Not surpris-

ingly then, results from the 2-D flow simulations are identi-

cal to those from the 3-D simulations in this range of Re

values. However, at Re¼ 210, where three-dimensional

effects start to develop, a significant difference between the

2-D and 3-D cases is observed. In the 3-D case, St undergoes

a sudden drop of approximately 4% that persists up to

Re¼ 240. As Re is further increased, differences are

observed to be less significant, and another discontinuity in

the St–Re relationship shows up, which this time is not hyste-

retic. At Re¼ 270, the difference between 2-D and 3D cases

is around 2.5%, while for Re¼ 300–390, the difference

decreases to 1.5%. Interestingly, results from the three-

dimensional simulations compare well to the experimental

results of Williamson for the case of an unconfined cylinder,

but with a small delay in the critical Re values. This offset,

towards higher Re in our case, seems to be attributed to the

additional confinement from the channel walls, which

FIG. 5. Lift CL and drag coefficient CD versus time, for the three-dimen-

sional cases: (a) Re¼ 180, (b) Re¼ 210, (c) Re¼ 240, and (d) Re¼ 300.

FIG. 6. Strouhal number St versus Re, compared with the linear stability

analysis of Camarri and Giannetti (Ref. 19) and the experimental study of

Williamson (Ref. 2) for the case of an unconfined circular cylinder. Dashed

lines mark the critical Reynolds number indicated by Camarri and Giannetti

(Ref. 19) for the onset of different wake instabilities.
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presumably stabilizes the flow and produces higher transi-

tional Reynolds numbers.30

Williamson7 associated these two discontinuous changes

in the St–Re curve, with the development of different insta-

bilities in the wake; mode A instability combined with inter-

mittent vortex dislocations and mode B instability. In

accordance with these observations, current results indicate

the existence of two instability regions: the first occurs

around Re¼ 210 and corresponds to the onset of three-

dimensionalities in the flow, while the second occurs around

Re¼ 270. We will discuss about these instabilities in greater

detail in Sec. III D. These findings are consistent with the

results of Camarri and Giannetti,19 who carried out a linear

stability analysis for the case of a confined circular cylinder

having the same blockage ratio as in the present study and

also found the existence of two instability regions. They

found the critical value for the onset of the second instability

to be RecrB � 256. According to their work, these instabil-

ities have the same symmetries as the mode A and mode B

instabilities found in the unconfined case. However, no drop

in the Strouhal number is reported in their study. This is not

surprising taking into consideration the limitations of the lin-

ear stability approach, and the fact that this transition feature,

observed at Re � RecrA and above, is not a linear effect of

the instability but is a result of strongly nonlinear

phenomena.9,10

Despite its value in assessing flow instabilities, the evo-

lution of the base pressure coefficient, Cpb, as a function of

the Reynolds number has not been previously discussed in

the literature for the confined case. Figure 7 shows this evo-

lution for the present 2-D and 3-D simulations together with

the experimental results of Williamson and Roshko3 and the

data of Dennis and Chang31 for comparison with the uncon-

fined case. Again, as expected, results from the 2-D and 3-D

simulated flows are identical up to Re¼ 180, where the flow

remains two-dimensional. For Re> 210, where three-dimen-

sional effects start to take place, the results from the 3-D

simulation show a marked drop in the level of Cpb, which

remains undetected in the 2-D simulations. Once again, the

Cpb predictions from the current 3-D simulations exhibit a

very similar evolution with Re as found experimentally by

Williamson and Roshko3 for the unconfined case.

According to Williamson7 and Roshko,32 the variations

of the base pressure coefficient correspond to the presence of

instabilities in the flow. In the unconfined case, the drop in

the base pressure coefficient at Re¼ 180 is thought to be to

related to the presence of mode-A instability and vortex dis-

locations.7 At Re¼ 260, on the other hand, there is a local

maximum that corresponds to a saturation of the primary

instability growth.32 Around that point, the secondary span-

wise structure changes to one with smaller scale, mode B

instability.7 As Re is further increased, three-dimensional

structures become more disordered and the base suction

begins to decrease. Our computations show the same charac-

teristics in the variation of Cpb with Re, the only difference

being again a small delay in the initiation of 3-D effects in

the confined case relative to the unconfined results (Re¼ 210

instead of Re¼ 180) and similar delay in the saturation

effects (Re¼ 270–300 instead of Re¼ 260), which are attrib-

uted to the additional confinement of the channel walls.

Based on these results, one would expect the overall struc-

ture of the confined wake to be similar to that of the uncon-

fined case. This expectation is confirmed by the findings

presented in the following sections.

D. Instabilities in the wake

In order to identify three-dimensional vortex structures

in free shear flows, the vorticity magnitude is usually used.

However, in our case due to the existence of vorticity at the

channel walls, using the vorticity magnitude to identify vor-

tices would result in deformed vorticity structures and diffi-

culties in visualizing them. The k2 criterion is by far more

appropriate for boundary layer type of flows and it is defined

as the second eigenvalue of S2þX2, where S and X denote

the symmetric and antisymmetric parts of the velocity gradi-

ent tensor, respectively.33 Thus, iso-surfaces of k2 were used

in order to exclude the wall shear region and focus on the

swirling motion of the primary and induced vortices of the

cylinder wake. Indeed, through the application of the k2 cri-

terion, we were able to clearly detect the vortical motions of

interest for such a highly three-dimensional wall-bounded

shear flow.

A visual impression of the three-dimensional structures

related to the different instabilities found in the flow can be

obtained from Figure 8. There, we show snapshots of iso-

surfaces of k2 normalized by its absolute minimum, k2,min,

for different Reynolds numbers in increasing order. Iso-

surfaces are colored by the streamwise vorticity component,

xx, to reveal the streamwise rotation direction of each vorti-

cal structure. The spanwise rollers essentially identify the

primary vortex cores.

At Re¼ 240 [Fig. 8(a)], a Reynolds number correspond-

ing to a regime well after the onset of the first instability, a

spanwise waviness of the primary vortex cores is observed in

the cylinder’s wake, along with the formation of counter-

rotating streamwise vortex pairs. Over successive half cycles

FIG. 7. Base pressure coefficient Cpb versus Re, compared with the experi-

mental study of Williamson and Roshko (Ref. 3) and the numerical simula-

tions of Dennis and Chang (Ref. 31) for the case of an unconfined circular

cylinder.
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of vortex shedding, vortex pairs of opposite-sign vorticity

are formed. The flow displays a dominant spanwise wave-

length of around 4D, in agreement with the value of 4.65D

reported by Camarri and Gianneti19 for a similar configura-

tion. This periodic, out-of-phase, three-dimensional flow pat-

tern is topologically similar to that of mode A,7 at least in

the near wake region (as it will be discussed in the Sec. III

E). Mode A instability appears in the wake of an unconfined

circular cylinder with a spanwise wavelength of approxi-

mately 4D.6,7,9

For Re¼ 300 and above, finer scale streamwise vortex

pairs are observed [Figs. 8(d) and 8(e)], with a distinctly

smaller spanwise wavelength of approximately 1D. This

time, successive vortex pairs from one braid layer to the

next, have the same orientation, forming an in-phase stream-

wise vortex pattern. This instability, in contrast to mode A,

is restricted to the near wake only and it is not found in the

far downstream locations. With increasing Re, the number of

streamwise vortices is increased, and the flow becomes more

distorted. This flow pattern is analogous to that of mode B

vortex shedding described by Williamson7 for the case of an

unconfined circular cylinder. It also compares well with the

predicted critical wavelength of 0.86D found by Camarri and

Gianneti19 for the confined case.

In the case of Re¼ 270, which is close to the instability

threshold, ReB ’ 256, found by Camarri and Gianneti,19

modes of vortex shedding similar to both mode A [Fig. 8(b)]

and mode B [Fig. 8(c)] were observed at different instances

of the flow. This intermittent nature of the flow is in line

with the experimental observations of Williamson,7 the

direct numerical simulations of Henderson,10 and the stabil-

ity analysis of Barkley34 for the unconfined case. They have

shown that the transition from mode A to mode B is associ-

ated with a gradual transfer of energy from one mode to

the other, resulting in a mixed-mode state approximately in

the Re range 230–265. Williamson attributes this to the inter-

mittent swapping between the two modes, rather than the

coexistence of both modes. Also, Behara and Mittal13 in

their numerical investigations demonstrated the swapping

between modes up to Re¼ 275 for the unconfined case.

The present three-dimensional simulations are the first

to reveal the presence of natural vortex dislocations in the

confined wake of a circular cylinder. Williamson4,7 has

shown that large-scale spot-like vortex dislocations are an

intrinsic phenomenon of wake transition. These irregularities

occur spontaneously along the span as a natural feature of

the wake flow and are associated with the presence of mode

A instability. However, few three-dimensional simulations

have captured them. Zhang et al.6 reproduced numerically

Williamson’s vortex-dislocations, after applying strong

localized spanwise inhomogeneity in the initial conditions.

Braza et al.12 were the first to obtain the vortex dislocations

FIG. 8. (Color online) Instantaneous plots of iso-surfaces of the k2 criterion

normalized by its absolute minimum (k2=k2,min¼ 0.5%) and rendered by

contours of streamwise vorticity, top view. Flow is from left to right. (a)

Re¼ 240 at t¼ 1116D=Uc, (b) Re¼ 270 at t¼ 1048D=Uc, (c) Re¼ 270 at

t¼ 1110D=Uc, (d) Re¼ 300 at t¼ 916D=Uc, and (e) Re¼ 390 at

t¼ 694D=Uc.

FIG. 9. (Color online) Iso-surfaces of (a) pressure (p¼�0.4) and (b) k2-def-

inition (k2¼�0.5), top view, for Re¼ 240 at t¼ 870D=Uc. Iso-surfaces of

k2 are colored by streamwise vorticity component xx.
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naturally by means of a complete Navier-Stokes simulation.

In the present work, clear observations of the existence of

natural vortex dislocations are presented for the case of a

confined circular cylinder.

The occurrence of such dislocations can clearly be seen in

Figure 9, where snapshots of iso-surfaces of k2¼�0.4 and pres-

sure p¼�0.4 are presented for Re¼ 240 at t¼ 870D=Uc. Iso-

surfaces of k2 are colored by streamwise vorticity component,

xx. At the occurrence of dislocation, in the vicinity of

z=D¼�2, the span-wise coherence of the primary vortex core

is lost and a break in the continuity of the vortex tube can be

seen. Moreover, during this phase of the flow, dislocations affect

the shedding phenomenon, which as a result becomes irregular.

One can identify the occurrence of dislocations through

their signature in instantaneous velocity signals and the

FIG. 10. (a) Time history of velocity component uy measured at probes

located along the span at the position x=D¼ 1.5, y=D¼ 0.5. Dotted lines

mark areas of pronounced modulation of the velocity signal, indicating the

presence of vortex dislocations. (b) Expanded view showing two samples of

velocity signals in a time interval associated with the snapshot in Fig. 9.

FIG. 11. Spectra of crossflow velocity component uy along the span at the position x=D¼ 1.5, y=D¼ 0.5, for Re¼ 240, 270, and 300 from left to right.

FIG. 12. (Color online) Iso-surfaces of k2 normalized by its absolute mini-

mum (k2=k2,min¼ 0.35%), colored by the streamwise vorticity component,

for the case of a (a), (b) confined and (c), (d) an unconfined circular cylinder

at Re¼ 240. xx.max is the maximum streamwise vorticity magnitude. Supple-

mentary movie shows an animation of the vortex structures for the confined

case (mode A instability) (enhanced online). [URL: http://dx.doi.org/

10.1063/1.3589842.1].
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corresponding spectra at different spanwise positions. Figure

10 displays the crossflow velocity component signal from a

series of probes spaced in the spanwise direction and placed

at the intersection of the horizontal plane y=D¼ 0.5 and the

vertical plane x=D¼ 1.5. This is a location slightly down-

stream from the cylinder. At certain spanwise positions, the

normal Karman vortex shedding gives way to a pronounced

modulation in the time history of fluctuating velocities. These

can be seen as the marked areas in Figure 10(a), or more

clearly in Figure 10(b), where two samples of velocity signals

are displayed in an interval corresponding to the time instant

of the snapshot shown in Figure 9. These irregularities or

glitches in the velocity signal correspond directly to the pas-

sage of a vortex dislocation structure past the measuring

probe.4 The spontaneous occurrence of such dislocations at

different spanwise locations was found to be regular in time.

Another way to visualize dislocations is by looking at

the corresponding power spectra density of the velocity sig-

nal (Fig. 11). Braza et al.12 found that in the regions where a

vortex dislocation occurs, the spectral energy of the funda-

mental frequency is reduced considerably. This behavior is

clearly seen in Figure 11. In the case of Re¼ 240, where the

flow exhibits mode A vortex shedding, there is a significant

decrease in the spectral energy in the vicinity of z=D¼ 4 and

z=D¼�3. The drop, at certain spanwise positions, reaches

up to 50% from the maximum value. On the other hand, for

the cases of Re¼ 270 and Re¼ 300, which correspond to a

mixed or pure mode B vortex shedding, changes in the am-

plitude of the spectral density are much smaller, approxi-

mately 15% and 20%, respectively. In these cases, the flow

is devoid of vortex dislocations, in agreement with the

experiments of Williamson4 and the numerical simulations

of Behara and Mittal.13

E. Effects of confinement

In order to identify differences between the wake char-

acteristics of confined and unconfined cylinders, two more

simulations were performed, at Re¼ 240 and Re¼ 300, this

time for an unconfined cylinder. To accommodate the uncon-

fined simulations, grids G2W and G2F were laterally

extended from 5D to 50D, in order to minimize blockage

effects,9,11 while providing a comparable resolution to the

corresponding confined cases.

The effects of confinement on mode A flow structures

are examined first. A comparison between the confined and

the unconfined case is shown in Figure 12, where snapshots

of iso-surfaces of the k2 criterion are plotted at Re¼ 240.

Although mode A is identified in the confined case, the down-

stream evolution of the cylinder wake is strongly affected by

confinement. In the near wake region, i.e., for x=D< 5, mode

A is clearly identifiable in the confined case, and one cannot

FIG. 13. (Color online) Instantaneous

visualization of iso-surfaces using k2
¼�0.3 over successive time instants at

Re¼ 240. Iso-surfaces are colored by the

spanwise vorticity, xz. (a) t¼ 1111D=
Uc, (b) t¼ 1120D=Uc, (c) t¼ 1127D=Uc,

(d) t¼ 1130D=Uc.
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discern clear differences between the vortical patterns gener-

ated by the confined and unconfined cases. Moving further

downstream though, one finds that the structure of the

confined wake departs from that of a standard unconfined cyl-

inder wake. For example, at 5< x=D< 17, the hairpin struc-

tures of the braid shear layer that are a standard feature of the

unconfined wake, can still be identified in the confined case,

but their motion and shape is significantly modified. These

differences may be attributed to the inversion of the Von Kar-

man vortices caused by wall interactions in the confined case,

as described by Camarri and Gianneti.19 For x=D> 17, the

confined wake is much more fragmented, without a clear

presence of primary vortex cores, which in the unconfined

case are seen to persist this far downstream. In the same

region, one finds a stronger streamwise alignment of vortices

in the confined case compared to the unconfined case. In the

confined case, hairpin vortices sustain their coherency and

persist for larger distances, up to x=D � 30.

The breakdown of the primary vortex cores and the frag-

mented nature of the flow depicted by iso-surfaces of

k2¼�0.3 (0.5% of its absolute minimum) is represented

over successive time instants at Re¼ 240 in Figure 13. In

order to have a more clear view of the spanwise vortex cores,

rather than the streamwise vortices, iso-surfaces are colored

by the spanwise vorticity component xz. At t¼ 1111D=Uc

one can observe that from approximately x=D � 17 and

above, the primary vortex cores lose there coherence and

break into smaller structures that become aligned in the

streamwise direction as they are advected further down-

stream. If we focus our attention on one such a pair of coun-

ter-rotating spanwise vortex cores [Fig. 13(a), box A], and

follow them in time as they move further downstream, the

initial small waviness grows, and they seem to be gradually

pulled backwards and towards the channel walls. When they

reach the vicinity of x=D¼ 17 [Fig. 13(b), box B], the front

counterclockwise vortex roller (top roller, red online) starts

FIG. 14. (Color online) Instantaneous visualizations of the streamwise velocity field, ux, for the case of Re¼ 240 at t¼ 1130D=Uc. (a), (b) Iso-surfaces of

ux¼ 0.5 (a) and ux¼ 1.5 (b). (c), (d) Contour plots of ux in the planes x=D¼ 7.2 (c) and x=D¼ 16.8 (d). Lines represent the values of streamwise vorticity,

xx¼60.6, 60.8 (dashed lines correspond to negative values of xx). Arrows indicate the direction of the velocity induced by the streamwise vortices. (e), (f)

Contour plots of ux in the planes z=D¼ 2 (e) and z=D¼ 4 (f). Lines represent the values of spanwise vorticity, xz¼60.8 (dashed lines correspond to negative

values of xz). P1 and P2 are anticlockwise and clockwise primary vortex cores, respectively.
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losing its continuity and breaks. At x=D � 22, eventually

both vortices break down and they are transformed to U-

shaped vortices [Fig. 13(c), box C]. The legs of these struc-

tures are later separated and transformed to streamwise roll-

ers as they are advected downstream [Fig. 13(d), box D].

Interestingly, this pattern of behavior is systematic and all

primary vortex cores are stretched and eventually break

down in a similar manner and around the same spanwise

positions.

Figures 14(a) and 14(b) show iso-surfaces of the stream-

wise component of the velocity field for ux¼ 0.5 and 1.5,

respectively, for Re¼ 240 at t¼ 1130D=Uc. Looking at Fig-

ure 14(a), one can observe close to the channel walls

“streaks” of low velocity fluid that protrude towards the cen-

ter of the channel. These “streaks” are aligned in the stream-

wise direction and occur on both sides of the channel walls

at similar spanwise positions. In between these low velocity

fields, regions of high velocity fluid are observed that are

also aligned in the streamwise direction, as seen in Figures

14(b) and 14(d).

This organized, “symmetric” mixing of low and high ve-

locity fields results from the interaction of the streamwise

vortex pairs from mode A instability and the channel walls.

Figure 14(c) shows a contour plot of ux in the plane

x=D¼ 7.2 (plane A). Contour lines of streamwise vorticity,

xx¼60.6, 60.8, are superimposed to give information on

the location and rotation direction of the streamwise vortex

pairs. The induced velocity due to the streamwise vortex pairs

drives low velocity fluid towards the centreplane of the wake

and high velocity fluid towards the channel walls. Because

mode A instability gives an out-of-phase streamwise vortex

pattern at particular spanwise locations, streamwise vortex

pairs of opposite sign reside on opposing sides of channel

walls. As a result, the deformation and stretching of low and

high velocity fluid towards and away from the centreplane of

the wake occur at the same spanwise positions on both sides.

The self-sustaining nature of mode A, that gives an array of

streamwise vortex pairs that travel further downstream at the

same spanwise positions, explains why these low and high

speed regions are aligned in the streamwise direction.

Figures 14(e) and 14(f) show contour plots of ux in the

planes z=D¼ 2 (plane C) and z=D¼ 4 (plane D) respectively,

which correspond to areas in the wake where high and low

velocity fields are more prominent accordingly. In order

to investigate the effect of the velocity field on the primary

vortex cores, lines representing values of spanwise vorticity,

xz¼60.8, are displayed on top. As seen in Figure 14(e), the

primary vortex cores strongly interact with the high speed

velocity field and are forced to follow a trajectory close to

the centerline as they shed downstream. On the other hand,

in the plane z=D¼ 4 [Fig. 14(f)], as segments of the vortex

cores are caught in the low speed region, the primary vortex

cores follow an oblique trajectory closer to the channel walls

and progressively slow down (see vortex cores P1 and P2).

This accelerating and slowing down of segments of the pri-

mary vortex cores at different spanwise locations causes the

enhanced waviness observed. Around x=D¼ 17, the stretch-

ing of the vortex core becomes so strong that forces it to

break down.

So far, the discussion of confinement effects has been

limited to mode A instability. In the case of mode B, when

compared with the unconfined case, the downstream evolu-

tion of the cylinder wake also seems to be strongly affected

by confinement in a similar manner with mode A as shown

in Fig. 15 for Re¼ 300. For higher values of Re, the break

down of the primary vortex cores ensues further upstream

[up to x=D¼ 12 for Re¼ 390, as shown in Fig. 8(e)] and the

flow becomes more fragmented. However, in the presence of

mode B instability, it was not possible to observe a regular

pattern of vortex breakdown.

There are mainly two features of the flow responsible

for this behavior. Unlike mode A, mode B instability leads to

an in-phase streamwise vortex array with a smaller spanwise

wavelength [Figs. 8 and 16(c)]. Also, a spanwise wandering

of the streamwise vortices from one half-cycle to the next is

observed, in line with the experimental visualizations of Wil-

liamson7 for the unconfined case. As a result, induced veloc-

ity from the streamwise vortices was found to generate

irregular streams of low velocity, as shown in Figure 16(a).

In contrast with mode A, these slow moving regions, were

neither aligned along the streamwise direction nor observed

at symmetric locations on the channel walls. In addition, no

clustered regions of high velocity extending in the stream-

wise direction were identified [Fig. 16(b)]. These features

promote the amplified distortion observed for mode B insta-

bility and result in the irregular break down of the primary

vortex cores. With increasing Re, these effects become even

more pronounced leading to the breakdown of the primary

vortex cores earlier downstream.

FIG. 15. (Color online) Same as Fig. 12, but for Reynolds number,

Re¼ 300. Supplementary movie shows an animation of the vortex structures

for the confined case at Re¼ 300 and Re¼ 390 (mode B instability)

(enhanced online). [URL: http://dx.doi.org/10.1063/1.3589842.2].
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IV. CONCLUSIONS

Direct numerical simulations of the two- and three-

dimensional flow around a circular cylinder placed in a plane

channel have been performed. The blockage ratio was kept

constant at 1=5, and the Reynolds number was varied

between 10 and 390.

Present results indicate that up to Re¼ 180, the flow

remains two-dimensional. For higher values of the Reynolds

number, Re � 210, the flow develops three-dimensional

effects which are depicted on the time history of the lift, CL,

and drag, CD, coefficients. Two discontinuous changes were

detected in the St–Re curve corresponding to different span-

wise instabilities in the wake, an effect that is linked to

inherently nonlinear mechanisms and which previous studies

failed to capture. We have also confirmed for the first time,

that the critical points are also reflected in the Cpb–Re rela-

tionship, as was also found by Williamson for the unconfined

case. Similar to the case of an unconfined circular cylinder,

mode A 3-D shedding was observed for Re¼ 210 and 240.

For Re � 300, mode B vortex structures were detected. At

Re¼ 270, the flow exhibited an intermittent swapping

between the two modes. The intermittent presence of natu-

rally occurring vortex dislocations, as a fundamental feature

of wake transition, was also demonstrated. This is the first

time that the existence of these instabilities has been con-

firmed via full 3-D simulations for the confined circular cyl-

inder in a channel.

The present work leads to a clarification of how the

shape and evolution of mode A and mode B instabilities are

affected downstream by the confinement of the channel

walls. In case of mode A, organized, “symmetric” mixing of

low and high velocity fields is observed downstream, which

eventually forces the primary vortex cores to break in a con-

sistent and systematic way. In the case of mode B, irregular

streams of low and high velocity are observed, which result

to the irregular breakdown of the vortex cores. Understand-

ing the hydrodynamic field and knowledge of the velocity

profiles is important to properly predict local phenomena

such as heat transfer and corrosion effects.

ACKNOWLEDGMENTS

This work has been performed under the UCY-CompSci

project, a Marie Curie Transfer of Knowledge (TOK-DEV)

grant (Contract No. MTKD-CT-2004-014199), funded by

the CEC under the 6th Framework Program and under the

contract of association ERB 5005 CT 99 0100 between the

European Atomic Energy Community and the Hellenic

Republic. Partial support has also been received through a

Center of Excellence grant from the Norwegian Research

Council to the Center for Biomedical Computing.

1A. Roshko, “On the drag and shedding frequency of two-dimensional bluff

bodies,” NACA Technical Note No. 3169, 1954.
2C. H. K. Williamson, “The existence of two stages in the transition to

three-dimensionality of a cylinder wake,” Phys. Fluids 31, 3165 (1988).
3C. H. K. Williamson and A. Roshko, “Measurements of base pressure in

the wake of a cylinder at low Reynolds numbers,” Z. Flugwiss Weltraum-

forsch 14, 38 (1990).
4C. H. K. Williamson, “The natural and forced formation of spot-like vor-

tex dislocations in the transition of a wake,” J. Fluid Mech. 243, 393

(1992).
5G. E. Karniadakis and G. S. Triantafyllou, “Three-dimensional dynamics

and transition to turbulence in the wake of bluff objects,” J. Fluid Mech.

238, 1 (1992).
6H. Q. Zhang, U. Fey, B. R. Noack, M. Konig, and H. Eckelmann, “On the

transition of the cylinder wake,” Phys. Fluids 7, 779 (1995).
7C. H. K. Williamson, “Three-dimensional wake transition,” J. Fluid Mech.

328, 345 (1996).
8C. H. K. Williamson, “Vortex dynamics in the cylinder wake,” Annu. Rev.

Fluid Mech. 28, 477 (1996).
9D. Barkley and R. D. Henderson, “Three-dimensional Floquet stability

analysis of the wake of a circular cylinder,” J. Fluid Mech. 322, 215

(1996).

FIG. 16. (Color online) Instantaneous

visualizations of the streamwise velocity

field, ux, for the case of Re¼ 300 at

t¼ 916D=Uc. (a), (b) Iso-surfaces of

ux¼ 0.5 (a) and ux¼ 1.5 (b). (c), (d)

Contour plots of ux in the planes

x=D¼ 8.9 (a) and x=D¼ 14.6 (b). Lines

represent the values of streamwise vor-

ticity, xx¼60.6, 60.8 (dashed lines

correspond to negative values of xx).

064106-13 Three dimensional flow around a circular cylinder Phys. Fluids 23, 064106 (2011)

http://dx.doi.org/10.1063/1.866925
http://dx.doi.org/10.1017/S0022112092002763
http://dx.doi.org/10.1017/S0022112092001617
http://dx.doi.org/10.1063/1.868601
http://dx.doi.org/10.1017/S0022112096008750
http://dx.doi.org/10.1146/annurev.fl.28.010196.002401
http://dx.doi.org/10.1146/annurev.fl.28.010196.002401
http://dx.doi.org/10.1017/S0022112096002777


10R. D. Henderson, “Nonlinear dynamics and pattern formation in turbulent

wake transition,” J. Fluid Mech. 352, 65 (1997).
11H. Persillon and M. Braza, “Physical analysis of the transition to turbu-

lence in the wake of a circular cylinder by three-dimensional Navier-

Stokes simulation,” J. Fluid Mech. 365, 23–88 (1998).
12M. Braza, D. Faghani, and H. Persillon, “Successive stages and the role of

natural vortex dislocations in three-dimensional wake transition,” J. Fluid

Mech. 439, 1 (2001).
13S. Behara and S. Mittal, “Wake transition in flow past a circular cylinder,”

Phys. Fluids 22, 114104 (2010).
14P. W. Bearman and M. M. Zdravkovich, “Flow around a circular cylinder

near a plane boundary,” J. Fluid Mech. 89, 33 (1978).
15C. Lei, L. Cheng, and K. Kavanagh, “Re-examination of the effect of a

plane boundary on force and vortex shedding of a circular cylinder,” J.

Wind Eng. Ind. Aerodyn. 80, 263 (1999).
16S. J. Price, D. Sumner, J. G. Smith, K. Leong, and M. P. Paidoussis, “Flow

visualization around a circular cylinder near to a plane wall,” J. Fluids

Struct. 16, 175 (2002).
17X. K. Wang and S. K. Tan, “Near wake flow characteristics of a circular

cylinder close to a wall,” J. Fluids Struct. 24, 605 (2008).
18F. Rehimi, F. Aloui, S. B. Nasrallah, L. Doubliez, and J. Legrand,

“Experimental investigation of a confined flow downstream of a circular

cylinder centred between two parallel walls,” J. Fluids Struct. 24, 885

(2008).
19S. Camarri and F. Giannetti, “Effect of confinement on three-dimensional

stability in the wake of a circular cylinder,” J. Fluid Mech. 642, 447

(2010).
20A. Sohankar, C. Norberg, and L. Davidson, “Low-Reynolds-number flow

around a square cylinder at incidence: Study of blockage, onset of vortex

shedding and outlet boundary condition,” Int. J. Numer. Methods Fluids

26, 39 (1998).
21L. Zovatto and G. Pedrizzetti, “Flow about a circular cylinder between

parallel walls,” J. Fluid Mech. 440, 1 (2001).

22F. Ham, K. Mattson, and G. Iaccarino, “Accurate and stable finite volume

operators for unstructured flow solvers,” in Annual Research Briefs, Cen-

ter for Turbulence Research, Stanford University/NASA Ames, 2006.
23P. Moin and S. V. Apte, “Large-eddy simulation of realistic gas turbine

combustors,” AIAA J. 44, 698 (2006).
24M. Sahin and R. G. Owens, “A numerical investigation of wall effects up

to high blockage ratios on two-dimensional flow past a confined circular

cylinder,” Phys. Fluids 16, 1305 (2004).
25J. H. Chen, W. G. Pritchard, and S. J. Tavener, “Bifurcation of flow past a

cylinder between parallel planes,” J. Fluid Mech. 284, 23 (1995).
26S. Mettu, N. Verma, and R. P. Chhabra, “Momentum and heat transfer

from an asymmetrically confined circular cylinder in a plane channel,”

Heat Mass Transfer 42, 1037–1048 (2006).
27S. Singha and K. P. Sinhamahapatra, “Flow past a circular cylinder

between parallel walls at low Reynolds numbers,” Ocean Engineering 37,

757–769 (2010).
28R. Mittal and S. Balachandar, “Effect of three-dimensionality on the lift and

drag of nominally two-dimensional cylinders,” Phys. Fluids 8, 1841 (1995).
29P. D. Welch, “The use of fast Fourier transform for the estimation of

power spectra: A method based on time averaging over short, modified

periodograms,” IEEE Trans. Audio Electroacoust. 15, 70 (1967).
30A. Sohankar, C. Norberg, and L. Davidson, “Simulation of three-dimen-

sional flow around a square cylinder at moderate Reynolds numbers,”

Phys. Fluids 11, 288 (1999).
31S. C. R. Dennis and G. Chang, “Numerical solutions for steady flow past a cir-

cular cylinder at Reynolds numbers up to 100,” J. Fluid Mech. 42, 471 (1970).
32A. Roshko, “Perspectives on bluff body aerodynamics,” J. Wind Eng. Ind.

Aerodyn. 49, 79 (1993).
33J. Jeong and F. Hussain, “On the identification of a vortex,” J. Fluid Mech.

285, 69 (1995).
34D. Barkley, L. S. Tuckerman, and M. S. Golubitsky, “Bifurcation theory

for three-dimensional flow in the wake of a circular cylinder,” Phys. Rev.

E 61, 5247 (2000).

064106-14 Kanaris, Grigoriadis, and Kassinos Phys. Fluids 23, 064106 (2011)

http://dx.doi.org/10.1017/S0022112097007465
http://dx.doi.org/10.1017/S0022112098001116
http://dx.doi.org/10.1017/S002211200100458X
http://dx.doi.org/10.1017/S002211200100458X
http://dx.doi.org/10.1063/1.3500692
http://dx.doi.org/10.1017/S002211207800244X
http://dx.doi.org/10.1016/S0167-6105(98)00204-9
http://dx.doi.org/10.1016/S0167-6105(98)00204-9
http://dx.doi.org/10.1006/jfls.2001.0413
http://dx.doi.org/10.1006/jfls.2001.0413
http://dx.doi.org/10.1016/j.jfluidstructs.2007.11.001
http://dx.doi.org/10.1016/j.jfluidstructs.2007.12.011
http://dx.doi.org/10.1017/S0022112009992345
http://dx.doi.org/10.1002/(SICI)1097-0363(19980115)26:1<>1.0.CO;2-T
http://dx.doi.org/10.1017/S0022112001004608
http://dx.doi.org/10.2514/1.14606
http://dx.doi.org/10.1063/1.1668285
http://dx.doi.org/10.1017/S0022112095000255
http://dx.doi.org/10.1063/1.868500
http://dx.doi.org/10.1109/TAU.1967.1161901
http://dx.doi.org/10.1063/1.869879
http://dx.doi.org/10.1017/S0022112070001428
http://dx.doi.org/10.1016/0167-6105(93)90007-B
http://dx.doi.org/10.1016/0167-6105(93)90007-B
http://dx.doi.org/10.1017/S0022112095000462
http://dx.doi.org/10.1103/PhysRevE.61.5247
http://dx.doi.org/10.1103/PhysRevE.61.5247

	s1
	cor1
	cor2
	s2
	s2A
	s2B
	E1
	E2
	F1
	E3
	E4
	E5
	E6
	s2C
	E7
	E8
	E9
	s2D
	T1
	s3
	s3A
	F2
	T2
	s3B
	T3
	F3
	T4
	F4
	s3C
	F5
	F6
	s3D
	F7
	F8
	F9
	F10
	F11
	F12
	s3E
	F13
	F14
	F15
	s4
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	F16
	B10
	B11
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32
	B33
	B34

