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We employ a three-dimensional, nonlinear inviscid numerical method, in conjunction
with experimental data from live fish and from a fish-like robotic mechanism, to
establish the three-dimensional features of the flow around a fish-like body swimming
in a straight line, and to identify the principal mechanisms of vorticity control
employed in fish-like swimming. The computations contain no structural model for
the fish and hence no recoil correction. First, we show the near-body flow structure
produced by the travelling-wave undulations of the bodies of a tuna and a giant
danio. As revealed in cross-sectional planes, for tuna the flow contains dominant
features resembling the flow around a two-dimensional oscillating plate over most
of the length of the fish body. For the giant danio, on the other hand, a mixed
longitudinal–transverse structure appears along the hind part of the body. We also
investigate the interaction of the body-generated vortices with the oscillating caudal
fin and with tail-generated vorticity. Two distinct vorticity interaction modes are
identified: the first mode results in high thrust and is generated by constructive
pairing of body-generated vorticity with same-sign tail-generated vorticity, resulting
in the formation of a strong thrust wake; the second corresponds to high propulsive
efficiency and is generated by destructive pairing of body-generated vorticity with
opposite-sign tail-generated vorticity, resulting in the formation of a weak thrust
wake.

1. Introduction
Fish locomotion offers a different paradigm of propulsion than utilized in human-

engineered vehicles, employing a rhythmic unsteady motion of the body and fins. It
has been shown in the literature that drag reduction and high propulsive efficiency
are achievable through it. Gray (1936), in a still controversial paper, estimated that
the drag on a swimming dolphin must be lower than on a towed rigid model of the
dolphin body by a large factor; Lighthill (1971) used the kinematics measured in
a live small fish, together with a large-amplitude slender body theory, and arrived
at the opposite conclusion, i.e. that the drag on a swimming fish must be larger
than on a rigidly towed fish model, by a factor of about three. Recently, precise
measurements on an actively swimming robotic vehicle in the shape of a bluefin tuna
show that the power needed to self-propel the robot is reduced by up to about 50%
compared to the power needed to tow the robot straight-rigid (Barrett et al. 1999),
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suggesting that the undulating motion of the swimming body leads to a smaller
drag.

The efficiency of fish swimming has been illustrated in several studies. With slender
body theory, Lighthill (1960, 1975) and Wu (1961, 1971a, b, c) obtained high efficiency
in three-dimensional fish-like swimming. Using more realistic fish-like forms, however,
numerical inviscid calculations by Cheng, Zhuang & Tong (1991) and Wolfgang (1999)
show that slender body theory overpredicts thrust by a factor of up to 3 when the
wavelength of imposed motion is roughly equal to the body length.

Closely related to the high performance of fish-like swimming, the near-field flow
structure around a fish body has been studied both experimentally and computation-
ally. Review papers (Pedley & Hill 1999; Triantafyllou, Triantafyllou & Yue 2000)
present a summary of recent developments in numerical studies and visualization ex-
periments. Whole-field velocimetry and numerical visualization have shed significant
light on the details of the flow around the fish (Stamhuis & Videler 1995; Anderson
1996; Triantafyllou et al. 1996; Müller et al. 1997; Liu, Wassenberg & Kawachi 1997;
Wolfgang et al. 1999a; Wolfgang, Triantafyllou & Yue 1999b). Among them, Ander-
son (1996) and Wolfgang et al. (1999a, b) illustrated the generation and manipulation
of vorticity in a swimming and turning live fish. Liu et al. (1997) demonstrated,
through CFD simulation of the swimming motion of a tadpole, the process of shed-
ding body-bound vorticity through separation from the edges of the body near the
tail and the wake consisting of counter-rotating and anti-symmetrically positioned
three-dimensional vortical structures.

Body-bound vortices are created in front of the tail either from separation of
the body boundary layer or the sharp edges of secondary fins or finlets. Earlier
visualization work by Rosen (1959), using a narrow tank, shows free vortices forming
well ahead of the peduncle and travelling along the body to reach the tail, where they
are manipulated by the caudal fin and re-positioned in the wake. The role of these
body-generated vortices in fish performance remains unclear. One unsolved question
is whether they contribute directly to thrust production. The alternatives are that
either the vorticity generated upstream from the peduncle is shed in an uncontrolled
manner, much in the way a rigid hull ship does, generating a drag wake; or it is
organized and shed in a controlled manner, such that the tail can manipulate it
and optimize its performance. Considering the latter case, the tail operates within
the oncoming shed vorticity, hence it is possible to enhance its performance through
direct manipulation. For example, if the tail intercepts a vortex with its side inclined
with respect to the oncoming flow such that it is upstream facing, it will generate
thrust due to the low pressure associated with the vortex. Subsequently, though, the
vortex must be repositioned to avoid the creation of a drag wake which results in an
overall drag force.

In this study, we apply a panel method which is an extension of the numerical
scheme described in Barrett et al. (1999) and Wolfgang et al. (1999a) to investigate
flow structure and vorticity control in fish-like swimming. Employing this three-
dimensional computational scheme, we first illustrate the complex three-dimensional
details of the flow structure and wake near a fish, in order to correlate them with the
swimming performance characteristics. With body geometry and kinematic parameters
representing a tuna undergoing straight-line locomotion, the flow pattern is found to
be mostly in the longitudinal direction along the whole length of the body, resembling
the results of the two-dimensional swimming plate theory of Wu (1961). In the case
of a giant danio (Danio malabaricus), on the other hand, the longitudinal pattern near
the head is replaced by a mixture of longitudinal/transverse flow on moving closer to
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the tail. Near the peduncle linking the body with the tail, the flow is more like that
predicted by the three-dimensional slender body theory of Lighthill (1975).

The present work also addresses the issue of how the flow can be organized
around the body so as to contribute to the overall performance; and what the basic
mechanisms of vorticity control exerted by the tail are in order to recover energy or
maximize thrust. Body-bound vortices are generated from the sharp trailing edges of
the dorsal/ventral fins or finlets and interact with the tail and its wake. To establish
vorticity control principles, we borrow from the developments in Gopalkrishnan et al.
(1994) who studied mechanisms of controlling a vortical flow through an oscillating
foil, and subsequent experiments by Anderson (1996) and Anderson et al. (1998) on
the same problem, expanding the vorticity control mechanisms to include leading-
edge vorticity from the foil. By investigating the interaction between the body-bound
vorticity and the tail, two different modes of vorticity control are identified. In the first
mode, the body-shed vorticity encounters the tail in a favourable manner, enforcing
the tail-shed wake and increasing the thrust; in the second one, the body- and
tail-generated wakes cancel each other to a certain extent, reducing the peak thrust
somewhat, while increasing the propulsive efficiency.

The present paper is organized as follows. In § 2, we present the physical problems,
including the fish geometries, the kinematics of fish locomotion and the mathematical
formulations. The development of the numerical method is given in § 3. In § 4, we
conduct an investigation of the three-dimensional flow structures near a fish body
during straight-line swimming. The vorticity control utilized in fish swimming is
illustrated in § 5. Finally, conclusions are drawn in § 6.

2. Physical problem
We consider a streamlined flexible body of geometry Sb undergoing prescribed

translating and angular motions as well as undulations about its mean line, with
arbitrary distribution of sharp-trailing-edged fins, as detailed in figure 1. A thin
shear layer wake Sw is shed from the sharp trailing edges continuously as time
proceeds. With the exception of the wake, the fluid is assumed to be inviscid and
irrotational, as well as incompressible, allowing the existence of a velocity potential
Φ(x, t).

We apply two coordinate systems in the study: an inertial global coordinate system
OXY Z , fixed in space, and a local coordinate system oxyz, instantaneously fixed
on the flexible body and orthonormal to the stretched-straight mean line and body
section plane. The mean periodic undulations of the body is prescribed with reference
to oxyz and the global translational motion of the body is described with respect to
OXY Z .

2.1. Mathematical formulation

We consider the fluid domain bounded by three surfaces: the body surface Sb, an
infinitesimally thin wake sheet Sw , and a far-field boundary at infinity S∞. Assuming
the flow to be inviscid and incompressible, for any point x = (X,Y , Z) within the
fluid, the velocity could be described by a velocity potential Φ(x, t) which satisfies
Laplace’s equation within the fluid, the no-flux condition on the surface of the body
and a radiation condition such that Φ(x, t) decays rapidly to zero in the far field.

The total potential Φ(x, t) could be written as a linear superposition of a body
perturbation velocity potential Φb(x, t) and a wake perturbation velocity potential
Φw(x, t), each satisfying the Laplace field equation. The shear layers on wake surfaces
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Figure 1. Coordinate system convention. OXY Z is an inertial reference frame, while oxyz is a
body-fixed coordinate system about which mean line undulations are described.

Sw are represented by smoothly varying-strength dipole sheets. At any time, the dipole
strength along the wake (with the exception of the most recently shed wake sheet) is
determined by the previous flow field, and the wake perturbation velocity potential
Φw(x, t) is evaluated by summing the influence of all the wake dipoles. The unknown
strength of the newest portion of the wake sheet is addressed through the unsteady
Kutta condition which is applied to the sharp trailing edges of the body to enforce
smooth flow leaving the body. Mathematically, at any time the strength of the shed
wake velocity potential equals the jump in the body perturbation potential between
the upper and lower surfaces near the trailing edge (for details, see Katz & Plotkin
1991). The rest of the wake follows the flow, thus the lengths of the shed wake surfaces
increase with time.

We then formulate the boundary value problem for the body perturbation velocity
potential Φb(x, t). As described above, Φb satisfies the Laplace equation within the
fluid and the radiation condition in the far field. The prescribed body motions V b(x, t)
and the induced velocities from the wake surfaces are used to find the normal velocity
distribution on the body surface Sb. The no-flux kinematic boundary condition can
be expressed as

∂Φb(x, t)

∂n
= {V b(x, t)− ∇Φw(x, t)} · n, (2.1)

where n is the unit normal vector pointing out of the fluid. From Green’s theorem,
the body perturbation velocity potential Φb(x, t) at any point can be described in
terms of surface integrals over the body surface Sb, the wake sheet surface Sw and
a boundary at infinity S∞. If this point x is on the boundary, Φb(x, t) satisfies the
following equation:

−2πΦb(x, t) +

∫∫
S

Φb(x
′, t)

∂(1/r)

∂n
ds′ =

∫∫
S

1

r

∂Φb(x
′, t)

∂n
ds′, (2.2)

where S = Sb + Sw + S∞, r = |x − x′| is the distance from point x′ ∈ S to the field
point x. Due to the nature of the singularities which appear as sources and dipoles
in the integrands of (2.2), whose influence decays as 1/r and 1/r2, respectively, the
boundary at infinity S∞ can be shown to have negligible influence. Also, since both
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the body potential Φb and its normal derivative are continuous across the wake, their
contribution to the integrals over Sw in (2.2) should be zero.

At each time, with the wake position Sw and its strength Φw determined through
time history, and the body perturbation potential Φb obtained by solving (2.2) with
∂Φb/∂n on Sb given by (2.1), the total flow potential Φ and the hydrodynamic force F
are found by integrating the pressure p over the body surface Sb, which is determined
by employing the unsteady Bernoulli equation. We have

F = −ρ
∫∫

Sb

(
1
2
∇Φ · ∇Φ+

∂Φ

∂t

)
n ds′, (2.3)

where ρ is the density of the water. The power input P , defined as the rate of energy
transmission to the fluid, is obtained as

P (t) = −ρ
∫∫

Sb

(
1
2
∇Φ · ∇Φ+

∂Φ

∂t

)
V b · n ds′. (2.4)

Finally, we define the propulsive efficiency for straight-line swimming η as

η = UF/P , (2.5)

where U is the swimming speed, F denotes the mean value of thrust and P the mean
power input.

2.2. Fish geometries

In the present work, we employ body shapes representing a tuna and a giant danio to
study the flow structure around three-dimensional flexible bodies undergoing fish-like
swimming.

First, we employ the form of the RoboTuna, a laboratory robot emulating the body
shape and motion of a tuna (see Barrett 1996; Barrett et al. 1999). We assume the
length of the body (from the head to the peduncle, without the caudal fin) to be L.
Using curve fitting to describe the shape of the RoboTuna, the profile of the body is
given as

z(x)/L = ±0.152 tanh(6x/L+ 1.8) for − 0.3 6 x/L 6 0.1, (2.6)

z(x)/L = ±(0.075− 0.076 tanh(7x/L− 3.15)) for 0.1 < x/L 6 0.7. (2.7)

At each horizontal position x, the body sections are assumed to be elliptical with a
major to minor ratio of AR = 1.5, where the major axis corresponds to the height of
the body.

The caudal fin has chordwise sections of NACA 0016 shape. The leading edge and
trailing edge profiles x(z)LE and x(z)TE are also determined through a curve fitting
technique, and are given by

x(z)LE/L = 39.543|z/L|3 − 3.685(z/L)2 + 0.636|z/L|+ 0.7, (2.8)

x(z)TE/L = −40.74|z/L|3 + 9.666(z/L)2 + 0.77, (2.9)

where −0.15 6 z/L 6 0.15.
Thus defined, the geometry of the RoboTuna is shown in figure 2(a).
We note that a real tuna body also has other attachments such as dorsal/ventral

fins as well as small finlets distributed from the mid-length of the body to the
peduncle. With sharp trailing edges, all these secondary fins and finlets are sources
of vorticity generation ahead of the caudal fin. The dorsal and ventral fins, on one
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Figure 2. Computational geometric forms of (a) the RoboTuna, (b) tuna with dorsal/ventral
finlets and (c) giant danio.

hand, could only contribute weak vorticity during straight-line swimming since they
are located close to the mid-length of the body, where the undulating motion of
the body is minimum (cf. § 2.3). The finlets, on the other hand, are expected to
shed relatively stronger vorticity due to large lateral motion. For this reason, to
study the effect of body-generated vorticity, we add the finlets to the computational
tuna body. For simplicity, these finlets are modelled as rectangular strips attached to
the contraction region of the dorsal and ventral ridges as displayed in figure 2(b),
with cross-sections of NACA 0016 shape and sharp trailing edges on the outer
sides.

A third geometry, representing the profile of a giant danio, is adopted (see figure 2c).
The body sections are again assumed to be elliptical with a major to minor axis ratio
of AR = 2.2. If the body length is L, the body shape is measured as (see Anderson
1996)

z(x)/L = ±0.152 tanh(6x/L+ 1.8) + p(x) for − 0.3 6 x/L 6 0.1,

(2.10)

z(x)/L = ±(0.075− 0.076 tanh(6.3x/L− 3.08)) + p(x) for 0.1 < x/L 6 0.7, (2.11)

where

p(x) = 0.0975 tanh(−(0.3 + x/L)/1.5) + 0.0975. (2.12)

The caudal fin has chordwise sections of NACA 0016 shape, to allow efficient
resolution of leading-edge suction forces. The caudal fin leading-edge and trailing
edge profiles for the semi-span are obtained through a curve fitting technique, and
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are given as

x(z)LE/L = 39.543|z/L|3 − 3.685(z/L)2 + 0.636|z/L|+ 0.7, (2.13)

x(z)TE/L = −40.74|z/L|3 + 9.666(z/L)2 − 0.15|z/L|+ 0.8075, (2.14)

where −0.15 6 z/L 6 0.15.
In addition, dorsal and ventral fins are added to the body of the giant danio. The

fins are attached to the body, along the middle lines of the ventral and dorsal regions,
and with cross-sections modelled as NACA 0010 shape. The sharp trailing edges are
on the downstream sides. These fins remain attached to the body but are allowed to
flex following the prescribed motion of the backbone.

The geometry of the giant danio, complete with the dorsal/ventral fins, is displayed
in figure 2(c).

2.3. Kinematics of straight-line swimming

We consider the straight-line swimming of a flexible body with constant speed U in
the −x-direction. The relation between the body-fixed coordinate system oxyz and
the global coordinate system OXY Z is x = X +Ut, y = Y and z = Z , where t is the
time.

For simplicity, we assume that bending of the fish-like body happens only within
the (x, y)-plane, and the tail is assumed to oscillate and rotate as a rigid body while
the finlets and secondary fins follow the motion of the body. Hence, our study does
not incorporate more complex mechanisms, such as two-plane bending and flexing of
the tail, and fin retraction, which may be employed by live fish.

In the straight-line-swimming case, the motion of the body Sb could be fully
described by specifying the motion of its backbone with several key kinematic pa-
rameters. In this study we choose the same kinematic description as used in the
experiments by Barrett (1996), which closely emulates that found in nature (Fierstine
& Walters 1968; Dewar & Graham 1994). We assume that the swimming speed U is
a constant. The motion is characterized by a travelling backbone wave of smoothly
varying amplitude and phase speed cp which differs from U. The backbone waveform
y(x) can be written as

y(x, t) = a(x) sin (kwx− ωt), (2.15)

a(x) = c1x+ c2x
2, (2.16)

where kw ≡ 2π/λ is the wavenumber, corresponding to wavelength λ, ω is the circular
frequency of oscillation, and x = 0 is located at a distance 30% of the body length L
from the nose, with positive x in the direction from the nose to the tail. The amplitude
envelope a(x) is defined with adjustable parameters c1 and c2, achieving a specific
value of the double amplitude of motion at the link to the tail.

The front point on the articulated caudal fin where it is attached to the caudal
peduncle follows the path of the peduncle, and additionally the fin is allowed to
undergo a pitch motion around this front point. This pitch motion has the same
frequency ω as the backbone wave-like motion while its temporal phase angle is
behind that of the lateral motion of the front point by a phase difference ψ. The
tailbeat period T ≡ 2π/ω. At any time t, the angle of attack θ with respect to the
x-axis is given by

θ = α sin(kwxp − ωt− ψ), (2.17)

where α is the maximum angle of attack and xp is the x-coordinate of the peduncle.
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The frequency scaling of data observed in fish is based on the wake Strouhal law
(Triantafyllou, Triantafyllou & Gopalkrishnan 1991; Triantafyllou, Triantafyllou &
Grosenbaugh 1993), where the non-dimensional parameter St is written as

St = fA/U, (2.18)

where f = ω/2π is the tailbeat frequency, A is the mean lateral excursion of the
caudal fin at the trailing edge. It was proposed that optimum efficiency is obtained
when the large-scale vortical pattern formation is compatible with the dynamics
of the wake. More specifically, optimal efficiency behaviour is obtained when the
frequency of foil oscillation coincides with the frequency of maximum amplification
of vortical disturbances, which is determined from the detailed linear stability analysis
of the wake. A discussion of the relation between the disturbances after they have
been rolled up into vortices and the produced thrust can be found in Streitlien &
Triantafyllou (1998). In defining the Strouhal number, since the width of the wake
is not a priori known, the lateral excursion of the foil is used. Support from recent
fish swimming kinematic data shows that the non-dimensional frequencies are close
to the value predicted by wake instability analysis (see e.g. Triantafyllou et al. 1993;
Rohr et al. 1998).

3. Numerical method
To solve the boundary-integral equation (2.2), we apply a panel method. Represen-

tations of the time-dependent continuous potential distributions over the body and
wake surfaces are developed in discrete form by dividing each surface into quadri-
lateral panels. The singularity distributions are approximated as centrally collocated
piecewise constant over each body and wake panel. Higher panel grid densities are
employed in regions of presumed rapid potential variation and in regions with com-
plex geometry, such as tight curvature or lifting surface tips, to increase the accuracy
of the unsteady, continuous velocity potential distribution.

3.1. Formulation of the panel method

At any time t, the body perturbation velocity potential at each panel collocation point
Φb(xi, t) (i = 1, . . . , N, where N is the total number of body panels) can be found
in terms of the perturbation potentials at all of the other panels, as can be seen by
modifying (2.2):

−2πΦb(xi, t) +

N∑
j=1
j 6=i

Φb(xj , t)Qij =

N∑
j=1

∂Φb(xj , t)

∂n
Pij , (3.1)

where

Pij =

∫∫
j

1

rij
ds, (3.2)

Qij =

∫∫
j

∂(1/rij)

∂nj
ds, (3.3)

rij = |xi − xj |. (3.4)

Application of discrete forms of the Kutta condition and kinematic boundary
condition for each panel completes the linear system of equations for Φb(x, t), the
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body perturbation velocity potential over each panel at any given time t, which is
expressed from (3.1) in the general form

〈Q̃〉{Φb} = {P̃ }, (3.5)

where 〈Q̃〉 is the matrix of influence coefficients for the dipole potential distribution;
{Φb} is a column vector of the body perturbation velocity potentials; and {P̃ } is
the column vector of normal velocity influences for the source potential distribution.
Complete details of the linear system development can be found in Wolfgang et al.
(1999a).

We note that at each time step, the vector P̃ is determined by the motion of the
body and the influence from the wake, as expressed by equation (2.1). The body
motion is known and the dipole distribution in the wake is predetermined by time
history except for the portion at the leading edge.

Coupling the linear system of equations (3.5) with the Kutta condition which
determines the strength of the newly shed wake, we solve Φb(x, t) and find the
strength of the newly shed dipoles through use of an iterative scheme. The wakes are
then updated by moving downstream with the flow field as well as adding new panels
at the trailing edges. As a result, the total number of wake panels Nw increases with
time, while the number of body panels remains constant. The wakes are convected
as material surfaces by the fluid velocity field, deforming under the influence of
the body motions and of the self-induced velocities found from a desingularized
Biot-Savart law. The numerical scheme is integrated over time using a first-order
forward-difference algorithm.

To find the induced velocity field, a body and wake panel desingularization tech-
nique is employed (Krasny 1986) which removes the singularities from the discrete
potential distributions. Each wake and body panel therefore is assigned a core radius,
δb and δw , respectively; thus, the desingularized velocity field induced by a vor-
tex ring making up the sides of a wake panel which is equivalent to the distributed
dipoles within the element, for instance, can be written as a desingularized Biot-Savart
law:

V (x) =
Γ

4π

∮
s× r
r3 + δ3

w

dl, (3.6)

where Γ is the circulation of the vortex ring, s is the tangent vector to the panel,
r is the vector with magnitude r from the element to the field point, and the path
of integration is along the sides of the panel. As x approaches the vortex ring, r
approaches zero, and the velocity field expressed by (3.6) approaches a finite limit.

By imitating the effect of viscosity in a real fluid through the generation of
finite-thickness shear layers, the desingularization technique eliminates the associated
ill-posedness of the dynamic evolution of the shear layers. The inclusion of the de-
singularization is a necessity in the prevention of nonlinear energy transfer to the
highest wavenumber modes and of simulation breakdown or non-physical solution
growth caused by numerical instabilities resulting from the ill-posed problem. Ad-
ditionally, when upstream-shed vorticity impinges on downstream body elements,
non-physical free-wake acceleration and deformation is avoided through desingular-
ization of the body surface panels. Without this body desingularization, free-wake
panels interacting with flexing body panels may convect inside the body. A detailed
description of the implementation of the present panel solver is found in Katz &
Plotkin (1991).
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Nb\Nc 50 100 200 400

25 2.09 2.34 2.28 2.26
100 1.15 1.37 1.32 1.29
400 1.12 1.33 1.28 1.26

1600 1.11 1.33 1.28 1.26

Table 1. Convergence of the mean thrust force F = −Fx (in N) on a straight-line-swimming tuna
with respect to the number of panels on the body Nb and the number of panels on the caudal fin
Nc. The time step ∆t = T/32.

T/∆t 8 16 32 64

1.44 1.23 1.26 1.27

Table 2. Convergence of the mean thrust force F = −Fx (in N) on a straight-line-swimming tuna
with respect to the time step ∆t. Nb = 1600, Nc = 400.

3.2. Validations

The unsteady three-dimensional code was validated through a series of systematic
tests, employing a variety of numerical parameters to evaluate the integrated dy-
namics against documented experimental results and against self-performance as the
parameters were changed to approach the continuous solution.

3.2.1. Convergence tests

We apply the RoboTuna geometry with body shape shown in figure 2(a) as the
test case. To match the size of the RoboTuna applied in experimental studies (Barrett
1996), the length L is set to be 1.066 m.

We choose swimming velocityU = 0.7 m s−1, body wavelength λ ≡ 2π/kw = 1.047 m,
Strouhal number St = 0.183, and kinematic parameters c1 = 0.00294 and c2 =
−0.111 m−1. Convergence of the present numerical method was confirmed by varying
the time step size ∆t and the number of panels over the body surface. The value of
the mean thrust force F is chosen to demonstrate the performance of the numerical
solver.

We first check the convergence of the computation with respect to Nb, the number
of panels employed on the surface of the body excluding the tail, and Nc, the number
of panels on the caudal fin. As shown in table 1, the mean thrust force on the fish
converges linearly with respect to both Nb and Nc, which confirms the performance
expectation of the panel method.

For the time evolution, we apply a first-order forward-difference method with an
accuracy of O(∆t), where O(∆t) is the time step. From table 2, we see that the mean
thrust force converges as we reduce the time step. Other numerical parameters that
may influence the accuracy of the results are the desingularization factors employed
to eliminate the singularities (cf. § 3.1). As we can see from table 3, the variation of
results is small over a large range of the body desingularization factor δb and the
wake desingularization factor δw . In the following study, δb and δw are chosen to be
within this range.

Based on these convergence tests, in the following computations we choose
Nb = 1600, Nc = 400 and ∆t = T/32. With those parameters the expected numerical
error is less than 1%. In the cases with attached finlets or secondary fins, denser
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δb/L\δw/L 0.005 0.01 0.05 0.5

0.005 1.26 1.29 1.29 1.28
0.01 1.31 1.26 1.26 1.26
0.05 1.31 1.27 1.26 1.25
0.5 1.31 1.27 1.26 1.26

Table 3. Sensitivity of the mean thrust force F = −Fx (in N) on a straight-line-swimming tuna with
respect to the body desingularization factor δb and the wake desingularization factor δw . Time step
∆t = T/32, Nb = 1600, Nc = 400.

computational grids with 200 computing panels on each of these parts are employed
to ensure accuracy.

3.2.2. Comparison with experimental data

We compare the numerical results obtained for the power input for a swimming
RoboTuna (Body A) with those obtained experimentally by Barrett et al. (1999). Due
to the fact that in the experiment it is impossible to separate thrust from drag, the
only quantity left for comparison is the power input P . As shown in table 4, the power
input obtained through numerical simulations differs from the experimental results
with a discrepancy ranging from about 1% to 20%. In general, cases with larger
oscillation frequencies and maximum angles of attack tend to show larger errors. Not
considering errors in experimental measurements, this discrepancy could be caused
by the following factors. First, the numerical scheme is based on the assumption
that the flow is inviscid except for a thin wake shed by the tail or rear part of
the fish. The separation line is fixed and no skin friction or turbulence effects are
accounted for. Second, we note that there are some differences between kinematics in
the experimental and numerical cases. In the experiments, the robotic fish is separated
into five rigid sections and each one of them undergoes prescribed angular motions to
achieve the wave-like motion (see Barrett et al. 1999). In the numerical simulations,
on the other hand, the backbone motion is set to be a continuous function from head
to the peduncle. Finally, the numerical model does not take into account the effect of
leading-edge separation from the caudal fin, which may play an important role when
the angle of attack is large.

4. Three-dimensional flow structure around a swimming fish
In this section we examine the near-body flow for the straight-line-swimming

motions of a tuna and a giant danio, employing computational bodies shown in
figures 2(b) and 2(c).

A fish body has moderate length to width ratio. As a result, the flow patterns
are expected to be a mixture of two extreme cases: the two-dimensional body flow
described by Wu (1961) for an infinite span to length ratio, and the slender body
flow described by Lighthill (1970) for small span to length ratio. Figure 3 illustrates
the near-body flow pattern resulting from the two-dimensional swimming theory of
Wu (1961), versus the three-dimensional, slender-body theory of Lighthill (1970). In
figure 3(a), the actuated flow travels along streamlines laterally away from the fish
and parallel to the direction of swimming; hereafter this flow pattern is referred
to as ‘longitudinal’. The flow patterns shown in figure 3(b), hereafter referred to as
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Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Strouhal number St 0.133 0.183 0.201 0.196 0.281 0.413
Swimming speed (m s−1) 0.7 0.7 0.7 0.7 0.7 0.7
Wavelength λ (m) 1.475 1.047 1.047 1.227 1.207 1.675
Oscillation frequency ω (rad s−1) 3.306 6.858 7.295 5.052 8.390 13.0
Maximum angle of attack α (deg.) 0.97 8.35 11.54 11.81 17.77 18.76
Tail phase φ (deg.) 80.0 80.0 97.7 97.7 97.7 85.0
Amplitude coefficient c1 0.00236 0.00294 0.00294 0.0040 0.00042 0.00236
Amplitude coefficient c2 (m−1) −0.163 −0.111 −0.098 −0.146 −0.108 −0.114
Tail excursion A (m) 0.177 0.117 0.120 0.171 0.147 0.140
Mean thrust force (computation) (N) 0.93 1.26 1.20 1.35 2.24 4.92
Mean power input (experiment) (W) 1.01 1.13 1.12 1.34 2.04 5.68
Mean power input (computation) (W) 1.02 1.23 1.28 1.35 2.45 5.50
Mean power input error (%) 0.99 8.8 14.3 0.75 20.1 3.2
Computed propulsive efficiency η (%) 63.5 71.7 65.7 69.6 64.2 62.6

Table 4. Summary of kinematic and performance data for the RoboTuna. Comparison between experimental measurements on the RoboTuna robotic
instrument and the numerical simulation results for five cases are shown. Body type (a) (figure 2) is employed for simulations, with caudal fin wake
shedding only. The length of the body (excluding the caudal fin) L = 1.066 m.
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(a)

(b)

Figure 3. Depiction of near-body velocities in straight-line swimming as modelled by the classical
swimming theories of (a) Wu (1961), two-dimensional swimming plate theory and (b) Lighthill
(1975), three-dimensional slender-body theory.
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Figure 4. Location of sectional cuts along the length of (a) the tuna and (b) the giant danio
computational geometry during straight-line swimming.

‘transverse’, show the fluid to travel laterally away from and sectionally around the
depth extremes of the geometry.

We apply the panel method to study the near-body flow pattern during the straight-
line swimming of a fish: we show the velocity field which is obtained directly from
the simulation, and the vorticity field which is evaluated by calculating the curl of the
velocity field with a central-difference algorithm. We display these two fields in the
horizontal mid-depth plane of the fish body, as well as three sectional cuts parallel
to the (y, z)-plane at different locations along the length of the body, tagged as cuts
a–a, b–b and c–c as shown in figure 4. The first section, cut a–a, is located near
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Figure 5. Sectional flows at t = 3T during the straight-line swimming of the tuna (body b). We
show: (a) a top view of the streamlines of the planar cut of the flow at the mid-depth level of
the fish body, superimposed on colour contours of the vertical component ωz of the vorticity; and
inplane streamlines on colour plots of the longitudinal vorticity ωx in sections (b) a–a, (c) b–b and
(d ) c–c. Section views are taken looking from tail towards the head and all the vorticity components
are normalized by U/L. All the kinematic parameters are for case 6 in table 4 (note that this is the
same as the constructive interference case discussed later on).

the head where the sectional area of the body is increasing. The second section, cut
b–b, is located at the fish mid-body, where the sectional area is constant. Cut c–c is
positioned in the contraction region near the caudal peduncle and, in the case of the
giant danio, at the trailing edge of the dorsal fin.

Figure 5 illustrates the near-body flow at the three sectional cuts at time t = 3T
with kinematic parameters specified by case 6 in table 4. In-plane streamlines are
superimposed on the colour plots of the strength of the longitudinal vorticity ωx. In
addition, a top view of the flow within the mid-depth plane is provided for visual
correlation with the sectional views, having the in-plane streamlines superimposed
on the plot showing the strength of the vertical components of vorticity ωz . Note
that in the potential flow model employed in the current investigation, the vorticity
is supposed to be zero except on the wake sheets. However, due to the application of
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desingularization (cf. § 3.1), which to some extent replicates the effect of viscosity, a
finite amount of vorticity is spread into the fluid.

In the top view of the mid-depth plane flow, the reverse Kármán vortex street
is clearly seen, together with an induced jet flow between the vortex pairs (see e.g.
Kármán & Burgess 1935). The sectional flows shown in figure 5(b–d ) all display
a dominant longitudinal pattern. Only in the rear region of the body does some
longitudinal vorticity in the x-direction appear, near the top and bottom of the fish
body. This x-vorticity generated by the finlets induces a certain amount of transverse
flow, which is, however, quite weak compared with the longitudinal flow. Overall, the
longitudinal patterns dominate over much of the body depth. Snapshots of the flow
field for other time instants during a swimming cycle are qualitatively similar to those
shown in figure 5. Systematic studies with other kinematic parameters given in table 4
also demonstrate the same flow pattern.

We now study the case of the giant danio. Following the experimental measurements
by Anderson (1996), the body length L for the danio is 0.073 m. The kinematic
parameters which prescribe the motion are also measured from experimental DPIV
images (see Anderson 1996), specifically: swimming speed U = 0.08 m s−1; tailbeat
frequency f = 3.3 Hz; backbone wavelength λ = 0.08 m; Strouhal number St = 0.50;
backbone wave parameters c1 = 0.004 and c2 = −2.33 m−1; phase angle between the
pitch of the tail and heave of the peduncle φ = 96◦; and maximum tail angle of
attack α = 6◦.

In figure 6, the top view of the flow within the mid-depth plane is similar to that
in figure 5, with a reverse Kármán vortex street being formed in the wake. At cut
a–a, where the transverse motion of the body is small, near-body flow dynamics
at the head reveal a longitudinal-type actuation, as fluid is displaced laterally over
the entire depth. At cut b–b, near-body flow dynamics at the mid-section reveal
combined longitudinal and transverse actuation patterns, as fluid is directed laterally
away and sectionally around the body. Near-body flow dynamics around cut c–c in
the contraction region also reveal a complex longitudinal/transverse actuation pattern
with a stronger transverse flow, while the bound vorticity strength grows along the
length of the fish. The three-dimensionality of the flow is strongest near the upper
and lower edges of the fish, where a large longitudinal vorticity ωx exists. Similar flow
patterns are observed for other times t as well.

The cause of the difference in flow structures for the tuna and giant danio lies in the
difference in swimming kinematics. Considering the sectional flow within transverse
cuts along the body length parallel to the (y, z)-plane, qualitatively it contains a
flow pattern symmetric with respect to z, representing the steady flow around the
stretched straight body, and an asymmetric pattern caused by the lateral motion
resembling the two-dimensional flow around a cylinder. The magnitudes of these two
patterns are determined by the steady speed, the lateral speed and the body geometry.
For the tuna the ratio of the maximum transverse speed and the forward speed is
lower than 1.1 for all the combinations of swimming parameters listed in table 4,
resulting in a longitudinal flow for much of the body length. For the giant danio,
however, this ratio rises to 1.5 close to the tail, leading to stronger transverse flow
around the contraction part of the danio body as we observed in our numerical
simulations.

To summarize, in the case of the tuna, the flow is mostly longitudinal, while
for the giant danio, the flow around the fish can be shown to be neither entirely
longitudinal nor transverse. Rather, combinations of longitudinal and transverse
features are prevalent along the length of the fish body. For this reason, it can be seen
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Figure 6. Sectional flows at t = 3T during the straight-line swimming of the giant danio. We show:
(a) a top view of the streamlines of the planar fluid superimposed on colour contours of the vertical
component ωz of the vorticity at the mid-depth plane; and inplane streamlines with longitudinal
vorticity ωx in sections (a) a–a, (b) b–b and (c) c–c. Section views are looking from tail to head and
all the vorticity components are normalized by U/L.

that simplified models of near-body flow dynamics may underestimate performance
measures such as efficiency and overestimate the thrust and power required for
swimming, and hence the drag on an undulating body (see e.g. Wu 1971c; Newman
1973; Newman & Wu 1973; Lighthill 1975). This description is in agreement with the
quantitative findings of vortex lattice theory (Cheng et al. 1991), which has been used
to predict the swimming performance of low-aspect-ratio swimming plates whose
performance is somewhere between the estimates of the two-dimensional theory and
slender body theory.

5. Vorticity control mechanisms
In this section we investigate the principal vorticity control mechanisms that may

be utilized by a swimming fish by studying the interaction of wakes shed from the
caudal fin and the body.

Vorticity control is the process of altering the position and strength of oncoming
vortices, and the generation of additional vorticity, thereby affecting the load distri-
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Figure 7. (a) Formation of the wake sheets of a straight-swimming tuna (body b) at t = 3T ,
contoured by the distribution of dipole strength (normalized by UL), and (b) the top and (c) side
views of the position of the wake sheets shed from the tail (red) and the dorsal/ventral fins (blue).
All the kinematic parameters are for case 6 in table 4.

bution on the body and the unsteady fluid dynamics. The control of vorticity can
be accomplished through the unsteady motion of a body in a fluid or the unsteady
forcing of the flow (see e.g. Ffowcs Williams & Zhao 1989; Tokomaru & Dimotakis
1991; Triantafyllou et al. 2000). Unsteady foil propulsion offers high efficiency and the
capability for high thrust production. Gursul & Ho (1992) demonstrated that unsteady
motion of airfoils can cause a very high lift coefficient, and work by Anderson et al.
(1998) shows that oscillating foils are able to produce propulsive thrust very efficiently.
Experimental and computational works on the performance of an oscillating lifting
surface in the presence of oncoming vorticity (Koochesfahani & Dimotakis 1988;
Gopalkrishnan et al. 1994; Anderson 1996; Streitlien, Triantafyllou & Triantafyllou
1996) reveal that proper phasing between the foil motion and the encounter with
oncoming vorticity can yield a significant increase or decrease in efficiency. The prin-
cipal modes of foil–vortex interaction with a street of alternating-sign vortices can be
summarized as (Gopalkrishnan et al. 1994):

(a) Vorticity annihilation, where foil-generated vorticity interacts destructively with
the oncoming vorticity, resulting in the generation of a weak vortex street downstream
of the foil. Repositioning of the oncoming vorticity may result in a drag-type street
or a jet-type stream. In the latter case, the efficiency of propulsion is maximized.

(b) Constructive interference, where foil-generated vorticity interacts constructively
with the oncoming vorticity, resulting in the generation of a strong vortex street
downstream of the foil. Repositioning of the oncoming vorticity may result in a drag-
type street or a jet-type stream; in either case, the drag or thrust force production is
maximized.

(c) Vortex pairing, where foil-generated vorticity interacts with an oncoming vortex
of the opposite sign, resulting in the generation of pairs of vortices (four vortices per
cycle). The interaction may result in a drag-type wake, or a jet-type wake. Depending
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Figure 8 (a, b). For caption see facing page.

on the pairing process, the efficiency can be close to the annihilation mode maximum,
or to the constructive interference minimum, or somewhere in between. For inviscid
schemes, such as used in Streitlien et al. (1996) and the present approach, vorticity
annihilation is not a possibility. Instead, vortex pairing with very small distance
between the centres of opposite-sign vortices replaces the annihilation mode; and is
associated with the maximum achievable efficiency.

5.1. Vorticity control by the tuna

We investigate the vorticity control utilized in the straight-line swimming of a tuna
(body type b in figure 2) with body-bound vortices shed from the dorsal and ventral
finlets. To illustrate the interaction between the vortices generated by the tail and the
finlets, we study the relative position and phase relation between the dipole sheets
shed from the trailing edges of these lift surfaces, as shown in figure 7. The strength
of the dipole distribution on these sheets is defined to be positive if the dipoles point
to the right-hand side of the sheet. The numerical results show that the tail-generated
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Figure 8. Top and side view of the wake formation of a straight-swimming tuna in the constructive
interference case over half a tailbeat period starting from T0 = 3T : (a) t = T0, (b) t = T0 + T/8,
(c) t = T0 +T/4, (d ) t = T0 + 3T/8. At each instant, the top figures show the distribution of dipole
strength on the tail-shed wake while the lower figures show the distribution of dipole strength on
the fin-shed wake. The dipole strength is normalized by UL. All the kinematic parameters are for
case 6 in table 4.

dipole sheet is several times stronger than those shed from the finlets; therefore, the
wake is dominated by vorticity created by the tail.

5.1.1. Constructive interaction

The phase of encounter between the oscillating caudal fin and the body-generated
vorticity, released upstream through sharp finlets or secondary fins, significantly affects
subsequent wake–wake interaction dynamics. This phase of encounter is dependent
on the wavelength of the backbone wave λ, the longitudinal distance between the
trailing edges of the dorsal/ventral fins and the leading edge of the caudal fin,
and the phase speed of the backbone wave with respect to the swimming speed
cp/U.
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Figure 9. Vorticity control mode 1 – constructive interference. The four sketches in this series shown
top to bottom correspond to the four instants in figure 8. They illustrate the manner in which
vortices shed from upstream separation lines are manipulated by the oscillation of the articulated
caudal fin to amplify the strength of the wake in a constructive interference pattern.

As can be seen from figure 8, the tail- and finlet-generated vortex sheets are apart
when they reach the caudal fin. As they travel downstream, however, the three sheets
are drawn together by each other’s induced velocity field until they almost overlap
in space. The same phenomenon is observed in all the wake–wake interfering cases
shown in this paper. This repositioning process is understandable since away from
the body the evolution of the tail- and body-bound wake sheets is determined by
the same flow field and any points on these sheets close to each other would travel
together.

Figure 8 displays the distribution of dipole strength in both the tail wake and the
fin wake over half a tailbeat period. The kinematic parameters are the same as those
employed in figure 5. By comparing the plots in figure 8 at t = T0 with the vorticity
field in figure 5(a) which is at the same moment, we find that a concentration of
positive dipoles (dipoles pointing to the right-hand side of the sheet), shown as a
light area in the wake sheets, corresponds to a counterclockwise vortex (looking from
above). A concentration of negative dipoles (dark area in the wake sheets), on the
other hand, represents a clockwise vortex. Reverse Kármán vortex streets are created
by the wakes of the caudal fin and the dorsal/ventral finlets. The vortices in the
tail wake and the body wakes travel close to each other while they have the same
rotational sign, as displayed in figure 9, a sequence of sketches roughly corresponding
to the snapshots at four instants in figure 8. In this constructive interaction mode, the
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Mean thrust Oscillation of Mean Oscillation of Efficiency η
(N) thrust (N) power input (W) power input (W) (%)

Case 6
Body (a) 4.92 6.52 5.50 6.39 62.6
Body (b) 5.70 6.67 6.32 6.45 63.1

Case 2
Body (a) 1.26 1.58 1.23 1.39 71.7
Body (b) 1.29 1.44 1.21 1.31 74.6

Table 5. Mean value and amplitude of oscillation of the thrust force and power input for the
straight-line swimming of a tuna with (body b) or without (body a) dorsal/ventral finlets. All the
kinematic parameters are for cases 6 and 2 in table 4.
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Figure 10. Time history of (a) the thrust F = −Fx and (b) power input for a straight-line-swimming
tuna with (——) or without (- - -) dorsal/ventral finlets in the constructive interaction case. All the
kinematic parameters are for case 6 in table 4.

body- and tail-generated wakes strengthen each other, resulting in a stronger overall
jet wake.

Figure 10 shows the time history of the thrust and power input, compared with
the case without vorticity shedding from the body (body type a in figure 2). We see
that in the constructive interference mode, both the peak value and the amplitude of
oscillation of the thrust force are increased. When steady state (limit cycle) is reached
after about 2 tailbeat periods, we perform Fourier analysis to obtain the mean and
amplitude of oscillation of the thrust and power input, as displayed in table 5. Due
to the vorticity shedding from the body and its constructive interaction with the
tail-generated wake, these quantities are all increased compared to those in the case
without body vortex shedding. Meanwhile, the propulsive efficiency η, defined as the
ratio between the mean thrust times the speed and the mean power input, remains
virtually unchanged.

5.1.2. Destructive pairing of body- and tail-generated wakes

To explore other possible vorticity control modes, we examine the problem with
parameters specified by case 2 in table 4. Figure 11 shows the tail- and body-generated
wake sheets over half a tailbeat period. Again, both wakes are repositioned towards
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Figure 11 (a, b). For caption see facing page.

each other in the downstream region. Unlike the previous case, however, the vortices
that come close to each other have opposite rotational sign, as in the sketches in
figure 12. Since the two vortices close to each other cannot merge into one within
the present potential flow model, vortex pairs are formed and lead to the destructive
pairing mode mentioned above.

The thrust and power input of this destructive pairing-off case are displayed in
figure 13, with the mean value and amplitude of oscillation shown in table 5. It is
seen that although both the peak value and the amplitude of oscillation of the thrust
are reduced by the destructive wake interactions, the mean thrust is actually increased
a little. The most conspicuous feature of this mode is the increase of the propulsive
efficiency, as in the destructive vortex interaction case studied by Gopalkrishnan et
al. (1994). The increase in swimming efficiency suggests that the fish may recover
some of the energy lost to wake generation upstream and generate thrust more
efficiently.
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Figure 11. Top and side view of the wake formation of a straight-swimming tuna in the destructive
interference case over half a tailbeat period starting from T0 = 3T : (a) t = T0, (b) t = T0 + T/8,
(c) t = T0 +T/4, (d ) t = T0 + 3T/8. At each instant, the top figures show the distribution of dipole
strength on the tail-shed wake while the lower figures show the distribution of dipole strength on
the fin-shed wake. The dipole strength is normalized by UL. All the kinematic parameters are for
case 2 in table 4.

5.2. Vorticity control by the giant danio

Using the experimentally observed kinematic parameters for the swimming of a giant
danio, the interference mode between the vortices shed from the caudal fin and those
from the attached dorsal and ventral fins is identified as the destructive pairing-off
case, as shown in figure 14. Due to the fact that the wake sheets have a larger lateral
excursion than in the tuna cases, certain wake features are seen more clearly here. For
instance, in figure 14 one notable phenomenon is the switching of the body-generated
wakes from a reverse Kármán street configuration as they are shed from the fins, to
a Kármán vortex street arrangement as they go downstream due to the repositioning
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3

2

1

0

1.0 1.5 2.0 2.5 3.0
t/T

F
 (

N
)

(a) 3

2

1

0

1.0 1.5 2.0 2.5 3.0
t/T

Po
w

er
 in

pu
t (

W
)

(b)

Figure 13. Time history of (a) the thrust F = −Fx and (b) power input for a straight-line-swimming
tuna with (——) or without (- - -) dorsal/ventral finlets in the destructive interaction case. All the
kinematic parameters are for case 2 in table 4.
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Figure 14. Formation of destructive mode in the wake of a straight-swimming giant danio at
t = 3T . The top figures show the distribution of dipole strength on the tail-shed wake and the
bottom figures show the distribution of dipole strength on the fin-shed wake. The dipole strength
is normalized by UL. All of the kinematic parameters are as specified in § 4.
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Figure 15. Formation of the constructive mode in the wake of a straight-swimming giant danio
at t = 3T . The top figures show the distribution of dipole strength on the tail-shed wake and the
bottom figures show the distribution of dipole strength on the fin-shed wake. The dipole strength is
normalized by UL. Tailbeat frequency f = 4.5 Hz. All other kinematic parameters are identical to
those specified in § 4.

effect. In the present case, however, since the reverse Kármán vortex street caused by
the tail is much stronger that the Kármán vortex street caused by the secondary fins,
the flow downstream is still a jet-type wake.

By increasing the tailbeat frequency while keeping all other parameters unchanged,
we also obtain a constructive vorticity interference case for the danio swimming. As
illustrated in figure 15, the body-generated vorticity interacts constructively with the
tail-shed vortices, strengthening the total reverse Kármán wake behind the fish.
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6. Conclusions
The three-dimensional flow features of straight-line-swimming fish-like bodies are

studied through a nonlinear, inviscid unsteady panel algorithm, allowing flow separa-
tion at the trailing edge of the caudal fin, as well as the trailing edges of a distribution
of sharp finlets or secondary fins.

The flexing body is found to generate a three-dimensional flow which consists of
a mixture of features characteristic of (a) the flow around a two-dimensional-flexing
body, and (b) the dipole-like features assumed by slender body theory. Depending
on the kinematic parameters, the near-body flow could be dominated by the two-
dimensional features along much of the body, as in the case of a swimming tuna or
it may be a mixture of these two features with the transverse flow increasing from
head to tail, as in the case of a giant danio.

Our study also demonstrates the existence of two different modes of vorticity control
employed by a straight-line-swimming fish to optimize performance by utilizing body-
generated vortices. The constructive mode employs a vortex reinforcement scheme,
whereby the oncoming body-generated vortices are repositioned and then paired with
tail-generated same-sign vortices, resulting in a strong reverse Kármán street, and
hence increased thrust force. The second mode, in contrast, employs a destructive
interference scheme, whereby the oncoming body-generated vortices are repositioned
and then paired with tail-generated opposite-sign vortices, resulting in a weakened
reverse Kármán street, thus extracting energy from the oncoming body-shed vorticity
and increasing swimming efficiency.
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Kármán, T. & Burgess, J. M. 1935 General Aerodynamic theory – perfect fluids. In Aerodynamic
Theory, Vol. II. Springer.

Katz, J. & Plotkin, A. 1991 Low-speed Aerodynamics: from Wing Theory to Panel Methods.
McGraw-Hill.

Koochesfahani, M. & Dimotakis, P. 1988 A cancellation experiment in a forced turbulent shear
layer. AIAA Tech. Paper 88-3713-CP.

Krasny, R. 1986 Desingularization of periodic vortex sheet roll-up. J. Comput. Phys. 65, 292–313.

Lan, C. 1979 The unsteady quasi-vortex-lattice method with applications to animal propulsion.
J. Fluid Mech. 93, 747–765.

Lighthill, M. 1960 Note on the swimming of slender fish. J. Fluid Mech. 9, 305–317.

Lighthill, M. 1970 Aquatic animal propulsion of high hydromechanical efficiency. J. Fluid Mech.
44, 265–301.

Lighthill, M. 1971 Large amplitude elongated-body theory of fish locomotion. Proc. R. Soc. Lond.
B 179, 125–138.

Lighthill, M. 1975 Mathematical Biofluiddynamics. SIAM.

Liu, H., Wassenberg, R. & Kawachi, K. 1997 The three-dimensional hydrodynamics of tadpole
swimming. J. Expl Biol. 200, 2807–2819.

Müller, U., van den Heuvel, B., Stamhuis, E. & Videler, J. J. 1997 Fish foot prints: Morphology
and energetics of the wake behind a continuously swimming mullet (Chelon Labrosus Risso).
J. Expl Biol. 200, 2893–2906.

Newman, J. 1973 The force on a slender fish-like body. J. Fluid Mech. 58, 689–702.

Newman, J. & Wu, T. 1973 A generalized slender-body theory for fish-like forms. J. Fluid Mech. 57,
673–693.

Pedley, T. J. & Hill, S. J. 1999 Large-amplitude undulatory fish swimming: Fluid mechanics
coupled to internal mechanics. J. Expl Biol. 202, 3431–3438.

Rohr, J., Hendricks, E., Quigley, L., Fish, F., Gipatrick, J. & Scardina-Ludwig, J. 1998
Observations of dolphin swimming speed and Strouhal number. Space and Naval Warfare
Systems Center, Tech. Rep. 1769, San Diego, CA.

Rosen, M. 1959 Water flow about a swimming fish. United States Naval Ordnance Test Station,
NAVWEPS Rep. 2298, China Lake, CA.

Stamhuis, E. & Videler, J. J. 1995 Quantitative flow analysis around aquatic animals using laser
sheet particle image velocimetry. J. Expl Biol. 198, 283–294.

Streitlien, K. & Triantafyllou, G. 1998 On thrust estimates for flapping foils. J. Fluids Struct.
12, 47–55.

Streitlien, K., Triantafyllou, G. & Triantafyllou, M. 1996 Efficient foil propulsion through
vortex control. AIAA J. 34, 2315–2319.

Tokomaru, P. & Dimotakis, P. 1991 Rotary oscillation control of a cylinder wake. J. Fluid Mech.
224, 77–90.

Triantafyllou, M. S., Triantafyllou, G. S. & Gopalkrishnan, R. 1991 Wake mechanics for
thrust generation in oscillating foils. Phys. Fluids A 3, 2835–2837.

Triantafyllou, G. S., Triantafyllou, M. S. & Grosenbaugh, M. A. 1993 Optimal thrust devel-
opment in oscillating foils with application to fish propulsion. J. Fluids Struct. 7, 205–224.

Triantafyllou, G., Triantafyllou, M. & Yue, D. K. P. 2000. Hydrodynamics of Fish Swimming.
Annu. Rev. Fluid Mech. 32, 33–53.

Triantafyllou, M. S., Barrett, D. S., Yue, D. K. P., Anderson, J. M., Grosenbaugh, M. A.,
Streitlien, K. & Triantafyllou, G. S. 1996 A new paradigm of propulsion and maneuvering
for marine vehicles. Trans. Soc. Naval Archit. Mar. Engrs 104, 81–100.

Videler, J. J., Muller, U. K. & Stamhuis, E. J. 1999 Aquatic vertebrate locomotion: Wakes from
body waves. J. Expl Biol. 202, 3423–3430.

Wolfgang, M. 1999 Hydrodynamics of flexible-body swimming motions. Doctoral Thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA.

Wolfgang, M., Anderson, J. M., Grosenbaugh, M. A., Yue, D. K. P. & Triantafyllou, M. S.
1999a Near-body flow dynamics in swimming fish. J. Expl Biol. 202, 2303–2327.

Wolfgang, M., Triantafyllou, M. S. & Yue, D. K. P. 1999b Visualization of complex near-body
transport processes in flexible-body propulsion. J. Visualization 2, 143–151.



28 Q. Zhu, M. J. Wolfgang, D. K. P. Yue and M. S. Triantafyllou

Wu, T. 1961 Swimming of waving plate. J. Fluid Mech. 10, 321–344.

Wu, T. 1971a Hydromechanics of swimming propulsion. Part 1. Swimming of a two dimensional
flexible plate at variable forward speeds in an inviscid fluid. J. Fluid Mech. 46, 337–355.

Wu, T. 1971b Hydromechanics of swimming propulsion. Part 2. Some optimum shape problems.
J. Fluid Mech. 46, 521–544.

Wu, T. 1971c Hydromechanics of swimming propulsion. Part 3. Swimming and optimum movements
of slender fish with side fins. J. Fluid Mech. 46, 545–568.


