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Abstract We derive the 3D N = 1 superpotential for the
closed string sector of type IIB supergravity on toroidal O5
orientifolds with co-calibrated G2 structure and RR back-
ground flux. We find that such compactifications can pro-
vide full closed string moduli stabilization on supersymmet-
ric AdS3 vacua, and once we include brane-supersymmetry-
breaking we also find indication for the existence of classical
3D de Sitter solutions. The latter however are rather diffi-
cult to reconcile with the “shape” moduli stabilization and
flux quantization. We also discuss the possibility of achiev-
ing scale separation in AdS3 and dS3 vacua, but such effects
seem to be hindered by the geometric flux quantization.
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1 Introduction

One of the most drastic twists in the study and interpretation
of string flux compactifications (see e.g. [1]) is the notion of
the swampland [2–4]. The central proposal of the swampland
program is that the various common properties of string the-
ory vacua can be interpreted as manifestations of the under-
lying rules that any theory of quantum gravity should adhere
to, and not special instances of our inability to find solutions
with different properties. This means that behind generic flux
compactifications there exist underlying fundamental quan-
tum gravity rules, that govern their properties and so cannot
be violated. Since these rules are unproven they are proposed
as conjectures, which are in turn tested on the only available
quantum gravity theory we know, that is string theory. If such
conjectures seem to hold in string theory then one should
search for the underlying reasons for such behavior rooted
within quantum gravity. This means that the notion of the
swampland is not only a tool that allows us to facilitate the
study of the vast string theory landscape, but is essentially
deeper than that, as it applies to any quantum gravity theory
and to any string flux compactification - relevant to our uni-
verse or not. For reviews on the swampland program see for
example [5–7].

The generality of the swampland conjectures means they
should also apply to flux compactifications with any number
of external dimensions, unless of course there are quantum
gravity reasons to expect a specific dimensional dependence.
Conversely, if the qualitative properties of flux compactifica-
tions depend on the external dimensions, then from the per-
spective of the swampland this means that some aspects of
quantum gravity are intrinsically different across dimensions.
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Therefore, string flux compactifications down to dimensions
different than four are a valuable resource for our under-
standing of the swampland. In particular, three-dimensional
compactifications are especially interesting for a number of
reasons. Firstly they are dual to two-dimensional field theo-
ries living on the boundary and in the case of supersymmet-
ric AdS vacua, this means two-dimensional supersymmetric
CFTs (for a sample of recent work see e.g. [8–13]). As a result
the properties of such vacua can be cross-checked with 2D
CFT methods. Secondly, from a technical point of view, the
field content of a 3D flux compactification is considerably
simpler than the 4D counter-parts which allows to perform
a more thorough study of such vacua [14,15]. For example,
the minimal supersymmetric background in 3D allows half
of the number of supersymmetries than the minimal 4D back-
ground. Thirdly, since gravitation in 3 dimensions is intrinsi-
cally different than four dimensions or beyond, the study of
the 3D swampland offers a unique ground to test the depen-
dence of the conjectures on the dimensions of the external
space. Finally, within the 3D effective field theory approach
we follow here, where in particular we have smeared sources,
one may find promising solutions that can be at a later stage
studied in detail with localized sources and using full 10D
equations of motion.

For the reasons outlined above, in this work we continue
the study of Type II string flux compactifications with three-
dimensional external space and minimal supersymmetry, that
was initiated in [14,15]. As shown in those works, Type II
on G2 holonomy manifolds has offered the possibility to
scrutinize the swampland conjectures. Here we pursue this
direction further by working instead with manifolds with G2-
structure. There is an extended bibliography on flux compact-
ifications with G2-structure, for example 4D vacua have been
studied in [16–21] and 3D vacua of Heterotic strings have
been studied for example in [22,23]. The simplest deviation
from G2 holonomy is co-calibrated G2-structures, which will
be our main focus. As we will see, since we want to reduce
the amount of preserved supersymmetry to the minimum, i.e.
N = 1 in 3D, Type IIB offers a preferred framework, com-
pared to IIA, due to the fact that O5/O9 planes are naturally
compatible with the co-calibrated G2-structure.

In the rest of this work we first present the background
geometry and then perform a direct dimensional reduction of
IIB supergravity on toroidal orbifolds with co-calibrated G2-
structure. We then work out the 3D superpotential and verify
our findings via an appropriate S-duality. As an application,
we study moduli stabilization within the 3D EFT framework
which yields SUSY-AdS3 vacua. We also consider a related
setup involving brane-supersymmetry-breaking (BSB) that
has been developed and studied for example in [24–30],
which allows for non-SUSY Anti-de Sitter as well as de Sit-
ter vacua. For the de Sitter vacua we study first only the
volume-dilaton sector and we see that stable critical points

are allowed, however when we also switch-on the shape mod-
uli we find that they pose a threat to stabilization in de Sitter.
In addition, in all cases we find that scale-separation is in
tension with certain quantization conditions.

2 Type IIB on toroidal orbifolds

2.1 Integrable G2 structures

In this subsection we discuss the basic features of the seven
dimensional internal space X to be used in our compactifi-
cations. The G2 structure is characterized by the invariant
three-form in an oriented seven dimensional manifold X

� = e127 − e347 − e567 + e136 − e235 + e145 + e246.

(2.1)

For the case of a torus em = rmdym , where rm stand for the
radii of the corresponding cycles and dym are the orthonor-
mal basis of the internal seven dimensional manifold X

�i = (+dy127,−dy347,−dy567,+dy136,−dy235,

+ dy145,+dy246) , i = 1, ..., 7. (2.2)

The corresponding Hodge dual of the fundamental three-
form

�� = e3456 − e1256 − e1234 + e2457 − e1467 + e2367 + e1357,

(2.3)

can be expanded in the basis of 4-forms

�i = (+dy3456,−dy1256,−dy1234,+dy2457,−dy1467,

+ dy2367,+dy1357) , i = 1, ..., 7. (2.4)

The elements of this four-form basis satisfy
∫

�i ∧� j = δi j .
� can be also used to define the volume as follows
∫

� ∧ �� = 7 vol(X), (2.5)

where we are assuming
∫

7 dy
1234567 = 1. Once we recast

the torus radii in terms of the scalar moduli si that describe
deformations of the internal G2 space, the invariant 3-form
reads

� =
∑

i

si�i . (2.6)

The exact relation of the si to the radii can be found by simply
comparing (2.6) to (2.1) taking into account (2.2).

The fundamental three-form defines a Riemannian metric
and thus a Levi-Civita covariant derivative ∇� associated
to the metric. Generally the three-form is not necessarily
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covariantly constant and then, for an integrable G2, a fully
antisymmetric torsion tensor exists

T3(�) = 1

6
W1� − 1

3
W7�(��) − �W27, (2.7)

which is expressed in terms of � and the Wi p-differential
forms (we follow the notation of [18]). The latter, which are
the so-called “torsion classes”, correspond to the irreducible
representations 1⊕ 7⊕ 27 of the G2 structure. The presence
of torsion classes is classified by Fernandez and Gray [31].
Note that for integrable G2 the torsion which belongs to the
14 representation must vanish, that is W14 = 0, and therefore
we have ignored it in the above formulas and in the following
as well. Then the exterior derivatives on the three form and its
dual give the structure equations which can be decomposed
in terms of the torsion classes

d� = W1 � � − � ∧ W7 + W27 , d � � = 4

3
� � ∧ W7,

(2.8)

and satisfy � ∧ W27 = 0. It is important to point out that
the non-vanishing covariant derivative ∇� �= 0 signifies a
deviation from G2 holonomy and implies a non-vanishing
Ricci tensor which is a key feature of this work. Previous
works [14,15] studied the case where ∇� = 0 and thus all
torsions were simultaneously set to zero, the internal space
was Ricci flat and the G2 structure group was equivalent to
the G2 holonomy of the manifold. Here instead the form of
the Ricci scalar is

R(7) = −4 � d � W7 + 21

8
W 2

1 + 30

9
|W7|2 − 1

2
|W27|2 .

(2.9)

We now restrict our attention to the simplest toroidal
example where X = T 7/(Z2 × Z2 × Z2), presented in
[18,32], which is a seven torus orbifolded under the action
of the following Z2 involutions

�α : (y1, . . . , y7) → (−y1,−y2,−y3,−y4,+y5,+y6,+y7),

�β : (y1, . . . , y7) → (−y1,−y2,+y3,+y4,−y5,−y6,+y7),

�γ : (y1, . . . , y7) → (−y1,+y2,−y3,+y4,−y5,+y6,−y7) .

(2.10)

The orbifold group is 
 = {�α,�β,�γ } and therefore one
automatically has to take into account the combined involu-
tions

�α�β : yi → (+y1,+y2,−y3,−y4,−y5,−y6,+y7),

�β�γ : yi → (−y1,−y2,+y3,+y4,−y5,−y6,+y7),

�γ �α : yi → (+y1,−y2,+y3,−y4,−y5,+y6,−y7),

�α�β�γ : yi → (−y1,+y2,+y3,−y4,+y5,−y6,−y7) .

(2.11)

Note that the maps � commute, they square to the identity,
preserve the both the calibration � and its Hodge dual. The
above involutions allow us to twist the torus by introducing
non-zero metric fluxes τ ijk �= 0 and thus deviate to a G2-
structure manifold. We follow the steps of [18,19] and twist
the torus à la Scherk–Schwarz [33]. For the twisted torus
one replaces the straight differential forms dyi with twisted
1-forms dyi → ηi which satisfy the Maurer–Cartan equation

dηi = 1

2
τ ijkη

j ∧ ηk . (2.12)

This means we now have twisted vielbeins

ei = r iηi , (2.13)

and in particular in the previous expressions one does the
replacements dyi jk → ηi jk and dyi jkl → ηi jkl . From the
Scherk–Schwarz reduction the geometric flux is constrained
by

τ ij i = 0, τ l[i jτ
m
k]l = 0. (2.14)

These conditions restrict the possible τ li j values. In particular
the specific orbifold group further projects out the torsion
classes W7 and therefore the exterior derivatives become

d� = W1 � � + W27, d � � = 0, (2.15)

which is the case of co-calibrated G2-structures due to the
closure of ��. This actually happens because the eliminated
torsion classes, which were one- and two-forms, were not
invariant under the orbifold action. The Betti numbers, which
depend on the presence of Wi , now coincide with those of
the G2 holonomy case

b1(X) = 0, b2(X) = 0, b3(X) = 7. (2.16)

This means that the torsion class W27 can be expanded in
the fundamental basis �i , which will be important for our
calculations later.

For later use, we would also like to recall the useful Hodge
dual expressions for the co-calibrated G2-structure

� � =
∑

i

vol(X)

si
�i , ��i = vol(X)

(si )2 �i . (2.17)

In addition, following [18], we can also define the geometric
flux matrix

Mi j =
∫

7
�i ∧ d� j , (2.18)
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such that d�i = ∑
j Mi j� j . The values of Mi j depend on

the coefficients τ ijk in the following way

Mi j = 1

2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 −τ 7
5,6 −τ 7

3,4 +τ 1
4,5 +τ 2

4,6 +τ 1
3,6 −τ 2

3,5
−τ 7

5,6 0 +τ 7
1,2 +τ 3

2,5 −τ 3
1,6 −τ 4

2,6 −τ 4
1,5

−τ 7
3,4 +τ 7

1,2 0 +τ 6
2,4 +τ 5

1,4 −τ 5
2,3 +τ 6

1,3
+τ 1

4,5 +τ 3
2,5 +τ 6

2,4 0 −τ 3
4,7 +τ 1

2,7 +τ 6
5,7

+τ 2
4,6 −τ 3

1,6 +τ 5
1,4 −τ 3

4,7 0 −τ 5
6,7 −τ 2

1,7
+τ 1

3,6 −τ 4
2,6 −τ 5

2,3 +τ 1
2,7 −τ 5

6,7 0 +τ 4
3,7

−τ 2
3,5 −τ 4

1,5 +τ 6
1,3 +τ 6

5,7 −τ 2
1,7 +τ 4

3,7 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(2.19)

With the use of this matrix one can show that

W1 = 1

7vol(X)

∑

i, j

siMi j s
j

= 1

7

(
∏

k

sk
)−1/3 ∑

i, j

siMi j s
j , (2.20)

which gives an exact expression for the W1 torsion class in
terms of the moduli si and the geometric fluxes.

2.2 O5-planes

Now we would like to turn the discussion to the relation
of the orientifolds and the orbifold group 
. In [14] we
worked with Type IIA and space-filling O2-planes, how-
ever now the presence of both torsion and O2-planes is
forbidden by the Maurer–Cartan equation, which automat-
ically sets the structure constants to zero and brings us back
to G2 holonomy. Here instead we will focus on Type IIB
where we can have O3, O5, O7 and O9-planes. Due to
the lack of one-cycles and five-cycles in co-calibrated G2
the O3s and O7s are excluded in our setup. Therefore we
focus on the O5s and O9s which as we will see fit nicely
within the co-calibrated G2 setup. For the O5s, we choose
the source current to be proportional to the associated four-
form

J4(O5) ∼
∑

i

�i , (2.21)

i.e. O5-planes wrap 3-cycles inside the G2 space that
need to be calibrated in a supersymmetric manner, if
one wants to achieve a 3D supergravity. In this way
the O5 involutions match with the orbifold group 
.
Then the O5s sit at the fixed points of the involutions
(2.10) and their positions are shown in the following dia-
gram

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

O5α : − − − − × × ×
O5β : − − × × − − ×
O5γ : − × − × − × −
O5αβ : × × − − − − ×
O5βγ : × − − × × − −
O5γα : × − × − − × −
O5αβγ : − × × − × − −

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.22)

The “×” symbol denotes the directions on the internal X7

manifold spanned by the O5 worldvolume, while the “−”
denotes the “localized” (modulo smearing) positions (i.e. 0
and 1/2) of the O5-planes, related to the wrapped cycles by
Hodge duality. This gives the following currents

jα = −e1234 , jβ = −e1256 , jγ = e1357, (2.23)

and also jαβ , etc. One can also deduce the smeared contribu-
tion of the O5s to the three-dimensional effective action. For
example, for the αβ 3-cycle

jαβ

vol(αβ)4
= e3456

r3r4r5r6
= �1, (2.24)

we would have

SO5 ∼
∫

O5αβ

√−g6 =
∫

3

√−g3

∫

3−cycle

√
g3

=
∫

3

√−g3

∫

�1
� jαβ =

∫

3

√−g3s
1. (2.25)

We will give the exact and more compact form of (2.25) in
the next section.

We see that the O5s are compatible with the G2 involu-
tions. However, we should also ask that when we combine
the O5 involutions σ(O5) with the G2 then the generated
involution is also due to a physical object. In other words
we always ask the images of O-planes to be O-planes. For
example if we take

σ(O5α)�β : ηi ≡ σ(O5αβ) : ηi , (2.26)

we verify that the web of O5-planes is generated. Now, there
are six non-trivial combinations that generate all the O5s even
if we assumed the existence of only one of them, but there is
also a combination that leads to the identity. That is

σ(O5α)�α : ηi → ηi , (2.27)

which has to be identified as an involution arising from an
O-plane. Clearly the only candidate is the O9-plane, which is
also 10D space-filling, and can be mutually supersymmetric
with the O5s. To this end we have

σ(O5α)�α : ηi ≡ σ(O9)ηi . (2.28)

This means our setup really resides in type I string theory.
Naturally, the configuration must also include a suitable num-
ber of D9-branes, resulting in an open string sector, which
we will largely ignore in this work. Alternatively, we could
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consider a similar setup with O5s and O9+ resulting in the
brane-supersymmetry-breaking scenario [28]. We will return
to this case in Sect. 5.

2.3 The scalar potential from 10D

Since we plan to perform a dimensional reduction of Type
IIB on a background that includes O-planes we now discuss
the possible background fluxes we can introduce and the field
content of the 3D effective theory. We will need to discuss
only the bosonic sector as the fermionic sector is fixed by
supersymmetry. The latter, because of the O5-planes on top
of the G2, is left with only two independent Killing spinors,
that is we have 3D N = 1 local supersymmetry. The gravity
sector will essentially include the 3D external metric gμν and
the seven si moduli that parametrize the twisted torus radii.
We will further split them into the overall volume modulus
v and the unit-volume deformations s̃i (which we will often
refer to as shape moduli). These seven moduli, together with
the dilaton φ, form the full set of eight real scalar moduli that
will enter the 3D theory. Indeed, other scalar moduli would
only arise from the reduction of the RR fields or the NS two-
form and we will outline now why they are not a part of the
3D effective theory.

We will follow [34] for the rules of the parities of the
various fields, and we focus explicitly on the parities under
the O5s. First we note that the H3 has to be odd and so does
the H7. Since there is no odd 3-form basis to expand H3

on (or a 7-form to expand H7), the H flux has to vanish. In
addition the co-calibrated toroidal G2 has no one- or two-
cycles (the Betti numbers are given by (2.16)) and so the 3D
fluctuations of the B2 NS gauge two-form are truncated. Now
we turn to the RR sector. The C0 RR field, which would be a
scalar, is odd under the O5-plane and so its 3D fluctuations
are truncated. The F1 flux cannot be part of the background
as there are no one-cycles. The C2 RR field is even under
the O5, however, due to the lack of one- or two-cycles it
does not give rise to vector or scalar fluctuations in 3D. In
addition, 2-forms in 3D are auxiliary fields and so they only
contribute via their 3-form background flux. Indeed, the 3-
form RR flux F3 can have non-vanishing values. The F3 is
even under the O5 parity and therefore can be expanded on
the basis of the even forms �i , whereas the F7, which is also
even under O5, will just be proportional to the volume form
of the internal space. Finally the C4 is odd under O5 parity
and since there are no odd 3- or 4-cycles it does not give rise
to any 3D fluctuations. In addition, its F5 flux would need to
be expanded in a basis of odd 5-forms which do not exist in
the co-calibrated G2. As a result F5 (and C4) are completely
truncated. This verifies that the 3D supergravity will only
have the seven radii of the torus together with the dilaton φ

as scalar moduli.

The (pseudo) action for the Type IIB supergravity in the
Einstein frame is given by the sum of the NSNS and the RR
parts bellow

SNS = 1

2κ2

∫
d10x

√−g
(
R − 1

2
∂Mφ∂Mφ − 1

2
e−φ |H3|2

)
,

SRR = 1

2κ2

∫
d10x

√−g
(

− 1

2

∑

n

e
5−n

2 φ |Fn |2
)
,

(2.29)

where n runs over 1, 3 and 5. The Born–Infeld part of either
of the Dp-brane or Op-plane actions in the Einstein frame is

Sloc = μp

∫
e

p−3
4 φ

√−gp+1, (2.30)

where μp > 0 for O-planes and μp < 0 for D-branes. We
will give momentarily the details about the Bianchi identities
that are related to the couplings of these objects to the RR
fields.

We can now perform a direct dimensional reduction down
to 3D. In 10D Einstein frame, our reduction Ansatz for the
metric is

ds2
10 = e2αvds2

3 + e2βv d̃s
2
7, (2.31)

where v is a 3D scalar that accounts for the compactifica-
tion volume and hence d̃s

2
7 is the metric on a unit-volume

G2 space. The world indices then break into external and
internal respectively as M = (μ,m), where μ = 0, 1, 2
and m = 1, . . . , 7. The potential energy contributions to the
three-dimensional action, that arise after the compactification
from the ten-dimensional action considering the reduction
Ansatz, are

VR = −R̃(7) e−2βve2αv,

Vflux = 1

2
|Fq |2 e 5−q

2 φe2βv
(

7
2 −q

)
e3αv,

VDp/Op = −μp e
p−3

4 φ e2βv
(

2p−11
4

)
e

5
2 αv,

(2.32)

where the Ricci scalar of the co-calibrated G2 internal space
is

R̃(7) = 21

8
W̃ 2

1 − 1

2
|W̃27|2, (2.33)

and

|Fq |2 = Fq ∧ �̃Fq = √
g̃

1

q! Fm1...mq F
m1...mq . (2.34)

Note however that
√
g̃ = 1. Now with the specific choice of

numbers

α2 = 7/16 , β = − 1

4
√

7
, −7β = α, (2.35)

we find canonical kinetic terms for the volume-dilaton in
three dimensions

e−1L = R3 − 1
2 (∂v)2 − 1

2 (∂φ)2 − V + . . . (2.36)
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Let us now recall that the only background RR fluxes that
we can switch on due to the O5 truncation (or the parity
restrictions) are given by

F7 = −G dy1234567 , F3 =
∑

i

f i�i , (2.37)

which are consistent with tadpole cancellation, since H3 = 0
and

dF7 = 0, dF3 �= 0. (2.38)

The latter holds due to the co-calibrated G2-structure which
gives rise to torsion. Because of that, the Bianchi identity for
the F3 is satisfied as

dF3 = −μO5 J4(O5) , no D5-branes . (2.39)

As a result such background does not require D5s for the
cancellation of the O5 source even though the NS H-flux
is identically vanishing. In the presence of D5s the Bianchi
identity (again for H3 = 0) becomes

dF3 = −μO5 J4(O5) − μD5i J4(D5i), (2.40)

where μO5 > 0 and μD5i < 0, and we readily identify the
O5-plane/D5-brane charges with their tension (up to the dila-
ton factors) because they are supersymmetric BPS objects.
Here we indicate with J4(D5i) the source current for the D5s
wrapping the i th 4-cycle. Even though the tadpole cancella-
tion is seemingly possible without the use of D5s, namely
as in (2.39), as we will see when we turn to explicit exam-
ples we will often need to use (2.40). For a review of the IIB
ingredients we have used here see e.g. [35].

One may be worried about dF3 �= 0 because it implies the
existence of magnetic sources and that the F3 is not closed
any more, which means that there can be inconsistencies if
in our theory a bare C2 RR field also appears. However, it is
important to appreciate that IIB supergravity does not have
an honest Lorentz invariant Lagrangian, and as a result the
full information of the consistent reduction is captured by the
10D equations of motion and the 10D tadpole conditions. In
these equations the C2 in fact does not appear, it is indeed
introduced only after one solves the tadpoles with the condi-
tion dF3 = 0. Then the effective pseudo-action for IIB can
be written down which will also include the C2. However,
a priori one only has a set of 10D equations of motion and
Bianchi equations to solve. In our approach we first make
sure we satisfy these conditions in the internal space and
then we look directly at the resultant 3D effective theory.

3 The 3D N = 1 superpotential

3.1 The scalar potential of 3D N = 1 supergravity

Now we will construct the superpotential for the 3D N = 1
supergravity by matching with the scalar potential that we
derived from dimensional reduction in the previous parts.
Since we want to have a 3D Einstein frame with the conven-
tional 1/2 factor in front of the Hilbert–Einstein term, we
perform a Weyl rescaling of the external 3D space metric of
the form

gfrom dim. reduction
μν = 1

4
× gin 3D N=1 supergravity

μν . (3.1)

This brings the kinetic terms for the scalar moduli and the
scalar potential from the dimensional reduction to the form

e−1Lkin = 1

2
R3 − 1

4
∂v∂v − 1

4
∂φ∂φ

−1

4
vol(X̃)−1

∫

7
�i ∧ �̃� j∂ s̃

i∂ s̃ j − 1

8
V dim. red.,

(3.2)

where we set the 3D Planck scale to unit and V dim. red. is the
scalar potential from the direct dimensional reduction. We
use the tilde “∼” symbol to denote that the internal metric
used is now the unit-volume one, and the internal metric
shape moduli (s̃i ) are also the ones corresponding to the unit-
volume. We will see momentarily exactly how this works.

In general, once we are given the kinetic terms of a 2-
derivative 3D N = 1 supergravity theory, the scalar potential
is uniquely fixed by the superpotential, the latter being a real
function of the scalar multiplets. In contrast to 4D N = 1
here the superfields are real and so the superpotential is also
real. In addition the scalar manifold is only required to be
Riemannian and there is no prepotential required to generate
it. To be precise, the scalar sector of 3D N = 1 supergravity
has the form

e−1Lscalar = 1

2
R3 − GI J ∂ϕ I ∂ϕ J −

(
GI J PI PJ − 4P2

)
,

(3.3)

where ϕ I are the various real scalar moduli, the real function
P(ϕ I ) is the superpotential, and PI = ∂P/∂ϕ I . For our
setup, the moduli are ϕ I = (s̃i , v, φ), and therefore the scalar
potential has the form

V =GI J PI PJ − 4P2 =Gi j Pi Pj + 4P2
v +4P2

φ − 4P2 , I = i, v, φ,

(3.4)

where Gi j is the inverse of 1
4 vol(X̃)−1

∫
7 �i ∧ �̃� j and

Pi = ∂P

∂ s̃i
, Pv = ∂P

∂v
, Pφ = ∂P

∂φ
. (3.5)
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Note that the s̃i satisfy the condition

vol(X̃) = 1 =
(

∏

i

s̃i
)1/3

, (3.6)

and therefore for our toroidal orbifold we find explicitly

Gi j = 1

4
vol(X̃)−1

∫

7
�i ∧ �̃� j = δi j

4(s̃ j )2 . (3.7)

We can solve the condition (3.6) by setting

s̃7 =
6∏

a=1

1

s̃a
, (3.8)

which we will often invoke throughout this work and in the
examples later. Then (3.7) should not be used as the true
scalar manifold metric for the s̃a scalars. Instead we have
to take into account that ∂μs̃7 also contains derivatives with
respect to the ∂μs̃a . Therefore from (3.3) once we take into
account (3.7) and (3.8) we find

G̃ab = 1 + δab

4 s̃a s̃b
, a, b = 1, 2, 3, 4, 5, 6, (3.9)

such that Gi j∂ s̃i∂ s̃ j ≡ G̃ab∂ s̃a∂ s̃b. This matrix should be
used when one wants to canonically normalize the scalars.

Let us now discuss an important technical point about the
way that we evaluate the scalar potential from the superpo-
tential. We first take the derivatives of the superpotential with
respect to the unrestricted s̃i , and then, after all derivatives
have been evaluated, we impose the condition (3.6). This pro-
cedure is completely consistent because of the specific prop-
erties of our superpotential, otherwise such procedure would
not preserve supersymmetry. In particular it was proven in
[14] that a sufficient condition for doing this is

Gi j Pi

∫
� j ∧ �̃�̃ = 0, (3.10)

which we will see is always satisfied by our superpotential. In
particular, when (3.10) holds then the condition (3.6) is fully
supersymmetric in the sense that once we act on the latter
with a supersymmetry transformation it also eliminates the
fermion superpartner of the extra scalar and also the extra
auxiliary field. In fact the condition (3.10) also guarantees
that

P(si ) ≡ P(s̃i ), (3.11)

where the si are the original seven moduli of the G2 that
describe the internal metric deformations

si = vol(X)3/7s̃i = e3βv s̃i . (3.12)

As a result, due to (3.11), we can present our superpotentials
in terms of si instead of s̃i to avoid cluttering, when possi-
ble, and without jeopardizing the result. However when we
act with s̃i derivatives we have to recast them in terms of
s̃i first and then take derivatives. We also stress once more

that because we performed a 3D Weyl rescaling after the
dimensional reduction we will have

V (3.4) from 3D N=1 superpotential = 1

8
× V from dim. reduction .

(3.13)

This means we multiply the scalar potential found from the
dimensional reduction with 1/8 to match to the scalar poten-
tial we get from the superpotential calculation. In this way
the supersymmetric theory (3.3) will agree with (3.2). More
details about the 3D N = 1 supergravity can be found in [14],
and a more detailed account of its properties can be found in
[36,37]. Finally, the quadratic gravitino sector has the form

e−1L3/2 = −1

2
ψμγ μνρDνψρ − 1

2
P ψμγ μνψν, (3.14)

from which we can verify that for SUSY-AdS3 we have
〈PI 〉 = 0 and m3/2 = P = (2LAdS)−1 as dictated by the
universal properties of supergravity [38].

In the rest of this section we will present the total superpo-
tential P in three steps: First we will present the superpoten-
tial that corresponds to the internal curvature contribution,
then the one that corresponds to the F3 flux, and then the one
that corresponds to the F7 flux. Since we essentially guess
these contributions, we only need to check them by match-
ing with the respective terms in the dimensional reduction
scalar potential. Moreover, we will see that these three con-
tributions to the superpotential can be combined without gen-
erating additional terms in the scalar potential, except one,
which reproduces precisely the scalar potential term from the
calibrated and smeared O5-planes (and possibly D5-branes).
This cross-term is generated from the mixing of the inter-
nal curvature superpotential with the superpotential for F3.
Crucially it is the F3 that is used in the tadpole cancellation
conditions in the 10D supergravity and relates directly to the
consistent incorporation of the O5-planes. This means that
3D N = 1 supergravity is somehow aware of the 10D tad-
pole cancellation conditions and automatically takes them
into account.

3.2 Superpotential from geometric flux

The superpotential for the internal curvature, i.e. the geomet-
ric flux, is

PR = 1

16
e−8βv

∫
� ∧ d� vol(X)−

6
7 . (3.15)

From (3.15) we directly see that

PR
v = −β

2
PR , PR

φ = 0. (3.16)
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For the derivatives with respect to s̃i we have

PR
i = e−8βv

16

( ∫
�i ∧ d�̃ vol(X̃)−

6
7

+
∫

�̃ ∧ d�i vol(X̃)−
6
7

)

− e−8βv

16

(6

7

∫
�̃ ∧ d�̃ vol(X̃)−

13
7 (vol(X̃))i

)
,

(3.17)

where �̃= s̃i�i and we have d(A3 ∧ B3)=d A3 ∧ B3 − A3 ∧
dB3. Then we use the following identities

(vol(X̃))i =
(

1

7

∫
�̃ ∧ �̃�̃

)

i

= 1

3

∫
�̃ ∧ �̃�i , �i ∧ d�̃ = �̃ ∧ d�i ,

(3.18)

which bring the derivative of the superpotential with respect
to s̃i to the form

PR
i = 1

8
e−8βv

( ∫
�i ∧ d�̃

−
∫

�̃�i ∧ �̃
∫

�̃�̃ ∧ �̃

∫
�̃ ∧ d�̃

)
vol(X̃)−

6
7 . (3.19)

We stress that the second formula in (3.18) is not an inte-
gration by parts, rather it is an exact algebraic identity. From
this we can also deduce

PR
i = 1

8
e−8βv

∫

7
�i ∧ W̃27 vol(X̃)−

6
7 , (3.20)

where W̃27 = W27(s̃i ) (and we will similarly use W̃1 shortly).
This equation means that W27 sources the supersymmetry
breaking due to torsion and that if it vanishes then the PR

i
vanish identically. A more extensive account of the properties
we used here can be found in [14], from which one can also
prove that (3.19) satisfies (3.10). Now we insert the three
pieces PR

i,v,φ into the formula (3.4) and obtain

V R
∣
∣
∣
vol(X̃)=1

=1

8
e−16βv

(
− 21

8
W̃ 2

1 + 1

2
|W̃27|2

)

= − R̃7

8
e−16βv, (3.21)

which is exactly the desired result. Note that this corresponds
to the Ricci scalar found in [39], but here we write it in the
notation of [18], and also it is automatically multiplied by
the correct volume prefactor that appears from the dimen-
sional reduction. As a technical remark, in deriving (3.21)
we needed to contract (3.19) with Gi j , and to do this we
have used in various instances the identity

Gi j
∫

�i ∧ A
∫

� j ∧ B = 4

7

∫
�̃ ∧ �̃�̃

∫
�̃A ∧ B,

(3.22)

which can be checked by expanding A = �̃�i Ai and B =
�̃�i Bi (see e.g. [17]). For example, this identity was used to
derive

Gi j
∫

�i ∧ d�̃

∫
� j ∧ d�̃ = 4

7

∫
�̃ ∧ �̃�̃

∫
�̃d�̃ ∧ d�̃

= 4
(
W̃ 2

1

∫
�̃ ∧ �̃�̃

+
∫

W̃27 ∧ �̃W̃27

)

= 28W̃ 2
1 + 4|W̃27|2. (3.23)

Here of course we have considered that d�̃ is expanded in
the basis �i , otherwise (3.22) cannot be used.

3.3 Superpotential from RR flux

The superpotential for F3 takes the form1

PF3 = −q

8
e−10βv+ φ

2

∫
�� ∧ F3 vol(X)−

4
7 , q = ±1.

(3.24)

The role of q and the ambiguity in choosing it is physical
and reflects the ambiguity, from the 3D supergravity point of
view, of introducing O5- or anti-O5-planes. In this section
we will be working with O5s and we will see shortly how the
sign of q can be fixed by matching with the potential from
dimensional reduction. We can again directly evaluate

PF3
v = −10βPF3 , PF3

φ = 1

2
PF3, (3.25)

and

PF3
i = q

8
e−10βv+ φ

2

( ∫
�i ∧ �̃F3

−
∫

�̃�i ∧ �̃
∫

�̃�̃ ∧ �̃

∫
�̃ ∧ �̃F3

)

vol(X̃)−
4
7 . (3.26)

Note that (3.26) satisfies (3.10) as anticipated. We can also
provide an alternative expression that has the form

PF3
i = q

8
e−10βv+ φ

2

∫

7
�i ∧ �̃π27(F3) vol(X̃)−

4
7 , (3.27)

where π27(F3) denotes the projection of F3 to the 27 rep-
resentation of G2. Then we insert all these pieces into (3.4)
and through a similar calculation as the one of the previous
subsection we find

V F3
∣
∣
∣
vol(X̃)=1

= 1

16
e−20βv+φ

∫

7
�̃F3 ∧ F3, (3.28)

1 From the Type I perspective one could say that F3 here is in fact
F̃3 = F3 − 1

4 (ωYM − ωL ), but we largely ignore here the open string
sector in any case.
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which is exactly the contribution to the scalar potential from
the RR flux F3. Note that we took into account that q2 = 1
to get to this form. In addition, we are implicitly assuming
F3 = f i�i which means

dF3 = f i d�i with d�i �= 0, (3.29)

due to torsion. However, d(�̃F3) = 0 because our G2 is co-
calibrated, i.e. d(�̃�i ) = 0.

Since we have introduced and verified both PR and PF3,
it is now a good time to combine them and uncover the O5-
plane/D5-brane contribution to the scalar potential. To this
end let us take

PR+F3 = PR + PF3. (3.30)

Once we insert (3.30) into (3.4) we have

V R+F3 = V F3 + V R + 2GI J PR
I PF3

J − 8PR PF3, (3.31)

where the form of the cross-term is
(

2GI J PR
I PF3

J − 8PR PF3
) ∣

∣
∣
vol(X̃)=1

= q

8
e−18βv+ φ

2

∫

7

(
W̃1 �̃�̃ ∧ F3 + W̃27 ∧ F3

)
. (3.32)

This contribution has to be matched with the O5-plane/D5-
brane contribution in the effective potential (2.32). We will
now see how exactly this happens. First recall that each of
the O5-planes wrap one internal 3-cycle and therefore their
currents wrap the dual 4-cycles. Therefore for the total O5/D5
contribution we have

SO5 + SD5s

= 1

8
eφ/2

∑

3−cycles

(μO5 + μD5i )

∫

3D× 3−cycle

√−g6

= 1

8
eφ/2

∑

3−cycles

[∫

3D× 3−cycle

√−g6

∫

4−cycle
(μO5

+μD5i )J4(O5)] , (3.33)

where the 1/8 factor comes from the 3D Weyl rescaling (3.1),
and in going to the second line we have assumed a normalized
integration over the 4-cycles in the covering space such that
∫

i th 4−cycle
J4(O5) = 1 =

∫

i th 4−cycle
J4(D5i). (3.34)

Let us stress that we are here explicitly ignoring open string
moduli related to the D5s, which we assume to be fixed on
their supersymmetric positions, otherwise we would have to
include them in (3.33) – we leave this interesting develop-
ment for a future work. Now we take into account that for
each 6D integral that covers the 3D external space and one
internal 3-cycle we have

∫ √−g6 =
∫

3D

√−g3

∫

3-cyc.

√
g3

=
∫

3D

√−g3

∫

3-cyc.
�

= e3βv+3αv

∫

3D

√−g̃3

∫

3-cyc.
�̃, (3.35)

which gives

SO5/D5 = 1

8
e

φ
2 +3βv+3αv

∫

3D

√−g̃3

∑

3-cycles
[∫

3-cycle
�̃

∫

4-cycle
(μO5 + μD5i )J4(O5)

]

.

(3.36)

To proceed it is instructive to work out the contribution for
a specific 3-cycle, and then recombine all the contributions
including the other cycles. For example, for i = 1, we have

SO5/D5(i=1)

= 1

8
e−18βv+ φ

2

∫

3D

√−g̃3 s̃
1

∫

3-cyc.
φ1

∫

4-cyc.
(μO5

+μD5(i=1))J4(O5)

= 1

8
e−18βv+ φ

2

∫

3D

√−g̃3

∫

7
(s̃1 φ1) ∧ J4(O5)(μO5

+μD5(i=1))

= −1

8
e−18βv+ φ

2

∫

3D

√−g̃3

∫

7
(s̃1 φ1) ∧ dF3. (3.37)

The last step can be checked by acting with “s̃1φ1∧” on
(2.40). We then perform this procedure for the other six 3-
cycles and sum over the results to get the total contribution.
Taking into account that

∑
i s̃

i�i = �̃, we conclude that

SO5/D5 =
∑

i

SO5/D5i = −1

8
e−18βv+ φ

2

∫

3D

√−g̃3

∫

7
�̃ ∧ dF3. (3.38)

In addition we have that

�̃ ∧ dF3 = d�̃ ∧ F3 = W̃1 �̃�̃ ∧ F3 + W̃27 ∧ F3, (3.39)

where the first equality follows from �̃ ∧ F3 ≡ 0. Then
we conclude that the total contribution of the smeared O5-
planes/D5-branes to the effective 3D potential is

V O5/D5 = 1

8
e−18βv+ φ

2

∫

7

(
W̃1 �̃�̃ ∧ F3 + W̃27 ∧ F3

)
,

(3.40)

which matches exactly with the extra term in (3.31) for

q = 1. (3.41)

Note that we could in principle split F3 as F3 = F3A + F3B

with F3A �= 0 such that dF3A = 0 but instead dF3B =
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−μO5 J4(O5) − μD5i J4(D5i), which would “free” one part
of the F3 flux from the tadpole condition.

Finally, for the F7 flux (which is of Freund–Rubin type)
the superpotential contribution is

PF7 = 1

8
G e−14βv− φ

2 , (3.42)

where G is a real constant related to the F7 flux (2.37). Then
we evaluate the contribution to the scalar potential which
gives

V F7 = 1

16
G2e−28βv−φ. (3.43)

The superpotential exponential −14βv − φ/2 is compati-
ble with the other exponentials and does not produce any
new cross-terms. Note that we could have “±G” in (3.42),
but only one of the two would correspond to the 10D reduc-
tion with F7 = −G dy1234567, the other one would corre-
spond to F7 = +G dy1234567. This ambiguity is fixed by
S-duality which chooses the “+” sign as we will see momen-
tarily. We conclude that the full superpotential that describes
the dimensional reduction is given by PR + PF3 + PF7,
and reproduces the 3D effective scalar potential (without the
brane-supersymmetry-breaking term) which one can find by
adding the contributions (3.21), (3.28), (3.40) and (3.43), and
reads

V = V R + V F3 + V O5/D5 + V F7

= −R0(s̃
i )e−16βv + F0(s̃

i )e−20βv+φ

+T0(s̃
i )e−18βv+ φ

2 + G0e
−28βv−φ, (3.44)

with the coefficients given by

R0 = R̃7

8
= 1

64

⎛

⎝
∑

i, j

s̃iMi j s̃
j

⎞

⎠

2

− 1

16

∑

i, j

s̃iMi j s̃
j
∑

m

s̃mMmj s̃
j , (3.45)

and

F0 = 1

16

∑

i

( f i

s̃i

)2
, T0 = 1

8

∑

k,l

f lMlk s̃
k , G0 = G2

16
.

(3.46)

4 Supersymmetric vacua

4.1 Supersymmetry cross-check

As a cross-check of the superpotential of the 3D theory, as
well as the overall approach, we would like to verify that
the 3D vacua that we will find truly describe supersymmet-
ric configurations of the 10D theory. Because of the O-plane

truncations, the preservation of supersymmetry on our back-
ground boils down to the supersymmetry Killing equations
that arise from Type I string theory with FYM = 0, which
can in turn be related to Heterotic string theory via S-duality.
Earlier work on Heterotic string flux compactifications [23],
has shown that backgrounds with

H (HET)
3 = 1

6
W1� − �W27 , d φ(HET) = 0, (4.1)

are supersymmetric. In other words H (HET)
3 ≡ T (�) is

identified with the full antisymmetric G2 torsion (2.7). In
[23] the W7 is also present and relates to the dilaton via
dφ(HET) = 2W7, however, the specific orbifolding we use
for our twisted torus projects it out, such that we are strictly
working with a co-calibrated G2. In addition an external com-
ponent of the H (HET)

3 flux is also allowed to be switched on,
and is also related to the G2 torsion. The vacuum condition
for the external H (HET)

3 flux is

H (HET - ext)
σλκ = −7W1

6
eaσ e

b
λe

c
κεabc, (4.2)

where eaσ are the external drei-beins and εabc is the tangent
space full antisymmetric symbol. This means eaσ e

b
λe

c
κεabc is

indeed a tensor. Two comments are in order here. First, note
that in [23] there is an overall factor en that relates the grav-
itino mass to the superpotential via m3/2 = en P . Here we
have implicitly set it to unit, that is we have n = 0, because
in our case the gravitino mass is given directly by m3/2 = P
on supersymmetric AdS as seen from (3.14). Secondly, in
(4.2) we have not performed any additional Weyl rescalings,
therefore it is still written in the original Heterotic string
frame.

To match with Type I string backgrounds we perform an
S-duality, which for the string frame fields is (see e.g. [1])

H (HET)
3 → F3, φ(HET) → −φ, g(HET)

MN

→ e−φgMN , � → e−3φ/2�, �� → e−2φ � �,

(4.3)

and also affects the G2 torsion classes as

W1 → eφ/2W1 , W27 → e−3φ/2W27. (4.4)

Therefore on a Type I supersymmetric background one
would have the condition eφF3 = 1

6W1� − �W27 for

the internal background flux and the condition eφF (ext)
3 =

− 7W1
6

√
g3 dt ∧ dx ∧ dz for the external background flux,

with t , x and z being the external space coordinates. The
background dilaton value would still satisfy dφ = 0. Then,
going to Einstein frame gMN = eφ/2g(E)

MN , we find
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e
φ
2 F3 = 1

6
W1� − �W27 ,

e
φ
2 F (ext)

3 = −7W1

6
√
g3 dt ∧ dx ∧ dz , d φ = 0 . (4.5)

From the condition on the external F (ext)
3 we find the required

vacuum condition on F7 to be

F7 = −eφ �10 F (ext)
3 = 7W1

6
e

φ
2

√
g7 dy

1234567, (4.6)

taking into account that e(5−n)φ/2Fn = (−1)(n−1)(n−2)/2 �

F10−n for n > 5. Finally these conditions become

e
φ
2 F3 = 1

6
W1� − �W27 , e− φ

2 G = −7W1

6
vol(X). (4.7)

We conclude that the conditions (4.7) should hold for a super-
symmetric vacuum of the (Einstein frame) Type I theory and
we will re-derive them from our superpotential by requiring
PI = 0. This is a non-trivial cross-check.

We recall that the total superpotential in our setup (we
choose q = 1) reads

P = G
8
e−14βv− φ

2 − 1

8
e−10βv+ φ

2

∫
�� ∧ F3 vol(X)−

4
7

+ 1

16
e−8βv

∫
� ∧ d� vol(X)−

6
7 . (4.8)

We vary P with respect to v and φ and we require Pv = 0 =
Pφ , which, after some manipulation, give

G e−φ/2 + 13

7
eφ/2

∫
�� ∧ F3

= W1vol(X), eφ/2
∫

�� ∧ F3 = 11

7
G e−φ/2

+3 W1vol(X). (4.9)

Combining these two equations yields two conditions. First
we find

6

7
e−φ/2 G = −W1vol(X), (4.10)

which matches exactly with the second condition in (4.7),
and we also find

7

6
W1vol(X) = eφ/2

∫
�� ∧ F3, (4.11)

which matches exactly with the first condition in (4.7) once
we act on it with

∫
��∧ (·), taking into account that

∫
��∧

� = 7vol(X). Now we take the condition

∂P

∂ s̃i
= 0, (4.12)

where i = 1, . . . , 7. This condition is sufficient to guarantee
that ∂P/∂ s̃a = 0, wherea = 1, . . . 6 are the true independent
s̃a moduli. This happens because the unit-volume restriction
can be solved as s̃7 = ∏6

a=1(s̃
a)−1 as we discussed earlier.

The supersymmetry condition (4.12) gives

∫
�i ∧ W27 = −eφ/2

∫
��i ∧ π27(F3). (4.13)

Note that ∂P/∂ s̃a = 0 would at first sight correspond to
only six equations, so one can wonder why in (4.13) we have
seven equations. In fact the six ∂P/∂ s̃a = 0 equations can
only be solved once they are expanded in the �i basis. The
latter contains seven linearly independent elements and as a
result the six ∂P/∂ s̃a = 0 equations will eventually yield 7
equations (which are exactly (4.13)). Therefore, since the �i

are a complete basis, we can deduce

� W27 = −eφ/2π27(F3). (4.14)

This equation matches exactly with the π27 part of the first
equation in (4.7), taking into account that π27(�W27) ≡
�W27. Interestingly we see that W27 can exist on a supersym-
metric vacuum as long as it is cancelled by π27(F3). This
is in contrast to reductions of M-theory on co-calibrated G2
structures, where supersymmetry requires weak G2 holon-
omy, i.e. W27 = 0 [18].

Let us note at this point that the IIB background we have
been considering contains smeared O5-planes, but interest-
ingly, we see an exact match with the Heterotic supersymmet-
ric background. This is a non-trivial check for the validity of
the effective theory derived from the smeared solution and
implies that there should be an underlying full solution in
IIB where the orientifold sources are localized. Indeed, there
are instances where the smearing can be “OK” [35,40,41].
We leave the interesting exercise of finding the underlying
un-smeared solutions for the future.

4.2 Conditions for Minkowski and AdS

We can now examine the possibility of achieving full moduli
stabilization and determine the required conditions thereof.
From the conditions on the vacuum, that is equations (4.7),
we find that the vacuum energy of a supersymmetric back-
ground is given by

V
∣
∣
∣
SUSY

= −G2

16
e−φvol(X)−4. (4.15)

From (4.15) we see that a Minkowski background would
require G = 0, which from (4.7) implies also that 〈W1〉 =
π1(F3) = 0. In other words, for a Minkowski vacuum we
find the conditions

SUSY Minkowski : G ≡ 0 , 〈W1〉 = 0 =
〈 ∫

� ∧ �F3

〉
.

(4.16)

However we can still have non-trivial background flux and
W27 torsion, as long as (4.14) is satisfied, which in fact also
tells us that unless W27 �= 0 the dilaton is not stabilized. Let
us now go through the moduli stabilization on Minkowski in
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more detail. Because of the properties of the vacuum condi-
tions it is more convenient to work directly with the si (and
the dilaton of course), instead of treating the s̃a and the vol-
ume independently. Taking into account that F3 = f i�i , the
last equation in (4.16) gives

∑

i

f i

si
= 0, (4.17)

which for the moment fixes one of the 8 moduli (φ and si ).
Additionally, the condition W1 = 0 gives an equation of the
form

W1 = 0 →
∑

i, j

siMi j s
j = 0, (4.18)

which fixes one more of the seven si moduli. Equation (4.14)
now, due to (4.16), reduces to

d� = −eφ/2 � F3, (4.19)

where we omit the VEV symbols, since they are implied.
Then (4.19) gives

∑

i

siMi j = −eφ/2

(
∏

k

sk
)1/3

f j

(s j )2 , (4.20)

which seemingly amounts to 7 vacuum conditions. Note how-
ever that (4.20) combined with (4.17) gives (4.18), which
means one of the seven equations of (4.20) is already triv-
ially satisfied. We therefore conclude that (4.20) provides
only six additional equations, which are however enough to
fix the positions of the dilaton and the five remaining si mod-
uli. Clearly since this is a supersymmetric Minkowski vac-
uum, the absence of tachyonic instabilities is granted from
supersymmetry.

Simple Minkowski vacua can be provided by the 2-step
nilpotent examples of [18] which in our case read

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 σ σ σ −σ −σ −σ

σ 0 0 0 0 0 0
σ 0 0 0 0 0 0
σ 0 0 0 0 0 0

−σ 0 0 0 0 0 0
−σ 0 0 0 0 0 0
−σ 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (4.21)

and we choose the values of F3 and G to be

f i = (0, f, f, f,− f,− f,− f ) , G ≡ 0. (4.22)

The Minkowski vacuum can be found for the values

s̃i = 1 , f = −e− 1
14 (

√
7v0+7φ0)σ. (4.23)

We also notice that when the s̃i are fixed on their vacuum
values (4.23) but φ and v are left free the scalar potential
(3.44) takes the form

V |s̃i=1 = 3

8
e

4v√
7

(
e

1
14 (

√
7v+7φ) f + σ

)2
, (4.24)

which is consistent with (4.23) and also indicates the exis-
tence of at least one flat direction. This should not be confused
with no-scale vacua because here 〈P〉 = 0. Naturally, eval-
uating the determinant of the mass matrix, we find it to be
vanishing.

Let us now turn to AdS supersymmetric vacua. Here we
allow P �= 0 and therefore we do not have to set G to vanish.
As a result, the conditions (4.10) and (4.11) directly fix the
dilaton and the volume fixed in terms of the six remaining
independent si moduli. Indeed we find

e−φ = −G−1
∫

�� ∧ F3, (4.25)

and

vol(X)2 = −
(

6

7W1

)2

G
∫

�� ∧ F3. (4.26)

Then the seven conditions (4.14) fix the six remaining si .
However, since they are readily contained in the first equation
in (4.7), we can work directly with the latter. We can recast
in fact the first equation in (4.7) to take the form

6G � F3

7W1vol(X)
+ 7

6
W1 � � = d�, (4.27)

which then explicitly gives seven equations once we expand
on the �i basis. After some manipulations these equations
read

6G
si

(
f i

si
−

7∑

k=1

f k

sk

)

=
(∑

m,n s
mMmnsn

)

(∏
l s

l
)1/3

∑

j

s jM j i ,

(4.28)

and should be solved in terms of the si . Clearly (4.28) (or
equivalently (4.27)) describes only six independent equations
due to the condition (4.26) that is satisfied by the volume. We
conclude that the RR and geometric fluxes give the possibility
to stabilize all 8 moduli on a supersymmetric AdS3 vacuum.

An example for the matrix Mi j (this is a specific instance
of the SO(p, q) × U (1) example of [18]) that leads to full
moduli stabilization is

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 h 0 0 m
0 0 0 h 0 0 m
0 0 0 −h 0 0 m
h h −h 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
m m m 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (4.29)

and we further assume that there exists a supersymmetric
AdS vacuum at the positions

〈s̃i 〉 = 1 , 〈φ〉 = φ0 , 〈v〉 = v0. (4.30)
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To find this solution we start by evaluating Pφ = 0 on the
Ansatz (4.30) and find that it is solved by

G = −e
φ0− v0√

7

(
∑

i

f i
)

. (4.31)

Similarly, we can evaluate Pv = 0 and using (4.31) and the
Ansatz (4.30) to find

3

(
∑

i

f i
)

e
φ0
2 + v0

2
√

7 = h + 3m. (4.32)

This determines the explicit values for φ0 and v0. Then from
the expressions ∂P/∂ s̃i = 0, for i = 1, . . . , 7, we get a
series of equations which we simply satisfy by assigning the
appropriate values to the f i . Once we make use of the Ansatz
and the conditions (4.31) and (4.32) the solutions read

f 1 = f 2 = −2

3
e
− φ0

2 − v0
2
√

7 h,

f 3 = 4

3
e
− φ0

2 − v0
2
√

7 h,

f 4 = −1

3
e
− φ0

2 − v0
2
√

7 (2h − 3m),

f 5 = f 6 = 1

3
e
− φ0

2 − v0
2
√

7 (h + 3m),

f 7 = 1

3
e
− φ0

2 − v0
2
√

7 (h − 6m).

(4.33)

One can also evaluate the vacuum energy which is given by

〈V 〉 = − 1

144
e

4v0√
7 (h + 3m)2. (4.34)

In general the above Ansatz/solution has full moduli stabi-
lization on SUSY-AdS because

det[m2] �= 0. (4.35)

For example, for a specific setup we can have

φ0 = −3, v0 = −33
√

7, h = 1, m = −1 , (4.36)

which gives large volume and weak string coupling, and we
can easily verify numerically that

〈V 〉 < 0 , Eigenvalues[m2] > 0, (4.37)

which guarantees a full moduli stabilization. Note however
that if we take h = 3 instead of h = 1 then we obtain a
Minkowski solution with det[m2] = 0.

4.3 Indication for scale separation

Let us now discuss the possibility of having scale separation
in the supersymmetric AdS vacua. The scalar potential in our
setup has the form

V = F0 e
−20βv+φ − R0 e

−16βv + T0 e
−18βv+ φ

2 + G0 e
−28βv−φ,

(4.38)

where F0 = |F3|2/16, G0 = G2/16, T0 = −μO5/8 and
R0 = R7/8. Once we minimize (4.38) we find the vacuum
values v0 and φ0, and the vacuum energy is given by (4.15).
To study the scale separation we follow closely [14], which
means we ask that we can have flux values such that there is
a limit where

L2
KK

L2
�

= e16βv Vvac → 0. (4.39)

Here LKK is the Kaluza–Klein scale that characterizes the
internal space, and L� is the scale that characterizes the exter-
nal 3D Anti-de Sitter space. Further details for (4.39) can be
found in [14].

To this end we consider a scaling limit where G0 ∼ Na

and F0 ∼ Na+2b as N → ∞ and we demand that each term
in the potential has the same scaling behavior. Equating the
scaling for the internal and external flux terms implies

Na+2beφ−20βv ∼ Nae−φ−28βv

⇒ N−2be−8βv ∼ e2φ ≡ N 2p , (4.40)

which leads to

Vvac ∼ Na+6p+7b , T0 ∼ Na+p+ 5
2 b , R0 ∼ Na+2p+3b ,

e16βvVvac ∼ Na+2p+3b. (4.41)

The fact that R0 has the same scaling as e16βvVvac, means
that in order to achieve scale separation, we need to be able
to take R0 small. We can also see that T0

2 ∼ R0F0, consistent
with the supersymmetric origin of the O5 term.

In principle we expect our scaling limit to correspond to
some large value for the fluxes. However, the tadpole condi-
tion dF3 = −μO5 J4 means that the only possible consistent
scaling we can have is

T0 ∼ F0 ∼ R0 ∼ N 0, (4.42)

making scale separation impossible due to flux quantization.
Thus, to achieve scale separation we have to first cancel the

tadpole in such a way that the fluxes are not restricted neither
from the Bianchi nor from the torsions. This will allow them
to take parametrically large or small values independently.
As a result we include D5s such that for the tadpole of the
form (2.40) we get

dF3 = 0 = −μO5 J4(O5) − μD5 J4(D5), (4.43)

where we recall that μO5 > 0 and μD5 < 0, but we keep the
F3 flux to non-vanishing values, that is F3 �= 0 and F7 �= 0.
This can be achieved by taking
∑

i

f i d�i = 0, (4.44)

which can have non-trivial solutions due to the freedom in
choosing the torsion. Returning to the scalar potential, which
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is now missing the contribution from the O5-plane as it is
cancelled by the D5-branes, we have

V = F0 e
−20βv+φ − R0 e

−16βv + G0 e
−28βv−φ. (4.45)

Note also that the supersymmetric minimization with respect
to φ and v is bound to give (4.15), that is

〈V 〉 = −G2

16
e−φ0 vol(X)−4 = −G0e

−28βv0−φ0 . (4.46)

This also guarantees that our moduli stabilization is consis-
tent and non-tachyonic. Equivalently one can vary the scalar
potential with respect to the volume and the dilaton to get

3 G0 e
−28βv−φ = R0 e

−16βv , F0 e
−20βv+φ = G0 e

−28βv−φ,

(4.47)

which are consistent for this setup and give again the super-
symmetric vacuum energy (4.46). To obtain scale separation,
we take the scaling2

R ∼ N−2 , F3 ∼ N 0 , F7 ∼ N 0. (4.48)

Asking that all the terms in the scalar potential scale in the
same manner, we get

V ∼ N−6 , gs = eφ ∼ N−1 , vol(X) = e7βv ∼ N
7
4 .

(4.49)

Then we finally get

L2
KK

L2
�

= e16βv V ∼ N−2. (4.50)

We conclude that achieving parametric scale separation
requires taking the internal curvature R7 to extremely small
but positive values. Note that in this limit we remain at weak
string coupling and large volume, and are therefore well
within the regime of validity of the supergravity approxima-
tion. Since the s̃i should be fixed to finite values (otherwise
the volume becomes singular), requiring small internal cur-
vature means we have to tune the structure constants in the
twisted torus. However, this requirement can run into ten-
sion with quantization conditions on the structure constants
[44], potentially making parametric scale separation impos-
sible for the types of compactifications considered here. For
further discussion on the intricacies of achieving scale sep-
aration in string theory see e.g. [45–56]. Note in particular
that in [48] the difficulty to get scale separation in IIB vacua
has been anticipated.

2 Small values for the torsion can be also used, as in [42,43], to get de
Sitter vacua. For constraints on geometric fluxes see e.g. [44].

5 Brane supersymmetry breaking

5.1 Introducing anti-D9s

Until now we have worked with O5-planes which due to the
orbifold involutions gave rise to an image O9-plane, that is an
object with negative tension and with charge with opposite
sign than that of a D9-brane. However, instead of a conven-
tional O9 one can consider a so-called “O9+” which has
positive tension, and charge with the same sign as that of a
D9-brane. Then the RR tadpole for the O9+ is now to be can-
celled by 16 anti-D9-branes. This combination of O9+/D9s
is the so-called brane-supersymmetry-breaking (BSB) setup
(a very recent review can be found in [28]). The gauge theory
on such setup is USp(32), and because both the anti-D9-brane
and the O9+ have positive tensions, these add up and give a
non-vanishing dilaton-dependent vacuum energy. In addition
supersymmetry on the world-volume of this system is spon-
taneously broken and non-linearly realized. In particular the
vacuum energy in the 10D Einstein frame has the form

V10D-BSB = B0 e
3
2 φ. (5.1)

In [26,27] for example the coefficient B0 is specified to be
B0 = 64T9, where T9 is the D9-brane tension up to the

e
3
2 φ dilaton factor, as in (2.32). Once we perform a direct

dimensional reduction by inserting our metric Ansatz (2.31)
it becomes in 3D

V3D-BSB = B0 e
−14βv+ 3

2 φ. (5.2)

To embed this new term in the 3D superpotetnial we have to
include a real scalar nilpotent superfield [37], let us call it X ,
which satisfies

X2 = 0. (5.3)

As in 4D (see e.g. [57]) such nilpotent superfields tend to rise
the vacuum energy and capture the effects of anti-branes. The
modification to the GI J metric to account for the coupling of
X to 3D supergravity will be GXX = 1 and GXi = GXv =
GXφ = 0, whereas the superpotential contribution is

PBSB = √
B0 X e−7βv+ 3

4 φ. (5.4)

Let us stress that this non-linearity is intrinsic and it is inher-
ited directly by the non-linear supersymmetry of the 10D
BSB theory [24–27].

With the inclusion of the BSB term the total scalar poten-
tial for the volume-dilaton sector, i.e. ignoring the s̃a or
assuming they are stabilized, reads

V = F0e
−20βv+φ + G0e

−28βv−φ + T0e
−18βv+ 1

2 φ

−R0e
−16βv + B0e

−14βv+ 3
2 φ

≡ F + G + T − R + B. (5.5)

123



Eur. Phys. J. C (2021) 81 :456 Page 15 of 20 456

With F0, G0, B0 ≥ 0 and T0 ≤ 0 and we temporarily change
notation such that F = V F3,G = V F7 etc. for visual conve-
nience in the equations below. A critical point of this potential
satisfies

4F + 14G + 5T − 6R =0,

2F − 2G + T + 3B =0.
(5.6)

Which allows us to express the vacuum energy as

Vvac = B

2
− G. (5.7)

The dependence of the vacuum energy only on two terms
instead of three is remarkable. Solving (5.6) for different pairs
of terms and substituting back into the potential results in an
apparent dependence on all three remaining terms. However,
note that the potential with only F, T, R terms would result
in a no-scale or runaway potential, and thus vanishing vac-
uum energy, while the other terms give additive corrections
to the scalar potential, without generating cross-terms. In
other words, the cosmological constant is ultimately deter-
mined solely by the interplay of Freund–Rubin-type fluxes
(F7) and SUSY breaking terms. The reason internal fluxes
do not contribute to the cosmological constant appears to
be that satisfying the tadpole condition by O5 planes gener-
ates precisely the right tension to cancel their contribution.
This is in line with the observation that although O-planes
appear to evade the usual supergravity de Sitter no-go theo-
rems [58,59], once the flux they source is taken into account,
the total stress-tensor does not produce a positive contribu-
tion to the vacuum energy [60].3

While in the case of the Freund–Rubin term (3.42) the lack
of additional cross-terms is justified by supersymmetry, with
the BSB term, this amounts to ignoring backreaction from the
anti-branes and therefore constitutes an important caveat to
the analysis. It is possible that additional backreaction terms
in the spirit of [61] are present. Nonetheless, let us press
forward and explore the possibility of de Sitter minima of
this potential. The mass matrix eigenvalues are

m2± = 1

7

(

20G − T − 2B ±
√

88B2 − 3B(8G + T ) + (8G + T )2
)

,

(5.8)

which are positive when

B < 8G , T <
12B2 + 8BG − 48G2

B − 8G
. (5.9)

3 From (5.7) we also see why one cannot get de Sitter vacua from Type
I by simply adding anti-D5s, and instead we have to switch to the BSB
setup to be able to even discuss such possibility. The fact that one may
need two types of supersymmetry breaking sources to get classically
stable de Sitter vacua was already alluded to in [15] and as we will see
we will need here both anti-D5s and anti-D9s as well, once we discuss
the shape moduli stabilization.

Note that this in principle allows for a positive vacuum energy
when

2G < B < 8G ⇒ 2 <
B0

G0
e14βv+ 5

2 φ < 8, (5.10)

with the lower inequality giving positive energy, while the
upper inequality guaranteeing (meta-) stability. Note how-
ever that this imposes a relation between the stabilized val-
ues of the dilaton and the volume. Finally, our findings are
consistent with [30] because we have O5 sources. However
the final verdict on the existence of such de Sitter vacuum
can only be made after we stabilize the s̃a moduli and we
take into account flux quantization.

As in the supersymmetric case, we can consider a scaling
limit where G0 ∼ Na and F0 ∼ Na+2b as N → ∞ and we
demand that each term in the potential has the same scaling
behavior. This once again determines the scalings

Vvac ∼ Na+6p+7b , B0 ∼ Na+p+ 7
2 b ,

T0 ∼ Na+p+ 5
2 b , R0 ∼ Na+2p+3b, (5.11)

which lead to

B0

G0
e14βv+ 5

2 φ ∼ N−b , e16βvVvac ∼ Na+2p+3b, (5.12)

where we note that b �= 0 means that we inevitably violate
(5.10) as N → ∞. This means that we need F0 ∼ G0 to
preserve the stable de Sitter vacua. As before, R0 has the
same scaling as the scale-separation parameter, e16βvVvac,
so we need to be able to take it small to achieve parametric
scale separation, conflicting with the quantization of geomet-
ric flux. Furthermore, b = 0 also ensures that B0 and T0 have
the same scaling, which we expect due to both terms arising
from branes.

In fact we may further demand T0 ∼ B0 ∼ N 0, which
requires p = −a and R0 ∼ N p. This does indeed become
small at large internal volume and weak coupling, yielding
scale separation, but being in tension with quantization of the
structure constants of the internal manifold.

On the other hand, if we don’t demand parametric scale-
separation, i.e. R0 ∼ N 0 then we have B0 ∼ T0 → ∞ in our
scaling limit. This, however is also unacceptable since the
magnitude of B0 is fixed.4 Thus despite the scalar potential
appearing to have de Sitter critical points, string theory does
not seem to allow for parameter values such that these critical
points appear at large internal volume and weak coupling,
where this scalar potential is trustworthy.5

4 This situation is similar to [62], where weakly coupled, large volume
4d dS compactifications of massive type IIA appear to require large
numbers of O6 planes.
5 A similar effect can be observed directly in gauged 4D N = 2 super-
gravity [63].
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5.2 Explicit examples of 3D de Sitter solutions?

Actually, achieving full moduli stabilization including the s̃a

is challenging, and we do not have a systematic way of tack-
ling this question. However it is instructive to see first if we
can generate the de Sitter vacua with the co-calibrated G2
geometry we have at hand following the methodology we
also followed in [15]. This does not give the most general de
Sitter solution but it offers a simple way to obtain it. First
we want to stabilize the s̃a in their “autonomous” supersym-
metric positions, which means supersymmetric position of
s̃a which do not require to fix the other moduli. From (4.14)
we see that we would need

W27 = 0 , π27(F3) = 0, , (5.13)

such that the dilaton VEV is kept free and is to be determined
independently. In addition the equation W27 = 0 can be also
solved independent of the volume modulus. Indeed taking
into account that si = e3βv s̃i , equation W27 = 0 takes the
volume-independent form
∑

i

s̃i Mi j − 1

7

( ∑

m,n

ŝmMmns̃
n
) 1

s̃ j
= 0 ,

∏

i

s̃i = 1.

(5.14)

Then we notice that due to the structure of the scalar potential,
even when it includes the BSB term, we have

∂P

∂ s̃a

∣
∣
∣
(5.14)

= 0 → ∂V

∂ s̃a

∣
∣
∣
(5.14)

= 0. (5.15)

This is because of the properties (3.16) and (3.25), but also
(Gφφ)a = (Gvv)a = 0, and of course from (3.42) we auto-
matically have PF7

a ≡ 0. Therefore we can find vacua where
the shape moduli are stabilized at their autonomous SUSY
positions, and then we need only to stabilize the volume and
the dilaton. This is exactly how the stabilization happens in
[15]. Now let us see if under the assumptions (5.13) we can
get de Sitter. We do not have to go into details, only check
if the conditions we derived for de Sitter solution still hold.
From (5.6) and (5.7) we see that

R = −F − G − 5Vvac, (5.16)

which means de Sitter critical points exist only for R̃(7) < 0.
In contrast to the latter, we see that (5.13) (or (5.14)) dictates
R̃(7) ≥ 0. We conclude that there do not exist any de Sitter
critical points that can be found with the method we followed
in [15]. As we said this does not exclude the possible exis-
tence of de Sitter, however it does leave much less room for
it.

The fact that the shape moduli interfere with the construc-
tion of de Sitter solutions has been also discussed for example
in [64,65]. Indeed we believe that our example shows exactly
how fixing the shape moduli into their “autonomous” super-
symmetric positions creates problems to finding de Sitter.

In other words, if we had the shape moduli fixed in such
autonomous supersymmetric positions and then we tried to
uplift the vacuum to de Sitter we would force them to move
out of these supersymmetric positions, and so the stabiliza-
tion procedure would have to be worked out from scratch.
We conclude that one should not ignore the stabilization of
shape moduli during the uplift, nor take it for granted when
searching for realistic examples.

One could try to construct de Sitter vacua with the shape
moduli in their supersymmetric positions by including also
anti-D5-branes. Let us see what would happen if we included
such objects – assuming momentarily they can be included
consistently in our setup. Their contribution to the Bianchi
identity would be

dF3 = −μO5 J4(O5) − μD5i J4(D5i) + μD5i J4(D5i),

(5.17)

where μD5i < 0, and the brane action (ignoring open string
moduli) is

SD5s = 1

8
e−18βv+ φ

2

∫

3D

√−g̃3

∑

3-cycles

×
[∫

3-cycle
�̃

∫

4-cycle
μD5i J4(D5i)

]

. (5.18)

Once we also take into account the O5s contributions to the
3D action, the net effect leads to the typical “doubling” of
the anti-D5 terms due to (5.17). As a result, on top of all the
previous contributions we had until now, we also have the
additional term

2 × V D5 = 2 × 1

8
e−18βv+ φ

2
∑

i

μi s̃
i , μi = −μD5i > 0.

(5.19)

Then the total scalar potential is

V = VBSB + V R + V F3 + V F7 + V O5/D5 + 2V D5.

(5.20)

Note that here V O5/D5 refers to the same contribution we had
in (3.44). If one wanted to assign to the smeared O5-plane its
honest correct contribution it would be V O5 − V D5 + V D5,
and this the reason for the “doubling” of V D5 in (5.20) as
well as the cancellation of the D5 contribution. Assuming
now that s̃7 = 1/

∏
a s̃

a , then we can have compatibility with
an isotropic critical point of the shape moduli by requiring

s̃a = 1 , μi = μ > 0. (5.21)

However here we would directly run into two problems if
we wanted to get a de Sitter solution with our prescription
from [15]. First of all the term (5.19) evaluated on the (5.21)
critical point clearly affects only the T0 term in the volume-
dilaton scalar potential. Therefore it cannot change the fact
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that critical points still require R̃(7) < 0 which as we said
is not possible to achieve with the autonomous shape mod-
uli stabilization. The second problem we would run into is

that the tadpole (5.17) in the presence of a background with
dF3 = 0 [which will probably be forced on us by the require-
ments (5.13)] will require various D5s for the cancellation of
the O5 charge. Then clearly we cannot easily add anti-D5s
as such system will be typically be inherently unstable.

As a means to escape the aforementioned issues we could
still include anti-D5-branes but instead this time not ask that
the shape moduli to be stabilized in their autonomous super-
symmetric positions. This gives some more freedom in the
construction and allows to find de Sitter critical points, albeit
possibly inconsistent once flux quantization is taken care-
fully into account. However, here we want to give a general
overview/exposition of the possibilities rather than proving
the existence of a bona fide stable de Sitter solution. We
will therefore be more liberal with the flux quantization and
brane/plane tension constraints, but will still require basic
self-consistency. In particular we do not include D5s, such
that there is no obvious instability, and we also want to sat-
isfy the tadpole condition (5.17), without D5s. Taking into
account that dF3 = ∑

i j f jMi j�i , the tadpole takes the
form
∑

j

f jMi j + μi = −μO5 < 0 , ∀ i. (5.22)

This is forced on us by the fact that the O-planes have the
same contribution to each cycle tadpole and therefore, since
we do not have D5s, we need all tadpole contributions related
to dF3 and μi to take the same value – otherwise the existence
of D5s is implied. We shall work with the geometric fluxes
that give rise to a matrix of the form (this is a specific choice
of 2-step nilpotent example of [18])

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 m m m m m m
m 0 0 0 0 0 0
m 0 0 0 0 0 0
m 0 0 0 0 0 0
m 0 0 0 0 0 0
m 0 0 0 0 0 0
m 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (5.23)

and with F3 flux of the form

f i = a (1, ω, ω, ω, ω, ω, ω) . (5.24)

The shape moduli are stabilized at the positions

s̃i =
(
ω− 6

7 , ω
1
7 , ω

1
7 , ω

1
7 , ω

1
7 , ω

1
7 , ω

1
7

)
, (5.25)

whereas the volume and dilaton are stabilized at the posi-
tions φ0 and v0. To get a de Sitter critical point we need to
tune the geometric flux such that

m= −
e

φ0
2 + v0

2
√

7 ω
11
7

(

a(5−30ω) +
√

a2(33 + 4ω(177ω−29))−4ω− 12
7 G2(ω−1)(24ω+1)e

2v0√
7

−2φ0

)

2 + 48ω
. (5.26)

Note that our solutions will have five parameters that we can
in principle choose independently, which are

a, ω, G, φ0, v0 (free parameters of the solution) . (5.27)

For the anti-D5-brane tensions we now have

μ1 = − 1

10

(

30amω + 2a2e
φ0
2 + v0

2
√

7 ω
18
7 + G2ω

6
7 e

5v0
2
√

7
− 3φ0

2

+24m2e
− φ0

2 − v0
2
√

7 ω− 4
7

)

, (5.28)

and

μ2,3,4,5,6,7 = − 1

10

(

5am + 2a2e
φ0
2 + v0

2
√

7 ω
11
7

−e
− 3φ0

2 − v0
2
√

7 ω− 11
7

(

eφ0m2 − G2e
3v0√

7 ω
10
7

))

.

(5.29)

Note that μ1 is different that the rest, this is because they
need to cancel the different contribution of the dF3 flux in
each tadpole, even though the O5 contribution is the same.
Finally, we also tune the BSB contribution to take the form

B0 = 1

40
e

v0
2
√

7
− 5φ0

2 ω− 10
7

(

6eφ0m2 + 4G2ω
10
7 e

3v0√
7

−7a2ω
22
7 e

v0√
7
+2φ0

)

. (5.30)

Then using our Ansatz and the specific aforementioned val-
ues for the various coefficients one can check that

∂V

∂φ
= 0,

∂V

∂v
= 0,

∂V

∂ s̃a
= 0, (5.31)

with the vacuum energy given by

Vvac = 1

80
e

4v0√
7

(

6m2ω− 10
7 − G2e

3v0√
7

−φ0 − 7a2ω
12
7 e

v0√
7
+φ0

)

.

(5.32)

Clearly the existence of de Sitter depends on the specific
values one chooses. In addition one can check that if we ask
that μi = 0 we are driven to an AdS vacuum, therefore the
inclusion of the anti-D5s is crucial.

Let us now give a few numerical examples. We can have

Example 1 : φ0

= −3, v0 = −3
√

7 , G = 0.01, a = 2, ω = 0.09985,

(5.33)
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which give self-consistent values

μi > 0 , B0 > 0 , μO5 > 0, (5.34)

and also satisfy (5.22). Note that in this example m �
−0.0029 < 0. For this numerical example we also find

Vvac � 1.274 × 10−13, Eigenvalues[VI J ] > 0,

I = φ, v, s̃b, (5.35)

implying a stable de Sitter critical point. Clearly from the
values of the various coefficients we see that this example
is in sharp contradiction with all sorts of flux quantization
conditions but also clearly the values of μO5, μD5 and B0

are unrealistic. In addition from the values of φ0 and v0 we
see that we are definitely not safely within the large volume
regime, however the string coupling is indeed small.

Another numerical example is to have

Example 2 : φ0

= −3, v0 = −33
√

7 , G = 0.01, a = 10, ω = 0.0998,

(5.36)

which still gives self-consistent values for the various coeffi-
cients and allows for slightly more realistic values for μO5,
μD5 (but still overall unrealistic). We see that we are now
safely within a weak coupling and large volume regime, but
flux quantization is clearly not taken into account. For this
example we find

Vvac > 0, [VI J ] < 0, I = φ, v, s̃b, (5.37)

therefore there are tachyons in the scalar sector.
We conclude that it seems that one can achieve (stable) de

Sitter critical points from an effective theory model building
perspective, but the required coefficients seem to be totally
unrealistic from the string theory perspective. However, we
believe that one needs to do an exhaustive scan over the var-
ious parameter values that are allowed by string theory in
order to give a final verdict on the existence of classical 3D
de Sitter vacua in string theory and on their stability. Our aim
here was instead to highlight these open possibilities and we
leave an exhaustive investigation for de Sitter solutions to
future work. We expect that the study of 3D de Sitter vacua
can further contribute to our understanding of such vacua
from the perspective of the swampland program [15,66–71].

We finally stress that even if perturbative stability is
achieved for the closed string moduli, including (anti) D5s
can open up new decay channels, both perturbative and non-
perturbative, in the open string sector, even if the various
parameters are within a controlled string theory regime. Such
instabilities may lead to very short lived vacua or completely
destabilize them (for a recent review and an extended discus-
sion see e.g. [15]).

6 Outlook

In this work we have studied flux compactifications of string
theory down to three external dimensions and have high-
lighted properties that make them an interesting playground
to test various swampland conjectures. Our primary motiva-
tion was to provide the tools for the construction of the 3D
N = 1 supergravity, focusing in particular on the superpo-
tential. Then we studied some simple examples that give us
intuition for the vacuum structure. We focused in particular
on discussing the possibility of having de Sitter and Anti-de
Sitter vacua with scale separation and have seen how these
vacua are allowed by the effective theory, but are hindered
once we take into account proper quantization conditions as
required in string theory.

As an outlook for future work we would like to dis-
cuss various possible extensions. One direction to expand
on would involve a careful treatment of the open string
sector, which we have mostly ignored here. This can be
done in various ways. Firstly, as we have seen, it is un-
avoidable to include O9 planes in this setup and so D9-
branes also have to be included. This means that one must
study carefully the D9-brane sector which leads to a non-
abelian gauge theory in 3 dimensions. In addition since in
principle we would also need to include D5-branes these
would further contribute to the non-abelian gauge sector on
the 3D external space as well as give rise to extra scalar
moduli. Overall one would need to include new contribu-
tions also to the superpotential to correctly describe these
sectors. Note that this setup could offer the basis for con-
structing a 3D toy-model version of the 4D KKLT construc-
tion. Indeed, the non-abelian gauge theory may give rise to
gaugino condensation in the 3D EFT and including anti-D5-
branes can give rise to a putative ulplift mechanism similar
to the KKLT model. This may be a worthwhile endeavor as
it may help to further understand the properties of de Sit-
ter vacua in string theory, if such vacua truly exist, or sim-
ply a way to get more intuition about KKLT-type construc-
tions. Along these lines one could also investigate the impact
of Euclidean D-branes that wrap internal cycles, which we
have ignored in the present work. These should give rise
to non-perturbative contributions similar to the 4D case,
however the absence of suitable non-renormalization the-
orems in 3D N = 1 means their form is less constrained.
On general grounds we can expect these contributions to
take the form of non-perturbative exponentials dressed by a
perturbative series in the moduli describing the volume of
the wrapped cycle. It is also interesting to note that due to
the dimensionality of the branes involved in our setup, it
seems that the effects of gaugino condensation may differ
in form from those of Euclidean D-branes, unlike the 4D
scenario.
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Another direction worth pursuing is to go beyond the co-
calibrated toroidal G2 and include also the W7 torsion. This is
a very interesting development as it would allow to have more
cycles in the theory and so more interesting backgrounds
may be found. We have worked here only with toroidal ori-
folds, however, one does not essentially need to restrict one-
self to this set of compactifications. For example it would be
important to study manifolds where the internal space allows
warping, and this would also be important if one tries to
build a 3D KKLT type of model, as we discussed earlier. Yet
another direction to pursue would be finding the underlying
un-smeared solutions of the orbifolds we discussed here. In a
similar vein, one could also try to realize scenarios where the
D5/O5 charge remains delocalized along the internal mani-
fold but comes from topological flux and curvature terms in
the D9/O9 worldvolume theory [72]. These scenarios should
be related to resolutions of the orientifold singularities and
therefore have a richer topology, with the un-smeared orien-
tifold solutions as a limit. Such a study would undoubtedly
shed more light on the properties of O-planes and the consis-
tency of working with the smeared solutions presented here.

Finally, one could try to classify all the 3D N = 1 vacua that
arise from flux compactifications on G2 with torsion and get
important insight about the properties of the 3D swampland,
especially by comparing to the dual 2D CFTs. Indeed, as
we have seen (from the few sample examples we presented)
the 3D N = 1 low energy supergravity has a very rich vac-
uum structure, which however remains tractable due to its
relatively simple ingredients. This means that a full classifi-
cation of the classical 3D vacua (de Sitter and Anti-de Sitter
alike) can be done and a thorough investigation of their prop-
erties is possible, especially using more advanced methods
as for example proposed in [73].
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