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Abstract

In magnetic resonance electrical impedance tomography (MREIT), we try to

reconstruct a cross-sectional resistivity (or conductivity) image of a subject.

When we inject a current through surface electrodes, it generates a magnetic

field. Using a magnetic resonance imaging (MRI) scanner, we can obtain the

induced magnetic flux density from MR phase images of the subject. We use

recessed electrodes to avoid undesirable artefacts near electrodes in measuring

magnetic flux densities. An MREIT image reconstruction algorithm produces

cross-sectional resistivity images utilizing the measured internal magnetic flux

density in addition to boundary voltage data. In order to develop such an

image reconstruction algorithm, we need a three-dimensional forward solver.

Given injection currents as boundary conditions, the forward solver described

in this paper computes voltage and current density distributions using the finite

element method (FEM). Then, it calculates the magnetic flux density within the

subject using the Biot–Savart law and FEM. The performance of the forward

solver is analysed and found to be enough for use in MREIT for resistivity image

reconstructions and also experimental designs and validations. The forward

solver may find other applications where one needs to compute voltage, current

density and magnetic flux density distributions all within a volume conductor.
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1. Introduction

Imaging cross-sectional resistivity (or conductivity) distributions of the human body has been

a research goal in electrical impedance tomography (EIT) (Webster 1990, Boone et al 1997,

Saulnier et al 2001). The measured data for this imaging technique are mostly boundary

voltages on a set of surface electrodes due to multiple injection currents. Recently, magnetic

resonance electrical impedance tomography (MREIT) has been suggested to overcome the

ill-posedness of the image reconstruction problem in EIT (Zhang 1992, Woo et al 1994,

Ider and Birgul 1998). Currently, MREIT research is making rapid progress in algorithm

developments (Eyuboglu et al 2001, Kwon et al 2002a, 2002b, Birgul et al 2001, Ider et al

2003, Seo et al 2003a, 2003b) and also in experimental techniques (Birgul et al 2001,

Khang et al 2002, Lee et al 2003). MREIT is very promising in that it provides cross-sectional

resistivity images with a better accuracy and spatial resolution since it utilizes the internal

magnetic flux density data due to injection currents. If we can reconstruct accurate static

images of resistivity distributions using MREIT techniques, there will be numerous potential

applications especially in functional imaging and neuronal source localization problems.

Images from MREIT may also be used as a priori information in EIT image reconstructions

for better results. The disadvantages of MREIT over EIT may include the lack of portability,

potentially long imaging time and requirement of an expensive MRI scanner.

The injection current I during MR imaging distorts the MR phase image in such a way

that the phase change is proportional to the component of the induced magnetic flux density

B that is parallel to the direction of the main magnetic field of an MRI scanner. This means

that we must rotate the subject inside the MRI scanner to obtain all three components of the

induced magnetic flux density. After we measure all three components of B = (Bx, By, Bz),

the internal current density distribution J can be obtained as J = ∇ × B/µ0 where µ0 is

the magnetic permeability of the free space and biological tissues. Experimental methods of

obtaining magnetic flux density and current density images are described by Joy et al (1989),

Scott et al (1991), Gamba and Delpy (1998), Eyuboglu et al (1998), Gamba et al (1999) and

Joy et al (1999).

When B = (Bx, By, Bz) is available, we can use J to reconstruct resistivity images

using image reconstruction algorithms such as the J -substitution algorithm (Kwon et al

2002b, Khang et al 2002, Lee et al 2003), current-constrained-voltage-scaled-reconstruction

algorithm (Birgul et al 2003) and equipotential line methods (Kwon et al 2002a, Ider et al

2003). There are different algorithms utilizing only one component of B such as Bz to

avoid the subject rotation procedure (Seo et al 2003a, 2003b). Figure 1 shows a diagram

of an MREIT system. Given a model of a subject with an assumed resistivity distribution,

injection currents and electrode configurations, a three-dimensional forward solver computes

distributions of voltage V , current density J and magnetic flux density B or only Bz. The

measured and computed data for V, B (or Bz) and/or J are used to reconstruct cross-sectional

resistivity images depending on the algorithm used.

Similar forward problems have been studied in EEG and MEG (Pruis et al 1993,

Awada et al 1997, Gencer and Tanzer 1999a, Mosher et al 1999) and EIT (Vauhknonen et al

1999, Gencer and Tek 1999b, de Munck et al 2000, Polydorides and Lionheart 2002) using

the finite element method (FEM) or boundary element method (BEM). Especially, Polydorides

and Lionheart (2002) developed a software package called Electrical Impedance and Diffuse

Optical Reconstruction Software (EIDORS) where a three-dimensional forward solver in EIT

is nicely implemented. The forward problem in MREIT is, however, different from these

problems since we should compute distributions of V, J and B all within an electrically

conducting domain.
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Figure 1. MREIT system block diagram. Resistivity, voltage, current density and magnetic flux

density are denoted as ρ, V, J and B, respectively. Quantities from the imaging subject are shown

with superscripts ∗.
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Figure 2. (a) Definition of domains and (b) recessed electrode assembly.

This paper describes a three-dimensional forward solver for the algorithm development

and image reconstructions as well as the experimental design and verification in MREIT.

After we define the forward problem in MREIT using recessed electrodes, we will describe

numerical techniques adopted in our forward solver. We will also discuss the performance

of the forward solver in achieving the required numerical accuracy. Solutions of the forward

solver will be compared with the measured data using a 0.3 T experimental MREIT system

and also with analytic solutions in a certain case where they are available.

2. Methods

2.1. Forward problem in MREIT using recessed electrodes

Let S ⊂ R
3 be an electrically conducting subject with its boundary ∂S as shown in

figure 2(a). Two copper electrodes are denoted as E1 and E2 and lead wires are shown

as L1 and L2. Both electrodes E1 and E2 are recessed from the surface of the subject ∂S by

the plastic containers, C1 and C2, respectively. We define regions of containers, electrodes

and lead wires as C = C1 ∪ C2, E = E1 ∪ E2 and L = L1 ∪ L2, respectively. Figure 2(b)

shows the recessed electrode assembly. We fill the container with a gel of a known resistivity

value. This kind of electrode assembly is desirable since it helps us in producing artefact-free

MR images of the subject including its boundary. Due to the RF shielding effect of the copper

electrode, severe artefacts are produced in MR images near the electrode. For example, Khang

et al (2002) and Lee et al (2003) could reconstruct resistivity images from a saline phantom

with surface copper electrodes only within a restricted internal region of the phantom due to
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these artefacts. By recessing the electrode, we can effectively move this artefact away from

the boundary ∂S.

Now, we let D be the region including the subject and two plastic containers, that is,

D = S ∪ C with its boundary ∂D. Assuming that we inject a current I through the pair of

copper electrodes E1 and E2 attached to ∂D, we can formulate the following boundary value

problem with the Neumann boundary condition:
{

∇
[

1
ρ(r)

∇V (r)
]

= 0 in D

− 1
ρ
∇V · n = g on ∂D

(1)

where ρ and V are the resistivity and voltage distribution in D, respectively, n is the outward

unit normal vector on ∂D and g is the magnitude of the current density on ∂D due to the

injection current I. A position vector in R
3 is denoted as r. Once we have found a numerical

solution V of (1), we can compute the internal current density distribution J as

J(r) = −
1

ρ(r)
∇V (r) in D. (2)

We are interested in the magnetic flux density in S denoted as B. For the purpose of

numerical computations, we divide B into four components as

B(r) = BS(r) + BC(r) + BE(r) + BL(r) in S (3)

where BS , BC, BE and BL are magnetic flux densities due to J in S, C, E and I inL, respectively.

From the Biot–Savart law, we have

BX (r) =
µ0

4π

∫

X

J(r′) ×
r − r′

|r − r′|3
dv′ (4)

where X is S, C or E and

BL(r) =
µ0I

4π

∫

L

a(r′) ×
r − r′

|r − r′|3
dl′ (5)

where a(r′) is the unit vector in the direction of the current flow at r′ ∈ L. The magnetic flux

density B must also satisfy the following equation:

JB(r) =
1

µ0

∇ × B(r) in S. (6)

For the compatibility of solutions, we must have

J(r) = JB(r) ∇ · J(r) = 0 and ∇ · JB(r) = 0 in S. (7)

2.2. Effects of recessed electrodes and lead wires

Before we describe the numerical method of solving the forward problem in MREIT, we discuss

the effects of recessed electrodes and lead wires on B and J in S. We let �(r, r′) = − 1
4π

1
|r−r′|

.

Since ∇ · J = 0, we have
1

µ0

∇ × BS(r) = −∇ × ∇ ×

∫

S

�(r, r′)J(r′) dv′

= (−∇2 + ∇∇·)

∫

S

�(r, r′)J(r′) dv′

= J(r) + ∇∇ ·

∫

S

�(r, r′)J(r′) dv′

= J(r) − ∇

∫

S

∇r′ · (�(r, r′)J(r′)) dv′

= J(r) − ∇

∫

∂S

�(r, r′)J(r′) · n(r) ds ′ (8)
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for all r in S where n is the outward unit normal vector on ∂S. With (3), (6) and (8), we get

1

µ0

∇ × (BC(r) + BE(r) + BL(r)) = ∇

∫

∂S

�(r, r′)J(r′) · n(r) ds ′. (9)

This means that the current density J within S due to BC, BE and BL is dependent only on

the current density or Neumann boundary condition on ∂S. Therefore, two totally different

sets of recessed electrodes and lead wires produce the same current density J in S only if

they provide the same Neumann boundary condition on ∂S. The actual geometrical shape of

L does not affect the computed J though the shape of C may have some effects since it can

influence the Neumann boundary condition on ∂S.

Note that the magnetic flux density B in S will be different depending on the shapes and

dimensions of recessed electrodes and lead wires. However, we have

∇2(BC(r) + BE(r) + BL(r)) = 0 (10)

since ∇2 1
|r−r′|

= 0 when r �= r′. We may utilize (10) to remove the effects of recessed

electrodes and lead wires from the measured B in S in some image reconstruction algorithms

(Seo et al 2003a, 2003b).

2.3. Computation of voltage V and current density J

We use FEM to numerically solve (1). We first construct a three-dimensional model of D and

E . We assume that the thickness of each electrode is negligibly thin. For the discretization

of the model into a finite element mesh, we use eight-node hexahedral elements with trilinear

interpolation functions ψi for i = 1, . . . , 8. For the standard hexahedral element of [−1, 1]3,

ψi = 1
8
(1 + xxi)(1 + yyi)(1 + zzi) i = 1, . . . , 8

where xi, yi and zi are the local coordinates of the ith nodal point of the element.

The current density distribution underneath each electrode is not uniform in most cases.

This means that we only know the amount of injection current I without knowing the Neumann

boundary condition g in (1). Therefore, assuming that each electrode is an equipotential surface

due to its high conductivity, we first solve the following boundary value problem with mixed

boundary conditions:














∇
[

1
ρ(r)

∇Ṽ (r)
]

= 0 in D

Ṽ = 1 on ∂DE1 and Ṽ = 0 on ∂DE2

− 1
ρ
∇Ṽ · n = 0 on ∂D \ (∂DE1 ∪ ∂DE2)

(11)

where ∂DE1 = D∩E1 and ∂DE2 = D∩E2 are the portions of ∂D contacting the electrodes E1

and E2, respectively. Following the standard procedure of FEM (Burnett 1987), we compute

the numerical solution of Ṽ in (11). This solution is a set of nodal voltages of the corresponding

finite element mesh. Expressing the voltage at a position within an element of the mesh as a

linear combination of eight nodal voltages of the element and interpolation functions, we can

compute J̃ from (2) with Ṽ instead of V . We now compute the total current Ĩ passing through

the boundary ∂DE1. Then, we multiply the computed voltage Ṽ and current density J̃ by I/Ĩ .

This gives us the numerical solution V of (1) and J of (2) due to the injection current I.

2.4. Computation of magnetic flux density B using the Biot–Savart law

As described before, we are interested in the magnetic flux density only inside the subject S.

We now describe how to compute each term on the right-hand side of (3) using the Biot–Savart
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Figure 3. (a) Out-of-plane source and sink currents on the electrode E1 and (b) surface current

density within the electrode.

law. In the next section, we will introduce a faster method of computing B in S using FEM.

However, since the method based on FEM requires the computation of B on ∂S as a boundary

condition, the method described in this section will also be utilized in the next section.

2.4.1. Computation of BS and BC . Assuming that J does not change much within each

element of the mesh for S, we compute BS as

BS(r) =
µ0

4π

NES
∑

e=1

J(e)
c ×

r − r(e)
c

∣

∣r − r
(e)
c

∣

∣

3
�v(e) (12)

where NES is the number of elements, r(e)
c the centre point of the eth element, J(e)

c the current

density at r(e)
c and �v(e) the volume of the element in the finite element mesh of S. In order

to avoid the singularity where r = r(e)
c , we compute BS at all nodal points of the mesh. Since

we have already computed J in C from the numerical solution of (1) and (2), we can calculate

BC in the same way as in (12).

2.4.2. Computation of BE . The magnetic flux density BE in S is due to the surface current in

E . We first choose the electrode E1 in figure 3(a) which illustrates the current flowing into E1

from L1 and currents leaving E1 into C1. Considering E1 as a two-dimensional domain with

a high conductivity value, we construct a two-dimensional finite element mesh for E1. From

the computed current density J on ∂DE1 = D ∩ E1 in section 2.3, we can compute the sink

currents on all nodes of the finite element mesh. The injection current I from the lead wire

becomes a source current at the centre node of the mesh.

To calculate the surface current density shown in figure 3(b), we solve the following

two-dimensional boundary value problem in E1:
{

∇2V (r) = f in E1

∇V · n = 0 on ∂E1
(13)

where f is the source or sink current. From the numerical solution of (13) using FEM, we can

easily compute the surface current density on E1. After we repeat the computation for E2, we

can calculate BE in a similar way as in (12).
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Figure 4. Lead wire geometry. (a) Twisted wires and (b) straight wires.

2.4.3. Computation of BL. We note that the computation of BL requires the information

on the actual geometrical shape of lead wires. We consider two cases shown in figure 4. In

figure 4(a), we should include the correct geometry of the portion of lead wires where they are

not twisted together. In figure 4(b), the lead wires run straight in one direction within a certain

range. Note that the current I in a portion of lead wires far away from S has a negligible

effect on the magnetic flux density in S. In either case, we can numerically compute (5)

by discretizing the lead wires into many small line segments. For the lead wire shown in

figure 4(b), one might use an analytic solution for BL. Long and straight lead wires in the

z direction may be desirable for measuring Bz in S since only the currents in the x and y

directions determine Bz.

2.5. Computation of magnetic flux density B using FEM

Numerical calculation of the magnetic flux density B using the Biot–Savart law requires a

large amount of computation time since it is in the form of three-dimensional convolution. In

this section, we introduce a faster method using FEM. We first note that

∇2B = −µ0∇ × J in S. (14)

Since J is available from (2), we can solve (14) for B using FEM if the boundary conditions

of B are known on ∂S. We, therefore, compute B = BS + BC + BE + BL using the methods

described in the previous section only for r ∈ ∂S. Then, we have the Dirichlet boundary

condition on ∂S and can numerically solve (14) for B using FEM. Note that it is important to

compute all four components of B on ∂S to find the appropriate Dirichlet boundary condition

of B in (14). We can also compute (14) in any three-dimensional subdomain of S as long as

we correctly calculate its boundary condition.

2.6. Computation of current density JB from magnetic flux density

With the computed magnetic flux density B, we can calculate JB in (6). Since we have

computed the magnetic flux density on all nodal points in S, we can express the magnetic

flux density at a position within an element of the mesh using eight nodal values of B and

interpolation functions. Then, the curl operation in (6) can be performed without numerical

differentiations as in the computation of (2).

2.7. Numerical implementation

As shown in figure 5(a), we assumed a cubic subject of 50 × 50 × 50 mm3 with an isotropic

and piecewise constant resistivity distribution ρ. We used the cubic subject to compare the

forward solver with experimental results using a cubic phantom. The cubic phantom was

used in experiments for the ease of subject rotations to measure all three components of B.

The origin was located at the centre of the subject in figure 5(a). Figures 5(b)–(e) show four
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Figure 5. (a) Cubic subject of 50×50×50 mm3 with an isotropic and piecewise constant resistivity

distribution. (b) Model with narrow recessed electrodes for the analysis of numerical accuracy.

(c) Homogeneous model with full-size recessed electrodes for the comparison with analytic

solutions. (d) Thorax model and (e) model containing a cylindrical object with narrow recessed

electrodes. (f ) Picture of a typical finite element mesh using hexahedral elements.

different models of the subject with recessed electrodes. We assumed the lead wire geometry

in figure 4(b) only for simplicity in numerical computations. The model in figure 5(c) includes

two full-size recessed electrodes (10×50×50 mm3) covering the entire areas of two surfaces.

The other three models in figures 5(b), (d) and (e) are equipped with two narrow recessed

electrodes (10 × 5 × 50 mm3).

We used the model in figure 5(b) to determine the finite element mesh with a desirable

numerical accuracy. The homogeneous model in figure 5(c) with full-size recessed electrodes

was used to compare the numerical results with analytic solutions. We used the thorax model

in figure 5(d) to present typical numerical results of the three-dimensional forward solver.

The model in figure 5(e) was for the comparison between the numerical and experimental

results. The amount of injection current was 1 mA for the models in figures 5(b)–(d) and

28 mA for (e). Figure 5(f) shows a picture of a typical finite element mesh using hexahedral

elements.

We performed all computations using a PC with an Athlon 2000+ processor, 1 GB RAM

and Windows 2000 Professional operating system. We used double precision floating point

variables. For all numerical results, we checked the compatibility conditions in (7).

2.8. Experimental method for measuring magnetic flux density

In order to compare the computed magnetic flux density with the measured one, we acquired

the magnetic flux density data following the procedure described by Khang et al (2002) and

Lee et al (2003). We used our 0.3 T experimental MRI system with 25 cm bore. We

manufactured a cubic phantom (50×50×50 mm3, acrylic plastic) of the model in figure 5(e).

The phantom was filled with a solution containing NaCl and CuSO4·5H2O. The resistivity of

the solution was 50 � cm. The cylindrical object at the centre of the phantom was made of agar

with resistivity 300 � cm. We used two narrow recessed copper electrodes (10×5×50 mm3)

through which we injected a current of 28 mA. We set up the lead wires so that their shape

was as close as possible to the model in figure 4(b). We captured phase images of the phantom
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Table 1. Meshes with different numbers of elements and their relative numerical errors. Number

of elements exclude the elements belonging to the recessed electrode assemblies.

Mesh index (m) Number of elements (X × Y × Z) εm
V (%) εm

B (%)

1 1000 (10 × 10 × 10) 3.91 5.90

2 8000 (20 × 20 × 20) 1.66 2.31

3 27 000 (30 × 30 × 30) 1.04 1.35

4 64 000 (40 × 40 × 40) 0.751 0.944

5 216 000 (60 × 60 × 60) 0.481 0.581

6 1 728 000 (120 × 120 × 120) NA NA

using a standard spin echo pulse sequence synchronized with injection current pulses. Khang

et al (2002) and Lee et al (2003) describe the experimental procedure and data processing

method in detail and similar techniques are described by Joy et al (1989), Scott et al (1991),

Gamba and Delpy (1998), Eyuboglu et al (1998) and Gamba et al (1999).

3. Results

3.1. Numerical accuracy, mesh size and computation time

In this section, we choose the model in figure 5(b). The resistivity distribution of the model

was

ρ(x, y, z) =







200 � cm for −15 � x � −5 −15 � y � −5 −15 � z � 5 mm

50 � cm for 5 � x � 15 5 � y � 15 −5 � z � 15 mm

100 � cm otherwise.

This resistivity distribution has no symmetry in all three directions. The resistivity within two

containers of recessed electrodes was 100 � cm. To determine the fineness of a finite element

mesh required for the numerical accuracy of the forward solver, we constructed six meshes in

table 1 with different numbers of elements. We chose numbers 120, 60, 40, 30, 20 and 10 so

that there are common nodes among different meshes.

We introduced two different methods of computing B in sections 2.4 and 2.5. In order

to compare them, we computed B in S using the two methods with the meshes in table 1 and

found that there is no significant difference in the numerical results except for computation

times. Since the computation time of the method based on the Biot–Savart law described in

section 2.4 was considerably longer, we decided to use the method based on FEM described

in section 2.5.

Since the measured data in MREIT are the boundary voltage and internal magnetic flux

density, we examined the numerical accuracy in the computed V and B. In table 1, m denotes

the index of the mesh. We define the relative numerical error of the mth mesh over the (m+1)th

mesh as

εm
V =

√

∑N
n=1 |V (m+1)(rn) − V m(rn)|

2

√

∑N
n=1 |V (m+1)(rn)|

2
× 100 (%)

where N is the number of nodal points common to both meshes, rn is the nth common nodal

point and V (m+1) and V m are the computed voltages from the (m + 1)th and mth meshes,

respectively. Similarly, we can define εm
B . Table 1 shows the values of εm

V and εm
B .

We assumed that the error in the measured voltage V is larger than 0.1% (Boone et al

1997). From the sensitivity analysis by Scott et al (1992), we assumed that the amount of

noise in the measured magnetic flux density B is greater than 0.1 × 10−9 T in most cases.
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Figure 6. Log–log plot of numerical errors as a function of mesh size.

Table 2. Computation times of V, J, B and JB using a PC with an Athlon 2000+ processor,

1 GB RAM and Windows 2000 Professional operating system. We computed V on all nodes, J in

all elements, B on the nodes of three planes and JB in the elements of two layers. T (B)1 is the

computation time for B using the method described in section 2.4 and T (B)2 is the corresponding

computation time using the method based on FEM described in section 2.5.

Number of elements (X × Y × Z) T (V ) (s) T (J) (s) T (B)1 (s) T (B)2 (s) T (JB ) (s)

1000 (10 × 10 × 10) 0.2 0.016 0.14 0.016 ≈0

8000 (20 × 20 × 20) 2.8 0.13 3.2 0.094 0.062

27 000 (30 × 30 × 30) 16 0.39 21 0.19 0.094

64 000 (40 × 40 × 40) 44 1.0 88 0.33 0.16

216 000 (60 × 60 × 60) 240 3.4 645 0.80 0.38

512 000 (80 × 80 × 80) 760 8.2 2700 1.6 0.62

1728 000 (120 × 120 × 120) 3700 28 19 500 11 1.5

Dividing this by the average value of the computed |B| due to the injection current of 1 mA,

we could get about 1.88% error in the measured B. From the log–log plot of relative errors in

figure 6, we decided to use a mesh with 80 × 80 × 80 elements (total 512 000 elements and

531 441 nodes) for all computations in the subsequent sections. Figure 6 indicates that we may

expect an error of about 0.4% for both εV and εB with this mesh. Using the sixth mesh with

120 × 120 × 120 elements, we may obtain less than 0.1% error. However, the computation

time using the sixth mesh was very long for the PC used in this paper. Table 2 shows the

required computation times for calculations of V, J, B and JB . Note that we computed V on

all nodes, J in all elements, B on the nodes of three planes and JB in the elements of two

layers.

3.2. Comparison with analytic solutions

For the homogeneous model with resistivity 100 � cm and full-size recessed electrodes in

figure 5(c), the computed voltage changed linearly only along the x direction with values

of 28 mV at x = −35 mm (on the left copper electrode) and 0 V at x = 35 mm (on the

right copper electrode). The error between the computed and theoretical voltage values was

zero. The current density J in (2) was computed as J = (40, 10−7, 10−8) µA cm−2 with a

negligibly small error compared with the theoretical value of J = (40, 0, 0) µA cm−2. For the

compatibility test in (7), we define the following three indices of
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Figure 7. Typical numerical results for the thorax model in figure 5(d) with an injection current of

1 mA. (a) Resistivity distribution of the thorax model. Computed results of (b) V , (c) Jx , (d) Jy ,

(e) Jz, (f ) Bx , (g) By and (h) Bz.

εJB
=

‖J − JB‖2

‖J‖2

× 100 (%)

ε∇·J =
‖∇ · J‖2�p

‖J‖2

× 100 and ε∇·JB
=

‖∇ · JB‖2�p

‖JB‖2

× 100 (%/element)
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Figure 7. (Continued.)

where �p = 0.625 mm is the size of each element. The computed values were εJB
=

3.23 × 10−2%, ε∇·J = 1.0 × 10−4%/element and ε∇·JB
= 1.18 × 10−4%/element.

3.3. Typical numerical results using the thorax model

Figure 7(a) shows the resistivity distribution of the model in figure 5(d) within a region of

−5 < z < 5 mm. The average resistivity value in figure 7(a) is 536 � cm. Resistivity

values in the upper and lower regions of the model were 1072 and 268 � cm, respectively.

The computed voltage V in (1) on the xy plane with z = 2.5 mm is shown in figure 7(b).

Figures 7(c)–(h) show the computed current density and magnetic flux density on the same

plane. Compatibility conditions were satisfied with εJB
= 0.971%, ε∇·J = 0.725 and ε∇·JB

=

0.94%/element.

3.4. Comparison with experimental results

For the model with narrow recessed electrodes in figure 5(e), the resistivity of the cylindrical

object was 300 � cm. The resistivity of the background including two containers of

recessed electrodes was 50 � cm. We performed the same computations as in the previous

section and could obtain similar numerical results satisfying the compatibility conditions.

Figures 8(a), (b) and (c) show the picture of the cubic phantom, magnitude image and phase

image of the phantom on the axial imaging slice at the centre (z = 0). After processing the

image including geometrical error correction and phase unwrapping, figure 8(d) shows the

measured Bz obtained from the phase image in (c). The corresponding Bz computed from

the three-dimensional forward solver is shown in figure 8(e). Figure 8(f ) shows the error

difference between the computed and the measured Bz. We define the relative L2 error of the

measured Bz as

εBz
=

∥

∥Bz − Bm
z

∥

∥

2

‖Bz‖2

× 100 (%)

where Bz and Bm
z are computed and the measured magnetic flux densities, respectively. For

the measured Bz in figure 8(d), εBz
= 9.56%. If we excluded the outer most layer of 10 pixels

(or elements) near the electrodes, εBz
= 6.1%.
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Figure 8. (a) Cubic phantom used in the experiment, (b) MR magnitude image of the phantom,

(c) phase image at z = 0, (d) measured Bz at z = 0 and (e) computed Bz at z = 0 from the model

with narrow recessed electrodes in figure 5(e). (f) The error difference between the computed and

the measured Bz. The amount of injection current was 28 mA.
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4. Discussion

Forward problem and image reconstructions in MREIT are inherently three dimensional. We

also often need B or Bz from multiple imaging slices in resistivity image reconstructions. This

means that we should use a three-dimensional forward solver. The forward solver should

also provide much information on the design and verification of experimental procedures and

results.

Numerical errors in the computed V and B are dependent on the resistivity distribution

ρ of the model. We should expect a larger error when ρ changes more abruptly. Therefore,

the errors εV and εB using the model in figure 5(b) might be smaller than the errors for the

thorax model in figure 5(d). Considering the achievable minimal error of 0.1% in voltage

measurements (Boone et al 1997), it would be better to use the mesh with 120 × 120 × 120

elements for computing V . However, the error in measured B could be much larger than 0.1%

(Scott et al 1992). Since measured B plays a more important role in most MREIT resistivity

image reconstruction algorithms, we suggest using a mesh with fewer elements, for example,

80 × 80 × 80 elements.

In developing a three-dimensional forward solver, we found that it is quite important to

properly model electrodes and lead wires. Otherwise, the three-dimensional forward solver

fails to produce correct numerical results satisfying the compatibility conditions in (7). This

requires us to accurately compute J since B is calculated from J. Higher current densities

along edges of the electrodes must be computed correctly as shown in figures 7(c) and (d).

In addition, we should not neglect the effect of a surface current on each copper electrode

especially when the thickness of the recessed electrode is small.

When we compare the computed Bz with the measured one, we can see mostly random

errors and two different kinds of systematic errors in figure 8(f ). Random errors are mainly

due to the random noise from the MRI scanner. One of the systematic errors occurs along the

boundary of the cylindrical object. This is due to the difference in the resistivity value of the

agar object immersed in the saline solution of the phantom compared with the resistivity value

of the cylindrical object within the model in figure 5(e). We can observe the other kind of

systematic errors in Bz near the electrodes. We believe this is mainly due to the difference in

lead wire geometries between the phantom and the model in figure 5(e) since it was difficult

to make the lead wires run perfectly straight in real experiments. To minimize this kind of

systematic errors, we recommend using a lead wire guide fixed within the MRI scanner. This

will be especially important for image reconstruction algorithms directly using the measured

B or Bz without taking advantage of ∇2BL = 0 in S.

One of the most common problems in a three-dimensional forward solver is the

considerable computation times and storage requirements required to achieve a needed

numerical accuracy. To reconstruct a resistivity image with a higher spatial resolution, we

may need to use a finer mesh with an increased computation time. Our future study should

contain different numerical techniques reducing the required computation time and storage

requirement. Mesh generation for a subject with an irregular boundary shape is also nontrivial

in three-dimensional problems. In MREIT, conventional MR images providing the structural

information are always available. The forward solver in MREIT should, therefore, include a

three-dimensional mesh generator utilizing this structural information.

5. Conclusion

For a given injection current through two recessed electrodes attached to the boundary of

an electrically conducting subject, the three-dimensional forward solver described in this
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paper computes voltage, current density and magnetic flux density distributions all within the

volume conductor. Compared with analytic solutions and measured data, we found that its

performance is good enough for applications in MREIT image reconstructions. The forward

solver is also a valuable tool in the experimental design and validation.

Considering the experimental results using surface electrodes by Khang et al (2002)

and Lee et al (2003), recessed electrodes should be used in our future experimental studies

and, therefore, included in the forward solver. It is not yet clear what is the ultimate limit

on the spatial resolution and accuracy of cross-sectional resistivity images in MREIT. For a

presumably expected spatial resolution of 64 × 64 pixels with about 3 × 3 mm2 pixel size,

the computation time may not be a limiting factor unless real-time image reconstructions

are required. However, depending on the application and reconstruction algorithm, it would

be desirable to reduce the computation time of the forward solver using faster or multiple

processors.

Currently, we utilize the forward solver in the development of new MREIT image

reconstruction algorithms and their validations. It may also be used for the study of

biomagnetism with a few modifications. Since some biological tissues are anisotropic in

resistivity, future improvements should include a way to handle anisotropic material properties

in addition to three-dimensional mesh generation techniques.
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