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Abstract 

 

   In this communication, a numerical analysis regarding free vibration of thick laminated circular plates, having free, clamped as 

well as simply-supported boundary conditions at outer edges of plates is presented.  The employment of finite element is made 

in this communication. The finite element methodology operates on the basis of three-dimensional theory of elasticity and was 

employed  to assess the natural frequencies for laminated circular plates of various thickness-to-outer radius ratios. The first five 

natural modes of flexural vibrations for different boundary conditions are presented in pictorial forms. Verification of the 

accuracy of the results was made using the necessary convergence analysis and checked using literature results.  
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1. Introduction 

 

Laminated circular plates are commonly used structural component having a broad application in aerospace, civil, mechanical, 

nuclear, electronic as well as marine engineering. An essential prerequisite in designing and performance assessment of 

mechanical systems is understanding the free vibration behavior of different plate components. The dynamic response of complex 

engineering systems is intimately linked with plate response frequencies as well as vibration mode shapes. A thorough analysis of 

free vibration data is often useful in arriving at the resonant behavior and fatigue stress estimation at vulnerable machine locations.  

A comprehensive survey of early investigation on free vibration studies of circular plates carried out by Leissa (1969) as well as 

Liew et al. (1995) noted that classical thin plate theory (CTPT) and Mindlin plate theory were majorly applied by investigators. It 

is understood that CTPT, which ignores the influences of transverse shear deformation as well as normal strain, overestimate the 

vibration frequencies and error increases with plate thickness. However, various shear deformation as well as higher-order theories 

which include the shear deformation and normal strain, have been proposed in the computations concerning thick plates during the 

past few decades. Rao and Prasad (1975) analysed the natural vibrations of annular plates considering the influences of shear 

deformation as well as rotatory inertia. Irie et al. (1982) presented the vibration characteristics of Mindlin annular plates in nine 

groupings of free, simply supported and clamp boundary condition of inner and outer edge conditions using Bessel function.  

Also, Liew et al.(2000),Wu et al.(2002) , Han and Liew (1999) and Wang (2004) discussed the free vibration of circular, annular 

and sector plates employing differential quadrature method based on the classical thin plate theory or Mindlin plate theory. Lin and 

Tseng (1998) studied the free vibration characteristics of polar orthotropic laminated circular and annular plates by using a finite 

element method having first order shear deformation theory. Hosseini-Hashemi et al. (2010) provided an precise closed-form 

frequency equation for thick circular plates using a third-order shear deformation theory. Hosseini-Hashemi et al. (2012) presented 

an precise closed-form solution for free flexural vibration of thick laminated circular plates with an attached rigid core using the 

first-order shear deformation theory. Senjanovic (2014) utilised the modified Mindlin theory to examine the free vibration of thick 

circular plates. Sharma (2014) investigated the free vibration problem involving averagely thick antisymmetric laminated annular 

sector plates having edge-supports that are elastic established on first order shear deformation theory using the differential 

quadrature method. Powmya and Narasimhan (2015) studied the free vibration behavior of polar orthotropic circular as well as 

annular plates by Chebyshev collocation technique based on first order shear deformation theory. 
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The analysis of relatively thick plates is a challenging task. Most two – dimensional theories, if applied for the analysis of such 

thick plates, result in significant errors due to their inherent limitations. Such theories are almost always based on some 

simplifying assumptions and consequently offer a great deal of convenience in analysis. The expressions, thus obtained are simple 

in nature and easy to work with but are likely to be error prone in some cases. A three  dimensional analysis, though more 

complicated, succeeds in getting rid of these errors to a considerable extent and goes far beyond a typical two – dimensional 

analysis in terms of utility, accuracy and extractable information. The three – dimensional research endeavors listed in literature 

are relatively few and the reasons are pretty understandable.  

So and Leissa (1998), Zhou et al. (2003), Kang and Liessa (1998), Liew and Yang (1999,2000) and Kang (2003) presented the 

three-dimensional method of analysis for free vibration of circular as well as annular plates employing Ritz method. Liu and Lee 

(2000) employed the finite element method to investigate three-dimensional vibrations of thick circular and annular plates. 

Malekzadeh (2010) analysed the three-dimensional free vibration analysis of thick fuctionally graded annular plates influenced by 

the thermal environment .The three-dimensional analyses of circular and annular plates resting on Pasternak elastic foundation and 

Winkler foundation studied by Liew et al.(1996), Zhou et al. (2006), Hashemi et al. (2008). Houmat (2004) investigated the free 

vibration of annular sector plates employing finite element scheme. Komur et.al (2010) has conducted a buckling analysis for 

laminated composite plates having an elliptical/circular hole centered in the plate using finite element method (FEM) using 

ANSYS finite element software. Chen and Ren (1998) studied the transverse vibration of thin circular and annular plates with 

variable thickness using finite element method. Liang et al. (2007) used three-node annular finite elements to compute the natural 

frequencies of circular annular plates of polar orthotropy and non-uniform thickness. Ranjan and Ghosh (2009) studied the free 

and forced Transverse vibration behavior of a thin spinning disk having distributed patch attached to it as well as discrete point 

masses at the peripheryof plate using finite element analysis. Malekzadeh (2010) analysed a three-dimensional elasticity solution 

system, which addressed the free vibration analysis of thick-laminated circular and annular plates, which rested on two-parameter 

elastic foundation. In this paper the effects of different fiber orientation angle, thickness to radii ratio, with free, clamped and 

simply-supported boundary conditions of plates on the free vibration responses are discussed in detail using finite element scheme, 

with roots in three-dimensional theory of elasticity. Verification of accuracy as well as the numerical reliability was made using 

standard convergence principles while the study was compared with those existing in literature.  

 

2.  The basic formulations 

 

Consider a thick, laminated annular plate having inner radius R1, outer radius R2, total thickness h and fiber orientation angle β. 

An orthogonal cylindrical coordinates (r, θ, z) are used as depicted in Figure 1, where u, v and w denotes the displacement of any 

point of the plate in the r, θ and z direction, respectively. 

 
Figure 1 Geometry and coordinate system of the annular plate 
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The displacement field that satisfy the three-dimensional elasticity equation of motion of circular plates, designated by u, v, and w 

are assumed as  

( )
( )
( )
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u U r z t n
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                                                                                                                                      (1) 

where n and t represent the wave numbers (circumferential) as well as time, respectively. The displacements are afterwards used in 

the strain-displacement associations while the strains are consequently stated with respect to displacements. The stress-strain 

expressions sequentially direct to stresses that are as well stated with respect to displacements (Liu and Lee , 2000).  

The constitutive relations representing that of arbitrary lamina for annular plate may be stated as, 
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where [ ]C is the material stiffness matrix (Malekzadeh , 2010). 

The Hamilton's principle is required for the modeling of vibrating plates using finite element (Liu and Lee, 2000): 

( )
0

0 ,

t

r r z z r z z r r rz rz

vol

u u v v w w dv dtθ θ θ θ θ θσ δε σ δε σ δε τ δε τ δε τ δε δ δ δ
• • • • • •   = + + + + + − + +      

∫ ∫              (3) 

here, u
•

, v
•

as well as w
•

represent velocity constituents along the three co-ordinates. Following the substitution of stresses as well 

as strains obtained through strain-displacement as well as stress-strain associations into above stated expression, we conclude with 

a variational kind in which the only main variables are the three displacements. The universal procedure of the finite element 

scheme then follows. If a single finite element becomes utilized in the integration, the element equation may be obtained as  

[ ] { } [ ] { } 0m U k U
•

+ =  

here, { } , ,..., , , ,..., , , ,..., ,1 2 1 2 1 2
TU U U U V V V W W Wm m m=     m refers to number of nodes in an element, [m] and [k] are 

the element mass and stiffness matrices. 

The universal expression of motion may be obtained through the assembly of all the element expressions: 

[ ] { } [ ] { } 0M X K X
••

+ =  

which corresponds to an eigenvalue equation of the following form: 

[ ]{ } [ ]{ } 0K x M xλ= =  

The eigenvalue λ represents the square of vibration frequency ω and eigenvector { }x  denotes the corresponding mode shape. 
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3. Material and methods 

A finite element analysis was made for obtaining the first five natural frequencies using three-dimensional ‘SOLID185’ of 

ANSYS. In addition, SOLID185 Structural Solid is appropriate for modeling common 3-D solid structures. As demonstrated in 

figure 2, the element contains eight nodes with three degrees of freedom at each node: translations in the nodal x, y, and z 

directions. (ANSYS Inc., 2009). The Block-Lanczos algorithm is utilised in free vibration analysis of thick laminated circular 

plates (Figure 3).  

 

 
 Figure 2 Eight noded SOLID185 element 

 

 

Figure 3 Finite element model of a thick laminated circular plate   

Mechanical properties of glass/epoxy laminated plates are listed in Table 1.  

Table 1. Mechanical properties of the glass/epoxy laminated plates (Reddy, 2004) 

E1(GPa) E2(GPa) G12(GPa) G13(GPa) G23(GPa) ѵ 

53.781 17.927 8.9635 8.9635 4.4475 0.25 
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4. Results and Discussion  

The current investigation was primarily validated via performing convergence study of non-dimensional frequency parameter Ω 

defined by 2

2
/ h DRω ρΩ = , where D=Eh3

/12(1-ѵ
2
), of isotropic circular plates (ѵ=1/3) with respect to number of elemental 

divisions (N) as well as through matching up of current results with literature reported cases. The number in parenthesis (n, s) 

indicates the number of nodal diameters n, in the s
th

 mode of vibration. The rate of convergence of the first five frequency 

parameters for isotropic circular plates with clamped , simply supported and free boundary conditions are presented in Table 2-4, 

for thickness-radius ratios varying from 0.1 to 0.5 in step of 0.1. It can be seen from that N=15, is sufficient to obtain satisfactory 

convergence for first five frequency parameters. 

 

Table 2. Convergence behavior of the first five frequency parameter 
2

2 / h DRω ρΩ = for isotropic circular plate with clamped 

boundary condition 

N Mode number (n, s)  

  1(0,0) 2(1,0) 3(2,0) 4(0,1) 5(3,0) 

(a) h/R2=0.1     

7 10.4283 21.7720 35.5635 42.1115 51.8218 

9 10.4826 21.7897 35.6348 43.0988 51.6304 

11 10.2066 21.0863 34.0250 40.1456 48.7675 

13 10.0848 20.6712 33.2306 38.4154 47.5493 

15 10.0424 20.5753 33.0433 37.9726 47.3433 

17 10.0253 20.4796 33.0105 37.7931 47.2276 

(b) h/R2=0.2     

7 9.8278 18.8888 29.1105 33.6838 40.2617 

9 9.6245 18.8009 29.0413 34.0394 40.0299 

11 9.4536 18.4006 28.2071 32.4892 38.6473 

13 9.3676 18.1593 27.7543 31.5463 37.9937 

15 9.3421 18.1025 27.652 31.2997 37.8875 

17 9.3275 18.0371 27.6322 31.1883 37.8137 

(c) h/R2=0.3     

7 8.6985 16.0522 23.7183 27.0007 31.8281 

9 8.6739 15.9754 23.6418 27.1761 31.6365 

11 8.5511 15.7110 23.1393 26.2463 30.8234 

13 8.4871 15.5522 22.8576 25.6635 30.4271 

15 8.4673 15.5135 22.7934 25.5069 30.36 

17 8.4557 15.4683 22.7798 25.4341 30.3115 

(d )h/R2=0.4     

7 7.7703 13.6761 19.6995 22.1995 26.0189 

9 7.7439 13.6095 19.6308 22.3029 25.8622 

11 7.6528 13.4285 19.2916 21.6759 25.0356 

13 7.6040 13.3172 19.0994 21.2753 25.0356 

15 7.5883 13.2889 19.0545 21.1650 24.9871 

17 7.5791 13.2566 19.0442 21.1132 24.9517 

(e) h/R2=0.5     

7 6.9352 11.7888 16.7370 18.7443 21.9125 

9 6.9094 11.7318 16.6768 18.3830 21.7812 

11 6.8397 11.5998 16.4258 18.3494 21.3643 

13 6.8016 11.5169 16.2832 18.0496 21.1580 

15 6.7887 11.4950 16.2492 17.9655 21.1196 

17 6.7812 11.4705 16.2406 17.9372 21.0914 
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Table 3. Convergence behavior of the first five frequency parameter 
2

2 / h DRω ρΩ = for isotropic circular plate with simply 

supported boundary condition. 

N Mode number (n, s)  

  1(0,0) 2(1,0) 3(2,0) 4(0,1) 5(3,0) 

(a) h/R2=0.1     

7 4.9780 14.0886 25.9652 31.1872 40.6181 

9 5.0141 14.1190 26.0418 31.8331 40.3566 

11 4.9346 13.8138 25.1410 30.0928 38.6387 

13 4.8952 13.6254 24.7280 29.1561 37.9233 

15 4.8794 13.5871 24.6232 28.9016 37.7744 

17 4.8758 13.5502 24.6017 28.8128 37.6903 

(b) h/R2=0.2     

7 4.8456 13.1048 23.0095 27.1966 34.2712 

9 4.8419 13.0538 22.9288 27.4563 33.9390 

11 4.7968 12.8488 22.3488 26.3701 32.8608 

13 4.7730 12.7277 22.0613 25.7400 32.3697 

15 4.7642 12.6999 21.9910 25.5725 32.2699 

17 4.7606 12.6699 21.9742 25.5015 32.2031 

(c) h/R2=0.3     

7 4.6730 11.9584 20.0081 23.3332 28.6238 

9 4.6618 11.8998 19.9151 23.4829 28.3460 

11 4.6257 11.7400 19.4929 22.7166 27.5939 

13 4.6061 11.6458 19.2783 22.2578 27.2437 

15 4.5991 11.6232 19.2259 22.1347 27.1717 

17 4.5957 11.5982 19.2128 22.0797 27.1217 

(d) h/R2=0.4     

7 4.4682 10.8215 17.3870 20.0849 24.1838 

9 4.4550 10.7668 17.3148 20.1833 23.9580 

11 4.4240 10.6387 16.9951 19.6131 23.4031 

13 4.4068 10.5626 16.8302 19.2643 23.1421 

15 4.4006 10.5449 16.7894 19.1691 23.0873 

17 4.3975 10.5229 16.7787 19.1259 23.0485 

(e) h/R2=0.5     

7 4.2481 9.7844 15.2516 17.4708 20.7694 

9 4.2346 9.7356 15.1757 17.54 20.5818 

11 4.2072 9.6308 14.9252 17.0965 20.1516 

13 4.1918 9.5681 14.7947 16.8207 19.9484 

15 4.1863 9.5345 14.7619 16.744 19.9047 

17 4.1834 9.5345 14.7528 16.709 19.8732 

 

 

 

Table 4. Convergence behavior of the first five frequency parameter 
2

2 / h DRω ρΩ = for isotropic circular plate with free 

boundary condition 

N Mode number (n, s)  

  1(2,0) 2(0,0) 3(3,0) 4(1,0) 5(4,,0) 

(a) h/R2=0.1     

7 5.3340 8.9708 12.3127 20.2938 21.6057 

9 5.3287 8.9616 12.2800 20.2753 21.4854 

11 5.3043 8.9216 12.1943 20.0464 21.2480 

13 5.2816 8.8750 12.1476 19.9561 21.1588 

15 5.2808 8.8593 12.1191 19.8716 21.0441 

17 5.2505 8.8220 12.0455 19.7307 20.8762 
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Table 4 (cont’d). Convergence behavior of the first five frequency parameter 
2

2 / h DRω ρΩ = for isotropic circular plate with 

free boundary condition 

N Mode number (n, s)  

  1(2,0) 2(0,0) 3(3,0) 4(1,0) 5(4,,0) 

(b) h/R2=0.2     

7 5.1450 8.5817 11.5491 18.5019 19.5704 

9 5.1406 8.5756 11.5380 18.5006 19.4733 

11 5.1221 8.5363 11.4515 18.3073 19.2975 

13 5.1128 8.5183 11.4210 18.2823 19.2284 

15 5.0995 8.4908 11.3541 18.1420 19.0353 

17 5.0851 8.4683 11.3080 18.0471 18.9218 

(c) h/R2=0.3     

7 4.9285 8.1022 10.6575 16.5271 17.3937 

9 4.9250 8.0972 10.6293 16.5270 17.3172 

11 4.8947 8.0380 10.5143 16.2691 17.0355 

13 4.8888 8.0262 10.4915 16.2565 16.9841 

15 4.8773 8.0030 10.4411 16.1549 16.8300 

17 4.8641 7.9802 10.3929 16.0595 16.7340 

(d) h/R2=0.4     

7 4.6658 7.5353 9.6766 14.5250 15.2375 

9 4.6623 7.5404 9.5458 14.5258 15.1787 

11 4.6402 7.4959 9.5760 14.3488 14.9984 

13 4.6357 7.4866 9.5581 14.3406 14.9597 

15 4.6261 7.4679 9.5210 14.2675 14.8657 

17 4.6156 7.4490 9.4833 14.1950 14.7787 

(e) h/R2=0.5     

7 4.4078 7.0170 8.8254 12.8306 13.5307 

9 4.3946 6.9974 8.7678 12.7707 13.4038 

11 4.3823 6.9698 8.7312 12.6750 13.3186 

13 4.3736 6.9542 8.6976 12.6378 13.2480 

15 4.3657 6.9389 8.6696 12.5840 13.1788 

17 4.3560 6.9213 8.6351 12.5214 13.1018 

 

 

Table 5. Comparison of the first five frequency parameter 
2

2 / h DRω ρΩ = for isotropic circular plate with different boundary 

condition 

h/R2 Mode number (n, s)  

  1 (0,0) 2 (1,0) 3 (2,0) 4 (0,1) 5 (3,0) 

(a) Clamped circular plates    
0.1 10.0424 20.5753 33.0433 37.9726 47.3433 

[Mindlin
a
] 9.94 20.23 32.41 36.48 - 

[3-D Ritz
b
] 9.9909 20.297 32.43 36.744 46.14 

[Reddy’s TPT
c
] 9.94614 20.1993 32.2634 36.5489 45.8905 

0.2 9.3421 18.1025 27.652 31.2997 37.8875 

[Mindlin
a
] 9.24 17.83 27.21 30.21 - 

[3-D Ritz
b
] 9.3225 17.963 27.366 30.649 37.338 

[Reddy’s TPT
c
] 9.26503 17.855 27.2148 30.4749 37.1513 

0.3 8.4673 15.5135 22.7934 25.5069 30.3600 

[Mindlin
a
] 8.36 15.26 22.38 24.64 - 

[3-D Ritz
b
] 8.4676 15.453 22.667 25.15 30.093 

[Reddy’s TPT
c
] 8.4113 15.385  25.1011 30.0729 

      
a
 Irie et al. (1982) 

b 
Liew and Yang (1999) 

c
 Hosseini-Hashemi et al. (2010) 
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Table 5 (cont’d). Comparison of the first five frequency parameter 
2

2 / h DRω ρΩ = for isotropic circular plate with different 

boundary condition 

h/R2 Mode number (n, s)  

  1 (0,0) 2 (1,0) 3 (2,0) 4 (0,1) 5 (3,0) 

0.4 7.5883 13.2889 19.0545 21.1650 24.9871 

[Mindlin
a
] 7.47 13.04 18.64 20.42 - 

[3-D Ritz
b
] 7.6002 13.27 19.001 20.951 24.84 

0.5 6.7887 11.4950 16.2492 17.9655 21.1196 

[3-D Ritz
b
] 6.8068 11.497 16.229 17.825 21.029 

      

(b) Simply supported circular plates   

0.1 4.8794 13.5871 24.6232 28.9016 37.7744 

[Mindlin
a
] 4.89 13.52 24.41 28.24 - 

[3-D Ritz
b
] 4.8975 13.58 24.555 28.31 37.472 

[Reddy’s TPT
c
] 4.89421 13.5142 24.3263 28.2547 36.9926 

0.2 4.7642 12.6999 21.9910 25.5725 32.2699 

[Mindlin
a
] 4.78 12.67 21.92 24.99  

[3-D Ritz
b
] 4.7876 12.764 22.13 25.188 32.389 

[Reddy’s TPT
c
] 4.77871 12.6324 21.7279 25.0414 31.6336 

0.3 4.5991 11.6232 19.2259 22.1347 27.1717 

[Mindlin
a
] 4.6 11.6 19.18 21.59 - 

[3-D Ritz
b
] 4.6234 11.723 19.453 21.879 - 

[Reddy’s TPT
c
] 4.60704 11.6491 18.2838 21.6757 27.1569 

0.4 4.60704 10.5449 16.7894 19.1691 23.0873 

[Mindlin
a
] 4.4006 10.5449 16.7894 19.1691 23.0873 

[3-D Ritz
b
] 4.40 10.51 16.74 18.66 - 

0.5 4.6253 10.6620 17.0450 18.9940 - 

[3-D Ritz
b
] 4.1863 9.5345 14.7619 16.744 19.9047 

      

(c) Free circular plates    

0.1 5.2808 8.8593 12.1191 19.8716 21.0441 

[Mindlin
a
] 5.28 8.87 - 19.71 - 

[3-D Ritz
b
] 5.2795 8.872 12.074 19.738 20.831 

[Reddy’s TPT
c
] 5.27842 8.8688 12.0675 19.7172 - 

0.2 5.0995 8.4908 11.3541 18.1420 19.0353 

[Mindlin
a
] 5.11 8.51 - 17.98 - 

[3-D Ritz
b
] 5.1185 8.5194 11.337 18.056 18.882 

[Reddy’s TPT
c
] 5.11607 8.50842 11.3233 17.9983  

0.3 4.8773 8.0030 10.4411 16.1549 16.8300 

[Mindlin
a
] 4.89 8.01 - 15.98 - 

[3-D Ritz
b
] 4.9005 8.0344 10.439 16.102 16.75 

[Reddy’s TPT
c
] 4.89609 8.01507 10.4176 16.0153 - 

0.4 4.6261 7.4679 9.5210 14.2675 14.8657 

[Mindlin
a
] 4.64 7.46 - 14.09 - 

[3-D Ritz
b
] 4.651 7.5008 9.5294 14.241 14.806 

0.5 4.3657 6.9389 8.6696 12.5840 13.1788 

[3-D Ritz
b
] 4.3913 6.9727 8.6854 12.578 13.145 

a
 Irie et al. (1982) 

b 
Liew and Yang (1999) 

c
 Hosseini-Hashemi et al. (2010) 

 

The comparison studies are also carried out here in Table 5, for circular plate with different boundary conditions, in order to 

examine the discrepancies between the present finite element solution and Mindlin plate solution (Irie et al., 1982), 3-D Ritz 
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solution (Liew and Yang, 1999) and Reddy’s third-order plate theory solution (Hosseini-Hashemi et al., 2010). The comparisons 

show good agreement with most of differences being less than 2%. 

On the basis of above verification of the current approach, results of convergence behavior of the first five frequency parameters 

2

2= / D OR hω ρΩ where ( )3

1 12 21
D =E h /12 -ν ν1 ,O

 for glass/epoxy laminated circular plates with thickness-radius ratios 

varying from 0.1 to 0.5 in step of 0.5 under different boundary condition are presented in Table 6-8. It can be seen that N=15, is 

sufficient to obtain satisfactory convergence for first five frequency parameters of glass/epoxy laminated circular plates. It is seen 

that the first axisymmetric flexural mode (0, 0), is found to be lowest fundamental mode except when the boundaries of the 

circular plates are free, for which it is found corresponding to mode type (2, 0). 

Table 6. Convergence of the first five frequency parameters 
2

2 / DhR oω ρΩ = for glass/epoxy laminated circular plate with 

clamped boundary condition (θ=30⁰) 

N Mode number (n, s) 

 1(0,0) 2(1,0) 3(2,0) 4(0,1) 5(3,0) 

(a) h/R2=0.1     

7 8.3874 16.3859 26.0089 31.6059 37.0811 

9 8.2632 16.0596 25.5660 31.6003 36.3772 

11 8.1931 15.8208 25.1543 30.3425 34.9085 

13 8.2300 15.7119 24.5106 29.1863 34.0940 

15 8.1020 15.9851 24.2491 28.3471 33.9547 

17 8.0980 15.7762 24.2969 28.1901 33.9401 

(b) h/R2=0.2     

7 7.4086 13.4218 19.9487 23.3156 26.3882 

9 7.2497 13.0520 19.5856 23.3176 25.7000 

11 7.2543 13.0372 19.3658 22.6315 25.4753 

13 7.3078 13.03199 19.1947 22.2186 25.1737 

15 7.1669 13.1066 18.9193 21.6903 25.2061 

17 7.1586 13.0356 18.9016 21.5810 25.0928 

(c) h/R2=0.3     

7 6.3889 10.9119 15.5775 17.808 19.8686 

9 6.2320 10.5662 15.3035 17.8741 19.7728 

11 6.2713 10.6475 15.1564 17.3843 19.3774 

13 6.3247 10.6737 15.1200 17.2210 19.2303 

15 6.1890 10.6305 14.9014 16.8999 19.3194 

17 6.1706 10.6149 14.8636 16.7987 19.1709 

(d) h/R2=0.4     

7 5.4987 9.0334 12.604 14.2456 15.793 

9 5.3552 8.7255 12.3986 14.3448 15.7495 

11 5.4074 8.8372 12.2893 13.946 15.4773 

13 5.4564 8.8717 12.2812 13.8732 15.3801 

15 5.3342 8.7836 12.1203 13.6708 15.4904 

17 5.3084 8.7838 12.0818 13.5726 15.3416 

(e) h/R2=0.5     

7 4.7716 7.6485 10.5269 11.8264 13.0627 

9 4.6436 7.3764 10.3698 11.9373 13.0384 

11 4.6981 7.4922 10.2816 11.5932 12.8352 

13 4.7421 7.5277 10.2824 11.5576 12.7599 

15 4.6340 7.4270 10.1593 11.4264 12.9467 

17 4.6050 7.4361 10.1237 11.3309 12.7340 
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Table 7. Convergence of the first five frequency parameters 
2

2 / DhR oω ρΩ = for glass/epoxy laminated circular plate with 

simply supported boundary condition (β=30⁰) 

N Mode number (n, s) 

 1(0,0) 2(1,0) 3(2,0) 4(0,1) 5(3,0) 

(a) h/R2=0.1     

7 3.5034 10.4407 18.7796 24.2754 28.9114 

9 3.5393 10.1735 18.5739 24.0317 28.4791 

11 3.4383 10.0711 18.3614 23.4164 27.3723 

13 3.3718 9.9909 17.9813 22.9590 26.8351 

15 3.4045 9.9820 17.4809 21.8198 26.5979 

17 3.4005 9.8816 17.4502 21.6320 26.4817 

(b) h/R2=0.2     

7 3.3513 9.3009 15.6748 19.6000 22.3177 

9 3.3618 9.0275 15.4348 19.4544 22.0991 

11 3.2802 8.9684 15.2882 19.0893 21.5911 

13 3.2426 8.9554 15.1415 18.8529 21.2247 

15 3.2616 8.9813 14.7796 18.1214 21.2389 

17 3.2673 8.8973 14.7225 17.9959 21.0709 

(c) h/R2=0.3     

7 3.1866 8.1463 12.9774 15.7974 17.5112 

9 3.1831 7.8931 12.7677 15.7920 17.4032 

11 3.1188 7.8659 12.6444 15.4911 17.1239 

13 3.0993 7.8798 12.5900 15.3575 16.9039 

15 3.1057 7.9357 12.3547 14.9203 17.0321 

17 3.1145 7.8662 12.2868 14.8204 16.8499 

(d) h/R2=0.4     

7 3.0081 7.1210 10.8856 12.9907 14.2142 

9 2.9944 6.8871 10.7105 13.0686 14.1535 

11 2.9469 6.8832 10.6032 12.7802 13.9926 

13 2.9399 6.9064 10.5749 12.6992 13.852 

15 2.937 6.9611 10.4322 12.4442 14.0017 

17 2.9456 6.9219 10.3624 12.3672 13.8266 

(e) h/R2=0.5     

7 2.8262 6.2571 9.2906 10.8330 11.8976 

9 2.8050 6.0404 9.1440 10.9657 11.7916 

11 2.7721 6.0522 9.0509 10.6362 11.7220 

13 2.7741 6.0779 9.0339 10.5755 11.6313 

15 2.7646 6.1150 8.9441 10.5011 11.7325 

17 2.7716 6.1084 8.8769 10.4702 11.6151 

 

Table 8. Convergence of the first five frequency parameter 
2

2 / DhR oω ρΩ =  for glass/epoxy laminated circular plate with free 

boundary condition (β=30⁰) 

N Mode number (n, s) 

 1(2,0) 2(0,0) 3(3,0) 4(1,0) 5(4,,0) 

(a) h/R2=0.1     

7 3.7118 6.3054 8.3146 14.1627 15.2148 

9 3.7708 6.3018 8.3498 14.1136 15.1682 

11 3.6918 6.2431 8.2231 13.8570 14.6622 

13 3.8405 6.4455 8.5263 14.1537 14.5310 

15 3.8022 6.3160 8.5008 13.8973 14.3509 

17 3.7130 6.2030 8.2279 13.7343 14.2021 
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Table 8 (cont’). Convergence of the first five frequency parameter 
2

2 / DhR oω ρΩ =  for glass/epoxy laminated circular plate 

with free boundary condition (β=30⁰) 

N Mode number (n, s) 

 1(2,0) 2(0,0) 3(3,0) 4(1,0) 5(4,,0) 

(b) h/R2=0.2     

7 3.5401 5.9275 7.6237 12.399 13.2206 

9 3.5964 5.9130 7.6529 12.3433 13.2208 

11 3.5290 5.8743 7.5478 12.1656 12.7929 

13 3.6725 6.0055 7.8013 12.4383 12.7138 

15 3.6219 5.8814 7.7490 12.0854 12.5366 

17 3.5508 5.8334 7.5242 12.1015 12.4565 

(c) h/R2=0.3     

7 3.3556 5.4576 6.8876 10.7073 11.2215 

9 3.4104 5.4394 6.9090 10.6440 11.2743 

11 3.3337 5.3931 6.7555 10.3785 10.7682 

13 3.4643 5.4529 6.956 10.6026 10.8197 

15 3.4040 5.4097 6.9121 10.4271 10.7760 

17 3.3517 5.3347 6.7305 10.3446 10.7459 

(d) h/R2=0.4     

7 3.1239 5.0220 6.0971 9.1122 9.4061 

9 3.1699 5.0015 6.1170 9.0530 9.4942 

11 3.1140 4.9831 6.0078 8.8975 9.1032 

13 3.2316 4.9889 6.1693 9.0876 9.2664 

15 3.1753 4.9471 6.1417 8.9397 9.2477 

17 3.1310 4.9117 5.9955 8.897 9.1244 

(e) h/R2=0.5     

7 2.9136 4.6334 5.4695 7.9306 8.0256 

9 2.9419 4.5941 5.4415 7.9438 7.8065 

11 2.9052 4.6010 5.3842 7.8339 7.7775 

13 3.0032 4.5626 5.4994 7.8039 7.8531 

15 2.9521 4.5218 5.4795 7.7262 7.9618 

17 2.9131 4.5104 5.3539 7.6938 7.7679 

 

Table 9. Effect of varying fiber angle β and thickness-radius ratios h/R2, on frequency parameter 
2

2 / DhR oω ρΩ = for 

glass/epoxy laminated circular plate with clamped boundary condition. 

h/R2 β Mode number (n, s) 

  1 (0,0) 2 (1,0) 3 (2,0) 4 (0,1) 5 (3,0) 

0.1 0⁰ 8.5546 16.6147 24.7524 29.4499 34.1353 

 15⁰ 8.5299 16.5515 24.7900 29.3319 34.1970 

 30⁰ 8.1020 15.9852 24.2492 28.3472 33.9548 

 45⁰ 7.4637 15.02533 23.4767 26.9270 33.388 

 60⁰ 6.9082 14.1306 22.7472 25.5591 32.5613 

 75⁰ 6.6518 13.5807 22.1579 24.6051 31.6929 

 90⁰ 6.6224 13.2927 21.7162 24.1544 31.1096 

0.2 0⁰ 7.5677 13.5866 19.2229 22.5626 25.3377 

 15⁰ 7.5332 13.5207 19.2428 22.4558 25.4063 

 30⁰ 7.1669 13.1066 18.9193 21.6903 25.2061 

 45⁰ 6.6354 12.4673 18.3603 20.5426 24.6637 

 60⁰ 6.1516 11.7058 17.6803 19.3599 23.9775 

 75⁰ 5.8736 11.1019 17.0165 18.4299 23.3043 

 90⁰ 5.7931 10.7894 16.5504 17.9479 22.8703 
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Table 9 (cont’d). Effect of varying fiber angle β and thickness-radius ratios h/R2, on frequency parameter 
2

2 / DhR oω ρΩ = for 

glass/epoxy laminated circular plate with clamped boundary condition. 

h/R2 β Mode number (n, s) 

  1 (0,0) 2 (1,0) 3 (2,0) 4 (0,1) 5 (3,0) 

0.3 0⁰ 6.5123 10.9856 15.0768 17.5489 19.4125 

 15⁰ 6.4805 10.9345 15.1021 17.4743 19.4798 

 30⁰ 6.1890 10.6305 14.9014 16.8999 19.3194 

 45⁰ 5.7616 10.1624 14.4885 15.9917 18.8902 

 60⁰ 5.3437 9.5605 13.9163 15.0161 18.3667 

 75⁰ 5.0536 8.9877 13.3223 14.2201 17.8882 

 90⁰ 4.9334 8.6585 12.9252 13.7989 17.6097 

0.4 0⁰ 5.5909 9.0584 12.2336 14.1727 15.5552 

 15⁰ 5.5647 9.0186 12.2614 14.1189 15.6194 

 30⁰ 5.3342 8.7836 12.1203 13.6708 15.4904 

 45⁰ 4.9882 8.4219 11.7995 12.9381 15.1474 

 60⁰ 4.6260 7.9337 11.3289 12.1335 14.7456 

 75⁰ 4.3411 7.4262 10.8364 11.4702 14.4052 

 90⁰ 4.2024 7.1142 10.5202 11.1163 14.2314 

0.5 0⁰ 4.8415 7.6519 10.2403 11.8281 13.0692 

 15⁰ 4.8201 7.6184 10.2673 11.7882 12.9801 

 30⁰ 4.634 7.427 10.1513 11.4264 12.8757 

 45⁰ 4.3477 7.1339 9.8978 10.8194 12.5935 

 60⁰ 4.0316 6.7284 9.5076 10.1438 12.2749 

 75⁰ 3.7623 6.287 9.1029 9.5838 12.0243 

 90⁰ 3.6149 6.0588 8.8514 9.284 11.9136 

 

Table 9 shows the effect of varying fiber angle β and thickness-radius ratios h/R2 on frequency 

parameters 2

2= / D OR hω ρΩ , for glass/epoxy laminated circular plate with clamped boundary condition. It is observed that 

increasing the fiber orientation angle from 0° to 90° decreases the frequency parameters. This effect is larger as the thickness-

radius ratios increases. The frequency parameters is observed to be maximum at fiber angle β = 0°.The differences of fundamental 

frequencies between fiber angle 0° and 90° are approximately 22.58%,23.44%,24.24%,24.83%,and 27.65% for h/R2 

=0.1,0.2,0.3,0.4 and 0.5 respectively. As seen, as the thickness-radius ratios increases, the differences of fundamental frequencies 

increased. 

Table 10. Effect of varying fiber angle β and thickness-radius ratios h/R2, on frequency parameter 
2

2 / DhR oω ρΩ = for 

glass/epoxy laminated circular plate with simply supported boundary condition. 

h/R2 β Mode number (n, s)  

    1 (0,0) 2 (1,0) 3 (2,0) 4 (0,1) 5 (3,0) 

0.1 0⁰ 3.3775 10.0885 17.4190 22.4934 26.2291 

 15⁰ 3.3778 10.0459 17.4016 22.4156 26.2910 

 30⁰ 3.4045 9.9820 17.481 21.8198 26.5979 

 45⁰ 3.4758 9.9278 17.6586 20.9956 26.9934 

 60⁰ 3.5998 9.8639 17.7603 20.1939 27.1412 

 75⁰ 3.7438 9.705 17.5563 19.5900 26.8920 

 90⁰ 3.8368 9.4683 17.1876 19.2662 26.5024 
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Table 10 (cont’d). Effect of varying fiber angle β and thickness-radius ratios h/R2, on frequency parameter 
2

2 / DhR oω ρΩ = for 

glass/epoxy laminated circular plate with simply supported boundary condition. 

h/R2 β Mode number (n, s)  

    1 (0,0) 2 (1,0) 3 (2,0) 4 (0,1) 5 (3,0) 

0.2 0⁰ 3.2695 9.0967 14.7802 18.8029 21.0527 

 15⁰ 3.2591 9.0653 14.7761 18.6957 21.1152 

 30⁰ 3.2616 8.9813 14.7796 18.1214 21.2389 

 45⁰ 3.3075 8.8860 14.8105 17.3512 21.3199 

 60⁰ 3.4045 8.7811 14.8079 16.6381 21.3604 

 75⁰ 3.5264 8.6327 14.6720 16.1170 21.3039 

 90⁰ 3.6140 8.4573 14.4608 15.8404 21.1842 

0.3 0⁰ 3.1339 8.0235 12.3738 15.4776 16.9228 

 15⁰ 3.1195 8.0141 12.3794 15.39 16.9834 

 30⁰ 3.1057 7.9357 12.3547 14.9203 17.0321 

 45⁰ 3.1253 7.8172 12.3188 14.2497 17.0024 

 60⁰ 3.1866 7.6798 12.257 13.6087 16.9916 

 75⁰ 3.2719 7.5225 12.1342 13.1368 16.9834 

 90⁰ 3.3392 7.3875 11.9952 12.8931 16.9619 

0.4 0⁰ 2.9792 7.0389 10.4565 12.8915 13.9258 

 15⁰ 2.9636 7.0355 10.4651 12.8269 14.1596 

 30⁰ 2.9370 6.9611 10.4322 12.4442 14.0017 

 45⁰ 2.9323 6.8486 10.3735 11.8704 13.9461 

 60⁰ 2.9597 6.7062 10.2885 11.3056 13.9137 

 75⁰ 3.0090 6.5418 10.1688 10.8876 13.9080 

 90⁰ 3.0536 6.4202 10.0600 10.6771 13.9157 

0.5 0⁰ 2.8171 6.1966 8.9676 10.9020 11.8000 

 15⁰ 2.8015 6.1885 8.9760 10.8693 11.8186 

 30⁰ 2.7646 6.1150 8.9441 10.5011 11.7941 

 45⁰ 2.7393 6.0132 8.8825 10.0217 11.7341 

 60⁰ 2.7382 5.8898 8.7927 9.5553 11.6953 

 75⁰ 2.7577 5.7244 8.6749 9.2076 11.6832 

  90⁰ 2.7827 5.6046 8.5798 9.0324 11.7000 

 

Table 10 shows the effect of varying fiber angle β and thickness-radius ratios h/R2 on frequency 

parameters
2

2= / D OR hω ρΩ , for glass/epoxy laminated circular plate with simply supported boundary condition. The 

fundamental frequency parameters are observed to be maximum at fiber angle β = 0°. It is also observed that with an increase in 

fiber angle from 0° to 90°, it increases monotonically for thickness to radius ratio h/R2=0.1 and it decrease for the fiber angle 0° to 

15°, 0° to 30°, 0° to 45° and 0° to 60°, for thickness-radius ratios h/R2=0.2,0.3,0.4 and 0.5 respectively and increases it afterward. 

The differences of fundamental frequencies between fiber angle 0° and 90° are approximately 13.59%, 10.53%, 6.55%, 2.49%, 

and 1.22% for h/R2=0.1,0.2,0.3,0.4 and 0.5 respectively. As seen, as the thickness-radius ratios increases, the differences of 

fundamental frequencies decreases. The second (1, 0) and fourth (0, 1) frequency parameters decreases with an increase in fiber 

orientation angle from 0° to 90°. For thickness to radius ratios 0.1 and 0.2, third (2, 0) frequency parameters first decreases and 

then increases a little bit and then again deceases as the fiber angle increases. The fifth (3, 0) frequency parameters first increases 

and then, again decreases as the fiber angle increased. 
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Table 11. Effect of varying fiber angle β and thickness-radius ratios h/R2, on frequency parameter 
2

2 / DhR oω ρΩ = for 

glass/epoxy laminated circular plate with  free boundary condition. 

h/R2 β Mode number (n, s)  

    1(2,0) 2(0,0) 3(3,0) 4(4,0) 5(1,0) 

0.1 0⁰ 3.7547 6.1852 8.3753 13.9372 14.6177 

 15⁰ 3.7616 6.2356 8.3823 13.8973 14.4368 

 30⁰ 3.8022 6.3160 8.5008 14.3509 13.9222 

 45⁰ 3.8834 6.4220 8.7275 14.7152 13.7542 

 60⁰ 4.0074 6.5759 9.1161 15.5451 13.7643 

 75⁰ 4.1613 6.7662 9.6596 16.7786 14.0125 

 90⁰ 4.2842 6.8771 10.1566 17.9789 14.3517 

0.2 0⁰ 3.5743 5.8201 7.6320 12.1120 12.7627 

 15⁰ 3.5816 5.8315 7.6404 12.0854 12.6293 

 30⁰ 3.6219 5.8814 7.7490 12.5366 12.1984 

 45⁰ 3.6964 5.9788 7.9504 12.7820 12.1701 

 60⁰ 3.8063 6.1079 8.2836 13.4542 12.1612 

 75⁰ 3.9501 6.2545 8.7677 14.4887 12.2446 

 90⁰ 4.0797 6.3611 9.2436 15.5233 12.4988 

0.3 0⁰ 3.3600 5.4015 6.8178 10.3369 10.8976 

 15⁰ 3.3654 5.3881 6.8191 10.3108 10.8301 

 30⁰ 3.4040 5.4097 6.9121 10.7760 10.4271 

 45⁰ 3.4734 5.4859 7.09900 10.9239 10.5106 

 60⁰ 3.5737 5.5857 7.3970 11.4726 10.5146 

 75⁰ 3.7060 5.6900 7.8155 12.3138 10.5782 

 90⁰ 3.8309 5.7859 8.2271 13.1354 10.6585 

0.4 0⁰ 3.1354 4.978 6.0656 8.8684 9.2407 

 15⁰ 3.1391 4.949 6.0603 8.8399 9.2355 

 30⁰ 3.1753 4.9471 6.1417 9.2477 8.9397 

 45⁰ 3.241 4.9992 6.3139 9.3812 9.0447 

 60⁰ 3.3348 5.0734 6.5843 9.8441 9.0638 

 75⁰ 3.4565 5.1504 6.9473 10.5376 9.0788 

 90⁰ 3.5703 5.2372 7.2928 11.1912 9.0887 

0.5 0⁰ 2.9165 4.5782 5.419 7.6801 7.963 

 15⁰ 2.9187 4.541 5.4089 7.6539 7.896 

 30⁰ 2.9521 4.5218 5.4795 7.9618 7.7262 

 45⁰ 3.0135 4.5514 5.6351 8.1441 7.8167 

 60⁰ 3.101 4.605 5.8805 8.553 7.8491 

 75⁰ 3.2129 4.6654 6.1995 9.1381 7.839 

  90⁰ 3.3153 4.7458 6.4917 9.6727 7.8082 

  

Table 11 shows the effect of varying fiber angle β and thickness-radius ratios h/R2 on frequency 

parameters
2

2= / D OR hω ρΩ , for glass/epoxy laminated circular plate with free boundary condition. It is observed 

increasing the fiber orientation angle from 0° to 90° increases the frequency parameters. The fundamental frequency parameters 

(2, 0) are observed to be maximum at fiber angle β = 90°. The differences of fundamental frequencies between fiber angle 0° and 

90° are approximately 14.10%, 14.13%, 4.01%, 13.87%, and 13.67% for h/R2  =0.1, 0.2, 0.3, 0.4 and 0.5 respectively. As seen, 

as the thickness-radius ratios increases, the differences of fundamental frequencies decreases. The second (0, 0) frequency 

parameters increase as the fiber orientation angle increases from 0° to 90°, for thickness-radius ratios h/R2=0.1 and 0.2 whereas, 

for h/R2=0.3, 0.4 and 0.5,  it first decreased and then increases as the fiber orientation angle increases from 0° to 90.  
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It is noticed that the behavior of third (3, 0) frequency parameters remains the same as that of the fundamental frequency 

parameters, i.e. the frequencies parameters increases as the fiber orientation angle increases from 0° to 90°. The fourth (4,0) and 

fifth (1,0) frequency parameters first decreased and then again, increases as the fiber orientation angle increases from 0° to 90°. 

Also, the first five natural modes, for the glass/epoxy laminated circular plates with clamp, simply supported and free boundary 

condition are shown in figure 4-6. 

 

 

 

 

Table 12.The first five natural modes, for the glass/epoxy laminated circular plates with clamp boundary condition (β=30⁰). 

h/R2 
Mode number (n, s) 

1 (0,0)   2 (1,0)   3 (2,0)   4 (0,1)   5 (3,0) 

0.1 

 

 
 

  

 
 

 

 

 
 

  

 
 

  

 
 

    

    

    

    

8.102  8.102  24.2492  28.3472  33.9548 

0.2 

 

 
 

  

 
 

  

 
 

  

 
 

  

 
 

    

    

    

    

7.1669  13.1066  18.9193  21.6903  25.2061 

 

0.3 
 

 

  

 
 

  

 
 

  

 
 

  

 
 

    

    

    

    

6.189  10.6305  14.9014  16.8999  19.3194 

0.4 

 

 
 

  

 
 

  

 
 

  

 
 

  

 
 

    

    

    

    

5.3342  8.7836  12.1203  13.6708  15.4904 

0.5 

 

 
 

  

 
 

  

 
 

  

 
 

  

 
 

    

    

    

    

4.634   7.427   10.1513   11.4264   12.8757 



Khare and Mittal / International Journal of Engineering, Science and Technology, Vol. 8, No. 2, 2016, pp. 11-29 

 

26 

 

 

 

 

 

 

 

 

 

 

 

 

Table 13.The first five natural modes, for the glass/epoxy laminated circular plates with simply supported boundary condition 

(β=30⁰). 

h/R2 
Mode number (n, s)  

1 (0,0)     2 (1,0)     3 (2,0)     4 (0,1)     5 (3,0)   

0.1 

         

    

    

    

    

3.4045  9.982  17.481  21.8198  26.5979 

0.2 

         

    

    

    

    

3.2616  8.9813  14.7796  18.1214  21.2389 

0.3 

         

    

    

    

    

3.1057  7.9357  12.3547  14.9203  17.0321 

0.4 

         

    

    

    

    

2.937  6.9611  10.4322  12.4442  14.0017 

0.5 

         

    

    

    

          

2.7646   6.115   8.9441   10.5011   11.7941 
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5. Conclusions 

   In this paper, a three-dimensional finite element analysis is employed for the free vibration of thick laminated composite circular 

plates with clamp, simply supported and free boundary condition. The effect of fiber orientation angle, thickness-radius ratios and 

boundary conditions on the convergence behavior was fully investigated. After comparing the present solution with the three-

dimensional Ritz solution, two-dimensional Mindlin plate solution and Reddy’s third-order plate theory solution in the literature, 

free vibration behavior of thick laminated composite circular plates with various thickness-radius ratios was investigated. Also, 

first five vibration modes for different boundary conditions are shown in pictorial forms. For clamped laminated composite 

circular plates, fundamental frequency parameters are observed to be maximum at fiber angle β= 0°. The fundamental frequency 

parameters for both simply supported and free laminated circular plate, however, is observed to be maximum at fiber angle β= 90°. 

These results should be a valuable alternative for validating new computational techniques in future, due to the accuracy, 

simplicity and versatility of the present analysis.  

 

Table 14. The first five natural modes, for the glass/epoxy laminated circular plates with free boundary condition (β=30⁰). 

h/R2 
Mode number (n, s)  

1 (2,0)   2 (0,0)   3 (3,0)   4  (1,1)   5 (4,0)  

0.1 

 

 
 

  

 
 

  

 
 

  

 
 

  

 
 

    

    

    

    

3.8022  6.316  8.5008  14.3509  13.9222 

0.2 

 

 
 

  

 
 

  

 
 

  

 
 

  

 
 

    

    

    

    

3.6219  5.8814  7.749  12.5366  12.1984 

0.3 

 

 

 

 

  

 
 

  

 
 

  

 
 

  

 
 

    

    

    

    

3.404  5.4097  6.9121  10.776  10.4271 

0.4 

 

 
 

  

 
 

  

 
 

  

 
 

  

 
 

    

    

    

    

3.1753  4.9471  6.1417  9.2477  8.9397 

0.5 

 

 
 

  

 
 

  

 
 

  

 
 

  

 
 

    

    

    

    

2.9521   4.5218   5.4795   7.9618   7.7262 
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