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This study discusses Hall and ion-slip effects in 3D heat transfer in micropo-

lar plasma. The solution of modeled hydrodynamic boundary value problems are

computed by Galerkin finite element method (GFEM). Simulations for velocity,

angular velocity and temperature are carried out. Momentum and thermal bound-

ary thickness are greatly affected by Hall and ion currents. Magnitude of angular

velocity has increasing behavior when micropolar parameter increased. In view

of the results obtained from the present investigation, it is recommended to use

micro-polar plasma like blood and plasma polymers if Joule heating dissipations

are required. Micro-rotation due to the solid structure in micropolar increases when

vortex viscosity is increased. © 2018 Author(s). All article content, except where

otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5050670

I. INTRODUCTION

Transfer of heat in many natural and industrial processes is an essential and important mech-

anism. Different mechanisms involve different modes for transport of heat. However, transport of

heat in the processes occurring in fluid flow regimes involves three modes of transport of heat

(conduction, convection, radiation). Several strategies are introduced by engineers for the enhance-

ment of heat transfer. These include extension of surfaces exposed to heating/cooling source as

in case of heat exchangers, use of fluids which are good conductors of heat and mixture of flu-

ids such that the transfer of heat in the mixture of nano-particles and pure fluid can be enhanced.

Besides, these conventional methods, investigators working in the design of thermal systems have

introduced the method for the enhancement of heat by the dispersion of nano-particles in fluids.

This dispersion of nano-particles causes an increase in the ability to transport of heat in the mix-

ture fluid (mixture of base fluid and nano-particles). Due to which thermal system using mixture

of nano-particles and base fluid works in an efficient manner. Due to this significance of the use of

nano-fluids in thermal systems, numerous studies both experimental and theoretical are conducted.

However, some latest studies are being described here. For instance, Besthapu et al.1 discussed

the impact of thermally stratified nano-fluid by incorporating dissipation effects over an exponen-

tially elongating surface. Ramzan et al.2 computed optimal solution for problem describing flow

of Maxwell nano-fluid by considering the buoyancy effects over a spongy stretching surface. Influ-

ence of heat absorption/generation on the flow of Oldroyd-B nano-fluid past over stretching surface

investigated analytically by Khan et al.3 The effect of induction of very small metal particles on the

transport of heat in water was studied by Rashid et al.4 Shermet et al.5 addresses the influence of
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Buongiorno’s model to natural convection of 3D flow of Newtonian nano-fluid by finite difference

procedure. Transmission of mass and heat in nano-fluid flow generated by sheet moving with time

dependent and space dependent velocities probed by Qasim et al.6 and they handled the arising equa-

tions by built in BVP solver in MAPLE. Comparative studies of two approaches namely OHAM

and FEM for the solution of mixed convection in nano-fluid past a surface moving with variable

velocity are analyzed by Seth et al.7 Das et al.8 examined the entropy analysis of time dependent

magneto-nano-fluid past a convectively moving surface and solve the arising model by shooting

scheme.

The mechanism of conducting fluid subject to applied magnetic field exhibits different to the

dynamics. The distortions of magnetic lines by fluid flow give raise a change in magnetic flux. Due

to the change in magnetic flux, the fluid experience a force called Lorentz force and such flows are

called magnetohydrodynamic flows. There are many engineering application, where magnetohydro-

dynamic flows are encountered. For example, refrigerator, nuclear reactors, MHD accelerators, etc.

Despite of complexity in mathematical modeling of MHD flows due to the additional magnetohy-

drodynamic equations, investigators are intensely paying attention to computation and simulations

of magnetohydrodynamic flows because of their application in many engineering and daily life. Here

we refer the readers to some latest published work. For example, Khan et al.9 applied the Runge-

Kutta integration procedure to study magnetohydrodynamic effects on transport of mass subject to

homogeneous-heterogeneous reactions in Carreau fluid. Hayat et al.10 investigated the endoscopy,

heterogeneous and homogeneous-reactions in MHD Re-Eyring fluid under the peristaltic mechanism

with radiative heat transmission. In another exploration, Hayat et al.11 examined the MHD effects in

couple stress fluid flow by considering the Soret and Dufour effects in peristalsis induced flow. Chen

et al.12 gave the Lie-group analysis for viscoelastic MHD flow using Riemann-Liouville fractional

derivative approach and computed the solution via Grunwald procedure. Turkyilmazoglu13 discussed

the analytic solution to MHD mixed convection fluid flow generated by a sheet moving in nonlinear

manner.

Plasma is an electrically conducting fluid and is composed of charged and ions particles. The

moving plasma subject to magnetic field experiences Hall and ion forces which are opposite to the

force due to the applied magnetic field. Mathematically speaking, generalized Ohm’s law together

with conservation laws of magnetohydrodynamic are used to model such MHD flows. Motsa et al.14

formulated mathematical models in term of boundary value problems for simultaneous effects of Hall

and ion-slip currents, chemical reaction during diffusion of mass in the flow regime of micro-polar

liquid and solved the governing problems numerically. Joule heating effects due to Hall and ion-slip

currents in liquid motion by peristaltic mechanism in a rotating channel is studied by Hayat et al.15

Hayat et al.16 considered Hall and slip currents in 3D flow of second grade fluid and computed the

analytic solutions for the obtained problems. Hayat et al.17 developed mathematical model in the

form of a set of boundary value problems describing peristaltic mechanism in the presence of various

types of chemical reactions. Analytical study is conducted for mixed convention heat transfer in three-

dimensional flow by T. Hayat et al.18 The double diffusion (mass and temperature diffusions) in the

transport of single phase specie during transport of heat in three dimensional motion of second grade

fluid is analyzed by Hayat et al.19 Hayat et al.20 considered the effects of Hall and ion-slip currents of

nano-fluid on peristaltic flow. The effects of Hall and ion-slip currents on three-dimensional thermal

changes in Maxwell fluid flow is investigated by Nawaz et al.21

Transport of heat in flows is greatly affected by the dissipation of heat phenomenon in electrically

conducting fluid subject to magnetic field. Thermal boundary layer thickness is increased due to Joule

heating and viscous dissipation. Therefore, it is a major concern of the thermal system designers, to

control dissipation of heat in order to make system efficient. Due to this reason, several studies on the

viscous dissipation of heat in MHD flows are available. Readers are referred to some most relevant

studies given in refs. 22–25. Turkyilmazoglu26 confirmed the existence of duality of the solutions

of boundary value problems characterizing heat transfer in micropolar regime. A comprehensive

note on the characteristics of nanofluid was published by Turkyilmazoglu27 in which the importance

of scaling of velocity by similarity variable is highlighted. Turkyilmazoglu28 derived exact analytic

solutions for problems describing mixed convection in MHD micropolar liquid over deformable plate.

Turkyilmazoglu29 investigated Brownian and thermophoresis effects on the transfer of heat and mass
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using Buongiorno’s model and noted a significant impact of Brownian and thermophoresis effect on

wall heat flux.

The electrically conducting fluids in the presence of thermal changes radiate electromagnetic

waves in the thermal radiation. The transfer of heat in thermally radiating fluids has different character-

istics as compare to the heat transfer in no radiating fluids. To model the heat transfer characteristics in

the flow of radiating fluids energy equation is modified using Stefan Boltzmann law. Some important

studies discussing thermal radiation using Stefan-Boltzmann law (to energy equation) are mentioned

in refs. 30–32.

In view of importance of the enhancement of transport of heat due to the dispersion of nano-

particles, study on the effects of Cu and Al-particles on transfer of heat in the flow of plasma on an

elastic sheet moving with power-law velocity is conducted. The modeled boundary value problems

are solved numerically using FEM which is a powerful technique and is more liberal as compare to

the finite difference method (FDM) and FVM schemes. Therefore, FEM techniques are being utilized

extensively by researchers in the field of solid mechanics, computational mechanics, electromagnetic

etc. For the implementation of GFEM to CFD problems, readers can be referred to Refs. 33–36 and

references therein.

The present work has novelty as no study dealing with the enhancement of heat transfer due to

the dispersion of nano-particles in non-Newtonian plasma in the presence of magnetic field while

considering Hall and ion slip currents is investigated yet. Present work is a novel addition in the

exiting literature. The simulations for MHD modeled boundary value problems are performed through

GFEM and observations are displayed both graphically and numerically. This manuscript is divided

into four sections. Section one related to the introductions. In section two related to the numerical tool

i.e. GFEM to solve the arising problem. Result and discussion is given in section three and conclusion

made in section four.

A. Colloidal suspension and their rheology

Micro-polar fluid is polar fluids with negligible molecules deformation. Examples of micro-polar

fluids are colloidal suspension, polymers in which solid structure are immersed, blood and biological

fluids. The rheology of micro-polar fluids is totally different to the rheology of other non-Newtonian

fluids. Due to solid structure, micropolar fluid exhibits two types of motions (i) micro-motion (micro-

rotation) (ii) macro-motion. To capture both macro and micro-motions, two types of constitutive

relationships have been introduced. Hence micro-polar rheology is characterized by the constitutive

equations.1–3

τij = (−p + λVk, k)δij + µ(Vi, j + Vj, i) + κ(Vj, i − εijkωk) (1)

Cij = αωk, kδij + βωi, j + γωj, i (2)

where p, λ, µ, κ, α, β, γ are the pressure and material parameters satisfy the following constraints

κ > 0, 3λ + κ + 2µ > 0, 2µ + κ > 0, 3α + 2γ > 0,−γ < β < γ, γ > 0. (3)

B. Balance laws for macro- and micro-motions

As there are two types of motions in the flow of micropolar fluids. Therefore, one additional

conservation law is needed for the modeling of flow of micropolar fluids. The balance laws37–39 with

constitutive in Eqs. (1)–(3) can be written as

∇ · V= 0, (4)

ρnf

dV

dt
= ρnf (J × B) − ∇p − (µnf + κ)∇ × (∇ × V) + κ(∇ × ω), (5)

ρnf j
dω

dt
= (α + β + γ)∇(∇ · ω) − γ∇ × (∇ × ω) + κ∇ × V − 2κω, (6)

(ρcp)nf

dT

dt
= knf [∇.(∇T ) + Q(T − T∞)] +

1

σnf

J · J, (7)
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where V is the velocity of the fluid, J is the current density, B is the magnetic field, ρ is the fluid

density, µ is the dynamic viscosity of the fluid, ω is the micro rotation of the fluid, j is the scalar

called the micro-inertia coefficient, cp is the specific heat, T is temperature of fluid, k is the thermal

conductivity, κ is the vortex viscosity coefficient, Q is the heat generation/absorption coefficient and

σ is the electrical conductivity.

C. Problem statement

We consider three-dimensional heat transfer in the laminar motion of incompressible micro-

polar plasma over a sheet moving with 2D velocity. The surface is elastic and exposed to constant

magnetic field. The temperature of sheet is variable and is function of space coordinates x and y. The

convectively heat surface is responsible for the transport of heat in flow regime.

D. Boundary layer equations for micro-polar fluids

Applying boundary layer assumptions, one gets

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (8)

ρnf (u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
)= (µnf + κ)

∂2u

∂2z
− κ

∂h2

∂z
+

σnf B2
0
u

(1 + βe βi)
2 + β2

e

[βev − (1 + βe βi)u], (9)

ρnf (u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
)= (µnf + κ)

∂2
v

∂2z
− κ

∂h1

∂z
−

σnf B2
0
u

(1 + βe βi)
2 + β2

e

[βeu − (1 + βe βi)v], (10)

ρnf j(u
∂h1

∂x
+ v

∂h1

∂y
+ w

∂h1

∂z
)= γ

∂2h1

∂2z
− κ(2h1 +

∂v

∂z
), (11)

ρnf j(u
∂h2

∂x
+ v

∂h2

∂y
+ w

∂h2

∂z
)= γ

∂2h2

∂2z
− κ(2h2 +

∂u

∂z
), (12)

(ρcp)
nf

(u ∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

)= knf ( ∂
2T

∂x2 + ∂2T
∂y2 + ∂2T

∂z2 ) + Q(T − T∞)

+
σnf B2

0

(1+βeβi)
2+β2

e

[u2 + v
2]





(13)

where [u, v, w] is the velocity vector, (h1, h2, 0) are micro-rotation components, j is the micro

inertia density, βe and βi are the Hall and the ion-slip parameter, B◦ is the magnitude of the

magnetic induction, respectively. Here, the spin gradient viscosity γ is considered to be constant

(Rees and Bossom,25 Rees and Pop26). T is the temperature of the fluid, K = κ/µnf is the mate-

rial parameter and j = νf /a are the length scale γ = (µ + κ/2)j = µ(1 + K/2)j. It is important to note

that Eqs. (8)–(13) reduce three-dimensional heat transfer in the flow of electrically non-conducting

Newtonian fluid with negligible heat generation/absorption when k = h1 = h2 = γ =B◦ =Q= 0 and

vnf = v. This case is discussed by Khan et al.40 heat transfer in three-dimensional flow induced by

sheet moving with nonlinear velocity. Khan et al.40 also discussed the case of linear stretching elastic

surface.

No slip assumption gives boundary conditions which are

u= a(x + y), v = b(x + y), w = 0, h1 =−n
∂v

∂z
,

h2 = n
∂u

∂z
, Tw =T∞ + a(x + y), T =Tw as z= 0





(14)

u= 0, v = 0, w = 0, h1 = h2 = 0, T→T∞} z→∞, (15)

where the constants a and b represent the stretching rate, in x− and y− directions having dimen-

sions (time)−1 and n= 0, 1/2, 1. For n= 0 is the classic case of strong interaction i.e the fluid
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particles are unable to rotate at the solid boundary whereas n= 1/2 is the case when fluid particles

rotate at the solid surface. This case is called weak interactions. For n= 1 is the case of turbu-

lent flow which is beyond the scope of this study. These facts are mentioned in several published

works.

E. Mathematical model for nano-particles

There are various models (empirical formulas) describing the relationship among physical prop-

erties of the base fluid, metallic nano-particles and nanofluid. In this investigation we have use the

following model by Das et al.8

ρnf = (1 − ϕ)ρf + ϕρs, (ρcp)nf = (1 − ϕ)
(

ρcp

)

f
+ ϕ
(

ρcp

)

s
, (16)

σnf =σf (1 +
3(σ − 1)ϕ

σ + 2 − (σ − 1)ϕ
) , σ =

σs

σf

, knf =
ks + 2kf − 2ϕ(kf − ks)

ks + 2kf + ϕ(kf − ks)
, (17)

where ϕ is the volume fraction. The subscripts f, nf and s stands for fluid, nano-fluid and solid structure

(nano-particles). Thermo-physical properties of micro-polar and four types of metallic nano-particles

are shown in Table I.

F. Dimensionless procedure

In view of the importance of the results obtained from dimensionless form of conservation

equations, the following transformations are introduced

u= a(x + y)f ′(η), v = b(x + y)g′(η), w =−(aνnf )
1
2 (g + f ), θ =

T−Tw

Tw−T∞

h1 = a( a
νnf

)
1
2 (x + y)F(η), h2 = a( a

νnf
)

1
2 (x + y)G(η), η = ( a

νnf
)

1
2 z





(18)

where ν is the kinematic viscosity. By substituting Eq. (18) in Eqs. (8)–(15), one gets

(1 + K)f ′′′ − KG′ +
ϕ2M2

(1 + βe βi)
2 + β2

e

[βeg′ − (1 + βe βi)f
′] − ϕ1[f ′2 + g′f ′ − (f + g)f ′′]= 0, (19)

(1 + K)g′′′ + KF ′ −
ϕ2M2

(1 + βe βi)
2 + β2

e

[βef ′ − (1 + βe βi)g
′] − ϕ1[g′2 + g′f ′ − (f + g)g′′]= 0, (20)

(1 +
K

2
)F ′′ − K[2F + g′′] − ϕ1[(f ′ + g′)F − (f + g)F ′]= 0, (21)

(1 +
K

2
)G′′ − K[2G − f ′′] − ϕ1[(f ′ + g′)G − (f + g)G′]= 0, (22)

knf

kf

θ ′′ + βPrθ + ϕ2

µnf

µf

M2PrEc

(1 + βe βi)
2 + β2

e

[f ′2 + g′2] − ϕ3Pr[ f ′ + g′]θ + ϕ3Pr[ f + g]θ ′ = 0, (23)

TABLE I. Different properties of blood and nano-particles.8

Physical property blood/base fluid Cu Ag Al2O3 TiO2

ρ/(Kg.m-3) 1060 8933 10500 3970 4250

cp/(J·kg☞1 ·K☞1) 3770 385 235 765 686.2

k/(W·m☞1 ·K☞1) 0.492 401 429 40 8.9538

ϕ 0.00 0.05 0.10 0.15 0.20

σ/(s.m-1) 4.3×10-5 59.6×106 6.6×10-7 35×106 2.6×106
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and boundary condition becomes

g(0)= 0, f (0)= 0, g′(0)=
b

a
= λ, f ′(0)= 1, F(0)=−

1

2
ng′′(0), G(0)=

1

2
nf ′′(0),

g′(∞)= 0, f ′(∞)= 0, F(∞)= 0, G(∞)= 0, θ(0)= 1, θ(∞)= 0

(24)

where λ is the stretching rate parameter.

ϕ1 = (1 − ϕ)
5
2 (1 − ϕ + ϕ

ρs

ρf
), ϕ2 = (1 − ϕ)

5
2 (1 +

3(σ−1)ϕ

σ+2−(σ−1)ϕ
), ϕ3 = 1 − ϕ +

ϕ(ρcp)
s

(ρcp)
f

β =
Q0

a(ρcp)
f
, M2

=

σf B2
o(1−ct)

aρf
, Pr =

µf (cp)
f

kf
, Ec=

(
ax

1−ct
)
2

(cp)
f
(Tw−T∞)

,

(25)

are respectively the volumetric expansion rates, the heat absorption/generation coefficient, the Hart-

mann, the Prandtl and the Eckert numbers. Further, when M = β = 0 and ϕ2 = ϕ3 = 1 Eqs. (19), (20)

and (23) reduce to the special case discussed in published work by Khan et al.40

II. COMPUTATIONAL PROCEDURE

GFEM is implemented to carry out the simulations for the transport of heat in three-dimensional

motion of micro-polar liquid. As a part of procedure, following steps are followed.

A. Domain discretization

The physical domain (after dimensional analysis) is [0,∞] and is divided into line elements with

nodes per elements.

B. Selection of weight and interpolation functions

As there are two nodes per element, therefore, weight and shape functions interpolation functions)

are selected in linear form. Further, as suggested by the Galerkin approach, weight functions are

taken equal to the interpolation functions. These interpolation functions are defined by ψj = (−1)j−1

(ηj+1 − η)/(ηj+1 − ηj), j = 1, 2.

C. Construction of residual equations

Residual equations are defined and are multiplied by weights. The resulting weighted residuals

are integrated over a typical element [ηe, ηe+1].

D. Weak form of weighted residuals

The weighted integral residual are integrated over the line element to convert strong form of

weighted residual into weak form.

E. Derivation of stiffness coefficients

The dependent unknowns f, g, h, F, G and θ are approximated over a typical element [ηe, ηe+1]

by following finite element approximations,29

h=

2
∑

j=1

ψjhj, g=

2
∑

j=1

ψjgj, f =

2
∑

j=1

ψjfj, F =

2
∑

j=1

ψjFj, G=

2
∑

j=1

ψjGj, θ =

2
∑

j=1

ψjθj, (26)

where fj, gj, hj, Fj, Gj and θj are unknown discrete values. ψj is the shape function. Using above

approximations in weak formulation of weighted residuals, one obtains

K11
ij =

∫ ηe+1

ηe

ψi

dψj

dη
dη, K13

ij =−

∫ ηe+1

ηe

ψiψjdη, K12
ij = 0, K14

ij = 0, K15
ij = 0,

K16
ij =0, K17

ij = 0, K21
ij = 0, K23

ij = 0, K25
ij = 0, K26

ij = 0, K27
ij = 0,
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K22
ij =

∫ ηe+1

ηe

ψi

dψj

dη
dη, K24

ij =−

∫ ηe+1

ηe

ψiψjdη, K31
ij = 0, K32

ij = 0, K35
ij = 0 ,

K36
ij =

∫ ηe+1

ηe

−Kψi

dψj

dη
dη, K34

ij =

∫ ηe+1

ηe

ϕ2M2

(1 + βe βi)
2 + β2

e

βeψiψjdη,

K37
ij = 0, K33

ij =

∫ ηe+1

ηe

[

− (1 + K)
dψi

dη

dψj

dη
−

ϕ2M2

(1 + βe βi)
2 + β2

e

(1 + βe βi)ψiψj

−ϕ1(h̄ + k̄)ψiψj + ϕ1(f̄ + ḡ)ψi

dψj

dη

]

dη,

K41
ij = 0, K42

ij = 0, K46
ij = 0, K47

ij = 0, K43
ij =

∫ ηe+1

ηe

−
ϕ2M2

(1 + βe βi)
2 + β2

e

βeψiψjdη,

K45
ij =

∫ ηe+1

ηe

Kψi

dψj

dη
dη, K44

ij =

∫ ηe+1

ηe

[

− (1 + K)
dψi

dη

dψj

dη
+ ϕ1(f̄ + ḡ)ψi

dψj

dη

+
ϕ2M2

(1 + βe βi)
2 + β2

e

(1 + βe βi)ψiψj − ϕ1(h̄ + k̄)ψiψj

]

dη,

K51
ij = 0, K52

ij = 0, K53
ij = 0, K56

ij = 0, K54
ij =

∫ ηe+1

ηe

−Kψi

dψj

dη
dη,

K57
ij = 0, K55

ij =

∫ ηe+1

ηe

[−(1 +
K

2
)
dψi

dη

dψj

dη
− 2Kψiψj − ϕ1(h̄ + k̄)ψiψj + ϕ1(f̄ + ḡ)ψi

dψj

dη
]dη,

K61
ij = 0, K62

ij = 0, K64
ij = 0, K67

ij = 0, K65
ij = 0, K63

ij =

∫ ηe+1

ηe

Kψi

dψj

dη
dη,

K66
ij =

∫ ηe+1

ηe

[−(1 +
K

2
)
dψi

dη

dψj

dη
− 2Kψiψj − ϕ1(h̄ + k̄)ψiψj + ϕ1(f̄ + ḡ)ψi

dψj

dη
]dη,

K75
ij = 0, K76

ij = 0, K73
ij =

∫ ηe+1

ηe

ϕ2

kf

knf

µnf

µf

ϕ2M2PrEc

(1 + βe βi)
2 + β2

e

h̄ψiψjdη,

K71
ij = 0, K72

ij = 0, K74
ij =

∫ ηe+1

ηe

kf

knf

µnf

µf

ϕ2M2PrEc

(1 + βe βi)
2 + β2

e

k̄ψiψjdη,

K77
ij =

∫ ηe+1

ηe

[−
dψi

dη

dψj

dη
+

kf

knf

βPrψiψj +
kf

knf

ϕ3Pr(f̄ + ḡ)ψi

dψj

dη
−

kf

knf

ϕ3Pr(f̄ ′ + ḡ′)ψiψj]dη,

in which f̄i, ḡi, h̄i, F̄i, Ḡi and θ̄i are nodal values computed at the previous iteration.

F. Assembly process

Following the assembly procedure of finite element approach, we get the system of nonlinear

equations is given by

[K {π}]{π} = {P}, (27)

where [K {π}] is the matrix involving unknown discrete values. The system of algebraic equations is

to be solved numerical by an iterative procedure. Here in this study, Picard linearization procedure

is used for linearization. Hence

[K {π}r−1]{π}r = {P}

where {π}r−1 are nodal values computed at (r − 1)th iteration and {π}r are the nodal values being

computed at the rth iteration.
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G. Computer implementation

The linearized of algebraic equations are solved iteratively. For computational procedure, we

developed a computer code on Matlab. Several computational experiments under tolerance 10−5

were done to search infinity for η variable. Simulations are carried out in this study reveal that the

asymptotic boundary conditions are satisfied when η is equal to 6. So ηmax = 6 is taken as infinity i.e.

the computational domain is [0, 6].

H. Convergence and error analysis

The error in the simulated results is calculated using error =
���π

r − πr−1��� till the convergence

criteria max
���π

r
i
− πr−1

i

���< ε = 10−5 is satisfied.

III. RESULTS AND DISCUSSION

A. Results validation

For simulations for three dimensional magnetohydrodynamic problems (derived from conser-

vation laws, linear momentum, angular momentum and energy conservation and MHD equation),

computer code for powerful numerical technique Galerkin finite element method (GFEM) is devel-

oped and code is verified by comparing the computed results (for special case) with the results

published by Khan et al.40 This comparison is displayed in Table II and Table III given below.

Further, from numerical experiments, the following useful information is obtained.

B. Observations regarding macro-motion

The macro-motion of nano-plasma is examined under the variation of βe, βi, K and behavior of

linear velocities is displayed in Figs. 1–8. Hall force is opposite to the magnetic force and reduces the

influence of magnetic field on the flow. Hence opposing Lorentz force is reduced by increasing the

Hall force. Hence the flow slows down when the Hall force is increased. Therefore, magnetic field

causes a significant reduction in momentum boundary layer thickness. During numerical experiments,

TABLE II. The comparison of present results with the results published by Khan et al.40 when K =M = 0 and ϕ1 =ϕ2 = 1.

f ′′(0) g′′(0)

λ Shooting bvp5c present Shooting bvp5c present

0 -1 -1 -1.0041434 0 0 0

0.5 -1.224745 - 1.224742 -1.226440 -0.612372 - 0.612371 -0.613220

1 -1.414214 -1.414214 -1.4148725 -1.414214 -1.414214 -1.4148725

TABLE III. The comparison of numerical values of present results with the results published in40 when M = β = 0 and ϕ2 =

ϕ3 = 1.

−θ′(0)

Pr λ shooting bvp5c present

0.7 0 0.793668 0.793668 0.81039863

0.5 0.972033 0.972029 0.98228616

1 1.122406 1.122321 1.12913535

1 0 1.000000 0.999990 1.00414345

0.5 1.224745 1.224742 1.22644094

1 1.414214 1.414214 1.41487259

7 0 3.072250 3.072251 3.07018018

0.5 3.762723 3.762724 3.76099940

1 4.344818 4.344779 4.34284090



105109-9 Nawaz et al. AIP Advances 8, 105109 (2018)

FIG. 1. x-component of velocity curves for βe withn= 0, Pr = 3, Ec= 2, M = 1, K = 1, βi = 0.9, β = 0.7 and λ= 0.5.

FIG. 2. x-component of velocity curves for βi with n= 0, Pr = 3, Ec= 2, M = 1, K = 1, βe = 2, β = 0.7 and λ= 0.5.

FIG. 3. x-component of velocity curves for K with n= 0, Pr = 3, Ec= 2, M = 1, βi = 0.9, βe = 2, β = 0.7 and λ= 0.5.
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FIG. 4. x-component of velocity curves for ϕ with n= 0, K = 1, Ec= 2, M = 1, Pr = 3, βi = 0.9, βe = 2, β = 0.7 and λ= 0.5.

FIG. 5. y-component of velocity curves for βe with n= 0, Pr = 3, Ec= 2, M = 1, K = 1, βi = 0.9, β = 0.7 and λ= 0.5.

FIG. 6. y-component of velocity curves for βi with n= 0, Pr = 3, Ec= 2, M = 1, K = 1, βe = 2, β = 0.7 and λ= 0.5.
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FIG. 7. y-component of velocity curves for K with n= 0, Pr = 3, Ec= 2, M = 1, βi = 0.9, βe = 2, β = 0.7 and λ= 0.5.

FIG. 8. y-component of velocity curves for ϕ with n= 0, K = 1, Ec= 2, M = 1, Pr = 3, βi = 0.9, βe = 2, β = 0.7 and λ= 0.5.

simulations are observed and it is noted that velocity of TiO2 nano-fluid is higher than the velocity of

Cu, Ag and Al2O3-nano-fluids (see Fig. 1). The comparison of Figs. 1 and 2 represent the effect of ion

slip current on the flow in x− direction is quite to the effect of Hall force on the flow in x−direction.

The behavior of micro-polar parameter on f ′ (the velocity in x−direction) is shown in Fig. 3. This

Fig. depict that f ′ increases when K is increased. Obviously, momentum boundary layer thickness

increases by varying K . The effects of dispersion of different type of nano-particles (Cu, Ag, Al2O3

and TiO2) are recorded and displayed in Fig. 4. The influence of βe, βi, K and ϕ on the flow in

y−direction is studied and displayed in Figs. 5–8. The evident from Figs. 5–8 that flow in y−direction

is influenced significantly when βe, βi and K are varied. The comparison of Figs. 1–4 and 5-8 shows

that the effect of βe, βi and K on f ′ are similar to their effects on g′.

C. Observations regarding micro-motion

Micro-rotations are modeled using law of conservation of angular momentum and is made

dimensionless using suitable changes of variable. So, F(η) and G(η) are dimensionless components

of angular velocity. Behavior of F(η) and G(η) under the variation of dimensionless parameters is

given in Figs. 9–12. The effects of nano-particles (Cu, Ag, Al2O3 and TiO2) on F(η) are represented

by Fig. 9. It is notable that the angular velocity (micro-rotation field) for case of Cu-nanoparticles is
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FIG. 9. Effect of ϕ on F(η) when n= 0, K = 1, Pr = 3, Ec= 2, M = 1, βi = 0.9, βe = 2, β = 0.7 and λ= 0.5.

FIG. 10. Effect of K on F(η) when n= 0, Pr = 3, Ec= 2, M = 1, βi = 0.9, βe = 2, β = 0.7 and λ= 0.5.

FIG. 11. Effect of ϕ on G(η) when n= 0, K = 1, Pr = 3, Ec= 2, M = 1, βi = 0.9, βe = 2, β = 0.7 and λ= 0.5.
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FIG. 12. Effect of K on G(η) when n= 0, Pr = 3, Ec= 2, M = 1, βi = 0.9, βe = 2, β = 0.7 and λ= 0.5.

higher than the others nanoparticles (Ag, Al2O3 and TiO2). The effect of micro-polar parameter on

F(η) is represented in Fig. 10. It is found that the angular velocity is an increasing function of K . It is

also noted that nano-fluid containing TiO2 has higher micro-rotation as compared to Ag, Al2O3 and

Cu nano fluids. Fig. 11 and 12 depict the similar effects as described in Fig. 9 and 10 respectively.

D. Observations regarding temperature

The temperature curves are displayed in Figs. 13–17. Fig. 13 reveals the behavior of temperature

with variation of βe in case of four types of nano-particles (Cu, Ag, Al2O3 and TiO2). It is obvious

from Fig. 13 temperature decreases when Hall force increases. As Hall force has reverse effect

on flow in comparison with magnetic field, therefore, it is recommended to use plasma when it is

required to reduce Joule heating. Similar observations for temperature are noted when βi is varied

(see Fig. 14). These observations are valid for dispersion of four types of nano-particles. The effect of

micro-motions on temperature is displayed in Fig. 15. It is noticed from Fig. 15 that temperature of

micro-polar decreases when micro-polar parameter is increased. The thermal boundary layer thickness

decreases by increasing K . with an increase in micro-polar parameter. Hence the thermal boundary

layer thickness in Newtonian Plasma is higher than the thermal boundary layer thickness in the flow

of non-Newtonian fluid. The influence of nano-particles on the transport of heat in micro-polar liquid

FIG. 13. Temperature distribution when βe is varied with n= 0, Pr = 3, Ec= 2, M = 1, K = 1, βi = 0.9, β = 0.7 and λ= 0.5.
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FIG. 14. Temperature distribution when βi is varied with n= 0, Pr = 3, Ec= 2, M = 1, K = 1, βe = 2, β = 0.7 and λ= 0.5.

FIG. 15. Temperature curves when K is varied with n= 0, Pr = 3, Ec= 2, M = 1, βi = 0.9, K = 1, β = 0.7 and λ= 0.5.

FIG. 16. Temperature distribution for different nano-particles when n= 0, K = 1, Pr = 3, Ec= 2, M = 1, βi = 0.9, βe = 2,

β = 0.7 and λ= 0.5.
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FIG. 17. Temperature distribution for different nano-particles when n= 0.5, K = 1, Pr = 3, Ec= 2, M = 1, βi = 0.9, βe = 2,

β = 0.7 and λ= 0.5.

is sketched in Fig. 16. It is evident from Fig. 16 that temperature of Cu−nano-fluid is greater than the

temperature of Ag, Al2O3 and TiO2 nano-fluids. These observations are same for n= 0 and n= 0.5

in Fig. 17. Thermal boundary layer thickness for Cu-nano-fluid is greater in comparison with the

thermal boundary layer thickness for silver, Al2O3 and TiO2-nano-fluids.

IV. CONCLUSION

Three-dimensional transport of heat in the flow of micro-polar liquid subject to four types of

nano-particles is modeled. The magnetohydrodynamic boundary value problem with dimensionless

form of first law of thermodynamics is solved numerically by using Galerkin finite method (GFEM).

After preprocessing, the required formulations for FEM computer code are done. Several numerical

experiments are carried for determining the computational domain. The key observations are stated

below.

• The force associated with Hall current is favorable forces and cause an enhancement in x−

component of velocity of the fluid for the case of copper, silver, Al2O3 and TiO2 nano-

particles. However, reversal effects for the case of force associated with ion slip currents are

seen.

• The flow in x-direction accelerates when K is increased. This increasing trend of primary velocity

due to an increase in micro-polar parameter indicates that the primary velocity for Newtonian

fluids has less magnitude as compare to the non-Newtonian fluids.

• Secondary velocity decreases when the force associated with Hall current is increased. This

shows that the force associated with Hall currents has opposite effect on secondary velocity than

its effects on the flow in x-direction.

• The flow in y−direction is accelerated when ion slip parameter is increased. It is concluded that

force associated with ion slip current is opposite to the direction of force due to the applied

magnetics force and is reduced by the force due to ions slip current in y− direction.

• Current (due to Hall and ion-slip) causes a significant reduction in the dissipation of heat due to

applied magnetic field. It is also observed that Joules heating dissipation in plasma is less than

that in electrically conducting non-plasma fluids.

• Thermal boundary layer thickness in Newtonian fluid greater than that for micro-polar fluids.
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