
Research Article

Three-Dimensional Holographic Imaging Using Single Frequency
Microwave Data

Reza K. Amineh , Maryam Ravan , Raveena Sharma , and Smit Baua

Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY, USA

Correspondence should be addressed to Reza K. Amineh; rkhalaja@nyit.edu

Received 30 March 2018; Revised 2 June 2018; Accepted 14 June 2018; Published 17 July 2018

Academic Editor: Ahmed Toaha Mobashsher

Copyright © 2018 Reza K. Amineh et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Three-dimensional (3D) microwave and millimeter wave imaging techniques based on the holographic principles have been
successfully employed in several applications such as security screening, body shape measurement for the apparel industry,
underground imaging, and wall imaging. The previously proposed 3D holographic imaging techniques require the acquisition of
wideband data over rectangular or cylindrical apertures. Requirement for wideband data imposes limitations on the hardware
(in particular at very high or very low frequencies). It may also lead to errors in the produced images if the media is dispersive
(e.g., in biomedical imaging) and not modeled properly in the image reconstruction process. To address these limitations, here,
we propose a technique to perform 3D imaging with single frequency data. Instead of collecting data at multiple frequencies, we
acquire the backscattered fields with an array of resonant antennas. We demonstrate the possibility of 3D imaging with the
proposed setup and perform a comprehensive study of the capabilities and limitations of the technique via simulations. To
perform a realistic study, the simulation data is contaminated by noise.

1. Introduction

One of the most practical and promising three-dimensional
(3D) microwave and millimeter wave imaging approaches
is based on the modern holographic concepts.

Holographic-based imaging concept was originally intro-
duced in the field of optical imaging when Gabor [1, 2] aimed
at improving the images obtained by an electron microscope,
but he demonstrated the feasibility of his method with light
waves. For this purpose, he demonstrated the possibility of
acquiring the magnitude and phase of a wave as an interfer-
ence pattern formed by this wave and a known reference
wave. Gabor’s experimental setup was improved by Leith
and Upatnieks [3, 4] in the early sixties to achieve higher
quality images. The work of Leith and Upatnieks resonated
well with the availability of lasers leading to a new generation
of 3D imaging systems. The progress in the field of optical
holography inspired researchers in other fields, in particular
acoustics [5] and microwave [6–10], to aim at the image
reconstruction of optically opaque objects. Thus, in this early
stage, microwave holography closely resembled the optical
method for data acquisition referred to as the “recording

step” and that for the image reconstruction referred to as
“reconstruction step” [11, 12]. In the recording step, an
intensity pattern (hologram) is formed from the interference
pattern between the scattered wavefront and a coherent plane
wave, introduced at an offset angle to the recording plane.
This intensity pattern is acquired through the scanning of
an antenna over the acquisition plane, the antenna being
connected to a simple diode detector (a receiver that mea-
sures only the signal intensity) [13].

The subsequent progress in the field of holographic
microwave and millimeter wave imaging (MMI) can be
divided into two separate paths: indirect holography and
direct holography. What is common between these two cate-
gories of techniques is that both exploit the magnitude and
the phase information of the backscattered waves in order
to generate images and to achieve resolution enhancement
compared to the images obtained from raw amplitude mea-
surements only.

The indirect microwave holography has been in fact the
extension of the early works on this topic which has the most
resemblance to optical holography in terms of recording a
hologram. The major advantage of indirect holography is
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that it does not require the use of expensive vector measure-
ment equipment to obtain the complex field scattered from
the imaged object. Instead, the phase information is mathe-
matically recovered from low-cost intensity-only scalar
microwave or millimeter wave measurements. This simplifies
the hardware implementation and reduces the cost of the
imaging system (e.g., see [14–16]).

The direct holographic MMI techniques, however, use
radio frequency (RF) circuitry or vector network analyzer
(VNA) to record both the magnitude and phase of the back-
scattered waves directly (e.g., see [17-18]). Although, similar
to recording a hologram in indirect holography, measure-
ments are typically performed over an aperture (plane); the
scattered waves are sampled in complex form (as opposed
to intensity-only measurements in indirect holography). As
the direct holographic algorithms developed, their resem-
blance to synthetic aperture radar- (SAR-) based imaging
methods became evident. In both, the complex-valued back-
scattered waves are acquired over an aperture. It has been
shown in [19] that by collecting wideband information over
a linear aperture, two-dimensional (2D) imaging is possible
along cross-range and range directions. This algorithm was
developed further at the Pacific Northwest National Labora-
tory (PNNL) [17]. There, 3D imaging has been accomplished
by acquiring wideband data over a rectangular aperture.
Later, this approach was extended further to perform 3D
imaging by data acquisition over a cylindrical aperture [18].
At PNNL, these techniques have been successfully used for
practical imaging of human body’s surface with applications
in threat detection (for security screening) [17, 18], body
shape measurement for the apparel industry [20], and imag-
ing of underground objects and objects hidden inside the
cement walls [21].

The processing in [17, 18, 20, 21] relies on an assumed
analytical (exponential) form for the incident and the
Green’s functions to cast the inversion in the form of a 3D
inverse Fourier transform (FT). Despite being fast and
robust, the abovementioned holographic techniques suffer
the following drawbacks:

(1) Far-field assumptions (assuming analytic forms for
the incident field and Green’s function) limit the
performance of these techniques to far-zone imag-
ing. Imaging errors caused by far-field assumptions
might be less noticeable for large and high contrast
objects such as those imaged in [22]. In those cases, it
is still possible to reconstruct satisfactory qualitative
images. However, these errors can be noticed very
well in more challenging imaging scenarios for
smaller and lower contrast objects. This has been
demonstrated in [23].

(2) The wave numbers kx, ky, and kz are assumed inde-

pendent variables, and this leads to errors in the
image reconstruction process.

(3) Resampling of the data in kz space is necessary.
This further degrades the quality of the recon-
structed images.

(4) Since these techniques have been developed based
on the far-field assumptions, they are incapable
of processing the evanescent waves. However,
these waves can be partially measured in the near-
field imaging applications to provide higher cross-
range resolutions.

(5) The transmitting and receiving antennas are assumed
to be pointwise.

(6) They have been developed based on the measure-
ment of the backscattered waves of a single antenna.

To address the limitations of the techniques in [17, 18],
the direct holography technique was extended first to
near-field 2D imaging [24] and then to 3D imaging
[23, 25]. In [23, 25], the analytical approximations of the
incident field and the Green’s function are inadequate; that
is why numerical models are employed instead, which better
represent the particular acquisition setup and antennas.
These methods also allow for incorporating forward-
scattered signals in addition to the backscattered signals
acquired on two opposite rectangular apertures. This is in
particular important in biomedical imaging since, there, the
forward-scattered waves have much higher SNR compared
to the backscattered waves. Due to that, in [26], the 3D holo-
graphic techniques in [23, 25] was extended for the single
transmitter and multiple receivers and only forward-
scattered data was employed to reconstruct 3D images of
the inspected medium. The processing in [23, 25, 26]
involves the solution of a linear system of equations for each
spatial frequency pair (kx, ky). Then, 2D inverse FT is
applied to the solution on planes (slices) at all desired range
locations. These linear systems of equations have much
smaller dimensions and are less ill-conditioned compared
to the systems of equations arising in optimization-based
imaging techniques. Furthermore, the resampling of the data
in kz space is avoided. The assumption that kx, ky , and kz are
independent variables is also irrelevant since the use of
parameter kz is avoided.

In the near-field holographic imaging techniques pro-
posed in [23–26], the data for the incident field and the
Green’s function are obtained via simulations. In practice,
often, the fidelity of the simulation models, although better
than the analytical approximations, may still be too low to
ensure good image quality. To resolve this issue, in [27], a
method has been proposed to acquire the incident field and
the Green’s function specific to the particular acquisition sys-
tem via measurements of a known calibration object (CO).
The method exploits the concept of point spread function
(PSF) of a linear imaging system where the response due to
an arbitrary object is the convolution of the response due to
a pointwise scatterer (the scattering probe) with the spatial
variation of that object. This approach provides a fast and
robust means to reconstruct qualitative images of the objects.

Although the abovementioned near-field holographic
microwave imaging algorithms can provide real-time 3D
images of the dielectric media, the following drawbacks still
need to be addressed before they can be employed in a com-
pact, portable, and low-cost imaging setup:
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(1) Since these techniques require wideband data collec-
tion, the data acquisition system including antennas
and circuitry become complex, costly, and bulky.

(2) Implementation of the compact and low-cost data
acquisition techniques such as modulated scatterer
technique (MST) is not straightforward and efficient
for wideband systems. These data acquisition tech-
niques allow for using electronic scanning instead of
mechanical scanning of the sensor over the aperture.
Thus, in a single frequency imaging system, they can
drastically reduce the data acquisition time paving
the way toward real-time imaging applications.

(3) Due to the use of wideband data, dispersive prop-
erties of the media which may not be modeled
accurately impose additional errors on the recon-
structed images.

(4) In a wideband data acquisition system, measuring
scattering (S) parameters by frequency sweep takes
time while measurement time is critical in many
applications such as object tracking or medical
imaging (patient movement during a scan may
generate artifacts).

Although, in [28], single frequency 3D microwave holo-
graphic imaging has been proposed but it is based on the
far-field approximations. All the previous 3D near-field
holographic imaging works are based on the wideband data
and thus they suffer the drawbacks enumerated above. To
address the abovementioned drawbacks, here, we demon-
strate the feasibility of performing 3D holographic imaging
using single frequency data. For this purpose, an array of
resonant antennas are employed to perform data acquisition.
The data is then processed with the holographic image
reconstruction algorithm. Simulations are employed to study
various parameters such as the number of antennas, number
of reconstruction lines (planes), distance between recon-
struction lines (planes), and effect of noise. To perform a
realistic study, simulation data is contaminated by noise.

2. Background: 3D Holographic Imaging Using
Wideband Microwave Data [27]

Figure 1(a) illustrates a wideband microwave holographic
imaging setup including a transmitter antenna that illumi-
nates the object while moving over a rectangular aperture.
The same antenna or a receiver antenna that moves together
with the transmitter antenna is employed to scan the
backscattered field over the aperture. At each sampling
position (x, y), the complex-valued scattered wave due to
the object Esc x, y, f is measured at N f frequencies. The
objective is to reconstruct images over z= zi planes where
i = 1,… ,Nz .

Here, the imaging system is assumed to be linear. It is
well-known that the use of Born approximation for the
scattering integral leads to the linear property of the imag-
ing system (e.g., see [29]). This approximation indicates
that the field inside the object is approximated with the

field in the absence of the object. In addition to the linear
property, the imaging system is assumed to be space-
invariant, that is, if an object is shifted in a plane parallel
to the x-y plane in Figure 1, its response will be shifted by
the same amount and along the same direction. Assuming
that the imaging system is both linear and space-invariant
allows for the use of convolution theory as it will be dis-
cussed briefly in the following.

According to the convolution theory, in a linear space-
invariant system, the response to any arbitrary input function
to the system can be written in terms of the convolution of
the point spread function (PSF) of the system and that input
function. PSF of the system is actually the response of the sys-
tem to a Dirac delta function. This concept has been used in
[27] to perform holographic imaging of dielectric media. In
order to collect the responses corresponding to PSFs, we first
record the responses Esc,co

i due to pointwise scatterers placed
at (0,0,zi), i = 1,… ,Nz , as illustrated in Figure 1(b). Similar
to [27], we refer to the pointwise scatterers as calibration
objects (COs). These are the smallest objects that can be mea-
sured at (0,0,zi), i = 1,… ,Nz positions. Responses measured
for such small objects approximate the responses of the sys-
tem to Dirac delta input functions. These COs are placed
one at a time at each imaged plane at (0,0,zi), i = 1,… ,

Nz positions while the scattered response due to each CO
Esc,co

i x, y, f is measured over the aperture by scanning the
transmitter-receiver antennas. As we described, these
responses provide approximations of the PSFs for this linear
space-invariant imaging system. Thus, the response Esc

i x, y
due to an arbitrary object at the plane z= zi can be obtained
by the convolution of the collected PSF for the corresponding
plane with the contrast function ci x, y due to the presence
of the object (contrast between the electrical properties of
the object and the background medium) on that plane. This
is written as

Esc

i x, y = Esc,co

i x, y ∗x∗yci x, y , 1

where ∗x and ∗y denote convolutions with respect to the

x and y variables, respectively. Equation (1) can be written for
responses created by the unknown objects over each imaged
plane (0,0,zi), i = 1,… ,Nz . Then, the total response E

sc x, y
measured by the receiver antenna due to the presence of the
objects at all imaged planes can be approximated with the
superposition of the contribution of all these responses as

Esc x, y = 〠
Nz

i=1

Esc

i x, y = 〠
Nz

i=1

Esc,co

i x, y ∗x∗yci x, y 2

In (1), Esc,co

i x, y functions are known due to the mea-
surement or simulation of the responses to COs. Esc

i x, y
is also known due to the recording of the response for
the unknown object. In order to estimate the unknown
contrast functions ci x, y on the imaged planes z= zi, i =
1,… ,Nz , the scattered data is acquired at multiple fre-
quencies, fn, n = 1,… ,N f . Thus, (2) can be rewritten at

all these measurement frequencies to provide the following
system of equations:
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Esc x, y, f
1
= 〠

Nz

i=1

Esc,co

i x, y, f
1
∗x∗yci x, y ,

⋮

Esc x, y, f N f
= 〠

Nz

i=1

Esc,co

i x, y, f N f
∗x∗yci x, y

3

In order to solve the system of equation in (3), 2D FTs
with respect to x and y variables are applied on both sides
of the equations. This leads to the following system of equa-
tions in the Fourier domain:

E
sc

kx , ky, f1 = 〠
Nz

i=1

E
sc,co

i kx, ky, f1 ci kx, ky ,

⋮

E
sc

kx, ky, f N f
= 〠

Nz

i=1

E
sc,co

i kx, ky, f N f
ci kx, ky ,

4

where E
sc

kx, ky, f n , E
sc,co

i kx, ky, f n , and ci kx, ky are the

2D FTs of the functions Esc x, y, f n ,Esc,co

i x, y, f n , n = 1,

… ,N f , and ci x, y , respectively, and kx and ky are Fourier

variables corresponding to the x and y variables, respectively.
The system of equations in (4), written for each spatial fre-
quency pair (kx , ky), is solved in a least square sense to find

ci kx, ky , i = 1,… ,Nz . Due to the relatively small size of

the system of equations in (4), the method usually yields
well-conditioned matrices. Yet, well-conditioned matrices
do not always ensure good quality images. When the SNR
is poor, the image quality can be improved by low-pass filter-
ing or regularization, for example, the Tikhonov regulariza-
tion [30]. Once the systems of equations are solved for all

(kx, ky), the inverse 2D FT is applied to ci kx, ky , i = 1,… ,

Nz , to reconstruct a 2D slice of the contrast function ci
x, y at each z= zi plane. Then, the normalized modulus
of ci x, y , ci x, y /M, whereM is the maximum of ci x, y
for all zi, is plotted versus x and y to obtain 2D images
of the object at all Nz planes. By putting together all 2D slice
images, a 3D image of the object is obtained.
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Figure 1: (a) Illustration of a wideband 3D microwave holographic imaging setup that consists of a transmitter antenna and a receiver
antenna that move together to scan a rectangular aperture. (b) Illustration of placing a CO on the imaged plane z= zi to measure the PSF
corresponding to that plane, that is, Esc,co

zi
x, y, f .

4 International Journal of Antennas and Propagation



3. Proposing Holographic Imaging with Single
Frequency Microwave Data

In the previous section, we described that in order to solve (2)
and find the contrast functions ci x, y over all reconstruction
planes z= zi, i = 1,… ,Nz , in [27], measurements are per-
formed at multiple frequencies fn, n = 1,… ,N f . That enables

forming the system of equation in (3) which then can be
solved to find the contrast functions ci x, y , i = 1,… ,Nz .
In this section, we propose using Nr receivers that sample
the scattered field Esc

nr
x, y , nr = 1,… ,Nr due to the object

at spatially diverse positions for each scanning position of
the transmitter. Figure 2 illustrates this configuration. Similar
to using multiple frequency data, using multiple receiver data
allows for rewriting (2) for each receiver and constructing a
system of equations as follows:

Esc

1
x, y = 〠

Nz

i=1

Esc,co

1,i x, y ∗x∗yci x, y ,

⋮

Esc

Nr
x, y = 〠

Nz

i=1

Esc,co

Nr ,i
x, y ∗x∗yci x, y ,

5

where Esc,co

nr ,i
x, y , nr = 1,… ,Nr , is the measured or simu-

lated PSF recorded by the receiver nr and when the CO
is placed at imaged plane z= zi. The array of receivers
can be on the same side of the inspected medium as
the transmitter antenna or on the opposite side of that.
Solution of this system of equations is similar to what
we discussed above for the wideband imaging system.
2D FTs with respect to the x and y variables are applied
on both sides of (5). This leads to the following system
of equations:

E
sc

1
kx, ky = 〠

Nz

i=1

E
sc,co

1,i kx, ky ci kx, ky ,

⋮

E
sc

Nr
kx , ky = 〠

Nz

i=1

E
sc,co

Nr ,i
kx, ky ci kx , ky ,

6

where E
sc

nr
kx, ky and E

sc,co

nr ,i
kx, ky are the 2D FTs of the

functions Esc
nr

x, y and Esc,co

nr ,i
x, y , respectively. In the follow-

ing section, we study the number of antennas that are
required to obtain range resolution when collecting data only
at a single frequency.

To ensure processing the useful portion of the spectrum
corresponding to the measurable values of kx and ky, we con-

sider the maximum values of these Fourier variables to be

kmax

x = 2k sin
θb,x

2
,

kmax

y = 2k sin
θb,y

2
,

7

where k is the wavenumber in the background medium, and
θb,x and θb,y are the lesser of the full beam width of the

antenna or the angle subtended by the aperture along the x
and y directions, respectively [17]. This results in the cross-
range resolutions of

δx =
λ

4 sin θb,x/2
,

δy =
λ

4 sin θb,y/2

8

Since, in general, θb,x and θb,y could be different along x or

y directions, the resolutions for these two cross-range direc-
tions can be different.

Receiver Transmitter
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Imaged
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Objects at
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Figure 2: Illustration of the single frequency 3D holographic imaging setup which contains a transmitting antenna that illuminates the
inspected medium with microwave power at a single frequency and when moving with an array of Nr receiver antennas. This transmitter-
receiver set scans a rectangular aperture.
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4. Image Reconstruction Results

In order to study the performance of the proposed imag-
ing technique, we conduct simulation study using FEKO
software [31]. The study is performed at operation frequency
of 6.5GHz. However, all the dimensions are reported in
terms of wavelength λ so that the outcome of the study can
be readily extended to other frequencies. To understand the
capabilities and limitations of the proposed 3D imaging tech-
nique, first 2D imaging results along one cross-range direc-
tion (x-axis) and range direction (z-axis) are presented and
discussed. Then imaging results for 3D imaging examples
will be presented.

4.1. Studying the Feasibility of Achieving Range Resolution
with 2D Imaging Results. Figure 3 shows the proposed imag-
ing setup to perform 2D imaging in which an array of reso-
nant (λ/2) dipole antennas is employed along the x-axis to
acquire the backscattered data from objects placed at differ-
ent positions. The background medium has properties of
εr = 16 and σ = 0 5 S/m. The objects are cubes of identical
size with the side dimension denoted by parameter s, and
they all have properties εr = 32 and σ = 1 S/m. The intere-
lement spacing for the antenna array is denoted by D. The
images are reconstructed on multiple lines along the x-axis
and placed at z= zi, i = 1,… ,Nz . The distance between the
objects on line z= zi is denoted by di. To have a realistic
study, all the image reconstruction results are presented
with considering an additive White Gaussian noise with
signal-to-noise ratio (SNR) of 20 dB that contaminates
the simulated data. However, in the case that we perform
the study of effect of SNR on the images, the SNR value
will be lowered.

In the first example, with reference to Figure 3, an array
of 13 resonant dipole antennas is employed for performing
imaging on three lines at z1=0.5λ, z2=λ, and z3=1.5λ
(distance between image lines is λ/2). The distances
between the objects are d2=λ and d3=2λ. The interelement
spacing for the array of dipoles is D=0.25λ. An aperture of
size 14λ is scanned by this array of antennas, that is, the
center element A7 in Figure 3 scans from −7λ to 7λ. At
each sampling position, A7 is excited while all the anten-
nas including A7 record the backscattered data due to

the objects. To implement the holographic imaging tech-
nique, PSF functions are recorded beforehand by sequentially
putting small cubes with side of λ/8 at (0,0,0.5λ), (0,0,λ), and
(0,0,1.5λ) positions and for each case, the backscattered
waves due to these objects are scanned by the antenna array.
Figure 4 shows the reconstructed images. It is observed that
the objects are reconstructed well at their true positions.

Next, to study the effect of a number of antennas on the
reconstructed images, an array of 9 resonant dipole antennas
is employed for imaging. The setup and other parameters in
Figure 3 are the same as those mentioned for the first exam-
ple. At each sampling position, the center element, that is, A5

for 9 antennas, is excited while all the antennas record the
backscattered data due to the objects.

Figure 5 shows the reconstructed images. By compar-
ing the results in Figures 4 and 5, it is clearly observed
that reducing the number of antennas degrades the quality
of the images.

It has been discussed in [32] that if the contrast function
has only real part (e.g., for lossless media), then the 2D FT of
that would be a Hermitian function, that is,

ci −kx, −ky = ci
∗
kx, ky , 9

where ∗ is the complex conjugate operator. Using (9) and
(6), another system of equations can be built as

E
sc

1

∗

−kx, −ky = 〠
Nz

i=1

E
sc,co

1,i

∗

−kx, −ky ci kx, ky ,

⋮

E
sc

Nr

∗

−kx, −ky = 〠
Nz

i=1

E
sc,co

Nr ,i

∗

−kx, −ky ci kx, ky

10
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Figure 3: Cross-section view for the imaging setup in FEKO
software.
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Figure 4: Reconstructed images when using 13 resonant dipole
antennas. For this example, the parameters are z1= 0.5λ, z2= λ,
z3= 1.5λ, d2= λ, d3= 2λ, s= λ/8, and D= 0.25λ. These results are
with SNR= 20 dB.
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Since unknowns ci kx, ky are the same for the two sys-

tems of equations in (6) and (10), these two systems of equa-
tions can be combined into a single system of equations. As
discussed in [32], this significantly reduces the condition
number of the matrix of coefficients for the system of equa-
tions to be solved leading to solutions with better quality.

Here, although the background and object media are
lossy and with different values of conductivity, we show that
constructing and using an auxiliary system of equations in

(10) still improves the quality of the images. It has been also
mentioned in [32] that this approach still improves the qual-
ity of the images for slightly lossy media. Figure 6 shows the
reconstructed images for the previous example (reduced
number of antennas in the array) using such auxiliary sys-
tem of equations. Comparing Figures 5 and 6 clearly shows
an improvement due to the use of these auxiliary systems
of equations.

To study the effect of interelement spacing D, again, we
study the imaging setup described in the first example but
with D=0.125λ and D=0.5λ. Figure 7 shows the imaging
results for such cases. By comparing the images in this figure
with those shown in Figure 4 (for D=0.25λ), it is observed
that for the lowest value of D (D=0.125λ), the quality of
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Figure 7: Reconstructed images when using 13 resonant dipole
antennas. For this example, the parameters are z1= 0.5λ, z2= λ,
z3= 1.5λ, d2= λ, d3= 2λ, s= λ/8, and (a) D= 0.125λ (b) D= 0.5λ.
These results are with SNR= 20 dB.
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antennas. For this example, the parameters are z1= 0.5λ, z2= λ,
z3= 1.5λ, d2= λ, d3= 2λ, s= λ/8, and D= 0.25λ. The auxiliary
equations for lossless media proposed in [32] have been employed
to improve the quality of the images. These results are with
SNR= 20 dB.
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Figure 5: Reconstructed images when using 9 resonant dipole
antennas. For this example, the parameters are z1= 0.5λ, z2= λ,
z3= 1.5λ, d2= λ, d3= 2λ, s= λ/8, and D= 0.25λ. These results are
with SNR= 20 dB.
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the images is not acceptable in particular for the image at
z=1.5λ. This is due to the fact that the rows in the system
of equations in (6) get more parallel and that leads to the
ill-conditioning of the system of equations. However, the
results for D=0.5λ is as good as the results shown in
Figure 4 for D=0.25λ.

In the next step, the effect of adding an extra imaged line
is studied. For this purpose, the setup described for the first
example will be employed to perform imaging over four lines
at z1=0.5λ, z2=λ, z3=1.5λ, and z4=2λ. In other words, we
add an extra imaged line at z4=2λ compared to the first
example. For implementing the imaging algorithm, the PSF
corresponding to that imaged line should be also recorded
beforehand, that is, by putting a small cube at (0,0,2λ), per-
forming the scan by the antenna array and recoding the back-
scattered data. The distances between the objects are d2=λ,
d3=2λ, and d4=2λ. Figure 8 shows the reconstructed
images. It is observed that adding one more imaged line
degrades the quality of the image reconstruction results. This
is due to the addition of more unknowns to the image recon-
struction problem. To address this problem, we investigate
the cases in which more than one antenna is excited at each
sampling position. For example, Figure 9 shows the imaging
results when antennas 1 and 7 are excited. These antennas are
excited sequentially and in each case the backscattered waves
are recorded by all the antennas. Comparing Figures 8 and
9 clearly shows significant improvement in the image

reconstruction results when using additional data. Thus, we
proceed further to excite more antennas and study if further
improvement can be achieved. In the next studied case,
antennas 1, 4, and 7 are excited. Similar to the previous case,
at each sampling position, these antennas are excited sequen-
tially and for each case the backscattered waves are recorded
by all the antennas. Figure 10 shows the reconstructed
images for this scenario. Comparing this figure with
Figures 8 and 9 shows further improvement of the quality
of the reconstructed images. This again confirms the fact
that by collecting more data, the quality of the images can
be improved further.

In the next example, with reference to Figure 3, an imag-
ing problem similar to the one described in the first example
is solved but when the three imaged lines are at z1=λ/8
(0.125λ), z2=λ/4 (0.25λ), and z3=3λ/8 (0.375λ) (distance
between image lines is λ/8). To implement the holographic
imaging technique, PSF functions are recorded beforehand
by sequentially putting small cubes with sides of λ/8 at
(0,0,λ/8), (0,0, λ/4), and (0,0,3λ/8) positions and for each
case the backscattered waves due to these objects are scanned
by the antenna array. Figure 11 shows the reconstructed
images. It is observed that the objects are reconstructed well
at their true positions. Then, we repeat the same imaging
example but when the three imaged lines are at z1=0.1λ,
z2=0.2λ, and z3=0.3λ(distance between image lines is λ/10).
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Figure 9: Reconstructed images when using 13 resonant dipole
antennas. For this example, the parameters are z1= 0.5λ, z2= λ,
z3= 1.5λ, z4= 2λ, d2= λ, d3= 2λ, d4= 2λ, s= λ/8, and D= 0.25λ. At
each sampling step, the 1st and 7th antenna elements are excited
sequentially and, for each cases, backscattered data is recorded by
all antennas. These results are with SNR= 20 dB.
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Figure 8: Reconstructed images when using 13 resonant dipole
antennas. For this example, the parameters are z1= 0.5λ, z2= λ,
z3= 1.5λ, z4= 2λ, d2= λ, d3= 2λ, d4= 2λ, s= λ/8, and D= 0.25λ. At
each sampling step, the 7th antenna element is excited and
backscattered data is recorded by all antennas. These results are
with SNR= 20 dB.

8 International Journal of Antennas and Propagation



To implement the holographic imaging technique, PSF
functions are recorded beforehand by sequentially putting
small cubes with sides of λ/8 at (0,0,0.1λ), (0,0,0.2λ), and
(0,0,0.3λ) positions and for each case the backscattered waves
due to these objects are scanned by the antenna array.
Figure 12 shows that the quality of the reconstructed images
starts to degrade compared to those in Figure 11. This can be
used to determine the resolution of the proposed imaging
technique along the range (z) direction. Based on that, the
range resolution would be λ/8 for which the imaging results
have still good quality. It is worth mentioning that auxiliary
systems of equations in (10) can be employed for obtaining
even better resolution along the range direction.

Here, we consider the range resolution as the minimum
distance along the range direction between two lines for
which the reconstructed images over them clearly show the
presence of the objects. Please note that, in general, the range
resolution depends on the number of antennas, distance
between antennas, SNR value, number of excited antennas,
and number of reconstruction planes. Besides, according to
our studied cases, if an object is centered at a range position
that does not coincide perfectly with the range position of
an imaged line, this object appears the best in the closest
imaged line. Figure 11(b) shows the imaging results for a
setup similar to the one presented in Figure 11(a) but when

removing the objects at z1=λ/8 and z3=3λ/8 and shifting
the objects at z2=λ/4 toward the aperture by λ/32. In this
case, these two objects will have a distance of 3λ/32 from
the first imaged line and λ/32 from the second imaged line.
Figure 11(b) shows the image reconstruction results in which
the two objects are observed the best in the second imaged
line as expected.

In the last example for the 2D imaging study, the effect of
lower values for SNR on the image reconstruction results is
studied. For this purpose, the responses used for the imaging

3210

1

0

0.5

–1–2–3

Im
ag

e

x (�)

z = 0.5�

3210

1

0

0.5

–1–2–3

Im
ag

e

x (�)

z = 1�

3210

1

0

0.5

–1–2–3

Im
ag

e

x (�)

z = 1.5�

3210

1

0

0.5

–1–2–3

Im
ag

e

x (�)

z = 2�

Figure 10: Reconstructed images when using 13 resonant dipole
antennas. For this example, the parameters are z1= 0.5λ, z2= λ,
z3= 1.5λ, z4= 2λ, d2= λ, d3= 2λ, d4= 2λ, s= λ/8, and D= 0.25λ. At
each sampling step, the 1st, 4th, and 7th antenna elements are
excited sequentially and, for each cases, backscattered data is
recorded by all antennas. These results are with SNR= 20 dB.
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Figure 11: Reconstructed images when using 13 resonant dipole
antennas. (a) For this example, the parameters are z1= λ/8
(0.125λ), z2= λ/4 (0.25λ), z3= 3λ/8 (0.375λ), d2= λ, d3= 2λ, s= λ/
8, and D= 0.25λ. (b) Setup similar to the one presented in
Figure 11(a) but when removing the objects at z1= λ/8 and
z3= 3λ/8 and shifting the objects at z2= λ/4 toward the aperture
by λ/32. In this case, these two objects will have a distance of 3λ/
32 from the first imaged line and λ/32 from the second imaged
line. These results are with SNR= 20 dB.
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example in Figure 4 are contaminated with noise with
SNR=15dB and SNR=10dB (the results in Figure 4 are with
SNR=20dB). Figures 13 and 14 show the image reconstruc-
tion results for SNR=15dB and SNR=10dB, respectively. It
is observed that while SNR of 15dB still can be tolerated (the
results are still acceptable in terms of quality), lower SNR
values, for example 10 dB, lead to unacceptable results. Pro-
ducing images of good quality for SNR value as low as
15 dB shows the robustness of this imaging technique with
respect to noise. It is worth mentioning that auxiliary systems
of equations in (10) can be employed for obtaining good
quality images even for SNR values as low as 5 dB according
to our study.

4.2. Comparison with Multiple Frequency Results. In this sec-
tion, a comparison is made between the results obtained from
the antenna array using single frequency data with the results
obtained from single antenna but using multiple frequency
data. For this purpose, for the first example with results
shown in Figure 4, we perform data acquisition with a single
antenna and at 8 frequencies. This is performed once for a
frequency range from 6.2GHz to 6.9GHz (with steps of
100MHz) and a second time for frequency range of
5.8GHz to 7.2GHz (with steps of 200MHz). Figure 15 shows
the image reconstruction results for these two cases. It is
observed that for the first case, a bandwidth of 0.7GHz
is not sufficient to provide acceptable results. In the sec-
ond case, when the bandwidth is doubled, the imaging
results are comparable with those shown in Figure 4 for
single frequency data.

4.3. Demonstration of 3D Imaging Results. In this section, we
demonstrate the results for 3D imaging examples. In the first
example, shown in Figure 16(a), 9 objects are distributed in
the 3D space. One object is at z=0.5λ plane at (0,0,0.5λ), four

objects are at z=λ plane, at (±λ/2,0,λ) and (0, ±λ/2,λ),
and four objects are at z=1.5λ plane, at (±λ,0,1.5λ) and
(0, ±λ,1.5λ). In the second example, two X-shape objects
with an arm length of 1.2λ and cross-section of each arm
being square with a side of λ/8 are considered. One X-
shape object is placed at z=0.5λ with its arms along x and
y-axis; the second object is placed at z=1.5λ with its arms
rotated 45° with respect to x and y-axis. The properties of
the background and object media are the same as in the pre-
vious examples. The number of antennas in the array and
also the distance between them is similar to those reported
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Figure 14: Reconstructed images when using 13 resonant dipole
antennas. For this example, the parameters are z1= 0.5λ, z2= λ,
z3= 1.5λ, d2= λ, d3= 2λ, s= λ/8, and D= 0.25λ. These results are
with SNR= 10 dB.
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Figure 13: Reconstructed images when using 13 resonant dipole
antennas. For this example, the parameters are z1= 0.5λ, z2= λ,
z3= 1.5λ, d2= λ, d3= 2λ, s= λ/8, and D= 0.25λ. These results are
with SNR= 15 dB.
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Figure 12: Reconstructed images when using 13 resonant dipole
antennas. For this example, the parameters are z1= 0.1λ, z2= 0.2λ,
z3= 0.3λ, d2= λ, d3= 2λ, s= λ/8, and D= 0.25λ. These results are
with SNR= 20 dB.
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for the first example with the results shown in Figure 4.
Although here the antenna array is along the x-axis, in gen-
eral, the array can be a 2D array along both x and y direc-
tions. To implement the holographic imaging technique,
PSF functions are recorded beforehand by sequentially put-
ting small cubes with sides of λ/8 at (0,0,0.5λ), (0,0,λ), and
(0,0,1.5λ) positions and for each case the backscattered waves
due to these objects are scanned by the antenna array over an
aperture of size 6λ× 6λ centered at the origin. Figure 17
shows the reconstructed images. It is observed that the
objects are reconstructed well at their true positions. This
confirms the capability of the proposed single frequency

microwave imaging setup to perform 3D imaging. Please
note that, in general, the accuracy of the image reconstruc-
tion results degrades for larger objects. This is well-known
for all the imaging techniques based on the use of Born
approximation (e.g., see [23]).

In Figure 18, we repeat the image reconstruction results
for the example 1 in Figure 16(a) while having the distance
between the imaged planes as low as λ/8 (λ/8 is the resolution
of this imaging system obtained in Figure 11). From
Figure 18, it is observed that satisfactory imaging results are
obtained with the objects reconstructed well in their true
positions. Small artifacts are observed on the planes not con-
taining the objects.

5. Conclusion

In this paper, we proposed an approach to achieve range
resolution with single frequency microwave data leading
to 3D imaging of the inspected medium. This is in con-
trast to the previously proposed 3D holographic imaging
techniques in which wideband data has to be acquired to
perform 3D imaging.

To obtain sufficient data that allows for 3D imaging, an
array of resonant antennas is employed. This array of anten-
nas is scanned over a linear or rectangular aperture to per-
form 2D or 3D imaging. At each scanning step, one or
more elements are excited sequentially, and the backscattered
data is recorded by all the array elements.
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Figure 15: Reconstructed images when using one resonant dipole
antenna and multiple frequency data: (a) using 8 frequencies with
frequency range of 6.2GHz to 6.9GHz (100MHz sampling step)
and (b) using 8 frequencies with frequency range of 5.8GHz to
7.2GHz (200MHz sampling step). For this example, the
parameters are z1= 0.5λ, z2= λ, z3= 1.5λ, d2= λ, d3= 2λ, and s= λ/
8. These results are with SNR= 20 dB.
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Figure 16: Setup in FEKO software for 3D imaging. (a) Example 1:
One object is at z= 0.5λ plane at (0,0,0.5λ), four objects are at z=λ
plane at (±λ/2,0,λ) and (0, ±λ/2,λ), and four objects are at z= 1.5λ
plane at (±λ,0,1.5λ) and (0,±λ,1.5λ). Objects are square shape
with side of λ/8. (b) Example 2: Two X-shape objects with an arm
length of 1.2λ and cross-section of each arm being square with a
side of λ/8. One objects is placed at z= 0.5λ with it arms along x
and y-axis, and the second object is placed at z= 1.5λ with its
arms rotated 45° with respect to x and y-axis.

11International Journal of Antennas and Propagation



For easier understanding of the capabilities and limi-
tations of this technique, the performance of this tech-
nique is first comprehensively studied in performing 2D
imaging, that is, along one cross-range direction (x-axis)
and range direction (z-axis). The data acquisition for this
study was performed by scanning the antenna array over
a linear aperture along the cross-range direction. Then,
3D imaging results were presented confirming the capa-
bility of the proposed technique in providing accurate
3D images.

Using the simulation data allowed for a comprehensive
investigation of the limitations of the technique with
respect to the number of antennas in the array, number
of imaged lines (planes), number of excitations, distance
between the antennas in the array, and the effect of noise.
Besides, contaminating the simulation data with noise
provided a realistic evaluation of the performance of the
proposed technique.

The cross-range resolution for the proposed technique
can be obtained from conventional expressions used for
holographic imaging. However, the quality of the images that
ultimately can be used for evaluating both the cross-range
resolution and range resolution depends on how accurate
the corresponding systems of equations can be solved. This,
in turn, depends on the number of antennas, distance
between imaged lines (planes), number of imaged lines
(planes), amount of noise, spacing between the antennas in
the array, and so on. In this study, a resolution of λ/8 was

demonstrated along the range for the studied setup which is
excellent for many applications such as biomedical imaging.

We emphasize that in the results presented in this manu-
script we have included the effect of noise on the complex-
valued scattered field. In particular, in Figures 13 and 14,
we have studied the threshold for SNR (10 dB or so) above
which the technique performs well. In practice, the source
of noise can be any electronic or mechanical issue such as
problems in source coherence and ripples in mechanical
scanning of the sensor. Comparing these results with those
in [23] (where noise study has been performed for wideband
near-field holography) shows that the single frequency
holography proposed here would be more vulnerable to
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Figure 17: 3D imaging results for the examples shown in Figure 16
for (a) example 1 and (b) example 2. The objects can be clearly
observed in the reconstructed images. These results are with
SNR= 30 dB.
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Figure 18: 3D imaging results for the example 1 shown in
Figure 16(a). The number of imaged planes has been increased
compared to the results in Figure 17(a). The distance between the
planes is λ/8 (the resolution determined by the 2D study). These
results are with SNR=30 dB.
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the noise. Although a threshold of 10 dB or so is still very
promising in the proposed work; in [23], the wideband
holographic imaging provides satisfactory imaging results
for SNR as low as −10 dB.

As a final note, using single frequency data in the pro-
posed technique allows for employing data acquisition tech-
niques such as modulated scatterer technique (MST) [33]
or employing resonant antennas or probes which are more
sensitive, for example, in microwave or millimeter wave
microscopy applications (e.g., see [34]).

Data Availability
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simulations software as mentioned in the paper. All the
dimensions and material information have been provided
in the paper so that a reader can repeat the work.
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