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The interaction between the magnetized plasma flow and an obstacle was investigated in the computer simulations
described here by using a three-dimensional hybrid code (kinetic ions and massless fluid electrons). The results,
which are relevant to the interaction between the solar wind and an unmagnetized planet (Venus or Mars), show
that fundamental structures (bow shock and magnetotail) are formed. When a reflecting boundary is used at the
obstacle, the magnetic field configuration was clearly asymmetrical in the direction of the convection electric field.
This asymmetry is a result of differences in ion acceleration due to the convection electric field. Asymmetry is also
evident when the size of the obstacle is close to the Larmor radius of protons. The shock of a smaller obstacle is
weaker than that of a larger obstacle, but the shock size is almost independent of the obstacle size.

1. Introduction
Magnetized plasma flow around an obstacle has been stud-

ied and the results of these studies have been applied to the

interaction between the solar wind and unmagnetized plan-

ets (Venus and Mars). Since the solar wind is supersonic

and the mean free path of the plasma particles constituting

the solar wind is much larger than the size of planets, the

collisionless shock is formed in front of the planet. The gas

dynamic theory has been used to explain the location and

shape of the shocks around Venus and Mars (Spreiter et al.,

1970; Slavin et al., 1983). The solar wind interaction with

these planets has also been the subject of magnetohydrody-

namic (MHD) simulations. Tanaka (1993) performed three-

dimensional MHD simulations of the interaction between the

solar wind and an unmagnetized planet. He investigated the

configuration of the magnetic field around the planet and also

explained the magnetic field draping process.

Although the gas dynamic theory and MHD simulations

have been useful in investigating many kinds of problems,

they are invalid when the scale of the Larmor radius of ions

must be considered. Since the radius of Mars, for example,

is comparable to the Larmor radius of solar wind protons, the

solar wind interaction with Mars may differ from that with

Venus. When we investigate the solar wind interaction with

Mars, we must therefore use some other methods taking into

account the effect of the finite Larmor radius of protons.

The hybrid code is one of the best simulation methods for

studying the effect because it treats ions as gyrating particles

(Leroy et al., 1982). Brecht (1990) and Brecht et al. (1993)

used a hybrid code in their three-dimensional simulations of

the interaction between the solar wind and the dayside por-

tion of Mars. They showed that the large Larmor radius of

the solar wind ions prevented the formation of a traditional
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collisionless shock in the subsolar region of the interaction.

Moore et al. (1991) also used three-dimensional hybrid code

simulations of the interaction between the solar wind and the

dayside portion of an unmagnetized planet, and they exam-

ined the asymmetry in the direction of the convection electric

field. Brecht (1997) included the magnetotail region in his

simulation box and showed that the resultant magnetic field

configuration around Mars is consistent with observations.

This paper reports the results of three-dimensional hybrid

code simulations in a global simulation system (size of the

simulation box ≫ size of the obstacle) including the magne-

totail. The simulations were similar to that of Brecht (1997)

in that they included the magnetotail, but the inner boundary

condition at the obstacle was different. He used an absorb-

ing boundary, whereas the simulations reported here used a

reflecting boundary.

The treatment of the boundary condition at the obstacle is

an important problem, and to treat the boundary rigorously

we would need to simulate a plasma representing the iono-

sphere around the planet (Shimazu et al., 1996). To avoid this

complication and to make the underlying physical processes

easier to understand, some simple boundary conditions have

been used instead. In the simulations reported by Moore et

al. (1991) and by Brecht (1997), ions were assumed to be

absorbed at the obstacle: the entire mass flux was assumed

to be absorbed.

The reflecting boundary, however, in which there is no

mass flux into the obstacle, should also be examined. Gas

dynamic calculations have assumed that the flow lines do

not connect with the obstacle: the normal component of the

flow velocity was set to zero at the surface of the obstacle.

This condition in MHD models corresponds to the reflect-

ing boundary condition in particle simulations, where the

normal component of the flow velocity should be zero as

a result of the pressure balance. Because the distribution

function is symmetric in the direction normal to the reflect-
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ing boundary, the average mass flux between the solar wind

and the obstacle becomes zero. Particle simulations with a

reflecting boundary are, thus, a natural extension of MHD

simulations and are more appropriate for comparisons with

the gas dynamic theory or MHD simulations than are particle

simulations with an absorbing boundary. Disadvantages of

using the reflecting boundary, however, are that the reflected

ions might change the distribution function and consequently

result in the generation of some plasma instabilities.

The reflecting boundary was used in the present work

for the following reason: Consider the problem posed by

the trajectories of shocked (decelerated and heated) solar

wind ions that penetrate the ionosphere. If these ions reach

a depth where collisions with atmospheric neutrals species

must be considered, the lower ionosphere will rapidly gain

a net charge. Electrons, which have a smaller Larmor ra-

dius, cannot penetrate as deeply as ions. As a result, charges

are separated and an electric field is generated. This elec-

tric field either prevents ions from entering the ionosphere or

decreases the depth to which they penetrate. Consequently,

solar wind ions that penetrate the ionosphere return to the

flow region again.

The present simulations did not include the effects of

charge exchange, ion pickup, or mass loading, even though

the importance of these effects is well known (Intriligator,

1982; Luhmann et al., 1985; Phillips et al., 1987). To under-

stand the importance of these effects we first need to exclude

them from the simulation. The focus of this study was the ef-

fect of the finite Larmor radius of protons on the asymmetry

of the bow shock, magnetosheath, and magnetotail.

2. Model
The simulation used the three-dimensional Cartesian co-

ordinate system in which the grid cells were spaced equally

and there were 32 in each of the x , y, and z directions. The

average number of particles in one grid cell was 16. The

initial conditions are shown in Fig. 1. The solar wind was

emulated by using a super-Alfvénic plasma (number density

n0; velocity vsw) continuously injected into the simulation

system from the x = 0 plane (left-hand boundary of Fig. 1).

Although the left-hand side of the simulation box was a re-

flecting boundary, few ions were reflected there because vsw

was initially set to be greater than the ion thermal velocity.

The bulk velocity of the solar wind was parallel to the x axis,

and solar wind ions were removed from the simulation sys-

tem when they reached the right-hand boundary. The only

ions considered in the work reported here were protons. The

sphere that represents an obstacle was placed at the center

of the simulation box, and the radius R of the obstacle was

sufficiently smaller than the size L of the simulation box

(L = 8R) that influences of the boundaries of the simulation

box were insignificant.

Two kinds of boundary conditions for ions at the obstacle

were considered: absorption and reflection. The condition

for absorption was simple: any ion that moved into the obsta-

cle was removed from the simulation system. The condition

for reflection can be explained using Fig. 1. Consider the

point P0, which is the location of an ion at a certain time. If

the ion moved into the obstacle to point P1 at the next time

step, it was reflected to P2, the mirror point of P1 with regard

Fig. 1. Initial conditions. This figure is a cross section on the z = L/2 plane,

which includes the center of the obstacle (represented by the circle). The

solid lines represent the initial ambient magnetic field lines.

to the tangent plane including P3. The velocity vector was

also transformed into its mirror-image with respect to this

tangent plane. Momentum was the same before and after the

reflection.

The initial ambient magnetic field B (shown by lines in

Fig. 1) was given by the potential field:

B =

⎧

⎨

⎩

∇

{

B0 y

(

1 +
R3

2r3

)}

(r > R)

0 (r < R),

(1)

where B0/(4πm in0)
1/2 ≡ VA = 1.0 × 10−4c and r2 =

(x − L/2)2 + (y − L/2)2 + (z − L/2)2. Because the electri-

cal resistivity of the solar wind was assumed to be zero the

formation of the bow shock was due to the numerical resis-

tivity. This resistivity does not affect the intensity, shape, or

location of the bow shock. The resistivity η of the obstacle

was given by

ηωci/4π = 1.0 × 10−8, (2)

where ωci(= eB0/(m ic)) is the proton cyclotron frequency.

This value corresponds to the resistivity of the lower iono-

sphere. When the electric and magnetic fields were cal-

culated, the fields in the interior of the obstacle were also

calculated, but the electron velocity there was set to zero.

The initial temperature of the protons was assumed to be

the same as that of the electron fluid and to be constant in

space. The ratio of the proton thermal pressure to the mag-

netic pressure of the solar wind (i.e., βi) was assumed in

this study to be 1, whereas the previous simulations had as-

sumed that the ions were cold. The results of simulations

with βi = 0.5 and βi = 2 showed that variations of βi within

this range did not change the physics drastically. Slavin and

Holzer (1981) showed that β (= βi+βe, βe is β for electrons)

is 1.4 at Venus and is 2.0 at Mars. That βi equals 1 is thus a

reasonable assumption for the solar wind in this study.
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Fig. 2. The z = L/2 plane at ωcit = 37.5 in case A: (a) proton density and (b) the x component of the proton velocity. The center circle represents the

obstacle.

3. Results
3.1 Asymmetry

This subsection describes the fundamental structures ob-

tained in the simulation. They must be examined in detail

before they are compared with the structures described in

later sections. The results described here are those obtained

in what is called case A in this paper. In this case the ra-

dius of the obstacle was set to 25.6VA/ωci. Since vsw was

fixed at 4.0 VA, the average Larmor radius ρ of protons in

the simulation is given by

ρ = vsw/ωci = 4VA/ωci. (3)

The radius R of the obstacle was thus about 6.4 ρ. The

time step was ωcit = 0.025. Various mesh sizes and time

steps were tested in preliminary simulations, and the results

reported here were obtained with an obstacle diameter of 8

cells providing physically meaningful results.

Figures 2(a) and 2(b) respectively show the proton den-

sity and the x component of the average proton velocity at

ωcit = 37.5. During the time 37.5/ωci the initial solar wind

travels a distance 150 VA/ωci or about 0.73L . As shown in
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Fig. 3. Magnetic field lines obtained at ωcit = 37.5 in case A.

Fig. 2, on the upstream side of the obstacle the density in-

creases sharply and the velocity decreases sharply. A bow

shock is generated there. The total pressure on the upstream

side is given by the initial conditions: (dynamic pressure) +

(thermal pressure (ion+electron)) + (magnetic pressure) =

16.0n0kBTe + 2.0n0kBTe + 1.0n0kBTe = 19.0n0kBTe, where

kB is the Boltzmann constant and Te is the temperature of

the electron fluid (constant in space and time). And the to-

tal pressure on the downstream side near the subsolar point

is obtained from the simulation results: the density on the

downstream side is 2.6 times that on the upstream side,

the velocity on the downstream side is 0.39 times that on

the upstream side, the ion temperature on the downstream

side is 2.4 times that on the upstream side, and the mag-

netic field intensity on the downstream side is 2.8 times that

on the upstream side. Thus (dynamic pressure) + (thermal

pressure)+ (magnetic pressure) = 6.3n0kBTe +3.4n0kBTe +

7.8n0kBTe = 17.5n0kBTe. The total pressure is nearly the

same on both sides of the shock (8% difference).

The magnetotail is formed on the downstream side of the

obstacle. The velocity field is disturbed in the tail because the

density there is very low. Since this simulation used a filter

to reduce short-wavelength electromagnetic fields in the tail

region, the tail region may be rather diffusive.

Figure 3 shows the magnetic field lines around the obstacle

at ωcit = 37.5. The field lines are bent where the solar

wind encounters the shock, and the magnetic field piles up

downstream of the shock.

Four kinds of asymmetry in the direction of the −vsw × B

convection electric field (−z direction) were found in this

case:

3.1.1 Proton acceleration Figure 4(a) shows, for the

y = L/2 plane, the x component of the proton velocity. The

flow near x = 100VA/ωci, z = 70VA/ωci (near the “pole” on

the side of the obstacle to which the convection electric field

is pointing) is accelerated to a speed greater than that of the

solar wind, while the flow on the other side is not. This is

a clear asymmetry in the direction of the convection electric

field. As shown in Fig. 4(b), however, the flux nvix in this

acceleration region is very low because the density there is

very low. This proton acceleration was not observed in pre-

vious simulation studies using an absorbing boundary, This

acceleration is considered in detail in the next subsection.

3.1.2 Shock size We can see in Fig. 4 that the distance

from the center of the obstacle to the shock is shorter on

the side of the obstacle to which the convection electric field

is pointing than that on the other side. Because the fast

mode Mach cone asymmetry does not appear in this direction,

the asymmetry in shock size must be a kinetic effect. This

asymmetry in shock size is consistent with the simulation

results of Brecht and Ferrante (1991), but is opposite the

asymmetry actually observed at both Venus (Alexander et al.,

1986; Russell et al., 1988) and Mars (Zhang et al., 1991).

This discrepancy indicates that the observed asymmetry is

not related to the effect of the finite Larmor radius and must

thus be due to effects not included in the simulations.

Brecht and Ferrante (1991) concluded that the asymmetry

in shock size was caused by the Hall current. In the present

model, however, it is a result of the asymmetry in ion accel-

eration: on the side of the obstacle to which the convection

electric field is pointing, ions are accelerated and less accu-

mulated as explained in detail in the following subsection.

The asymmetry can be accounted for by the Hall current

(since the ion acceleration causes the ion current to differ

from the electron current), but the present results show that

what is essential to the asymmetry is the asymmetry of the

ion acceleration.

3.1.3 Magnetic field configuration in the magnetotail

Figure 3 shows the field lines draping around the obstacle and

forming the magnetotail. The magnetic field configuration
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Fig. 4. The y = L/2 plane at ωcit = 37.5 in case A: (a) the x component of the proton velocity and (b) the flux nvix .

in the magnetotail is obviously asymmetrical in the z direc-

tion: the field lines in the negative z direction (direction of

the convection electric field) are bent more than those in the

positive z direction, and the tail is filled with field lines orig-

inating on the negative z side. The previous studies reported

asymmetry of the magnetic field only in the dayside (Moore

et al., 1991; Brecht et al., 1993). In the present results the

nightside asymmetry is also shown. This asymmetric filling

of magnetic fields in the magnetotail was suggested by Slavin

et al. (1989) on the basis of PVO observations, suggesting

the interplanetary flux tubes bent into the tail predominantly

over the hemisphere to which the convection electric field

was pointing. This asymmetry too is a result of the asymme-

try of ion acceleration as shown later in this paper.

3.1.4 Field line draping Figure 5(a) shows, for the

x = (5/8)L plane in the tail, the x component of the mag-

netic field. The sign of the Bx component is positive in the

right half of the figure and negative in the left half, and this

figure shows the clear two-lobe structure in the magnetotail.

This structure is characteristic of the draped field lines in the
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Fig. 5. The z = (5/8)L plane at ωcit = 37.5 in case A: (a) the x component of the magnetic field and (b) the x component of the proton velocity.

induced magnetotail.

Marubashi et al. (1985) and Saunders and Russell (1986)

used the PVO data when they analyzed the interplanetary

origin of the Venus magnetotail, and they found that the pos-

itive and negative polarity of the Bx component was clearly

divided into two parts. Yeroshenko et al. (1990), using the

Phobos 2 data, showed the same pattern of magnetic field po-

larity in the Mars magnetotail. The clear two-lobe structure

obtained in the present simulation results is in good agree-

ment with the observation results.

Figure 5(b) shows, also for the x = (5/8)L plane, the x

component of the proton velocity. The inner circle shows

the obstacle, and the outer milled one corresponds to the

shock. The solar wind flow decelerates inside the shock, and

a fast proton flow is noticeable near y = 100VA/ωci, z =

70VA/ωci. This fast flow is seen only on the side of the

obstacle to which the convection electric field is pointing. It

is notable from Fig. 5(a) that the signs of the Bx component

in the fast flow region are the opposite of those in the other

part. In this region the direction of the magnetic field is

opposite that of the draped magnetotail field. This inverse

draping polarity of the magnetic field suggests that the fast
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Fig. 6. For the y = L/2 plane in case A, three proton trajectories. The

center circle represents the obstacle.

flow drags the field lines.

3.2 Proton acceleration

Figure 6 shows three proton trajectories obtained in case

A. As shown in Fig. 4(a), protons were accelerated near the

“pole” on the side of the obstacle to which the convection

electric field was pointing. Two factors responsible for this

acceleration were investigated in these simulations.

The first is the proton reflection at the obstacle. Note that

here we are considering protons reflected at the obstacle and

are neglecting the reflection at the shock. Protons reflected

from the side of the obstacle to which the−vsw×B convection

electric field is pointing should be accelerated because the

direction in which they are reflected is that to which the

convection electric field is pointing.

This acceleration should be proportional to the solar wind

magnetic field B and vsw. This expectation was examined by

changing the simulation parameters. Figure 7(a) shows the

relation between B and v1, which is the difference between

the shocked solar wind velocity and the velocity measured at

the “pole” (the side of the obstacle to which the convection

electric field is pointing). This figure shows that v1 is

roughly proportional to B. Moreover, when the solar wind

velocity was set to 2VA, v1 became nearly half.

The second factor responsible for the proton acceleration

is the j × B force (magnetic tension). The magnitude of the

acceleration due to this force becomes large on both flanks

of the obstacle near x = 110VA/ωci, z = 70VA/ωci, and

z = 130VA/ωci. The measured value of the acceleration

is |j × B|/(m inc) = 0.3VAωci, and the extent of the region

over which this acceleration acts is 50 VA/ωci. If we use

these values to estimate the proton velocity, while assuming

the acceleration is constant, the final velocity becomes v =

5.6VA when the initial velocity is VA. This initial velocity

corresponds to the proton velocity on the side opposite the

one to which the convection electric field is pointing. On the

other hand, since protons on the side to which the convection

electric field is pointing have already been accelerated, the

initial average velocity on this side is taken to be 4.0VA. Then

v becomes 6.8VA. These average velocities can account for

Fig. 7. (a) Relation between v1 and B when R is 25.6VA/ωci and vsw is

4VA. (b) Relation between v2 and R when vsw is 4VA and B is B0.

the simulation results.

If this second factor were responsible for the acceleration,

the velocity difference v2 should be given by

v2 ∼ |j × B|δt ∼
B2

l
δt, (4)

where δt is the length of time the protons stay in the accel-

eration region and l is the typical length of bent field lines.

It was assumed that l ∼ R, and δt was taken to be the mag-

netic diffusion time of the obstacle (∼ R2/η) because the

length of the stretched field lines would be proportional to

the diffusion time. Thus,

v2 ∼
B2 R

η
. (5)

Figure 7(b) shows the relation between R and v2, which is

the difference between the velocity at the “pole” and that in

the tail region. Although v2 increases when R increases,

the increases are not proportional. It may not be appropriate

to have assumed that δt is the diffusion time because some

of the field lines bend at the surface and do not penetrate the

obstacle. Moreover, cases in which B was set to 2B0 and

0.5B0 were examined, as were cases in which η was set to

0.1η and 0.01η. Although the acceleration increased with

increasing B and with decreasing η, the measured relation

did not satisfy the relation (5), which may also be due to the

slipping field lines.

The former section showed that the accelerated flow drags

the field lines in the acceleration region. In this region pro-

tons had been accelerated too fast and the j × B force decel-

erated the flow rather than accelerated it.

We examined dependence on β, but the results are not so

different. Thus the electron pressure term does not affect the

acceleration.

Tanaka (1993) showed in his MHD simulation results that

the tailward flow in the magnetosheath over the pole can be



390 H. SHIMAZU: THREE-DIMENSIONAL HYBRID SIMULATION OF MAGNETIZED PLASMA FLOW

Fig. 8. The y = L/2 plane at ωcit = 17.2 in case B: (a) proton density and (b) the x component of the proton velocity.

faster than the solar wind because of the j × B force. The

present simulation showed the same results and also revealed

that the −vsw × B electric field is important.

3.3 Small obstacle

This subsection shows the simulation results obtained

when the obstacle radius R was 6.4VA/ωci and the time step

was ωcit = 0.003125. Here ρ was 1.6R, and the boundary

was assumed to be a reflecting boundary. This case is called

case B in this paper. Figures 8(a) and 8(b) respectively show

the proton density and the x component of the proton velocity

for the y = L/2 plane at ωcit = 17.2. The initial solar wind

travels a distance 69 VA/ωci > L during the time 17.2/ωci.

The proton acceleration near the “pole” on the side of the

obstacle to which the convection electric field is pointing is

also seen in this case (Fig. 8(b)), as is the asymmetry of the

acceleration. This study did not find that the asymmetry is

more pronounced for a smaller obstacle, and in this respect

is consistent with Brecht (1990).

The ratio of downstream density to upstream density of the

shock is smaller in case B (∼ 2.2) than in case A (∼ 2.6), so
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Fig. 9. The y = L/2 plane at ωcit = 31.3 in case C: (a) proton density and (b) the x component of the proton velocity.

the shock in case B is weaker than that in case A. This shock

is weaker because protons, which have a relatively large

Larmor radius, rapidly move tailward and do not accumulate

downstream of the shock. The total pressure on the down-

stream side is obtained from the present results: the density

on the downstream side is 2.2 times that on the upstream

side, the velocity on the downstream side is 0.48 times that

on the upstream side, the ion temperature on the downstream

side is 1.5 times that on the upstream side, and the mag-

netic field intensity on the downstream side is 2.5 times that

on the upstream side. Thus (dynamic pressure) + (thermal

pressure)+ (magnetic pressure) = 8.1n0kBTe +2.5n0kBTe +

6.3n0kBTe = 16.9n0kBTe. The total pressure is nearly the

same on both sides of the shock.

The ratio of the shock size to the obstacle size is smaller

in case B (∼ 2.1) than in case A (∼ 2.3), but the difference

is small. When the shock size dependence on obstacle size

was examined by changing the obstacle size, the dependence

was found to be weak. The observational results also did

not show clear size dependence because the ratio for Mars is
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nearly the same as that for Venus (Slavin et al., 1983).

3.4 Boundary condition

This section shows the effect of the obstacle boundary by

analyzing a case of absorbing boundary (here called case C)

and comparing it with case A (reflecting boundary). Other

parameters are the same as those in case A. Figures 9(a) and

9(b) show the proton density and the x component of the pro-

ton velocity for the y = L/2 plane at ωcit = 31.3 in case C.

The total pressure on the downstream side is obtained from

the present results: the density on the downstream side is 2.1

times that on the upstream side, the velocity on the down-

stream side is 0.48 times that on the upstream side, the ion

temperature on the downstream side is 3.5 times that on the

upstream side, and the magnetic field intensity on the down-

stream side is 2.3 times that on the upstream side. Thus (dy-

namic pressure)+(thermal pressure)+(magnetic pressure) =

7.7n0kBTe + 4.5n0kBTe + 5.3n0kBTe = 17.5n0kBTe. The to-

tal pressure is nearly the same on both sides of the shock.

If we compare Fig. 9 with the corresponding one for case

A, we can see that the difference in density between the

regions upstream and downstream of the shock is smaller for

case C. In case C the density downstream of the shock is 2.1

times that in the solar wind, while in case A it is 2.6 times

that in the solar wind.

This difference is due to ions being removed at the absorb-

ing boundary. Moreover, the downstream velocity is greater

in case C than in case A because the mass flux is not zero

at the surface of the absorbing obstacle. Thus the shock

becomes weaker under the absorbing boundary condition.

The acceleration regions near the “pole” are evident on

both sides of the obstacle in this case (Fig. 9(b)). The asym-

metry of the acceleration can be seen but it is weaker than

that seen in case A. Because protons are not reflected, the

effect of the convection electric field is relatively small. This

case is similar to the cases modeled in previous simulation

studies using an absorbing boundary.

The shock is located one mesh downstream of the shock

in case A. Slavin et al. (1979) found that the altitude of the

Venus bow shock varies with the solar cycle, being greatest

at the solar maximum and lowest at the minimum. They

argued that the enhanced neutral atmosphere scale heights

at the cycle minimum lowered the bow shock altitude by

increasing the charge exchange in the lower magnetosheath

and thus increasing solar wind “absorption”. Although the

effect of this charge exchange was not explicitly included in

the present simulation, the results show that the absorbing

condition lowers the shock altitude.

When we consider this weaker and lower shock from the

MHD viewpoint, ‘weaker’ and ‘lower’ seem to be conflict-

ing. To resolve this apparent inconsistency, we should note

that when the absorbing boundary is used, the effective size of

the obstacle is smaller than it is when the reflecting boundary

is used.

4. Conclusions
The present three-dimensional hybrid code simulations

of the interaction between the solar wind and an unmag-

netized planet considered a global and self-consistent simu-

lation system that included the magnetotail. This simulation

was also the first to use the reflecting boundary condition at

the obstacle.

Differences between the previous models and the present

model are the reflecting boundary and finite ion β value. The

reflecting boundary caused a tailward ion acceleration that

had not been evident in previous simulation studies. Previ-

ous studies assumed ions to be cold, while in this simulation

the β value for solar wind ions was assumed to be 1. This

difference, however, seemed to have little effect on the re-

sults.

The results can be summarized as follows:

(1) The present simulations reproduced the fundamental

structures: bow shock and magnetotail. They also repro-

duced the clear two-lobe tail structure observed by the PVO,

and they showed the asymmetric filling of magnetic fields

in the magnetotail that had been suggested by Slavin et al.

(1989), but that had not been reported in previous simula-

tion studies. This filling is evident when the boundary is

reflecting.

(2) Protons were accelerated in the magnetosheath near

the obstacle. Two kinds of acceleration processes were con-

sidered: one due to the − vsw × B convection electric field

and the other due to the j × B force. When the reflecting

boundary at the obstacle was used, the proton acceleration

due to −vsw × B field was dominant. This acceleration led

to the asymmetry of the magnetic field around the obstacle.

(3) When the size of the obstacle was close to the Larmor

radius of protons, the shock became weak. This weak shock

was a result of protons, which have a relatively large Larmor

radius, rapidly moving tailward and not accumulating down-

stream of the shock.

(4) Two kinds of boundary conditions for protons at the

obstacle were compared: reflection and absorption. The ef-

fect of the convection electric field was found to be relatively

small when the boundary is absorbing. When ions are ab-

sorbed, they are removed from the downstream region and

the downstream density therefore becomes smaller than it is

when they are reflected. The downstream velocity is larger

in the absorbing boundary case because the mass flux at the

surface of the obstacle is not zero. Thus an absorbing bound-

ary results in a weaker shock than does a reflecting boundary.

The shock under the absorbing boundary was also found to be

farther downstream than it was under the reflecting boundary.

(5) The strong proton acceleration caused by the reflecting

boundary may be unrealistic. To construct a more realistic

model, we must give up the use of a simple boundary condi-

tion (reflection or absorption) at the obstacle. A better model

will include the effects of the ionospheric plasma.
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Appendix
This appendix shows the numerical scheme used in the

present simulations. The hybrid code treats ions as gyrating

particles and electrons as a massless fluid. The equation of

motion for an ion can be written
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m i

dv

dt
= q(E + v/c × B − ηj), (A.1)

dx

dt
= v. (A.2)

Here m i is the mass of the ion, v is its velocity, t is time, q

is charge, E is the electric field, c is the speed of light, B is

the magnetic field, η is the electric resistivity, j is the electric

current density, and x is the location of the ion. The behavior

of the massless electron fluid, on the other hand, is described

by the equation

− e(E + ve/c × B − ηj) −
1

ne

∇(nekBTe) = 0, (A.3)

where e is the unit charge, ve and ne are the velocity and

density of the electron fluid. Te is assumed here to be constant

in space and time.

The hybrid code also solves the following two Maxwell

equations:

1

c

∂B

∂t
= −∇ × E (A.4)

∇ × B =
4π

c
j (A.5)

Instead of using the Poisson equation for the electric field and

charges, the hybrid code assumes a quasi-neutral condition:

ne = ni ≡ n, (A.6)

where ni is the density of the ions. This condition excludes

the electron plasma oscillation and high-frequency waves.

The simulation runs were carried out as an initial and

boundary value problem. A standard leapfrog scheme was

used to advance the particles and fields. We can differentiate

Eq. (A.4) and get

Bk+1 = −2ct∇ × Ek + Bk−1, (A.7)

where t is the time step and the subscript k represents the

time kt . ∇ is differentiated using a centered differencing

scheme. Equation (A.7) is used to obtain Bk+1 from Ek and

Bk−1, and then jk+1 is obtained from Bk+1 by using Eq. (A.5).

Differentiating Eqs. (A.1) and (A.2) yields

vk+1 = (2qt/m i)(Ek + vk/c × Bk − ηjk) + vk−1 (A.8)

and

xk+3/2 = tvk+1 + xk+1/2. (A.9)

From these equations we can obtain the velocity and location

of each ion. Bk and xk+1 are obtained using

Bk = (1/2)(Bk+1 + Bk−1) (A.10)

and

xk+1 = (1/2)(xk+3/2 + xk+1/2). (A.11)

By summarizing ion velocities and locations, we can get the

ion velocity vi and density ni at each grid point. The electron

velocity ve can be obtained from j, vi, and ni:

ve = (qnivi − j)/ene. (A.12)

We use Eqs. (A.3) and (A.6) to get E from ve.
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