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Abstract

We show, by means of numerical and analytical methods, that media with a

repulsive nonlinearity which grows from the center to the periphery support a

remarkable variety of previously unknown complex stationary and dynamical

three-dimensional (3D) solitary-wave states. Peanut-shaped modulation profiles

give rise to vertically symmetric and antisymmetric vortex states, and novel

stationary hybrid states, built of top and bottom vortices with opposite topolo-

gical charges, as well as robust dynamical hybrids, which feature stable pre-

cession of a vortex on top of a zero-vorticity soliton. The analysis reveals

stability regions for symmetric, antisymmetric, and hybrid states. In addition,

bead-shaped modulation profiles give rise to the first example of exact analytical

solutions for stable 3D vortex solitons. The predicted states may be realized in

media with a controllable cubic nonlinearity, such as Bose–Einstein

condensates.
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1. Introduction

Self-trapping of three-dimensional (3D) confined modes (solitons or, more properly, solitary

waves) in optics [1–3], Bose–Einstein condensates (BECs) [4–6], ferromagnetic media [7],

superconductors [8], semiconductors [9], baryonic matter [10], and general field theory [11, 12]

is a fundamental problem of nonlinear physics. An apparent condition is that an attractive, or

self-focusing, nonlinearity is necessary for the creation of localized states; however, the

attractive cubic nonlinearity simultaneously gives rise to collapse [13] of localized modes in

higher-dimensional settings and, additionally, to strong azimuthal modulational instability of

states with intrinsic vorticity [14], thus making the search for stable 3D fundamental and

topological solitons in materials with the cubic (Kerr) nonlinearity a challenging issue.

Various methods have been elaborated over the years, chiefly in the theoretical form, to

remedy this situation and stabilize 3D solitary waves, fundamental and vortical ones alike. As

outlined in detail in the reviews [1, 2] (see also the more recent work [15]), stabilization may be

achieved by a higher-order quintic self-defocusing nonlinearity, provided that the underlying

physical setting gives rise to such terms. Another possibility is offered by periodic (lattice)

potentials [1–3]. In particular, a 2D potential may be sufficient for the stabilization of 3D

solitons, as well as for the stabilization against supercritical collapse [16]. In addition, it is also

possible to stabilize 3D fundamental solitons by means of ‘nonlinearity management’ (time-

periodic sign-changing modulation of the nonlinearity coefficient), which should be combined,

at least, with a 1D lattice potential [17]. The use of nonlocal nonlinearities may also help to

stabilize 3D localized modes [19]. Lastly, it is relevant to mention a very recent result

concerning 2D localized modes created by the self-focusing cubic nonlinearity in the free space:

while a common belief was that they might never be stable, it has been demonstrated in [20]

that mixed vortex-fundamental modes in a system of two coupled Gross–Pitaevskii equations

modeling the spin-orbit-coupled BEC can be stable in the 2D free space. This unexpected result

is explained by the fact that the norm of the mixed modes takes values below the well-known

2D-collapse threshold [13].

Unlike the above-mentioned methods, the use of spatially inhomogeneous cubic

nonlinearity does not yield stabilization of 3D solitons [3]. In the 2D setting, a nonlinearity

subject to a smooth spatial modulation cannot stabilize solitons either [18]. Stabilization of 2D

fundamental solitons (but not vortex states) is possible by means of various spatial modulation

profiles with sharp edges [21]. For this reason, most of the previous studies of solitons in

inhomogeneous nonlinearity landscapes have been performed in 1D settings, chiefly for

periodic modulation patterns [22].

A radically different approach was recently put forward and elaborated in [23] and [24]: a

repulsive, or defocusing, nonlinearity, whose local strength grows from the center to the

periphery, as a function of radius r at any rate faster than r3, can readily induce self-trapping of

robust localized modes, which are stable not only to weak, but also to strong perturbations

(although these solutions are far from those in integrable models, we call them ‘solitons’, as

commonly adopted in the current literature when dealing with stable self-trapped modes). In

BECs, the necessary spatial modulation of the nonlinearity may be induced by means of the

tunable Feshbach resonance, controlled by magnetic [25] and/or optical [26] fields, created with

appropriate inhomogeneous profiles [27]. The required magnetic-field patterns can be provided

by magnetic lattices of various types [28], while the optical-intensity profiles can be painted by
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laser beams in 3D geometries [29]. In addition to fundamental solitons, landscapes with a

growing repulsive nonlinearity were shown to support topological states in the form of vortex-

soliton tori, which can exhibit gyroscopic precession under the action of an external torque [24]

(precession of a tilted vortex was earlier considered in a different setting in [30]).

So far, only the simplest 3D vortex solitons were addressed in the framework of the

setting based on the spatially modulated strength of the self-repulsion. The possibility of the

existence of more complex vorticity-carrying 3D structures remains unexplored. In this context,

it should be stressed that the creation of stable structures carrying several topological

dislocations is a challenge. Previously, such entities were found mostly in the form of

vortex–antivortex pairs and vortex arrays in settings with a reduced dimensionality, such as

superconductors [31, 34], pancake-shaped atomic BECs [32, 35], and exciton–polariton

condensates [33]. To the best of our knowledge, no examples of 3D solitons with coaxial vortex

lines threading several objects forming a complex state, or with the topological charge changing

along the axis of the soliton, have been reported.

In this work, our analysis reveals that 3D media with a repulsive nonlinearity growing

from two symmetric minima to the periphery make it possible to create complex but,

nevertheless, stable static and dynamical self-trapped topological modes, in the form of

fundamental and vortical dipoles, stationary vortex–antivortex hybrids, and precessing hybrids

built as a vortex sitting on top of a zero-vorticity mode. These are remarkable, novel species of

3D localized modes, which have not been reported before in any other systems. The very

existence of the stationary vortex–antivortex solitons and precessing vortex-fundamental

hybrids is an unexpected finding, because the topology of such states is different in their top and

bottom sections. All these previously unknown static and dynamical states are supported by the

nonlinearity-modulation profile, which is obtained from the spherical configuration by a

deformation in the axial (vertical) direction.

The basic model is introduced in section 2, where we also give a number of analytical

results, which can be obtained in spite of the apparent complexity of the system. These include

the Thomas–Fermi approximation (TFA) for families of vortex modes, an approximate

description of the dipole (antisymmetric) modes in terms of quasi-1D dark solitons embedded

into the ordinary symmetric states, and an approximation which explains the existence of

stationary vortex–antivortex hybrids. Results of systematic numerical analysis are reported in

section 3, including families of stationary antisymmetric and vortex–antivortex hybrid modes,

as well as dynamical (steadily precessing) vortex-fundamental hybrids. A comprehensive

stability analysis is presented too, along with simulations of the spontaneous evolution of

unstable states. The work is concluded by section 4. In the appendix, we additionally present

stable analytical solutions for 3D vortex solitons in a model with a bead-shaped spatial

modulation profile, which is the first example of any system admitting exact solutions of this

type, thus providing a direct proof of their existence.

2. The models and analytical results

2.1. The general formulation

Our system is described by the single-component nonlinear Schrödinger/Gross–Pitaevskii

(NLS/GP) equation in the 3D space for the wave function ψ tr( , ):
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ψ

ψ σ ψ ψ
∂
∂

= − +
t

ri ( ) , (1)2 2

where Laplacian  2 acts on coordinates = x y zr { , , }, and σ >r( ) 0 represents the local

strength of the repulsive nonlinearity, which must grow at → ∞r faster than r3. Dynamical

invariants of equation (1) are the norm and Hamiltonian, ∭ ψ=N x y z t x y z( , , , ) d d d2 and

∭ ψ σ ψ= + | |⎡⎣ ⎤⎦H r x y z(1/2) ( ) d d d2 4 . Stationary states with real chemical potential μ can

be found in the form of ψ μ ϕ= −t tr r( , ) exp ( i ) ( ), where the (generally, complex) spatial wave

function satisfies the equation

μϕ ϕ σ ϕ ϕ= − + r( ) . (2)2 2

While the simplest 3D vortex solitons have been obtained in spherically symmetric

nonlinearity landscapes, such as the one with σ = ( )r r( ) exp /22 [24], here our objective is to

show that a deformation of this nonlinearity profile, lending it to two local minima, allows us to

produce novel species of robust stationary and precessing 3D topological modes. To this end,

the spherically symmetric modulation pattern is shifted by the distance ±d /2 along the z axis,

and the so produced profiles are stitched together in the midplane, z = 0:

σ ρ ρ= + −⎜ ⎟

⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

⎤

⎦
⎥
⎥

z z
d

( , ) exp
1

2 2
, (3)2

2

with ρ ≡ +x y2 2 2. This profile keeps the cylindrical symmetry and, accordingly, the z-

component of the fieldʼs angular momentum, which is the third dynamical invariant of the

model, in addition to N and H,

∭ ψ ψ= ∂ − ∂* ( )M y x x y zi d d d , (4)x y

where * stands for the complex conjugation.

The steep anti-Gaussian profile, adopted in equation (3), is not a necessary feature of the

model. As mentioned above, the necessary condition for the existence of 3D solitons, which

follows from the normalizability of the wave function, is that σ r( ) must grow faster than r3

[23]. The modulation profile (3) is adopted here as it makes it possible to obtain families of

stationary vortex modes in an almost exact analytical form, by means of the TFA, thus

supporting numerical findings.

2.2. Symmetric self-trapped vortices and the TFA

Among the complex stable modes reported below, the simplest species are confined vortex

states, carrying an integer topological charge S, which are looked for, in the cylindrical

coordinates, as

ϕ ρ θ θ Φ ρ=z S z( , , ) exp (i ) ( , ), (5)

where Φ is a real function. As follows from equations (4) and (5), the angular momentum of the

vortex is M = SN. Below, such modes, with identical vorticities S in the top and bottom parts of

the peanut-shaped nonlinearity landscape, are denoted as S S/ (the definitions of ‘top’ and

4
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‘bottom’ are arbitrary here, as equations (2) and (3) are obviously invariant with respect to

→ −z z).

The shape of the simplest symmetric vortices and fundamental solitons (S = 0) can be

approximated by means of the TFA, which neglects z- and ρ-derivatives in equation (2), and is

usually relevant in the case of a strong repulsive nonlinearity [5, 36, 37]:

Φ ρ

ρ ρ μ

μ ρ ρ ρ ρ
=

< ≡

− − + − >⎜ ⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

⎤

⎦
⎥
⎥

( )
z

S

S z
d( , )

0, at ,

exp
1

2 2
, at .

(6)

S

S

TFA

2

2 2 2

2 2 2

2

2 2

Here the first line represents the hole at the center of the vortex state (see panels marked1/1

in the top rows of figures 1 and 2). Families of self-trapped modes are characterized by

dependence μN ( ), which can be obtained from equation (6) in an approximate analytical form:

∫ ∫πμ
μ

=
+

μ−
∞ − ∞

− −
N R

R S
z4 e d

Re

2
d e . (7)S S

R
z d

TFA

( ) 2 (2 )

0
2

0

( 2) 22 2

For S = 0 (the fundamental mode), equation (7) reduces to a simple linear dependence,

π μ= +=N d2 2 [1 erf ( /2 2 ) ] .S

TFA

( 0) 3 The constant slope μNd /d given by the latter expression

Figure 1. Three-dimensional images of modes are displayed by means of isosurfaces

corresponding to ψ =x y z( , , ) 0.22 . The vorticity content of the states is indicated

under each panel. For =S 0/0 and =S 1/1, the top and bottom panels display the
symmetric and antisymmetric varieties, respectively. The states shown in the top row
are stable, while those in the bottom row are unstable. All the modes pertain to d = 3 in
equation (3) and μ = 10, except for the one with = −S 1/ 1, which was obtained for

d = 5 and μ = 7.
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is, actually, an asymptotically exact result at large μ for any S. Figures 3(a) and (b) show that,

while the TFA predictions for μN ( ) may be shifted from their numerically found counterparts,

the asymptotic slope is indeed predicted exactly.

Our stability analysis for vortex modes (5), as well as for other stationary modes featuring

the cylindrical symmetry, which are considered below, was carried out by numerically solving

the linearized equations for small perturbations. Perturbed solutions are sought for as

ψ ρ Φ ρ ϵ φ ρ φ ρ= + + *μ θ θ δ θ δ− + +
+

− + *

−
⎡
⎣

⎤
⎦{ }z t z z z( , , ) e ( , ) e ( , ) e ( , ) , (8)t S k t k ti i i i

where ϵ is an infinitesimal amplitude of the perturbation, k is its integer azimuthal index, and

δ μS k( , , ) is a (generally, complex) instability growth rate. Substitution of expression (8) into

equation (1) and the linearization gives rise to the eigenvalue problem for δ represented by the

following equations:

μ δ
ρ ρ ρ ρ

φ σ ρ Φ ρ φ φ

μ δ
ρ ρ ρ ρ

φ σ ρ Φ ρ φ φ

+ +
∂
∂

+
∂
∂

−
+

+
∂
∂

= +

− +
∂
∂

+
∂
∂

−
−

+
∂
∂

= +

+ + −

− − +

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

( )

( )

S k

z
z z

S k

z
z z

i
1 ( )

( , ) ( , ) 2 ,

i
1 ( )

( , ) ( , ) 2 . (9)

2

2

2

2

2

2

2

2

2

2

2

2

2

2

The stability condition is δ μ =S kRe { ( , , ) } 0, which must hold for all eigenvalues at

given values of S and μ.

2.3. Dipole (antisymmetric) modes

The vortex and fundamental modes can be twisted in the vertical direction, which lends them an

antisymmetric (dipole) structure along the z axis, as depicted in the left and middle panels in the

bottom rows of figures 1 and 2. Dipole modes have been previously studied in diverse 1D and

2D settings [38], including vortex dipoles created in a common plane [31–33]. In 3D, such

dipole structures can be approximately described by assuming that a quasi-1D dark soliton is

Figure 2. Density plots in vertical cross-sections, x = 0, of the 3D modes displayed in
the corresponding panels of figure 1.
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embedded into an originally symmetric 3D mode around its midplane (z = 0), as suggested in a

different context in [6]. In particular, for the fundamental states (S = 0) approximated by the

TFA expression (6), the respective antisymmetric solution can be easily found from

equation (2), assuming that the width of the dark soliton in the z direction is much smaller

than the intrinsic scale of the TFA mode, i.e., μ is large enough:

Φ ρ μ ρ μ= − − + −
⎜ ⎟

⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎛

⎝

⎞

⎠

⎞

⎠
⎟

⎤

⎦
⎥
⎥

⎡
⎣

⎤
⎦z

d
z z( , ) exp

1

4 2
tanh 2 e . (10)d

anti

2

2 ( 4)2

For the vortex states, a similar approximation is available too, but its applicability

condition does not hold around the inner hole of the vortex.

Solution (10) corresponds to a gap which cleaves the antisymmetric mode around z = 0, as

shown in the bottom row of figures 1 and 2. The width of the gap does not depend on ρ,

implying that the gap is nearly flat, which is well corroborated by numerical results, see the left

Figure 3. (a), (b) Norms Ns and Na of the symmetric and antisymmetric varieties of the

fundamental ( =S 0/0) and vortex ( =S 1/1) modes, versus chemical potential μ, with

d = 3 in equation (3). In these panels (as well as in (c)), black and red segments
designate stable and unstable (sub)families, respectively (the short black (stable)
segments in panels (a) and (b) are made bolder for better visibility). Chains of red dots
represent the prediction of the Thomas–Fermi approximation, as given by equation (7).
(c) The μN ( ) dependence for the hybrid mode of the −1/ 1 type, with d = 5 in

equation (3). Circles on stable (black) branches mark typical examples of the stationary
modes, which are displayed in the top rows of figures 1 and 2. The development of the
instability of the modes labeled by the circles on unstable (red) segments is shown
below in figure 6. (d) The comparison of the numerically found norm difference
between the symmetric and antisymmetric varieties of the fundamental mode of the 0/0
type (the continuous line), and the respective analytical approximation given by
equation (11) (red dots), for d = 0 in equation (3).
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panel in the bottom row of figure 2. Solution (10) makes it possible to calculate the difference

between the norm of the symmetric state and its antisymmetric counterpart. Indeed,

equations (6) and (10) yield

∫ ∫δ μ π ρ ρ Φ ρ Φ ρ π μ= = − =
−∞

+∞ ∞
−⎡⎣ ⎤⎦N z x S x( ) 2 d d ( , ; 0) ( , ) 4 2 e . (11)d

0
TFA

2

anti

2 ( 4)2

As shown in figure 3(d), this prediction is quite accurate.

2.4. Hybrid modes

Completely novel species of stationary 3D modes are hybrids of the −S S/ type, which

combine vortex states with opposite charges and equal norms in the top and bottom sections of

the peanut-shaped structure, as shown in figures 1 and 2. Unlike the symmetric and

antisymmetric vortices introduced above, the hybrids cannot feature axisymmetric density

distributions. A central question is whether the vortex–antivortex hybrids exist as stationary

modes and, if they do, whether they can be stable. To address this issue, a stationary solution

may be looked for in an approximate form as

ϕ ρ θ ϕ ρ ϕ ρ= +θ θ

+ −
−

z z z( , , ) ( , ) e ( , ) e , (12)S Si i

assuming that ϕ ρ
+

z( , ) and ϕ ρ
−

z( , ) rapidly vanish, respectively, at <z 0 and >z 0, so that the

two vortical components form a sharp domain wall close to z = 0. Substituting ansatz (12) in

equation (2), and using the rotating-wave approximation, one arrives at a system of nonlinearly

coupled equations,

μ
ρ ρ ρ ρ

ϕ σ ρ ϕ ϕ ϕ+
∂
∂

+
∂
∂

− +
∂
∂

= +
± ∓ ± ±

⎛

⎝
⎜

⎞

⎠
⎟ ( )

S

z
z

1
( , ) 2 . (13)

2

2

2

2

2

2

2 2

Note that in the right-hand sides of this equation the cross-phase-modulation coefficient is

twice as large as its self-phase-modulation counterpart. This is typical for systems which give

rise to solutions in the form of sharp domain walls between states with different wave numbers,

linear or azimuthal ones [37, 39].

Although equation (13) is axisymmetric, as the angular coordinate θ does not appear in it,

the superposition of the two vortices in equation (12) breaks the isotropy of the pattern in the

midplane: ϕ ρ θ ϕ ρ θ= =z S( , , 0) 4 ( ) cos ( )2

0

2 2
, where ϕ ρ ϕ ρ ϕ ρ= = = ≡

+ −
z z( , 0) ( , 0) ( )

0
.

The latter pattern is close to the numerically found midplane structures, as can be seen in the

right column of figure 1.

It is relevant to stress that, unlike the vortical modes of the S S/ type considered above, the

vortex–antivortex hybrids cannot be classified as symmetric or antisymmetric species, with

respect to the top and bottom sections of the ‘peanut’ profile. Indeed, a rotation of a hybrid state

by angle π /2 about the vertical axis is effectively tantamount to adding a phase shift of π

between the top vortex and the bottom antivortex.

Another novel type of hybrid modes, which is studied by means of direct simulations

below, is one of the =S 1/0 type. In this case, the ansatz in the form of the superposition of the

vortical (S = 1) and fundamental (S = 0) modes in the top and bottom sections of the system (cf

equation (12)) does not lead to a self-consistent approximation. In this situation simulations

reveal robust dynamical regimes, with the vortex precessing on top of the fundamental soliton,

as illustrated in figure 4. Our simulations show that, in suitable parameter regions, such

8
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spontaneously established dynamical states survive over indefinitely long evolution times (far

exceeding t = 100).

3. Numerical results

3.1. Stationary modes and their stability

Stationary solutions for the basic types of 3D confined modes that are defined above were

obtained as solutions of equation (2), with the modulation function (3), by means of Newtonʼs

method. The stability of the so generated families of different modes was studied by means of a

numerical solution of eigenvalue problem (9), and verified by direct simulations of perturbed

evolution of the modes that were performed with the help of the split-step algorithm.

As indicated above, the solution families are naturally represented by dependences μN ( ),

which are collected in figure 3 for two values of d in equation (3), viz., d = 3 in (a, b), and d = 5

in (c). The plots distinguish stable and unstable families, and include the analytical results

presented above, viz., the prediction of the TFA for the symmetric modes of the =S 0/0 and

Figure 4.A generic example of the robust spontaneously established precession of a top
vortex placed above a zero-vorticity base in the configuration with d = 5 in equation (3).
The vortex and base components were taken from the respective stable symmetric
solutions of the =S 1/1 and =S 0/0 types, with a common value of the chemical

potential, μ = 15. The isosurfaces are displayed at density level ψ =x y z( , , ) 12 . The

period of the steady precession is Δ ≈t 20.

9
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=S 1/1 types (see equation (7)). In addition, the norm difference between the symmetric and

antisymmetric =S 0/0 states, as predicted analytically by equation (11), is presented, together

with its numerically computed counterpart, in panel (d) for d = 0.

Typical examples of all stationary modes are displayed in figure 1, their shapes being

additionally illustrated by means of vertical cross-sections in figure 2. Antisymmetric 3D modes

of the 0/0 and 1/1 types seem to be built of two oblate fundamental solitons or vortices

‘levitating’ on top of each other. Symmetric 0/0 and 1/1 states, which feature ‘peanut’-like

shapes, transform into solutions reported in [24] with the decrease of separation d between the

nonlinearity minima.

A salient finding is the existence of the stationary hybrid modes, stable and unstable

examples of which are shown, respectively, for = −S 1/ 1 and = −S 2/ 2. Cross-sections of the

hybrids are displayed in the right column of figure 2, along the nodal directions in the midplane

(z = 0). Such a choice of the presentation is required because, as noted above, the hybrid modes

are axially asymmetric, in contrast to the isotropic ones of types 0/0 and 1/1.

As concerns the stability of the modes, all branches in figure 3 satisfy the anti-

Vakhitov–Kolokolov criterion, μ >Nd /d 0, which is a necessary (but, generally, not sufficient)

condition for the stability of self-trapped states supported by repulsive nonlinearities [40] (the

Vakhitov–Kolokolov criterion per se, μ <Nd /d 0, is a necessary condition for the stability of

solitons in media with attractive nonlinearities [13, 41]). While the families of the symmetric

modes of the =S 0/0 and =S 1/1 types were found to be completely stable, only small

segments (the bold black ones in figures 3(a) and (b)) of their antisymmetric counterparts are

stable too.

The stability–instability transition for the antisymmetric 0/0 and 1/1 states at small values

of μ is additionally illustrated by figure 5, which displays the instability growth rates,

δ δ≡ Re ( )r , as functions of μ and azimuthal index k (limited to ⩽k 5), see equations (8) and

(9). In particular, an unusual peculiarity is that, for the antisymmetric state of the 0/0 type, the

dominant instability mode for small μ corresponds to k = 1 (the red curve in figure 5(a)), while

zero-vorticity states are normally destabilized solely by perturbations with k = 0 [1]. These

instability eigenvalues are complex, hence the respective dynamics is oscillatory (see below).

Figure 5. Instability growth rates for antisymmetric modes with =S 0/0 (a) and =S 1/1
(b), versus the chemical potential of the unperturbed state, and integer azimuthal index
( ⩽ ⩽k0 5) of the perturbation eigenmode, defined as per equation (8). The most
destructive perturbations at small values of μ correspond to k = 1 (the red curves in

panels (a) and (b)). Stable are regions at small values of μ, where δ = 0r .
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Another important finding is a large stability region of the hybrid modes with = −S 1/ 1,

as shown, in figure 3(c), for d = 5 in equation (3). It is worthy to note that this stability region

strongly depends on d: a detailed analysis reveals that the vortex–antivortex hybrids are

completely unstable at ⩽d 4, when the vortex and antivortex constituents of the hybrid are

relatively strongly pressed onto each other, and a stability region appears at >d 4, being

μ ⩽ 15.8, i.e., <N 394.9, at d = 4.5, and μ ⩽ 13.5, i.e., <N 329.3, at d = 5. Thus, it is worthy

to note that the size of the stability region does not grow monotonously with the increase of d.

Figure 6. Generic examples of the evolution of unstable antisymmetric modes with
=S 0/0 and =S 1/1 (the top and middle rows, respectively; they correspond to circles

on red curves in figures 7(a) and (b), with μ = 5 and d = 3): spontaneous transformation

into the respective symmetric modes. Note that the vortical structure survives, in the
case of =S 1/1, although the instability is strong. The bottom row: the spontaneous
transformation of an unstable hybrid with = −S 1/ 1 (at μ = 17, d = 5, which

corresponds to the circle on the red segment in figure 3(c)) into a fundamental
symmetric mode, with zero vorticity. The isosurfaces are displayed at density level

ψ =x y z( , , ) 0.12 in the top and middle rows, and at the level of ψ =x y z( , , ) 0.52 in

the bottom row.

11

New J. Phys. 16 (2014) 063035 R Driben et al



3.2. Dynamical states: the evolution of unstable modes, and robust precessing hybrids with

S ¼ 1 0=

Typical examples of the evolution of perturbed modes, of those types which may be unstable

(they are marked by circles on red branches in figures 3(a)–(c)), are displayed in figure 6. In all

the cases, the evolution keeps initial values of the norm and angular momentum (4). In

particular, weakly unstable antisymmetric (dipole) modes with =S 0/0 and =S 1/1, which are

taken close to the boundary of the stability region (see figures 3(a), (b) and 5), feature only

small oscillations of their amplitude, while keeping their dipole structure and vorticity (in the

case of =S 1/1). That is, the regions of effective stability for the dipole modes are actually

larger than the rigorously defined bold black segments on the respective μN ( ) curves in

figures 3(a) and (b). On the other hand, at greater values of N, stronger instability destroys the

dipole structure, tending to transform the antisymmetric modes into their symmetric

counterparts, as shown in the top and middle rows of figure 6.

A remarkable feature of the instability-induced evolution (well corroborated by the

simulations) is that the vortical structure survives in the course of the spontaneous

transformation of the unstable dipole mode of the 1/1 type into its stable symmetric counterpart

(see the middle row in figure 6). As concerns unstable hybrids, they, quite naturally, exhibit

spontaneous annihilation of the vortex with antivortex, thus gradually transforming themselves

into symmetric zero-vorticity (fundamental) states, as seen in the bottom row of figure 6. On the

other hand, stable hybrid solitons do not show any conspicuous shape transformations even at

>t 103
, and even in the presence of strong initial perturbations.

As indicated above, hybrids with =S 1/0, built of a vortex placed on top of a fundamental

mode, cannot form a stationary state. Nevertheless, direct simulations show, as displayed in

figure 4, that the hybrids of this type readily self-trap in a dynamical form, with the vortex

performing periodic precession above the zero-vorticity base. The respective initial

configuration was constructed by juxtaposing the top and bottom components taken as

respective parts of the symmetric vortex and fundamental states, with =S 0/0 and =S 1/1,

which were preliminarily generated, for equal values of the chemical potential, in the same

trapping configuration. A systematic numerical analysis shows that such a robust dynamical

regime is observed in a broad parametric area, provided that d is not too small, namely,

⩾ ≈d d 4.8min .

4. Conclusions

Using a systematic numerical analysis and a range of analytical approximations, we have

discovered several previously unknown species of self-trapped complex 3D field states, that are

supported by the local strength of a repulsive cubic nonlinearity growing from two local minima

to the periphery, along the axial and radial directions alike. We have shown that the

corresponding axisymmetric ‘peanut’-shaped 3D nonlinearity-modulation profiles support

families of vortex states, which are both symmetric and antisymmetric with respect to the top-

bottom reflection. The same system gives rise to a novel species of stable stationary top-bottom

vortex–antivortex hybrids, which was not reported previously in any 3D setting, to the best of

our knowledge. Another newly found species of self-trapped robust dynamical hybrid states

exhibits stable precession of a top vortex above a bottom fundamental mode. In addition, we

have shown (in the appendix) that systems with ‘bead’-shaped 3D modulation profiles produce
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the first example of exact analytical solutions for stable 3D vortex solitons. Settings of such type

may be realized in media that allow a local control of the cubic self-repulsive nonlinearity by

means of external fields. In particular, this is possible in BECs, using the Feshbach resonance

controlled by appropriately designed nonuniform magnetic or optical fields. The latter settings

suggest a physical realization of the predicted self-trapped modes.
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Appendix. Exact solutions for 3D vortex modes

None of the models studied above in this work or elsewhere have produced an exact analytical

solution for 3D vortex solitons (there is a method which makes it possible to construct exact

solutions of NLS/GP equations with variable coefficients which are deliberately designed as an

explicit coordinate transformation of the 1D integrable equation [42], but we here aim to

produce truly 3D solutions). Here, as a direct proof of the existence of such modes, we address

an additional model, with a ‘bead’-shaped modulation structure, which produces exact solutions

for 3D vortices. It is based on the following equation, written, similar to equation (3), in the

cylindrical coordinates:


ψ

ψ
ρ

ρ ψ ψ
∂
∂

= − + + +⎜ ⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝

⎞
⎠( )

t

z

b
z bi 1 exp

1

2
. (14)2

2

2 2

2 2 2

While constant >b 0 controls the anisotropy of the modulation profile, the singularity of

the self-repulsion strength in the pre-exponential factor at ρ = 0 may be created in BEC by

Figure 7. Isosurface plots at density level ψ =x y z( , , ) 0.22 display the shape of exact

solutions given by equation (15) for stable confined vortices in the model based on
equation (14) with the bead-shaped modulation structure. The anisotropy parameter is
b = 1 (left), 2 (center), 3 (right).
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means of a control field which attains the exact Feshbach resonance on the axis (at ρ → 0), as

well as at ρ → ∞.

An exact 3D solution to equation (14), which produces a confined vortex with topological

charge 1, is

ψ ρ ρ= − +θ μ−
⎜ ⎟
⎛
⎝

⎞
⎠( )

b
z b

2
e exp

1

4
, (15)ti i 2 2

with chemical potential μ = + b(1 4 )/2 and norm π=N 2 3/2 (note that the norm does not

depend on b). This is a particular solution belonging to a family of vortex solitons, which, in the

general form, can be constructed by means of numerical methods (not shown here). Examples

of the exact vortices, for different values of the anisotropy parameter b, which are displayed in

figure 7, indeed feature bead-like shapes. The computation of the stability eigenvalues and

direct simulations demonstrate that the exact vortex solutions are stable.
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