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Three-dimensional imaging of strain in a single

ZnO nanorod
Marcus C. Newton1*†, Steven J. Leake1, Ross Harder2 and Ian K. Robinson1,3

Nanoscale structures can be highly strained because of
confinement effects and the strong influence of their external
boundaries. This results in dramatically different electronic,
magnetic and optical material properties of considerable
utility. Third-generation synchrotron-based coherent X-ray
diffraction has emerged as a non-destructive tool for three-
dimensional (3D) imaging of strain and defects in crystals that
are smaller than the coherence volume, typically a few cubic
micrometres, of the available beams that have sufficient flux to
reveal the material’s structure1. Until now, measurements have
been possible only at a single Bragg point of a given crystal
because of the limited ability to maintain alignment2; it has
therefore been possible to determine only one component of
displacement and not the full strain tensor. Here we report key
advances in our fabrication and experimental techniques,which
have enabled diffraction patterns to be obtained from six Bragg
reflections of the same ZnO nanocrystal for the first time. All
three Cartesian components of the ion displacement field, and
in turn the full nine-component strain tensor, have thereby been
imaged in three dimensions.

The study of nanoscale crystals and structures has intensified
as their often unique properties find application in new materials
and devices3–6. Traditional non-destructive methods such as
scanning electronmicroscopy (SEM), atomic force microscopy and
numerous spectroscopic techniques provide detailed information
on the surface structure but do not directly probe the structure
in the volume as a whole. Transmission electron microscopy
is able to provide information on the crystal structure within
a material but requires an electron-transparent lamella cross-
section for imaging. Such invasive sample preparation can alter
the properties of the material, prohibiting further detailed studies.
Coherent X-ray diffraction provides detailed information on phase
changes in the reflected beam owing to ions displaced from some
reference lattice. Coherence is required for interference to occur
from all locations within the sample. Diffraction data obtained
from such crystals appear as an interference pattern of the intensity
distribution centred on each of the reciprocal-space lattice points.
Well-faceted crystals produce intensity flares as first predicted by
von Laue7. Each flare is perpendicular to a respective facet of the
crystal. Within the confines of the kinematical approximation and
for coherent and monochromatic radiation, the experimentally
measured intensity I (q) is related to the scattering amplitude
A(q) by I (q) = A∗(q)A(q). The scattering amplitude is given by
A(q)=

∫

drρ(r)e−iq·r where ρ(r) is the electron density at position
r and q = kf − ki is the momentum transfer between incident ki
and scattered kf waves8. In the Bragg configuration, waves reflected
from an ideal lattice will remain in phase coherence. Ions displaced
from the ideal lattice point result in a phase shift of φi = qijuj in
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the reflected wave from the distorted region where uj (j = x,y,z)
is the local ion-displacement vector-component set and i ∈ N1

labels the images obtained at different momentum transfer vectors
with components qj . Provided this real-space phase is recovered,
a component of the displacement uj is directly obtained in the
direction of the vector with components qj . Diffraction from
multiple Bragg points of the same crystal will therefore provide
several components of the displacement vector, from which we
can construct the displacement field9,10. For an arbitrary number
of Bragg points n > 3, the problem is in general overdetermined
and a regressive approach, such as the ‘least-squares’ method, is
required to construct the displacement field. This is discussed
in the Supplementary Information. A special case occurs for
n = 3 non-coplanar vectors where we can exactly invert the
matrix. For the present case of six non-coplanar Bragg points, all
three components of the displacement vector uj are obtained in
rectilinear coordinates as

uj = ξjiqkiφk; ξji = (qkjqki)
−1 (1)

Here (qkjqki)−1 is the inverse matrix of qkjqki (with units of
square length). When using a regressive approach to obtain the
displacement vectors uj , the components of displacement along the
vector direction with components qj for each dataset are unlikely to
be entirely consistent owing to errors in themeasurement, including
statistical noise in the data and alignment procedures used when
constructing the displacement field. We can therefore obtain a
consistency measure σi on each reflection i using the least-squares
phase deviation averaged over the image:

σ 2
i =

1

N0

∑

(φi −qijuj)
2 (2)

whereN0 is the total number of voxels and the sum is taken over the
entire image. This consistencymeasure can be separatelyminimized
for each reflection with respect to the arbitrary phase offset inherent
in the inversion of the diffraction to an image.

The ‘phase problem’ occurs in a number of disciplines
ranging from X-ray crystallography11 to astronomy12 where phase
information is lost when only intensity measurements can bemade.
Various approaches have been taken to solve the classical phase-
retrieval problem andhave benefited fromadvances in optimization
theory. In our case of a small sized object, the diffraction pattern
is bandwidth-limited and hence can be ‘oversampled’ relative
to its Nyquist frequency13. The realization that such diffraction
patterns can be inverted by iterative algorithms using appropriate
constraints to obtain real-space images14, and the development
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Figure 1 | Reconstructed amplitude and phase of a single ZnO nanorod for six differing Bragg reflections. a, Reconstructed amplitudes shown in

isometric projection for each dataset with an 86% isosurface. The crystallographic c axis is aligned along the Cartesian y axis. b, Two-dimensional slices of

the reconstructed phase maps for each dataset taken from the centre line normal to each axis. A phase range of ±2.6 rad is used during reconstruction.

The phase appears in a range of ±2.8 rad after recentring (this is discussed in Supplementary Information). c, Diagrammatic representation of the

experimental conditions in isometric projection showing multiple Bragg reflections from a single ZnO rod. The three planes from which slices of the phase

map are taken are also shown. d, Scanning electron micrograph of the single ZnO rod used in our X-ray measurements standing on a Si substrate with its

c axis approximately normal to the surface. Scale bar: 2 µm.

of efficient phase-retrieval algorithms15–17, have however made
coherent X-ray diffraction microscopy possible. The phase is
recovered by traversing back and forth between real and reciprocal
space while applying constraints at each iteration. The most
effective methods so far apply a real-space constraint that tends to
minimize the density outside some predefined ‘support’ region S
within which the object is assumed to exist. The reciprocal-space
constraint ensures that the computed modulus |A(q)| is within
M , the set of all points with amplitude

√
I (q), whereas the phase

remains unchanged. A solution is found when both conditions are
reasonably well satisfied.

ZnO rod-shaped nanocrystals were synthesized through a
chemical vapour transport and deposition technique18 (see the
Methods section). Hexagonal-prism-shaped crystals were produced
with lengths in the range of 2–4 µm and widths of 1–2 µm. Clean Si
substrates were diced into 10×10mmdies and a cross-shapedmark
was scored through the centre of each die. Micromanipulation was
used to transfer an individual ZnO rod from the growth substrate
to the lower left-hand-side quadrant a few micrometres from the
scribed centre region using an optical microscope and a glass-tip
needle-shaped manipulation arm. The sample was then heated in
pure O2 at 750 ◦C for 16 h to grow an oxide layer of 50 nm to secure
the crystal in place. After oxidation, the single ZnO rod could be
imaged using SEMon the surface, partially embedded into the oxide
on the surface (Fig. 1).

Diffraction measurements were made at the Advanced Photon
Source beamline 34ID-C. The beampasses through a double-crystal
Si monochromator to select a narrow wavelength range centred at
1.42 Å. Diffraction patterns from the (0, 1, 1), (0,−1,1), (1,0,1),
(−1,0,1), (−1,1,1) and (1,−1,1) reflections were gathered by
rotating the sample through the Bragg condition in increments of
0.005 ◦. At each step, two-dimensional (2D) slices of the diffraction
pattern were acquired by a direct-detection CCD (charge-coupled

device) with pixel size of 22.5×22.5 µm2 and subsequently collated
to form a complete 3D diffraction pattern (see Supplementary
Fig. S1). As the rod stands perpendicular to the substrate, its
(002) reflection is approximately specular. An orientation matrix
based on this reflection and one of the (101) reflections was
used to set the 34-ID-C diffractometer for each data set. We can
immediately deduce some geometric properties of the object before
reconstruction using the diffraction pattern alone. By considering
the spacing of the fringes normal to and in the six-fold symmetric
plane, we can deduce the length and width of the crystal as 2.1 µm
and 1.1 µm respectively. The crystal is small enough that the
maximum optical-path-length difference is still smaller than the
longitudinal coherence length, as confirmed by the full visibility
of the fringes seen in each diffraction pattern19. Similar results
are obtained for all datasets in good agreement with SEM studies.
The observation of slight asymmetry in the diffraction data is an
indication of the presence of strain in the nanocrystal20.

Phase reconstruction of the diffraction data was carried out
using the phase-constrained hybrid input–output (PC-HIO), error
reduction (ER) and phase-only ER algorithms15,21. We have also
used a custom version of the ‘shrink wrap’ method, which is used to
determine the support region S of the object. Our method is based
on themethods used in ref. 22 andwas found to provide appreciable
improvements in the reconstructed object. The measured intensity
I (q) of the sampled diffraction pattern when Fourier transformed
provides the autocorrelation function ρ(−r) ∗ ρ(r) of the object,
which we use to obtain an initial estimate of the support. A 2D
slice is then taken through the centre of the autocorrelation function
(defined at the brightest voxel) and normal to the (001) axis of the
crystal. Data below a certain threshold are copied from the slice and
subsequently overlaid across a percentage of the autocorrelation
function, replacing existing slices, and recentred to the brightest
voxel in that slice. The remaining array points were zeroed. Finally,
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Figure 2 | Two-dimensional slices of the 3D atomic displacement field.

Slices of the ion displacement field taken along the three Cartesian axes

according to Fig. 1c. The direction of each arrow indicates the direction of

the displacement within the plane. The size of each arrow indicates the

magnitude of the displacement. Regions of low displacement are labelled I.

the object is convolved with a moving average and Gaussian
function (σ = 0.35 voxels) to ensure that the support function is
compact. The size of the support is controlled by the threshold
values selected. Preparing a support in this manner greatly aids the
reconstruction of elongated structures, as the support bears some
resemblance to an inflated version of the object.

For each dataset, our ‘shrink-wrap’ procedure starts with 200
iterations of PC-HIO followed by two iterations of ER. A 19.5%
threshold of the resulting object was then removed and the object
convolved with a moving average and Gaussian function to form
an updated support function. Moving-average convolution helps
to reduce irregularities such as depressions in the support, whereas
convolution with a Gaussian ensures that the new support is always
larger than the object by some amount (∼10%). A convergence
criterion is defined as the difference in the number of voxels that are
above a certain threshold between the old and new supports. This
process was repeated until convergence was reached at 0.5% of the
number of voxels in the support.While the support was converging,
the phase reconstruction carried out 40 iterations of PC-HIO and
two of ER per cycle. The final image used a further 200 iterations
of PC-HIO, and 100 of both ER and phase-only ER with this final
support. In the phase-constrained refinements, a phase range of
±2.6 rad was found to be sufficient to contain the complex density
without the occurrence of phasewrapping. After reconstruction, the
images were corrected for refraction2.

The 3D amplitude and 2D cut planes of the real-space phase
image for each q-vector are shown in Fig. 1. For each reflection,
the reconstructed amplitude appears as a rounded crystal with a
slight flaring at one end. The length and cross-sectional width of
the ZnO rod are in agreement with SEMmeasurements. Significant
phase ripples and shifts can be seen in a number of reconstructions
along each of the axial planes. This is more visibly pronounced in
the (0, 1, 1) and (1,−1,1) reconstructions.

The displacement field was calculated using equation (1) after
first aligning the amplitudes of each object in real space so that they
overlap optimally. By considering the minimum number of fringes
visible for each diffraction pattern and the corresponding fringe
spacing, we obtain a minimum resolution for constructing the
displacement field as 47.3 nm. A correction for the arbitrary phase
offset in each dataset was then applied (see Supplementary Informa-
tion). Each image was transformed by the set of Euler rotations used
for the diffractometer setting angles. Spatial alignment is needed
because the positions of the objects are not determined by the
experiment. Twin images, that is, those that represent a conjugate
solution of ρ∗(−r) as opposed to ρ(r) (with identical Fourier
transform modulus), are not easily detected for highly symmetric
objects. Fortunately, there is a bulge in the crystal shape at one end
of the crystal, which is a distinguishing feature that we have used
to detect solutions that are twin images. Once this transformation
was established, the images were interpolated onto a regular cubic
Cartesian grid with a spacing of 50 nm and the displacement vector
calculated according to equation (1) at each grid point.

Figure 2 shows the 3D displacement field for the three planes
highlighted in Fig. 1. A 3D image of the displacement field can be
found in Supplementary Fig. S2. Displacements of up to 0.87 Å are
observed. Two regions, labelled I, show displacement vectors an
order of magnitude less. Using equation (2) we obtain a consistency
σi of 0.241, 0.199, 0.263, 0.195, 0.242 and 0.269 rad respectively
for each q vector (shown in Fig. 1). From this we can deduce that
the (−1,1,1) dataset is the least concurrent whereas the (−1,0,1)
dataset has the best overall agreement.

Having all three orthogonal components of the displacement
vector ui enables us to construct the nine components of the
Eulerian strain (ǫ) tensor and rigid-body rotation (τ ). In rectilinear
co-ordinates we can write these components as

ǫij =
1

2

(

∂uj

∂xi
+

∂ui

∂xj

)

, τij =
(

∂uj

∂xi
−

∂ui

∂xj

)

(3)

where xi is the spatial co-ordinate in the orthogonal direction i.
Figure 3 shows the resulting strain components calculated using
equation (3) and for the three planes highlighted in Fig. 1 (see
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Figure 3 | Two-dimensional slices of the six independent components of the strain tensor. Components are taken along the three Cartesian axes

according to Fig. 1c. Regions of compressive (negative) strain are observed near the (100) surfaces of the crystal and at the interface with the Si substrate.

A strained layer approximately 200 nm in width near the surface and along the length of the rod (y axis) is visible in all tensor components except the ǫyy

component. This implies that the strain is uniform along the length of the rod. We attribute this to absorption of oxygen at the surface during

sample preparation.

Supplementary Fig. S3 for rotation tensor components). The
crystallographic c axis (a axis) is aligned along the Cartesian y axis
(z axis). Alternating regions of tensile and compressive strain can be
seen along the length of the rod with a periodicity of approximately
100 nm. The region of highest compressive strain appears at the base
of the crystal where the bulge appears. This might be due to oxygen
ion diffusion effects driven by the concentration gradient across the
ZnO/Si interface during oxidation23. This effect is most obvious in
the ǫyy component. A layer of compressive strain can be seen near
the (100) surfaces of the crystal and along the length of the rod,
primarily in tensor elements that contain an x or z component.
As this is not visible in the ǫyy component, which is aligned along
the crystallographic c axis, this layer of compressive strain is largely
continuous along the length of the rod. The observed compressive
strain is therefore probably due to relaxation of the (1,0,0) lattice
spacings as a result of radial oxygen absorption. Oxygen anions
diffused into ZnOwill reside primarily at interstitial sites, and under
our sample-preparation conditions will result in a diffusion-layer
thickness of 250 nm (refs 24, 25). Conversely, moderate absorption
of certain transition-metal ions and non-metals such as phosphorus
are more favourably incorporated into the crystal lattice. Strain in
such cases is attributed primarily to differences in the ionic radius
of the absorbed species.

Figure 4 shows the strain pattern for a different ZnO crystal
prepared for only 1 h in O2. This crystal is lying flat on the
substrate surface with the (100) refection approximately specular.
Diffraction patterns from the (100) and (010) reflections were
gathered, enabling two components of the ion displacement field,
and in turn one component (ǫxy) of the strain tensor, to be imaged
in three dimensions. A region of low crystallinity is also visible,
labelled I, and is the result of damage arising from manipulation
during sample preparation. This effect is not visible in the SEM
images, but we note that SEM is not sensitive to the state of
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Figure 4 | Strain pattern reconstructed for an extra ZnO nanorod

prepared for 1 h in O2. a,b, Cross-sections normal to (a) and along (b) the

crystal c axis of the ǫxy component of strain are shown. The observation of

increased strain at the region of low crystallinity labelled I suggests that

some plastic deformation has occurred along the length of the crystal.

In contrast to the ZnO crystal subjected to 16 h of O2 at 750
◦C in Fig. 1, we

do not observe a uniform strain layer along the length of the rod near the

surface. The outline shows the 87% isosurface contour of the amplitude.

c, Scanning electron micrograph image of the single ZnO nanorod. Scale

bar: 1 µm.
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crystallinity. The impact during sample preparation is likely to have
caused some plastic deformation in the vicinity and hence a strain
gradient in the surrounding region. Alternating regions of tensile
and compressive strain are also visible in the vicinity of the defect
with a periodicity of approximately 206 nm. When compared with
Fig. 3, it can be seen that there is no obvious layer of strain near the
surface and surrounding the crystal. There is however a region of
tensile strain towards the base of the rod thatmight be due to oxygen
ion diffusion effects driven by the concentration gradient across the
interface with the Si substrate, as described above.

The ability to measure and spatially resolve the full strain tensor
within nanoscale crystals has numerous implications for the design
of future materials based on nanotechnology. At present our spatial
resolution is around 40 nm, but this will improve with better
X-ray sources, focussing optics and more stable instrumentation.
Possible applications might be band-gap mapping in nanoscale
semiconductors, where a transition from indirect to direct band gap
has been predicted theoretically26, or strain engineering of devices
for improved carrier mobility. Three-dimensional strain mapping
will help understand energy-storage materials. With improved
resolution, it may be possible to distinguish the interactions
between individual dopant sites through their characteristic strain
fields. Last, but not least, themethod should be completely practical
for imaging transient states in crystals on the femtosecond timescale
at future hard-X-ray free-electron-laser sources.

Methods
The synthesis of ZnO hexagonal-prism-shaped nanowires was carried out in a
horizontal quartz tube furnace through solid-phase chemical vapour transport
and deposition. A crucible containing the source material was placed in the centre
of the tube. This consists of a fine mixture of high-purity (99.9999%) 300mesh
graphite and zinc carbonate (ZnCO3·2Zn(OH)2·H2O) powder. Si substrates
with (111) orientation were cleaned in acetone and propyl alcohol and placed in
the downstream region. The system was subsequently purged with 500 s.c.c.m.
(standard cubic centimetres per minute) of At carrier gas with an O2 content of
0.5–5% for 1 h. After this, the tube furnace was heated to 900 ◦C with the gas flow
remaining. Ar 900 ◦C carbothermal reduction of ZnC released supersaturated Zn,
which combines with O2 to form wurtzite ZnO in the cooler downstream region
at 550 ◦C (ref. 4). The reaction proceeded for 30min, after which the system was
allowed to cool naturally.
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