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INV ITED

P A P E R

Three-Dimensional Imaging
WithMultiple Degrees of
FreedomUsing Data Fusion
This paper demonstrates that 3-D imaging using fusion provides multiple
advantages including enhancement in visualization and reconstruction

under different acquisition conditions.

By Pedro Latorre-Carmona, Filiberto Pla, Adrian Stern, Member IEEE,

Inkyu Moon, Member IEEE, and Bahram Javidi, Fellow IEEE

ABSTRACT | This paper presents an overview of research work

and some novel strategies and results on using data fusion in

3-D imaging when using multiple information sources. We ex-

amine a variety of approaches and applications such as 3-D

imaging integrated with polarimetric and multispectral imag-

ing, low levels of photon flux for photon-counting 3-D imaging,

and image fusion in both multiwavelength 3-D digital hologra-

phy and 3-D integral imaging. Results demonstrate the benefits

data fusion provides for different purposes, including visuali-

zation enhancement under different conditions, and 3-D recon-

struction quality improvement.

KEYWORDS | Fusion; holography; integral imaging; multireso-

lution wavelet decomposition; multispectral imaging; photon

counting; polarimetric imaging; 3-D imaging

I . INTRODUCTION

The definition given by the Joint Directors of Laboratories

(JDL) about data fusion involves the ‘‘combination of data

and information from several sources’’ [1]. This ‘‘require-

ment’’ was generalized in [2] when considering that the

data could be provided either by a single source (sensor) or

by multiple sources. In the particular case of image fusion

methodologies, an intense research effort is being made in

fields like remote sensing [3]–[7], surveillance [8]–[11],

and medicine [12]–[15], where the current tendency is in

the use of a combination of sensors to optimize information

acquisition and extraction. In the case of remote sensing,

the use of multiple sensors may help in rural and urban

planning [3], species classification [4], [5], and prevention

of disasters [6], [7].

On the other hand, surveillance systems may need to

have all-weather and all-time acquisition capabilities. This

capability might be given by fusing the information given by

red–green–blue (RGB) and thermal sensors [8]–[10]. In

the case of medicine there is a clear evidence that acqui-

sition methodologies (magnetic resonance imaging, com-

puted tomography, positron emission tomography, etc.) are

complimentary and may be of great help in the prevention

and detection of illnesses [11]–[15].

Other fields where image fusion from various data

sources (sometimes referred as multimodal image fusion)

is an active area of research include video processing [16],

[17], biometric identification/classification [18]–[21], im-

age fusion for visualization enhancement [22], industrial

inspection [23], among others [24]–[27]. Image fusion

methods might be also aimed at solving only one particular

type of fusion problem, but current tendency is toward the

creation of methodologies that may be able to solve image

fusion problems in more than one area (fusion of medical

images, or fusion of RGB and thermal images, using the

same mathematical framework) [28]–[32].

Image fusion techniques can be classified taking into

account the stage at which they are applied [33]. The most
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caracterización en imágenes digitales para el reconocimiento automático de células
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common strategy is to use the fusion strategy at feature

level. However, they can also be designed to be used at the

so-called decision level [34]. Fusion at the feature level

means that the different features obtained are ‘‘combined’’

and later given to the stage where a final decision is taken.

In the decision level case, different methods are simulta-

neously applied that provide different decisions on a local

level, and the local decisions are combined using a decision

function that creates the final decision.

In this paper, we present an overview of the work made

by the authors on using fusion of different information

sources in the particular framework of 3-D imaging. In our

case, we consider fusion in the sense of using different

degrees of freedom for light in order to improve informa-

tion extraction. Besides, we can consider that the ap-

proaches explained here fall into the feature level fusion

strategy [33].

To the best of our knowledge, a survey paper of different

information sources (polarimetric, multispectral, different

number of photons) and its combination in the framework

of 3-D imaging has not been made to date. A general

analysis of the state-of-the-art in multimodal image fusion

is out of the scope of this paper, and the reader is referred to

[33] about multimedia (including image and video) data

fusion, as well as the different criteria that can be used to

classify them, and [35] for multisensory data fusion. In

particular, in this paper, we discuss multiperspective fusion

under very low illumination conditions, 3-D imaging fusion

with multispectral imaging, and multiwavelengths data

fusion for digital holography and 3-D integral imaging. The

paper is organized as follows. Section II presents an over-

view of integral imaging as an autostereoscopic technique

that is currently being intensively researched. Section III

presents multiperspective fusion results for very low illu-

mination conditions. Section IV presents results on 3-D

visualization at low light levels using multispectral photon-

counting integral imaging. Section V presents new results

on the fusion of 3-D information obtained from multi-

wavelengths integral images for robust depth extraction

compared with a single-wavelength 3-D reconstructed

image. Section VI presents an overview of multiwavelength

data fusion for digital holography, and the fusion of polar-

imetric, multiwavelength and multispectral information

for 3-D integral imaging.

In order to better understand the different concepts

used in the paper, Table 1 presents a glossary of terms used

throughout the paper, by order of appearance.

II . INTEGRAL IMAGING OVERVIEW

Three-dimensional optical image sensing and visualization

technologies have been researched extensively for different

applications in fields as diverse as TV broadcasting, enter-

tainment, medical sciences, and robotics, to name a few

[36]–[38]. As opposed to traditional 2-D imaging, 3-D

sensing technologies can potentially capture the structural

information of the scene. In many instances, the capa-

bilities of 3-D imaging and display systems have revo-

lutionized the progress of these disciplines, enabling new

detection/display abilities that would not have been other-

wise possible. There are different methods to create and

Table 1 Glossary of Terms Used in This Paper
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visualize 3-D images. Some of them make use of special

glasses, which may create adverse effects like sickness, etc.

Other methods use parallax barriers in order to avoid using

glasses, adapting their parameters to the viewer position

[39]. Content-adaptive parallax barriers for which display

elements are optimized for the multiview content are also

being developed [40]. Alternative methods use multiple

cameras located at several positions.

As one of the promising methods in the area of 3-D

sensing and display, integral imaging is an autostereosco-

pic 3-D imaging method that offers a passive and relatively

inexpensive way to capture 3-D information and to optic-

ally or computationally visualize it [41]–[46]. The integral

imaging technique belongs to the broader class of multi-

view imaging techniques. Recently, it has been shown that

the spatial 3-D resolution obtained with the integral imag-

ing method is better than the resolution obtained when

using a stereo pair [45]. Integral imaging provides 3-D

information through a collection of 2-D projections of real-

world objects. There are two separate procedures for

acquisition and visualization of 3-D objects which are re-

ferred to as: 1) pickup and 2) reconstruction stages, re-

spectively. In the pickup stage (see Fig. 1), multiple 2-D

images (hereafter called elemental images) are captured

through an array of small lenses (lenslet array). Each

lenslet carries out a unique projective transformation that

maps the 3-D object space onto a 2-D elemental image and

is a function of the lenslet position and the focal length.

Since each projective transform uniquely defines a per-

spective view, both direction and intensity of rays emanat-

ing from the 3-D object can be recorded on the image

sensor. As a result, an array of inverted real images is

formed on the image sensor. For optical reconstruction of

the scene, a 2-D liquid-crystal display (LCD) may project

the recorded integral image onto the focal plane of the

display lenslet array with homogeneous (matched) pixel

arrangement as that of pickup lenslet array. Each elemen-

tal image is then optically taken by its corresponding lens-

let back into 3-D space. The overlap of all elemental images

creates light distributions similar to the original object of

interest. As a result, an observer can see a real 3-D image,

with inverted depth (see Fig. 2).

In lenslet-based integral imaging systems, the reso-

lution of each elemental image is constrained by three

parameters: 1) the lenslet point spread function (PSF);

2) the lenslet depth of focus (DoF); and 3) the pixel size

[47]–[49]. Aberrations and diffraction effects must also

be considered because of the relatively small size of each

lenslet.

As an alternative methodology to that based on lenslet-

based systems, integral imaging can be performed either

using an array of high-resolution imaging sensors, or in a

synthetic aperture mode, hereafter called synthetic aper-

ture integral imaging mode (SAII; see Fig. 3). When a

single sensor translates on a 2-D plane to capture multiple

2-D images, this enables one to obtain larger field-of-view

(FOV) 2-D images. In addition, SAII potentially creates

larger pickup apertures than the lenslet-array-based ap-

proach. Pickup aperture is useful for long-distance ob-

jects. Fig. 3 illustrates the pickup stage by using a sensor

array.

Three-dimensional reconstruction of images can be

achieved by computationally simulating the optical back-

projection of the elemental images. In particular, aFig. 1. Integral imaging pickup procedure.

Fig. 2. Integral imaging display procedure.
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computer-synthesized virtual pinhole array is used to in-

versely map the elemental images into the object space, as

illustrated in Fig. 4. Superposition of properly shifted ele-

mental images provides the 3-D reconstructed images [50]

Iðx; y; zÞ ¼
1

Oðx; yÞ

XK�1

k¼0

XL�1

l¼0

Ekl x� k
Nxp

cxM
; y� l

Nyp

cyM

� �
(1)

where Iðx; y; zÞ represents the intensity of the recon-

structed 3-D image at depth z, x and y are the indexes of the
pixel, Ekl represents the intensity of the kth row and lth
column elemental image, Nx � Ny is the total number of

pixels for each elemental image, M ¼ z=f is the magnifi-

cation factor, cx � cy is the physical size of the camera

sensor, p is the camera pitch, and Oðx; yÞ is the overlapping
number matrix.

The use of integral imaging techniques may be useful

to recognize and classify objects under adverse conditions

(in noisy or photon starved conditions), and under

occlusions [51], [52], and recent results show the potential

of this technique in new application and research avenues

[53]–[56].

III . MULTIPERSPECTIVES FUSION TO
IMAGE 3-D SCENES UNDER EXTREMELY
LOW ILLUMINATION CONDITIONS

Capturing images from multiple perspectives, as done with

the integral imaging technique described in Section II, may

be viewed as a multichannel image acquisition process.

Since the data captured through the multiple channels (i.e.,

the perspective images) is typically redundant, it is possible

by proper digital process, to overcome signal-to-noise ratio

(SNR) limitations that are considered prohibitive with

single-channel imaging. Fusion of multichannel images to

overcome SNR limitation in 2-D imaging was explored in

many fields as in astronomy, medical imaging, and micros-

copy. Here we describe the possibility to use the elemental

images captured with the integral imaging technique to

reconstruct 3-D objects in extremely starved imaging con-

ditions. Photon starving imaging conditions may occur in

scenarios of low light illumination, as in night vision, or

when imaging with short exposure time, as for instance in

high frame rate video acquisition.

The ability to visualize 3-D data from photon starved

integral images was demonstrated in [57]. By applying the

penalized maximum likelihood expectation–maximization

(PMLEM) algorithm, 3-D images were reconstructed from

integral images captured with SNR significantly lower

than 1. For the description of the PMLEM reconstruction

process, we will first formulate the integral imaging acqui-

sition process using an operator formalism

E ¼ Hf þ n (2)

where the 3-D object data are represented by the (lexi-

cographically ordered) vector f ,E is a lexicographic vector

representing the set of elemental images forming the

integral image, H is the forward operator and n is the

acquisition noise. Technically, the operator H can be im-

plemented as a matrix or as a function handle (procedure)

that maps each pixel from the object plane to the image

plane. In the geometrical optics limits,H can be evaluated

by simply tracing the ray from the object to the image plane

(Fig. 1). If necessary, diffraction and other nongeometrical

optical distortions can be included as well. In regular

imaging conditions the image flux from the object is much

higher than the noise (i.e., kfk > knk) and a 3-D recon-

struction can be obtained simply by a backprojection pro-

cess. In an operator formalism this process is described as

the application of the adjoint operatorHT on the captured

elemental images E, I ¼ H
T � E. Technically, the back-

projection process can be evaluated via (1). For photon

starved conditions, an iterative reconstruction algorithm

Fig. 3. Synthetic aperture integral imaging acquisition.

Fig. 4. Computational reconstruction method in integral imaging.
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implementing a PMLEM estimator is much more efficient.

The PMLEM iteration step is given by

f̂
kþ1

¼
f̂
ðkÞ

sþ � �Pf̂
ðkÞ

H
T E

H � f̂
ðkÞ

(3)

where f̂
ðkÞ

is the reconstructed image vector at the kth
iteration, s is referred to as the ‘‘sensitivity vector’’ account-

ing for the number of elemental images contributing to

reconstruction of each object point. P is the penalty ope-

rator and � is a constant controlling the amount of regular-

ization. The division in (3) should be taken as Hadamard

(component-wise) division. The penalty operator P works

as a regularizer to improve the robustness in case of large

noise values. Various penalty operators can be defined,

each reflecting a specific assumption on the local behavior

of the object. In [58], penalties reflecting quadratic, med-

ian root, and total variation (TV) priors were investigated

for photon-counting integral imaging. Among these priors

the TV penalty was found to give the best results. The

ability to overcome the noise limitation by fusing the ele-

mental images captured with the integral imaging tech-

nique is demonstrated in Fig. 5. Fig. 5(a) shows an array of

7 � 7 elemental images captured with regular illumination

conditions. Each elemental image captures from slightly

different direction the 3-D scene which comprised two

toys: a truck and an airplane located at distances of 50 and

70 cm from the camera, respectively. Fig. 5(b) and (c)

shows the reconstruction of the 3-D scene by focusing at

two depth planes of the two toys. The reconstruction is

implemented by backprojection [see (1)]. Fig. 5(d) shows

the array of elemental images taken with the same geom-

etrical setup as that used for capturing Fig. 5(a), but with a

shorter exposure time so that the SNR (defined as

kEk=knk) is approximately 0.16. With such a low SNR

the signal is buried much below the noise level, therefore

the objects are absolutely indistinguishable. However, by

fusing the elemental images using the PMLEM algorithm

with a TV prior the two objects, at the two different depth

planes, can be readily reconstructed, as demonstrated in

Fig. 5(e) and (f).

IV. THREE-DIMENSIONAL VISUALIZATION
AT LOW LIGHT LEVEL USING
MULTISPECTRAL PHOTON-COUNTING
INTEGRAL IMAGING

Photon-counting imaging technique which is suitable to

photon-limited situations such as night vision has been

successfully applied in 3-D object imaging and recognition

[59]–[62]. On the other hand, 3-D objects can be computa-

tionally reconstructed and recognized in a photon-

counting integral imaging (PCII) system with grayscale

elemental images under low-light levels [59]. However,

the elemental images in this PCII system are captured with

monochrome sensors and the object boundaries might be

easily degraded when they are imaged under low light

levels. Similarly, the reconstructed object in a PCII system

may also suffer from degraded shape cues. As a con-

sequence, object recognition based on these degraded

images is a challenging problem. Nevertheless, color image

Fig. 5. (a) 7�7elemental images, and reconstructionofobject planes at

(b) a distance of 50 cm and (c) a distance of 70 cm. (d) 7�7 elemental

images captured in photon starved conditions (SNR ¼ 0:16, average

flux of 3.8 photons/pixels) and reconstructed object planes at distance

50 cm (e) and 70 cm. (f) All the results are from [57].
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information can provide informative patterns to help us

visualize 3-D objects. In addition, color information may

improve recognition performance when other features are

not significant such as degraded shape cues in a photon-

counting integral imaging system. Therefore, multispectral

photon-counting integral imaging system may ameliorate

the deficiency that exists in conventional PCII with

grayscale elemental images since these images may lose

an important amount of information of detail of the object.

In [63], we have demonstrated that a 3-D scene can be

visualized at a low light levels with our proposed multispec-

tral PCII technique.

The diagram of multispectral PCII system is given in

Fig. 6. A Bayer color filter array which is a widely adopted

color image sensor is used to capture the color information

of 3-D objects. However, a demosaicing or interpolation

algorithm has to be introduced to estimate the missing two

colors in a Bayer image in order to get a full RGB color

image. Our numerical simulation results showed that the

gradient corrected linear interpolation method proposed

by Malvar et al. [64] may achieve better results for demo-

saicing Bayer image into full RGB color image when com-

pared with some of the state-of-the-art demosaicing

schemes [63]. The Malvar et al.’s interpolation method

uses the interpolated current pixel value and the gradient

information in the Bayer image to estimate the two missing

values at the current pixel location.

In Fig. 6, multiple Bayer color filter arrays are used to

capture Bayer elemental images in the integral imaging sys

tem. However, when all of the Bayer elemental images are

generated under low light level conditions, the photon-

counted Bayer elemental images would be recorded in

Bayer color filter arrays in this multispectral PCII system.

This process can be simulated by controlling the expected

number of photons in a multispectral scene. It is assumed

that each pixel separately follows a Poisson distribution for

each channel (R, G, and B) of the Bayer image. Assume

that ~Bwðx; yÞ is the normalized irradiance of each color

channel on the Bayer image and np, the expected number

of photons for each elemental image, then the Poisson

parameter �w for each pixel on the three color channels

can be written as ~Bwðx; yÞ � np. Thus, the Poisson random

number of counts for arbitrary pixel positions on each

elemental image is modeled as follows [63]:

Cwðx; yÞ � Poisson �w ¼ ~Bwðx; yÞ � np
� �

(4)

where the subscript w represents the three RGB color

channels. On the other hand, the 3-D point is computa-

tionally reconstructed with the photon-counted Bayer ele-

mental images by using parametric maximum likelihood

estimator (MLE) [58]. That is, the 3-D point can be

achieved with MLE by using a series of 2-D points on the

photon-counted Bayer elemental images. This process can

be modeled as follows [63]:

PSwðvÞ ¼MLE �wðvÞð Þ

¼ argmax
�wðvÞ

log
YN

k¼1

exp ��wðvÞð Þ �wðvÞð ÞCk;wðvÞ
 !

¼
1

N

XN

k¼1

Ck;wðvÞ (5)

where Ck;wðvÞ is the pixel point value of the kth photon-

counted elemental image. PSwðvÞ represents the 3-D scene,

v defines one voxel position, �wðvÞ denotes the mean pa-

rameter of the wðRed;Green; or BlueÞ spectral channel,
and N denotes the total number of elemental images.

Finally, the reconstructed Bayer slice image is demosaiced

with the gradient corrected linear interpolation technique.

Experiments were conducted to show the feasibility of

the multispectral PCII system for 3-D visualization at low

light level conditions. Two different objects (three colored

balls and a toy bird) were used as the 3-D scene. With these

Bayer elemental images, the two 3-D objects with Bayer

format can be computationally reconstructed at two differ-

ent distances. Then, the true color RGB reconstructed

images can be achieved by applying Malvar’s demosaicing

algorithm to these reconstructed Bayer images. Fig. 7

shows the reconstructed Bayer images and their corre-

sponding true color RGB images after Malvar’s demosai-

cing method is applied.

In the case of low light levels, the photon-counted Bayer

elemental images can be simulated based on Bayer elemental

images using (4) and controlling the expected number of

photons. With these photon-counted Bayer elemental

images simulated under different number of photons, we

show in Fig. 8 that the multispectral 3-D objects can be

correctly visualized. The images in Fig. 8 were demosaiced

from the reconstructed Bayer images that are derived with

(5) by using these photon-counted Bayer elemental images at

two different distances where one is with the color balls in

focus, while the other one is with toy bird in focus.

Fig. 6. Schematic setup of multispectral PCII system shown in [63].
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Fig. 8 also shows that this multispectral PCII method

can be used for multispectral visualization of 3-D objects

when the number of photons is limited. In addition, the

following PSNR metric was applied to measure the quality

of multispectral 3-D reconstructed images under low light

levels:

PSNR ¼ 10 log10
I2max

MSE

� �
(6)

where Imax is the maximum possible pixel value of the

multispectral integral imaging as ground truth or

reference ðIMIIÞ and MSE is mean squared error between

multispectral photon-counting integral imaging ðIMPCIIÞ
and IMII. It quantitatively verified that the multispectral

3-D scene can be reconstructed from photon-counted

Bayer elemental images with MLE and gradient corrected

linear interpolation algorithm at low light levels (see

Fig. 9 and [63]).

V. MULTISPECTRAL DATA FUSION FOR
DEPTH ESTIMATION IMPROVEMENT
IN 3-D INTEGRAL IMAGING

Introduction of spectral information may help in object

recognition and/or classification in 3-D imaging: 1) in un-

derwater 3-D visualization [51], since water absorption is

wavelength dependent; 2) in dermatology [65], in particu-

lar in skin cancer detection, because melanoma pigmented

skin lesion is wavelength dependent and its structure is

directly related to its evolution and degree of severity; 3) in

remote sensing applications, in the case of sensors onboard

airplanes or satellites which may be able to create 3-D

models with the inclusion of multispectral information;

4) in remote sensing pattern recognition (i.e., identifica-

tion of the 3-D structure and the spectral response of an

object from the distance); and 5) in photon starved or ‘‘hard

to visualize’’ conditions (at night, under ‘‘foggy’’ conditions,

etc.) [60]. Multispectral 3-D reconstruction has already

been applied in microscopy [66]. Other 3-D acquisition and

visualization techniques have already incorporated multi-

spectral information [67]–[69].

In this section, we will show novel results in the fusion

of integral images extracted from different spectral chan-

nels, combining the depth information of each multi-

spectral channel to make more accurate and robust depth

estimation in scenes acquired with a multispectral

sensor.

Three-dimensional image reconstruction in integral

imaging has been traditionally performed in orthogonal

Fig. 8. Multispectral 3-D visualization under low light levels.

(a), (c), and (e) are reconstructed RGB images with tricolored balls

focused under np ¼ 10, 103, and 105 respectively. (b), (d), and (f) are

reconstructed RGB images with toy bird focused under np ¼ 10, 103,

and 105, respectively [63].

Fig. 9. PSNR [as defined in (6)] for green, red, and blue channels

between intensities of multispectral II ðIMIIÞ in Fig. 7 and multispectral

photon-counting II ðIMPCIIÞ in Fig. 8 versus the expected number of

photons. (a) PSNR between Fig. 7(c) and IMPCII in Fig. 8 (focused ball

images). (b) PSNR between Fig. 7(d) and IMPCII in Fig. 8 (focused bird

images) [63].

Fig. 7. Reconstructed images at two different depths.

(a) and (b) Reconstructed Bayer images with different object focused.

(c) and (d) True color RGB images of (a) and (b) with Malvar’s

interpolation method applied [63].
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planes to the optical axis. A certain spatial point on the

reconstruction plane is set to the average of the collected

samples of the corresponding 3-D space point. Based on

the pinhole projection model, the relationship between the

coordinate of 3-D space point ðx; y; zÞ and its projected

image pixel coordinate ð�; �Þ on the ith column and jth row
image sensor is given by [70]

ð�; �Þ ¼ Kg xþ Cij
x

� �

sxz
;
Lg yþ Cij

y

� �

syz

 !
(7)

where superscript ij means the ith column and the jth row,

ðCij
x ; C

ij
y Þ is the center position of the ijth image sensor,

ðSx; SyÞ is the image size, and g represents the distance

between the pinhole and the image sensor (see Fig. 10).

From this information, depth of each point in the scene

can be estimated using the method explained in [71] and

summarized here. Let us define the statistical mean and

variance for a 3-D point Pðx; y; zÞ as follows:

Eðx; y; zÞ ¼

PN
i¼1

PM
j¼1 I

ijð�; �Þ

NM
(8)

Vðx; y; zÞ ¼

PN
i¼1

PM
j¼1 Iijð�; �Þ � Eðx; y; zÞð Þ

2

NM
(9)

where Iijð�; �Þ represents the intensity of pixel ð�; �Þ on the
ijth elemental image, and N andM represent the number of

elemental images in each (x and y) direction. Eðx; y; zÞ and
Vðx; y; zÞ represent the intensity mean and variance of 3-D

point, respectively. Therefore, if a point belongs to an ob-

ject, Vðx; y; zÞ is expected to reach a local minimum

(Fig. 10). Therefore, the depth of each 3-D object point can

be estimated by considering

ẑðx; yÞ ¼ argmin Vðx; y; zÞ (10)

with z 2 z ¼ ½zmin; zmax�. This method, however, suffers

from one main drawback. The variance does not ‘‘behave’’

correctly for parts of objects in the scene that present spe-

cular reflection or surface sharp discontinuities. The method

proposed here to overcome this drawback is to take advan-

tage of the focusing capability in synthetic aperture integral

imaging and therefore also use a ‘‘focus measure’’ criterion.

The ‘‘Tenengrad’’ focus measure method [72] consists of

assessing the following function per pixel position:

�ðx; yÞ ¼
X

ði;jÞ2�ðx;yÞ

Gxði; jÞ
2 þ Gyði; jÞ

2
� �

(11)

where �ðx; yÞ represents the group of pixels in a neighbor-

hood of pixel ðx; yÞ, andGx¼ I
N

Sx andGy ¼ I
N

Sy are the
‘‘x’’ and ‘‘y’’ image gradients obtained by convolving an image

ðIÞ with a Sobel filter in the ‘‘x’’ and ‘‘y’’ directions fSx; Syg.
In practice, depth estimation varies if the scene is ac-

quired with spectral filters. When combining multispectral

and integral imaging, a straightforward way to perform 3-D

reconstruction is to apply the process to each multispectral

band independently. However, we can take advantage of

the 3-D information each band may acquire and combine

them to improve the scene depth measurements obtained

from each spectral band independently.

A. Depth Estimation Using a Combination of
Variance and Focus Measure

A series of 121 elemental images were acquired using a

Marlin F080B monochrome camera and a liquid crystal tu-

nable filter (LCTF) applying the SAII technique, for a 11�11

grid [73]. Acquisition wavelengths were: {480, 510, 550,

570, 600, 650, 680}. Fig. 11(a) shows the experimental setup

used for the acquisition. Fig. 11(b) shows the grayscale image

corresponding to the elemental image in position (6, 5) of

the 11�11 grid, for � ¼ 650 nm. The proposed multispectral

fusion strategy consists of the following steps.

1) Infer the depth corresponding to the minimum

variance and the depth of the maximum Tenen-

grad function measure for each pixel and wave-

length band

z�1ðx; y; �iÞ ¼ argminz Vðx; y; z; �iÞ (12)

z�2ðx; y; �iÞ ¼ argmaxz �ðx; y; z; �iÞ: (13)

2) Select for each pixel the depth corresponding to

the minimum variance among bands, and the

Fig. 10. Variance minimization principle (adapted from [71]).
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depth corresponding to the maximum focus mea-

sure among bands as well

z�
0

1 ðx; yÞ ¼ argmin�i V x; y; z�1 ðx; y; �iÞ; �i

� �� 	
(14)

z�
0

2 ðx; yÞ ¼ argmax�j � x; y; z�2ðx; y; �jÞ; �j

� �� 	
: (15)

3) Infer the variance histogram corresponding to the

minimum variance distribution among bands of

step 2) and generate a variance threshold ð�Þ
corresponding to 99.5% of the accumulated

variance in this histogram

� H V z�
0

1 ðx; yÞ
� �� �h i

¼ ~v

such that

PeV
b¼1 HðVÞ

VT
¼ 0:995 (16)

where VT ¼
P

D HðVÞ is the total accumulated

variance for the whole variance range.

4) If the variance of a pixel [in the histogram of step

3)] is higher than �, the distance associated to the

pixel is the one given by the ‘‘focus measure’’ cri-

terion in step 2). Otherwise, the minimum var-

iance in 2) is associated to this pixel

zFðx; yÞ ¼
z�

0

2 ; if Vðx; y; z�
0

1 Þ � �
z�

0

1 ; otherwise.



(17)

Fig. 12 shows the accumulated histogram distri-

bution of HðVðz�
0

1 ðx; yÞÞÞ. The threshold � corre-

sponding to the 99.5% of the accumulated

variance is represented as a dotted red line. Table 2

shows the measured distance from each one of the

dice to the Canon TV zoom lens. Table 3 shows the

depth estimation results obtained using: a) one

wavelength (� ¼ 650 nm); and b) the procedure

explained in steps 1)–4).

We considered that the best depth reconstruction for a

single wavelength was that at � ¼ 650 nm, which is the

Fig. 11. (a) Experimental setup for the multispectral integral imaging

system shown in [73]. Elemental image in position (6, 5) of the camera

array for � ¼ 650 nm.

Fig. 12. Accumulated histogram for the variance for the depths

obtained using (14). The line corresponding to the threshold used in

(17) is plotted as well.

Table 2 Distance From Each Die to the Acquisition System
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one with the lowest total RMSE error defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
XN

i¼1

ðdi � dGT;iÞ
2

vuut : (18)

Here di refers to the distance between pixel ‘‘i’’ and the

acquisition system, as assessed by a method and dGT;i refers
to the ground-truth distance measured by a rule.

Table 4 shows the total RMSE as well as RMSE error

per die.

Fig. 13(a) shows a 3-D plot with the depth reconstruc-

tion results for � ¼ 650 nm obtained using the minimum

variance criterion in (9). Fig. 13(b) shows the correspond-

ing depth results after the application of the formulas given

in (12)–(17). As we can see, the problems that appear for

the depth reconstruction using the minimum variance

principle are not so evident. Fig. 13(c) shows the applica-

tion of steps 1 and 3 of this strategy, for � ¼ 650 nm. In the

three cases, the grayscale image of elemental image (6, 5)

for � ¼ 650 nm has been used for visualization purposes.

VI. IMAGE FUSION IN
MULTIWAVELENGTH DIGITAL
HOLOGRAPHY AND INTEGRAL IMAGING

This section shows the results obtained by the authors in

the application of the multiresolution wavelet decompo-

sition (MWD) technique for image fusion in two different

fields: 1) multiwavelength digital holography (MWDH);

and 2) multidimensional optical data fusion, showing its

capability to improve visualization results in both cases.

A. Multiwavelength Digital Holography
Digital holography (DH) [74]–[91] has been applied in

different fields such as microscopy [74]–[75], imaging and

display technology [76]–[77], data storage [78], 3-D object

recognition and 3-D optical encryption [79], [80], to cite a

few. Current research efforts also focus on including color

and multispectral information in DH [92]–[100]. The

Table 3 Distance Estimation Results for the Best Wavelength Case and for

the Different Fusion Methods

Table 4 Total Root Mean Square Error (RMSET ) and RMSE Error Per Die Fig. 13. (a) Depth reconstruction result using the minimum variance

principle. (b) Depth reconstruction for the combination of the

minimum variance and the focus measure strategy in steps 1–4

in Section V. (c) Depth reconstruction when using criteria in (b) for

� ¼ 650 nm only.
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interested reviewer is referred to [101] for a comprehensive

review for current fields of application.

In this section, a summary of the fusion results shown

in [102] will be presented. Multiwavelength digital holo-

graphy (MWDH) has been extensively researched during

the last few years. It has shown superior object phase re-

covery capability in relation to other techniques [101],

natural color holographic cameras have already been pro-

posed [90], [91], and a great effort has been made to infer

the spectral information of objects simultaneously to cap-

ture 3-D information using DH [91].

Image fusionmethods aim at creating a composite image of

the same scene acquired at different wavelengths. Gaussian

pyramids and multiresolution wavelet decomposition (MWD)

techniques have received attention during the last decade.

MWD may be combined with MWDH in order to gene-

rate better quality color 3-D images. Direct RGB creation of

reconstructed images acquired at different wavelengths has

contrast and resolution limitations, due to the speckle noise,

which appears when using coherent light illumination.

MWD techniques are based on the decomposition of the low-

frequency component of the previous resolution level and its

assignment into the higher resolution level. Let us consider

P0 a grayscale image. The first level decomposition will be

P0�!Pa1; Pv1; Ph1; Pd1: (19)

Pa1 is the so-called approximation term, and Pv1, Ph1, and Pd1
are the vertical, horizontal, and diagonal details of the next

(first in this case) level decomposition, respectively. The

details and the approximation contain the high-frequency

and low-frequency features of the image, respectively. The

approximation of each level may be recursively decom-

posed into the next-level components as follows:

Paðn�1Þ�!Pan; Pvn; Phn; Pdn; for n ¼ 1; 2; . . . : (20)

Once the multiresolution wavelet coefficients of each

image acquired by each sensor are obtained, high- and low-

frequency components can be postprocessed using specific

fusion rules, such as addition, or weighted averaging.

Fig. 14 shows a two-level MWD fusion method for multi-

wavelength images. These images need to be registered.

After registration, their multiresolution wavelet decom-

position is obtained. Fusion rules are applied to their

high- and low-frequency components afterwards. These

transformed (fused) wavelet coefficients are inverse

wavelet transformed into a final fused image.

The experimental setup used to record MWDH holo-

grams is illustrated in Fig. 15. Two light sources consisting

of two lasers emitting at �1¼632:8 nm and �2¼532:0 nm

were used. The two lasers were allowed to propagate along

the same path for either the reference or the object beams.

The reflecting prism located in the path of the red laser

beam allows matching the optical paths of the two

interfering beams inside the optical coherence length of

the laser. The object beam was at a distance of 850 mm in

Fig. 14. Image fusion of multiwavelength holographic images by use of MWD (adapted from [102]).

Latorre-Carmona et al. : Three-Dimensional Imaging With Multiple Degrees of Freedom Using Data Fusion

| Proceedings of the IEEE 11



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

front of the CCD array. The CCD sensor size is 1024�1024

square pixels, 6.7-�m length.

Two holograms corresponding to the two wavelengths

used were reconstructed separately applying the Fresnel

transformation method. Reconstruction was obtained

considering the pixel size ðD�;D�Þ of the CCD array, be-

ing this size different from the pixel size ðDx0;Dy0Þ in the

image plane. They are, however, related by the following

expressions: Dx0 ¼ d � �=N � D� and Dy0 ¼ d � �=N � D�,
where N2 defines the total number of pixels in the CCD

array and d is the reconstruction distance. On the other

hand, the size of the image in MWDH can be controlled

and made independent of the wavelength used to record it,

in order to permit a perfect superposition. In particular, N
was increased by padding zeros, taking into account that

the following relationship is assumed to hold:

N2 � N1
�2

�1

� �
: (21)

A group of images were obtained with the two wave-
lengths shown in Fig. 16. They were converted into the
same size using (21) and fused afterwards using a six-level
decomposition scheme and Haar wavelets.

Fig. 16(a) shows an RGB image of a matrioshka doll used
in the experiments. Fig. 16(b) shows the fused holographic
image observed when only the red or green image is
considered. Fig. 16(c) shows the reconstructed color ho-
lographic image of the matrioshka doll obtained when
summing the two reconstructed images. Fig. 16(c) shows low
contrast quality due to the speckle contrast. A second group
of images was obtained by applying a 1-pixel vertical and
horizontal shift to the previous group. These two groups were
subsequently fused separately and finally combined into one
image, using weighted averaging. A twofold weight was given
to the high-frequency components, in order to obtain

speckle-free images. Fig. 16(d) shows the results of the
weighted average fusion. The contrast improves in this case.
Fig. 16(e) shows the result of the application of a 3� 3 mean
filter, before the fusion step. This strategy shows better
results than simply summing the filtered images, taking into
account that no fusion operation was applied [Fig. 16(f)].

B. Multidimensional Optical Sensor and
Imaging System

Three-dimensional imaging systems allow us to obtain

3-D information about a scene. On the other hand, the use

(integration) of information such as spectral and polari-

zation features may also be useful for object recognition,

image fusion, etc. In this section, we briefly summarize

some of the fusion results obtained with the multidi-

mensional optical sensor and imaging system (MOSIS)

presented in [103]. Fig. 17 shows a scheme of the proposed

MOSIS system. This system uses the moving array lenslet

technique (MALT) to increase the reconstructed image

resolution [104]. This technique allows to increase the

spatial sampling rate of the acquired scene by moving

the lenslet within one pitch of the lenslet. In particular,

Fig. 15. Optical recording setup for digital holograms with two

wavelengths. M: mirror; BE: beam expander; O: object; BS: beam

splitter; RP: reflecting prism (adapted from [102]).

Fig. 16. Experimental holographic fusion results. (a) Original

RGB image of a matrioshka doll. (b) Holographic image of red and

green images fused using the MWD procedure. (c) Color holographic

reconstruction obtained by summing RGB composed images with

�1 ¼ 632:8 nm and �2 ¼ 532.0 nm. (d) Fused image reconstruction.

(e) Fused reconstruction after the application of the mean filter.

(f) Mean-filtering result of (c) (originally from [102]).
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the pickup lenslet array and the display lenslet array move

synchronously with a predetermined speed in a plane that

is perpendicular to the optical axis. A group of elemental

image sets are recorded. These sets are integrated in the

time domain afterwards, by displaying them on the spatial

light modulator (SLM) or LCD at the same sampling speed

of the elemental images in the pickup procedure. In com-

putational MALT [105], the 3-D scene is reconstructed

computationally with a synthesized virtual pinhole array

taking into account the assessed position and intensity of the

inversely mapped elemental images.

Fusion of integral images is made using wavelet de-

composition. The registered images are transformed into a

six-level decomposition. In the same way, as described in

Section VI-A, the weighted sum fusion rule is used to fuse the

high-frequency and low-frequency parts of the multire-

solution wavelet coefficients. Afterwards, the corresponding

fused multiresolution wavelet coefficients are inverse

wavelet transformed to generate the final fused image. The

MOSIS system also allows to do 3-D polarimetric imaging. A

3-D object is illuminated by linearly polarized light and the

reflected light propagates through a lenslet array, and a

rotating linear analyzer forms the elemental images, which

are acquired afterwards by an image sensor.

The Jones vector of elliptically polarized light was sub-

sequently obtained using a rotating linear polarizer–analyzer.

On the other hand, multiwavelength information in the

visible and near-infrared (NIR) range was obtained using light

sources and pass-band filters (at sensor level) in the visible

and NIR ranges. The visible and NIR images were finally

fused/combined simultaneously to the 3-D reconstruction.

1) Polarimetric 3-D Image Sensing and Reconstruction:
Fig. 18(a)–(c) shows a die illuminated with a halogen lamp,

with two orthogonally polarized sheets attached on each

face. The arrows give information about the orientation of

the linear analyzer–polarizer. The reflected light from the

die impinged on a lenslet array. A liquid-crystal spatial light

modulator (LC–SLM) in between orthogonal linear polar-

izers was used to change the visual characteristics of the

elemental images. Additionally, the elemental images were

changed to reconstruct the 3-D scene with different po-

larization states. In order to reconstruct the 3-D image, a

polarizer and a lenslet array are placed in front of the LCD.

Fig. 18(d)–(f) shows the reconstructed 3-D object with

three polarization states: f0	; 90	; 45	g.

2) Multidimensional Image Sensing: A scene formed by a

heart-shaped object and two dice is used in the experiments.

Fig. 17. Scheme of the MOSIS system with three multispectral, polarimetric, and MALT resolution capabilities (adapted from [103]).
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The pickup microlens array is located in front of the objects

in order to form the elemental images. The distance between

the front face of the die and the pickup microlens array is

19 mm, and the distance between the heart-shaped object

and the pickup microlens array is 31 mm. A 4-megapixels

10-b CCD camera acquires the scene. The microlens array is

composed of 53 � 53 square refractive microlenses (each

one with a focal length of 3.3 mm) in a 55-mm square

area. The size of each captured elemental image is 54 � 54

pixels. A 0	 oriented polarizing sheet is used to cover the left

face of the large die and a 90	 oriented polarizing sheet is

used to cover the right face. A visible pass and an IR pass

filter with their corresponding visible and IR light sources

are used to record the scene. Another polarizer was used in

front of the CCD sensor. When the larger die is sensed, the

small die and the heart-shaped object are covered with a

polarizing sheet accordingly so that they are not detected.

3) Three-Dimensional Image Fusion of Multidimensional
Data: The filters in front of the objects and the CCD camera

make the objects to be sensed or not depending on the

coupling between their spectrum-polarization states.

Fig. 19 shows sections of the NIR-light and visible-light

illuminated heart-shaped object. The scene also contains a

die whose left face has a 0	 polarization state and the right

face has a 90	 polarization state. The number of elemental

images is 46 � 19 in this case. Because the heart-shaped

object is illuminated by visible light, it is not seen in

Fig. 19(a), and because the die is illuminated by NIR light,

it is not seen in Fig. 19(b). The left and right faces can be

Fig. 18. Die with orthogonally polarized sheets attached to each side.

Images were acquired when changing the polarization direction of

the linear analyzer–polarizer: (a) vertically, (b) horizontally, and

(c) diagonally. The reconstructed 3-D object for the case when the

polarization direction of the linear analyzer–polarizer was (d) vertical

and viewed from left, (e) horizontal and viewed from the right, and

(f) diagonal and viewed from the center (adapted from [103]).

Fig. 19. Elemental imageswith different combinations of illumination:

(a) a die illuminated by NIR light and captured by a CCD camera with

an NIR pass filter; (b) a heart-shaped object illuminated by visible

light and captured by a CCD camera with a visible band pass filter;

(c) the left face of a die with a 0	 polarized sheet and acquired

by a CCD camera with a 0	 polarizer; (d) the right face of a die with

a 90	 polarized sheet and captured by a CCD camera with a 90	

polarizer (adapted from [103]).

Fig. 20. Reconstructed die considering the elemental images of

Fig. 19(a) at a distance of (a) z ¼ 19 mm and (b) z ¼ 31 mm.

Reconstructed heart-shaped object image considering the elemental

images that appear in Fig. 19(b) at a distance of (c) z ¼ 19 mm and (d)

z ¼ 31mm. Reconstructed left face of a dice from the elemental images

in Fig. 19(c) at a distance of (e) z ¼ 19 mm and (f) z ¼ 31 mm.

Reconstructed right face of a dice from the elemental images in

Fig. 19(d) at distance of (g) z ¼ 19mmand (h) z ¼ 31mm.Reconstructed

image from the fused elemental images at a distance of (i) z ¼ 19 mm

and (j) z ¼ 31 mm (adapted from [103]).
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seen in Fig. 19(c) and (d), respectively. The reconstructions

at a depth of 19 and 31 mm from the elemental image in

Fig. 19(a) are shown in Fig. 20(a) and (b), respectively. We

can see that the die in Fig. 20(a) is in focus, whereas it is out

of focus in Fig. 20(b). The reconstructions of the heart-

shaped object images at 19 and 31 mm from the elemental

image in Fig. 19(b) are shown in Fig. 20(c) and (d), re-

spectively. The reconstructed left faces (where a 0	 po-

larized sheet has been attached to it) of the larger die at 19

and 31 mm from the elemental image in Fig. 19(c) are

shown in Fig. 20(e) and (f), respectively.

The reconstructed right faces at 19 and 31 mm, for the

larger die, when a 90	 polarized sheet has been attached to

it [from the elemental image in Fig. 19(d)] are shown in

Fig. 20(g) and (h), respectively. Images shown in Fig. 20

were normalized for visualization purposes.

Six levels of wavelet decomposition with the Haar

wavelet were used, and a weighted averaging operation was

applied to the decomposed high- and low-frequency com-

ponents as the fusion rule. The fusion process was per-

formed on the 2-D elemental images, and the 3-D volume

was reconstructed from them. Fig. 20(i) and (j) shows these

reconstructed 3-D images. With the 3-D multidimensional

fusion technique, we are able to improve the image details

which are not visible in the output of other sensors.

VII. CONCLUSION

In this paper, we have presented an overview and some new

results of fusion approaches applied to 3-D data obtained by

3-D imaging based on combining other sources of infor-

mation, such as polarimetry and multispectral imaging,

with integral imaging and digital holographic systems. In

addition, the use of fusion algorithms for visualization im-

provement of 3-D data obtained under extremely low light

illumination conditions was discussed. We have shown that

fusion may result in visualization and reconstruction im-

provement under different acquisition conditions and

visualization purposes. There is a wide variety of applica-

tions of these multiple degrees of freedom for 3-D systems

ranging from healthcare, military, security, displays, enter-

tainment, manufacturing, and night vision. The readers are

referred to the references for some of these applications.
As is the case with any overview article of this nature, it

has not been possible to present an exhaustive coverage of
the entire fields of 3-D imaging, multimodal imaging, or
fusion in this paper. Therefore, we may have inadvertently
overlooked some relevant work or we did not have the
scope to cover them all. We have included a number of

references [35]–[105], some of which are overview articles
[33], [35], [36], [38], [46], [54], to aid the readers with
various aspects of these fields. h
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