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Three-dimensional instabilities of film flows 

Jun Liu, J. 6. Schneider, and J. P. Gollub 
Department of Physics, Haverford College, Haverford, Pennsylvania 19041 and Department of Physics, 
University of Pennsylvania, Philadelphia, Pennsylvania 19104 

(Received 6 June 1994; accepted 20 September 1994) 

Two-dimensional (2-D) interfacial waves on flowing films are unstable with respect to both two- and 
three-dimensional instabilities. In this paper, several distinct three-dimensional instabilities that 
occur in different regions of the parameter space defined by the Reynolds number R and the 
frequency f of forced two-dimensional waves are discussed in detail. (a) A synchronous 3-D 
instability, in which spanwise deformations of adjacent wave fronts have the same transverse phase, 
appears over a wide range of frequency. These transverse modulations occur mainly along the 
troughs of the primary waves and eventually develop into sharp and nearly isolated depressions. The 
instability involves many higher harmonics of the fundamental 2-D waves. (b) A3-D surbharmonic 
instability occurs for frequencies close to the neutral curve f,(R). In this case, the transverse 
modulations are out of phase for successive wave fronts, and herringbone patterns result. It is shown 
that this weakly nonlinear instability is due to the resonant excitation of a triad of waves consisting 
of the fundamental two-dimensional wave and two oblique waves. The evolution of wavy films after 
the onset of either of these 3-D instabilities is complex. However, sufficiently far downstream, 
large-amplitude solitary waves absorb the smaller waves and become dominant. Q I995 American 

Institute of Ph.ysics. 

I. INTRODUCTION 

Thin liquid films flowing down an incline provide a use- 
ful opportunity to study the development of spatial complex- 
ity through successive bifurcations.rB3 Flowing films are un- 
stable to sufficiently long-wavelength perturbations when the 
Reynolds number exceeds a critical value. The resulting in- 
terfacial waves show a wide variety of nonlinear wave phe- 
nomena. Well-developed wavy films are three dimen- 
siona1,1.4-6 though the initial waves are two dimensional near 
their onset (i.e., invariant in the spanwise direction). The 
transition to three-dimensionality has not been documented 
experimentally in the literature. 

The evolution from two- to three-dimensional film flows 
is analogous to the transitional phenomena that are well 
known in various shear tll~ws.~-~~ The investigation of these 
processes in the context of film flows may shed some light 
on shear flow instabilities in general, since the instability 
mechanisms may be related. 

In this paper, we report an experimental investigation of 
three-dimensional (3-D) secondary instabilities of flowing 
films, as part of an effort to understand their transition to 
complex disordered patterns. (Some preliminary results were 
published previously in Ref. 12.) In the next section, we 
review previous work on the secondary instability of film 
flows, and discuss the relevant literature on 3-D instabilities 
of boundary layers. Our experimental setup and measure- 
ment methods are briefly described in Sec. III. In Sec. IV, the 
experimental results are presented. We give a general picture 
of 3-D instabilities by reporting a stability diagram in the 
parameter space del?ned by Reynolds number and the fre- 
quency of the initial two-dimensional [2-D) waves. Several 
distinct transverse instabilities are found to deform the trav- 
eling waves: a synchronous mode (in which the deformations 
of adjacent wave fronts are in phase) and a subharmonic 
mode (in which the modulations of adjacent wave 

fronts are out of phase). A detailed study of these instabilities 
is then presented, along with a qualitative treatment of the 
further evolution toward an asymptotic “turbulent” regime. 

II. BACKGROUND 

A. Secondary instability of film flows 

The important parameters of lilm flows are (a) the Rey- 
nolds number R =hOuOlv, based on the unperturbed film 
thickness h, , the fluid velocity u. at the surface, and the 
kinematic viscosity v; and (b) the Weber number 
W= yl(ph& sin p), where y is the surface tension, p is the 
density of the fluid, g is the gravitational acceleration, and p 
is the inclination angle that the film plane makes with the 
horizontal. The surface velocity of a flat film is 
u,=ghg sin fll(2v). The critical Reynolds number for the 
primary instability is given13,14 by R, = &cot p. The primary 
instability is convective (in the sense that disturbances grow 
only in some moving frames of Ref. 15), and the resulting 
waves are sensitive to noise near the source.16717. 

Because 2-D disturbances grow more rapidly than 3-D 
ones 18-u) two-dimensional waves with straight wave fronts 9 
are selectively amplified by the primary instability. The non- 
linear evolution of periodic 2-D waves depends strongly on 
the frequency f, as determined by small perturbations near 
the inlet. Isolated solitary waves appear at low frequencies, 
while saturated finite-amplitude waves occur at high 
frequencies.6p16’21 (These solitary waves should not be con- 
fused with solitons, because the’ former are interacting and 
dissipative.) Sufficiently far downstream, complex disor- 
dered patterns develop, and the waves eventually become 
statistically independent of perturbations near the source. 
The transition process involves various two- and three- 
dimensional secondary instabilities. 

For relatively high viscosity and low R, transverse 
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modulations are usually suppressed, and periodic 2-D waves 
are unstable primarily to streamwise perturbations. We 
showed in Ref. 22 that the 2-D secondary instability is also 
convective. Both subharmonic and sideband 2-D instabilities 
were found, but in different ranges of frequency. The 2-D 
sideband instability predominates for waves close to the cut- 
off (neutral) frequency f,(R), while the 2-D subharmonic 
instability appears at lower frequencies. Recent theoretical 
treatments23’z4 agree qualitatively with our observations. 

At lower viscosities and higher R, the wave fronts are 
subject to 3-D transverse instabilities.5 Synchronous modu- 
lations and herringbone patterns were observed qualitatively 
in our preliminary experiments.” For the synchronous 3-D 
instability, the periodicity in the streamwise direction is the 
same as that of the fundamental waves. However, the her- 
ringbone pattern doubles the period of 2-D waves, and the 
phase of the transverse modulation differs by rr for succes- 
sive wave fronts. The regions in parameter space where these 
instabilities occur were not explored in the earlier work, and 
the mechanisms responsible for the instabilities were un- 
known. 

The 3-D secondary instabilities have been studied theo- 
retically and numerically by several groups. Krishna and 
Lin”’ first examined the stability of monochromatic waves 
near f,(R) with respect to 3-D sideband perturbations by 
using a long wave evolution equation. They found that these 
monochromatic waves are stable if the perturbation wave 
vector is sufficiently close to the fundamental. Cheng and 
Chang= later showed that relatively long waves may be un- 
stable to a transverse sideband instability. Using Floquet 
analyses, Joo and DavisI and Trifonova6 studied the syn- 
chronous and subharmonic 3-D instabilities numerically. Joo 
and Davis found that supercritically saturated waves near 
f,(R) are subject to a synchronous instability, with suffi- 
ciently long spanwise wavelengths. At least for vertical 
films, this instability does not require a threshold amplitude 
of 2-D waves. Trifonov’s calculations illustrated that the 3-D 
subharmonic instability leads to a checkerboard pattern of 
wave maxima. He also predicted some qualitative differences 
in the breakdown patterns between solitary waves driven at 
low frequency on the one hand, and waves close to the neu- 
tral curve on the other. 

Chang et aLz3 recently showed that nearly sinusoidal 
waves are unstable to a 3-D subharmonic instability in the 
presence of significant transverse noise. The instability re- 
sults from the resonant excitation of a triad of waves consist- 
ing of the fundamental 2-D wave and two oblique waves. 
The streamwise component of the wave number of the ob- 
lique waves is the subharmonic of the fundamental. This 
three-wave interaction is predicted to produce a herringbone 
pattern, as observed in our preliminary report.” We test this 
idea in the present work. 

B. Three-dimensional instability of boundary layers 

Three-dimensional instabilities have been intensively 
studied in boundary layers’-‘i and other shear layers.77” 
There is much evidence that similar physical mechanisms 
can operate in various shear Rows, so it is helpful to look 
briefly at the 3-D instabilities of boundary layers before pre- 

senting the results on film flows. However, we do not mean 
to imply that the instability modes (and mechanisms) of film 
flows”3 are the same as those of shear layers. 

For Tollmien-Schlichting (TS) waves in boundary lay- 
ers, two types of 3-D transitions have been found: the “K- 
type” transition,“’ in which the amplitude of velocity f-iuc- 
tuations is synchronously modulated in the spanwise 
direction; and 3-D subharmonic resonance.1’.30 The K-type 
transition appears whenever the TS wave amplitude exceeds 
a threshold, and is characterized by the appearance of 
aligned A-shaped vortices.” The 3-D subharmonic instabil- 
ity, on the other hand, can occur at smaller amplitude, and is 
characterized by staggered A-shaped vortices. 

Several theoretical approaches were developed in the 
study of 3-D instabilities, including the weakly nonlinear 
method and Floquet analysis. Both involve resonances, but 
with different physical interpretations.31 The weakly nonlin- 
ear theory of the 3-D instability begins with a resonant triad 
model,3233 in which a primary 2-D wave (k,f) interacts 
strongly with a pair of oblique waves (kl,fl) and (k2,fi) 
when they satisfy the conditions of phase synchronism: 
k=k,+k,, and f=fl-l-fi, where k is the wave vector. The 
three-wave interaction corresponds to the lowest-order non- 
linear (quadratic) term in the amplitude equations. It has 
been shown that the weakly nonlinear theory agrees quanti- 
tatively with the experimental observations of 3-D subhar- 
monic excitation of TS waves.11734 However, this theory can- 
not explain the K-type transition. 

Another approach is to analyze the linear stability of a 
spatially periodic 2-D flow with respect to ambient 3-D dis- 
turbances by using the Floquet theorem.10’31 A detailed sum- 
mary of this method can be found in Herbert’s review.” The 
FIoquet analysis provides a useful portrait of the 3-D second- 
ary instability. Its predictions also show quantitative agree- 
ment with experiments on the 3-D subharmonic transition in 
boundary layers.“>” 

The nature of the K-type transition turns out to be much 
more complicated than the 3-D subharmonic transition be- 
cause of its strong nonlinearity. (We find a similar dichotomy 
for the two instabilities discussed in this paper.) 
Kachanov11735 recently proposed that the K-type transition is 
due to a cascade of wave resonances in which a large number 
of higher harmonics are involved. 

III. EXPERIMENTAL METHODS 

Our flow and measurement systems are briefly described 
here;- a detailed description can be found in our previous 
papers.16.‘l The film plane is 200 cm long by 50 cm trans- 
verse to the flow; the inclination angle p may be varied 

continuously over the range O”-35”. The entrance flow rate 
can be perturbed at frequency f by applying small pressure 
variations to the entrance manifold. Both pure water (v=l.O 
cS) and several aqueous solution of glycerin (v=2-3 cS) are 
used in the experiment. The results presented in this paper 
are based primarily on a solution with 31% glycerin by 
weight. Its density, kinematic viscosity, and surface tension 
are measured to be p=1.07 g/cm3, v=2.3 CS and y=67 dyn/ 
cm, respectively, at 22 “C. The working temperature varies 
by less than 0.4 “C in a few hours. We check the surface 
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tension and viscosity regularly, and have confirmed that 
glycerin solutions are less affected by adsorbed surfactants 
than is pure water.’ 

A ftuorescence imaging method’” is used to measure the 
relative film thickness h(s,y,t)lh, in real time with mea- 
surement precision of about I%, which corresponds to 10 
,~m for 1 mm thick film. where X, y are the streamwise and 
spanwise coordinates. (We define s=O at the inlet.) To per- 
form this measurement, we dope the fluid with a small con- 
centration (100-200 ppmj of dye that fluoresces under ultra- 
violet light, and digitize the resulting images taken by a 
shuttered high-resolution CCD camera. The fluorescence in- 
tensity is proportional to the thickness for films in the rel- 
evant range of thickness.” For periodic waves, phase- 
sensitive averaging is used to improve the measurement 
sensitivity to 3-4 pm.‘” We can acquire imaging data at 30 
Hz or localized data at 60 Hz using the interlaced camera and 
an imaging board with dual-port memory. 

We also measure the local wave slope s(x,,t) by laser 
beam deflection.‘” The fractional sensitivity of this method is 
about 5’Xl.O 35 whick corresponds typically to wave ampli- 
tudes of about 0.5 pm. 

When studying the onset of 3-D instabilities, we need to 
determine the slow spatial variation of wave structures. 
Therefore, we use small inclination angles (.p=2.5”-7”) and 
moderate Reynolds numbers (R < 100) in this experiment. 

Primary 2-D waves amplified from ambient noise are not 
very regular. To discover the jndividual mechanisms leading 
to three-dimensionality, we study the instability of periodic 
2-D waves, which arc introduced by perturbing the entrance 
flow rate with sinusoidal pressure vibrations. For a fixed in- 
clination angle !flj and a particular fluid? the independent 
experimental parameters are R and the primary wave fre- 
quency f. (The Wcber number IV depends on the fluid prop- 
erties and on RI so it is not independent.) The sources of 
irregularity that are amplified by the 3-D instabilities include 
both ambient noise and slight imperfections of the entrance 
manifold. 

IV. RESULTS 

FiIlite-arnplitadt 2-D waves are generally unstable to 
3-D sewmlary instabilities. In this section, we first describe 
the 3-D instabilities observed in our experiments qualita- 
tit=ely, and report a S&hility phase diagram measured in R vs 

f space. Detailed stu cl les of each of these 3-D instabilities arc 
then presented. Finally, we describe qualitatively the further 
evolution of wavy films after the onset of three-dimensional 
instabilities. * 

A. Three-dimensional secondary instabilities- 
Qualitative summary , 

Patterns arising from two distinct 3-D instabilities have 
been identified in our experiments: synchronous transverse 
modulations and herringbone patterns. For the synchronous 
3-D pattern, the periodicity in the streamwise direction is the 
same as that of the primary 2-D waves. The herringbone 
pattern, on the other hand, doubles the period of 2-D waves, 
and the phase of the transverse modulations differs by rr for 

20 

(4 

30 40 so 
Downstream distance x (cm) 

Cb) 

20 30 40 SO 60 
Downstream distance x (cm) 

FIG. 1. Synchronous 3-D instability of 2-D periodic waves. (a) A snapshot 
taken at p=6.4”, R =72, and f= 10.0 Hz. The bar corresponds to 3 cm. (bJ 
The wave profile read from the centerline of (a). The film thickness is 
normalized by the average thickness hl, of the unforced film. The 2-D waves 
are far from sinusoidal. 

adjacent wave fronts. The 3-D instability mechanism de- 
pends strongly on the structure of the finite-amplitude 2-D 
waves, and therefore on f and R. 

A typical example of the synchronous instability is 
shown in Fig. l(aj, a snapshot taken at ,G=6.4”, R=72, and 
f = 10 Hz by the fluorescence imaging method. The gray 
scale of the image is proportional to the film thickness, i.e., 
the thick region is bright and the thin region is dark. Figure 
Ijb) shows the wave profile along the centerline of Fig. I (a). 
When a 2-D wave becomes large, transverse modulations 
appear and grow downstream. At s=40 cm, nearly periodic 
spanwise modulations are visible. The modulations take 
place mainly along the troughs (or valleys) of the 2-D waves. 
The spanwise wavelength is comparable to the streamwisc 
wavelength. As the waves travel farther downstream (,~>50 
cm), the 2-D wave fronts begin to break, and each valley 
develops into a row of nearly isolated depressions. Subse- 
quently, the flow becomes disordered. 

The primary 2-D waves shown in Fig. 1 are sirzgk 
peaked (one peak per peridj, and have quite flat maxima 
and steep dips [Fig. l(b)]. However, solitary waws6~‘h~21 OC- 

cur at very low f (Fig. 2j. A solitary wave is composed of a 
large maximum preceded by several subsidiary maxima. 
Solitary waves are also unstable to transverse modulations 
[Fig. 2(a)]. The spanwise wavelength (-3 cm) shown in Fig. 
2 is significantly smaller than the spacing of the solitary 
waves i-21 cm). The transverse modulations saturate and do 
not result in disconnected wave fronts. The curvature of the 
2-D wave fronts is due to boundary effects.” It does not 
affect the above transverse instability, since the spanwise 
wavelength is much smaller than the width of film plane. 
Farther downstream, the modulations sometimes become 
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(4 

90 100 110 li0 90 100 110 120 
Downstream distance x (cm) Downstream distance x (cm) 

ih) 
Downstream distance x (cm) 

FIG. 2. Spanwise modulations of solitaq waves. !a) A snapshot taken at 
p=4.0”, R =‘73, and f- 1.4 Hz. Transverse modulations distort the steep 
fronts of solitary waves and the subsidiary wave fronts. (b) The wave profile 
read from the centerline of (a). The wavelength of the solitary waves is 
about 21 cm. 

FIG. 3. Transverse instability of multipeaked waves at an intermediate fre- 
qency. <a) A snapshot taken at 8=4.0”, R=62, and f=XO Hz. The span- 
wise modulations and the interactions hrtwesn the primary and subsidiary 
wave fronts occur in the same region. (b) The wave profile read from the 
ccnterlinc of (a). 

weaker. Because of the finite length of the film plane. we 
cannot systematically study the ultimate stability of solitary 
waves. 

When f is increased to a value between those of Figs. 1 
and 2, the primary wave fronts are closer together, and sepa- 
rate solitary waves cannot be formed (Fig. 3). This leads to a 
strong interaction between primary and subsidiary wave 
fronts.“’ As shown in Fig. 3, the transverse instability of 
multipeaked waves often occurs simultaneously, so that the 
overall structure is fairly complex. Traveling downstream, 
the wavering 2-D wave fronts become unstable to a mixture 
of streamwise perturbations and spanwise phase modula- 
tions. 

positions along the centerline by using the fluarescence im- 
aging method. Figure 5 gives the results for Fig. 4. At .u=7h 
cm, the waves are two dimensional; the spectra show prima- 
rily the fundamental frequency and its harmonics [Fig. S(a)]. 
At x= 105 cm, herringbone patterns have developed: a 

The instabilities documented in Figs. l-3 are all classi- 
fied as examples of the s~~zclr~~~tous 3-D instability because 
they do not alter the period (or wave number) of the basic 
2-D waves until a later stage. The power spectra (not shown) 
of the local film thickness /z.(x,,,yo,r) primarily reveal the 
fundamental frequency and its higher harmonics. 

(a) 

s;, 90 100 
Downstream distance x (cm) 

A quite different 3-D instability can appear when f is 
larger and close to f,:(X j; an example is shown in Fig. 4. In 
this case, initial periodic 2-D waves are nearly sinusoidal 
[Fig. 4(b)]. The transverse phase of the modulations differs 
by rr for successive wave fronts, and the streamwise period 
is doubled [Fig. 4(a)]. This generates a herrirzgbom (or 
checkerboard) pn~errz that is similar to the staggered 
h-shaped vortices in shear layers. The herringbone patterns 
usually appear in patches and their iocation fluctuates in 

80 90 100 
Downstream distance x (cm) 

time. 
The herringbone patterns are caused by a 3-D subhar- 

manic instability. To verify this, we measured the power 
spectra of the local film thickness simultaneously at several 

FIG. 4. I-Icrringbone patterns due to the 3-D subharmonic instability. (a) A 
snapshot taken at p=4.0”, R=50.5, and f= 14.0 Hz. (bj The wave profile 
read from the line indicated by the white arrow in (a). This line goes through 
a row of maxima. 
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FlG 5. Power spectra of local film thickness measured at two positions on 

the centerline of Fig. 4. la) x=75 cm, where the transverse modulations are 
very small; (h) XT J.05 cm, where the herringbone pattern is well dcvelopcd. 
The broad subharmonic resonance is evident. 

brmdbmtl at low frequency appears around the subharmonic 
[Fig. 5(b)]. Tko e.xtra peaks at 3.4 and .10.6 Hz of nearly 

equal strength also appear in the spectra. [These two peaks 
and the fine structure of the broadband in Fig. S(b) are prob- 
ably due to fluctuating disturbances of very small amplitude. 
near the inlet. The structures are not exactly the same from 
run to run.] 

Herringbone patterns arc sensitive to initial conditions. 
This observation suggests that the 3-D subharmonic instabil- 
ity is convective. If strong transverse modulations somehow 
occur, well-defined herringbone patterns cannot be seen; they 
sometimes mix with other 3-D structures, or are significantly 
twisted, or just do not appear. However, this type of instabil- 
ity can be enhanced by applying controlled perturbations, as 
we discuss in Sec. IV C. 

We have tried to explore all possible 3-D secondary in- 
stabilities in the parameter space defined by R and f. Al- 
though the different instabilities sometimes occur in combi- 
nation, we have clearly identified two basic scenarios leading 
to three-dimensionality: the synchronous and subharmonic 
insM~,ilities. The results arc summarized in the 3-D instabil- 
ity phase diagram presented in Fig. 6. The. solid and dashed 
lines f;,(K) and f,,,(R) are, respectively, the neutral stability 
curve and the most amplified frequency predicted for pri- 
mary 2-D waves by the linear stability theory. The solid 
circles are the measurements of .fi.( R). The curve f,,(R) has 
also been confirmed experiInentally.“‘.-‘h 

There seems to exist a “critical” frequency f3(Rj [or 
equivalently, a critical lieynolds number X,(f)] for the onset 
of 3-L) instabilities. Iffcf,(R j [or R<R,(f)], 3-D instabili- 
ties are not observed on our finite film plane. This threshold 
has been determined by observation and is shown in Fig. 6 
by open squares. We do not know whether such a stability 
boundary exists in a rigorous sense; it may be dependent on 

n 

Subharmonic 3D 

.. 10 30 50 70 90 

Reynolds number R 

FIG. 6. Three-dimensional secondary instability phase diagram for p=4.0°, 
p=1.07 g/cm3, ~=2.3 cS, and y=67 dyn/cm. The solid and dashed lines 
f,.(R) and f,(R) are the neutral stability curve and the most amplified 
frequency for primary 2-D waves. The solid circles are the measurements of 
f,(H). The open squares give the measurements of f,(R) [or Ri(f)‘), below 
which no 3-D instability can be observed on our 2 m long plane. In the 
region enclosed by open triangles and f,(R), herringbone patterns can bc 
observed. The synchronous 3-D instability is seen over a large range of 
frequency. 

40 50 60 
Downstream distance x (cm) 

(a’) 

45 so 55 60 65 

x (cm) 

(b) 

FIG. 7. Evolution of synchronous transverse modulations: (a) A snapshot 
taken at /3=4.0”. K -64, and f=7.0 Hz. (Here y-0 is defined as the bottom 
line of the box.j ibj The isothickness contours show the film structure inside 
the box in (a,!. The thickness interval (M/h,,) hehveen two neighboring 
contours is approximately 0.06. Lines 1 and 2 in (aj are marked for USC in 
Fig. 8. I.ine 1 is the centerline h~~w~z tvm trains of depressions. Line 2 

30~s through a train of depressions, 
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FIG. 8. Wave profiles read from (a) line 1 and (b) line 2 in Fig. 7. Note the 
quite different variation of the minima with downstream distance in the two 
cases. 

system size. However, fs(R) is useful in order to illustrate 
the relative importance of 3-D instabilities in different pa- 
rameter regions. Only two-dimensional secondary insta- 
bilities’* are detected for f<fs(R). Our experiments also 
suggest that fa(R) increases with viscosity, and decreases 
with inclination angle. 

B. Synchronous three-dimensional instability 

7. Observations 

In this section, we focus on the synchronous instability 
shown in Fig. 1, where we can clearly separate the 3-D in- 
stability from other interactions. Our goal is to understand 
the important features of this instability and to determine 
appropriate ways to characterize it. 

The synchronous 3-D instability develops spatially. In 
contrast to the 2-D secondary instabilities,“* the inception of 
synchronous transverse modulations does not fluctuate in 
space and time if the primary waves are forced periodically. 
The local film thickness h(x,, ,yo ,t) remains periodic in time 
with the frequency of the fundamental waves until rather late 
in the development of the spanwise modulations. This obser- 
vation suggests that the modulations originate from time- 
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FIG. 10. Variation of streamwise and spanwise wavelengths (a) as a func- 
tion of R for a 6xe.d primary wave frequency f-9 Hz, and (b) as a function 
off for a fixed R =84. The solid lines are guides to the eye (p=6.4”). 

independent geometrical irregularities in the entrance mani- 
fold. (To demonstrate that the synchronous 3-D instability is 
convective, we would need to generate pulse-like transverse 
modulations. This turned out to be quite difficult.) 

We now consider the 
K 

ample shown in Fig. 7(a). At 
x-30 cm, the waves- are o dimensional. As they travel 
downstream, spanwise modulations grow gradually. The evo- 
lution of transverse modulations is illustrated more clearly in 
Fig. 7(b), which shows isothickness contours of the film in- 
side the box given in (a). This instability significantly modu- 
lates the thickness along the deep troughs of initially 2-D 
waves. The resulting depressions travel slightly slower and 
distort the 2-D wave fronts. However, the flat peaks are 
hardly modulated transversely. 

In Fig. 8, we plot two wave profiles h(x,yo) for the lines 
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FIG. 9. Measurements of the trough transverse modulation amplitude Ah,, 
(see the text) between lines 1 and 2 in Fig. 7. The data are taken from many 
snapshots and normalized by k, . The solid curve is an exponential fit. 

FIG. 11. Evolution of isolated depressions from the synchronous 3-D insta- 
bility, as shown by isothichness contours. The thickness interval (Ah/h,) 
between two neighboring contours is approximately 0.08 (P=h.4”, R=72, 
and f=lO.O Hz). 
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marked in Fig. 7(a). Line 1 [Fig. 8(a)] follows the centerline 
between two trains of depressions, while line 2 [Fig. 8(b)] 
goes directly through a train of depressions. As the waves 
move downstream, the troughs become shallower along line 
1 and deeper along line 2. The intersections between line 1 
and the troughs become saddle points, which are local 
minima in the streamwise direction but local maxima in the 
spanwise direction. The peak height decreases by a very 
small amount along both sampled lines, since the modula- 
tions extract energy from the waves. We can use the thick- 
ness difference between a depression and a neighboring 
saddle point of the same trough to characterize the spanwise 
modulation. This difference is called the trough transverse 
modulation amplitude and denoted as Ahmi,. 

The measurements of Ah,i,(x) between lines 1 and 2 in 
Fig. 7(a) are presented in Fig. 9. We fitted the data to an 
exponentially growing function (solid curve), and found a 
satisfactory fit: the spatial growth rate Si of Ah,i, is Si=O.ll 
cm -l. However, this growth rate must be interpreted cau- 
tiously, since it is not associated with a spanwise Fourier 
mode; the distortion is not sinusoidal. We measured the 
growth rate Si of transverse modulations as a function of f 
under the same experimental conditions as in Fig. 7, and 
found it varies by less than 25% over the range 6-13 Hz. 
Similarly, we measured the transverse modulation amplitude 
along the wave maxima, and found it to be essentially zero. 
This means that the transverse modulations are essentially 
confined to the trough (shallow) regions of the waves. 

Spontaneous transverse modulations often appear nearly 
periodic (Figs. 1 and 7). The spanwise wavelength is com- 
parable to the streamwise wavelength of the fundamental 
waves. To understand the spanwise wavelength selection, we 
measured both the streamwise and spanwise wavelengths as 
functions off and R. For fixed f, the streamwise wavelength 
(h,) increases with R, while the spanwise wavelength (1,) 
decreases [Fig. 10(a)]. Surprisingly, the spanwise wavelength 
does not seem to change with frequency for tied R [Fig. 
10(b)].s7 

The development of the synchronous instability does not 
lead to any quasistationary states. When the transverse 
modulations are well developed, the depressions stop deep- 
ening, while the saddle points keep rising. This process pro- 
duces sharp and nearly isolated depressions that can persist 
for quite a long distance. We illustrate the process by plotting 
isothickness contours in Fig. 11. Eventually, the troughs be- 
gin to separate into isolated depressions. 

Summary: The synchronous transverse modulations oc- 
cur mainly along the troughs of the primary 2-D waves, and 
eventually develop into sharp and nearly isolated depres- 
sions. The spanwise wavelength is much longer than the film 
thickness and is comparable to the streamwise.wavelength 
for moderate R. 

2. Theoretical description of the synchronous 
instability 

What are the mechanisms responsible for the synchro- 
nous instability? Power spectra of the local film thickness 
h(xo,yo,t) consist primarily of the fundamental frequency 
and many higher harmonics if f is not close to f,(R), so it 

may be difficult to explain this instability by using weakly 
nonlinear theory. For example, it is hard to understand why 
only troughs are strongly modulated, from the viewpoint of 
three or four wave interactions. 

Floquet analysis has been applied to the secondary insta- 
bility of film flows by Joo and Davis,r7 Trifonov,26 and 
Chang et al.‘3*B Considering the 3-D disturbances as spa- 
tially growing, and letting E=x -ct, where c is the wave 
phase velocity, we can write the film thickness in the follow- 
ing form: 

h(x,y,t)=h2(~9+~~(59exp(~Sc+i~i~+ik,y), 

with 

(1) 

H(~+h,)=H(~)=~ c, exp(ik&). 
n 

Here h, is the periodic 2-D wave, E is the initial amplitude of 
spanwise modulations, and k,= 27rfX, and k,= 24h, are 
the streamwise and spanwise wave numbers, respectively. 
The real number 6, is the spatial growth rate of a transverse 
normal mode with wave number k,. For the synchronous 
3-D instability Si=O; for a 3-D subharmonic instability 
ai=k,/2. By including many Fourier modes exp(ik,n[), 
H(t) can in principle account for the fact that only troughs 
are modulated. 

Joo and DavisI studied the synchronous 3-D instability 
of nearly sinusoidal waves on vertically falling films by us- 
ing a long wave evolution equation*’ that is valid for R close 
to R,. Although the 2-D waves in our experiments are far 
from sinusoidal (Fig. l), it is still worthwhile to compare our 
results with their predictions qualitatively. Joo and Davis 
found that 2-D waves are unstable to transverse modulations 
with sufficiently long spanwise wavelength ($9. Our obser- 
vation of long wave (h,%-ho) spanwise modulations seems 

qualitatively similar. In the calculations, the most amplified 
spanwise wavelength decreases with increasing R for fixed f. 
This computational result also agrees with our measurements 
qualitatively [Fig. 10(a)]. 

However, the results of Joo and Davis also suggest that 
the most amplified spanwise wavelength should decrease 
with increasing streamwise wavelength (X,) for fixed R, 
contrary to our observations that A, does not seem to change 
with X, [Fig. lO(b)].37 The contours of the 3-D structure they 
computed are also quite different from our observations. 
(Their modulation affects both peaks and troughs, for ex- 
ample.) This discrepancy may be due to the limited applica- 
bility of the long wave evolution equation in describing 
strongly nonlinear phenomena; some limitations of this equa- 
tion have been noted elsewhere.39-41 

C. Herringbone patterns-The three-dimensional 
subharmonic instability 

1. Observations 

The herringbone patterns result from a broad band of 
subharmonic resonances, as is implied by Fig. 5(b). To study 
these resonances in detail, we superposed small periodic dis- 
turbances at frequency f/2 + Af on the primary 2-D waves f 
at the entrance manifold, where f is in the subharmonic 3-D 
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FIG. 12. Stabilized herringbone patterns generated by subharmonic and de- 
tuned disturbances. The experimental conditions are the same as those of 
Fig. 4, except for the weak secondary forcing; /3=4”, R=.50.5, and f=14 
Hz. The secondary perturbation frequencies are (a) f,=f/2=7.0 Hz, (b) 
fr~6.5 Hz. The corresponding detuning parameters are (a) p=O and (b) 
(L&=0.0357. 

region of the phase diagram (Fig. 6). The initial power ratio 
is about lop4 . We found that the herringbone patterns can be 
enhanced in all cases for which 1 Afl <f* m f/6. The patterns 
are the same for Af and - Af, so we define a “detuning 
parameter” p=]Af]/f. 

Three herringbone patterns resulting from this two- 
frequency forcing are shown in Fig. 12. These pictures were 
recorded under the same conditions as Fig. 4, except for the 
addition of a secondary forcing near the subharmonic fre- 
quency: f 1= f/2=7.0 Hz [Fig. 12(a)] or f,=6.5 Hz [Fig. 
12(b)]. When the perturbation frequency is exactly at the 
subharmonic frequency (f/2), the herringbone patterns grow 
steadily as the primary waves travel downstream; their am- 
plitudes do not fluctuate in space and time. On the other 
hand, when the perturbation is detuned from the subhar- 
monic frequency, the herringbone patterns appear in patches 
and contain long wave modulations in the streamwise direc- 
tion [Fig. 12(b)]. The long wave modulation wavelength var- 
ies inversely with [A f 1, as one~might expect. We also note a 
rr transverse phase shift between neighboring patches in Fig. 
12(b). Therefore, the detuned case cannot be viewed simply 
as a streamwise modulation of the perfectly resonant pattern 
in Fig. 12(a). 

We measured power spectra of the local thickness at 
several positions along a centerline in Fig. 12. The dominant 
frequencies are found to be f and fl2kAf. The peaks f/2 
_t Af are sharp and of nearly equal strength. We determined 
the integrated area under each peak in the power spectrum 
and plot the areas as a function of x in Fig. 13 to illustrate the 
spatial evolution of the spectral power. The power at f/2 
+ Af grows exponentially at first and then saturates. The 
power at f, on the other hand, decreases slightly with x. This 
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FIG. 13. Spatial evolution of the integrated spectral power along the cen- 
terline of Fig. 12(b), at the frequencies of certain spectral peaks. The peaks 
are located at f=14 Hz, fr=6.5 Hz, and f-f,=7.5 Hz, respectively. The 
solid line is a guide to the eye. 

behavior is similar to that of the subharmonic instability in 
free shear layers.7 The observations imply that the modula- 
tions extract some of their power from the primary waves. 
We determined the growth rate Si at fl2Af from the expo- 
nentially growing part of Fig. 13. The growth rate of the 
transverse modulations determined in this way does not vary 
significantly with Af, for IAfl<f/6. 

For IAfj >f/6, the 2-D sideband instability starts to ap- 
pear instead.” The wave fronts are modulated transversely to 
some extent, but the well-developed herringbone patterns do 
not exist. When we superpose uniform white noise instead of 
periodic perturbations on the primary 2-D waves, the her- 
ringbone patterns can coexist with the 2-D sideband instabil- 
ity below a certain noise level. The power spectra of local 
thickness show both subharmonic and sideband peaks (not 
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FIG. 14. (a) A subharmonic resonant triad that produces herringbone pat- 
terns: k,+k;=k, where k,,=ki,=k/2. (b) The detuned case: two asymmet- 
ric resonant triads exist simultaneously. Here k,+k;=k and k;+k=k (see 
the text for details). 
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shown). However, the herringbone patterns are often twisted 
in this case. 

Measurements taken for various controlled and noncon- 
trolled perturbations suggest that the spectral width of the 
3-D subharmonic resonances is approximately fi3, where f is 
the frequency ofprimary 2-D waves. It is interesting to note 
that similar results were obtained by Kachanov and 
LevchenkoZ for the subharmonic transition in boundary lay- 
ers. (For the Tollmien-Schlichting waves at f =120 Hz, 
Kachanov and Eevchenko estimated the spectral width as 40 
and 50 Hz for controlled and noncontrolled subharmonic per- 
turbations, respectively.) 

2. Theoretical description of the herringbone patterns 

How do the patterns develop? Our experiments show 
that the primary 2-D waves can interact strongly with the 
fluctuations within a broad band of frequencies around the 
subharmonic. Chang et aLz proposed that for the nearly 
sinusoidal waves, a three-wave resonant interaction can give 
rise to a 3-D subharmonic instability and herringbone pat- 
terns. We use this model to explain qualitatively the devel- 
opment of these patterns under the influence of subharmonic 
and detuned perturbations. The phenomenon of subharmonic 
instability of boundary layers has been quantitatively ex- 
plained in a similar way.1’94 

The phase velocity depends on f,21 so it seems difficult 
to satisfy the phase synchronism conditions (see Sec. II B) 
exactIy for a broad band of frequency. However, as was 
pointed out by Zelman and Maslennikova,34 exact phase syn- 
chronization is not a necessary requirement for the amplifi- 
cation of subharmonics; approximate synchronization may 
be sufficient. Second, we found that the herringbone patterns 
are stable over a long distance (20-30X,) before they turn 
into chaotic waves. This observation demonstrates that the 
phases of interacting waves may lock together.3” Phase lock- 
ing and synchronization depend on the fact that the disper- 
sion relation is nearly linear. 

The formation of the herringbone patterns is illustrated 
qualitatively in Figs. 14 and 15. We assume that the primary 
wave (k=kfi,f) is sinusoidal, where ji is the streamwise unit 
vector, and that a small perturbation fl applied to the en- 
trance manifold can generate both streamwise and oblique 
modes at f 1. Because of the inversion symmetry in the trans- 
verse direction, an oblique mode with a spanwise component 
k,,? should appear with another wave having the component 
-kt,$ at the same time, where j is the spanwise unit vector. 
Therefore, the small oblique modes are 

. I 
jk,f,)=(k,,x+k,,yf,) and Ik;,fl)=(kl,l;-kl,~,fl). If 
f 1 = f/2 (and k,,=k/2), the two oblique modes (k, f r) and 
(k{,f,) form a resonant triad with the primary wave (k,f), as 
shown in Fig. 14(a), and are strongly amplified downstream. 
The 3-D waves are the superposition of the primary wave 
and resonant oblique waves that are growing spatially: 

h=Ao exp[i(kx-2vft)] 

k 
yx+kl,y-n-ft 

k 
y-klyY - 71-P 

ill 
, 

where Aa is the amplitude of primary waves and 8, is the 
initial amplitude of oblique modes. The factor G(x) de- 
scribes the spatial growth of the oblique waves. It has a 
similar shape to the solid curve in Fig. 13; the oblique waves 
first grow exponentially and then saturate. A snapshot of Eq. 
(3) is shown in Fig. 15(a), which closely resembles the ex- 
perimental observation shown in Fig. 12(a). As we men- 
tioned above, the perturbation ft also excites streamwise 
modes. However, our measurements show that the oblique 
subharmonic modes grow much faster than the streamwise 
subharmonic modes. 

Detuning: If the secondary forcing frequency f 1 #f/2, 
the initially generated oblique modes (klf r) and (kif 1) can- 
not form a resonant triad with the fundamental 2-D wave 
(kf). However, the oblique mode (k,,f,) and the primary 
wave (k,f) can form an asymmetric resonant triad with an- 
other oblique mode (ki,fi)= [(k- klx)2-kly,i,f-fl], as 

shown in Fig. 14(b). Therefore, the mode (ki,fJ emerges, 
and subsequently the two oblique modes, (k, f 1) and (kif 2), 
are amplified downstream.30J32 Similarly, (k;,f t) and (k,f) 
can form a second resonant triad with (k2,f2) 
=[(k- k,,j~+k,,~,f -fr J. For the same detuning parameter 
as in Fig. 12(b), the superposition of the primary wave and 
the four spatially growing oblique waves gives rise to the 
simulated herringone patterns in Fig. 15(b). The close resem- 
blance between Fig. 12 (experiment) and Fig. 15 (model) 
supports our view that the three-wave resonant interaction 
can explain the 3-D subharmonic instability. 

Alternatively, following Herbert’s arguments in Ref. 10, 
we can also obtain this result qualitatively using the Floquet 
language. There have been spirited debates as to which ap- 
proach is more appropriate in the study of subharmonic in- 
stabilities in boundary layers (see Refs. 10, 11, 32 and 34). 
Kachanov’r recently summarized the literature: both meth- 
ods demonstrate quantitative agreement with experiments on 
the 3-D subharmonic instability of boundary layers. 

Further evidence for the resonant triad model can be 
obtained by considering special circumstances under which 
only one of the two asymmetric resonant triads in Fig. 14(b) 
is amplified. In this case, an asymmetric herringbone pattern 
can appear. This triad may be selected by biased initial con- 
ditions when the symmetry in the spanwise direction is bro- 
ken. (This happens occasionally and is hard to control.) An 
example is shown in Fig. 16. If the perturbation frequency is 
the subharmonic, the herringbone patterns are qualitatively 
the same as that of Fig. 12(a). However, when we detune the 
perturbation frequency, the patterns are twisted [Fig. 16(a)], 
and the long wave modulations seen in Fig. 12(b) do not 
occur. The lattice formed by the maxima in the herringbone 
patterns changes from rectangles to parallelograms, as shown 
in Fig. 16(b). We measured the two angles 19~ and 0, defined 
in Fig. 16, and plot them as function of the perturbations 
frequency in Fig. 17. The solid lines are the calculations of 
0, and 0, based on the asymmetric resonant triad [Fig. 14(b)] 
and the measured streamwise and spanwise wave numbers, 
k, k,,. They are in agreement with the measured angles. 
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FIG. 15. Simulated herringbone patterns (see the text) for the detuning 
parameters in Fig. 12: (a) ,u=O and (b) ~=0.0357. These patterns resemble 
the experimental results shown in Fig. 12. 

The above arguments are qualitative and geometrical. 
Rigorous theoretical work is needed to fully understand the 
3-D subharmonic instability mechanism. In the investigation 
of three-dimensional instabilities of vertically falling films, 
Chang et al3 found that the three-wave resonant interaction 
results in a 3-D subharmonic instability of nearly sinusoidal 
waves that is much like the one we observe for small incli- 
nation angles. 

However, the instability occurs in a different region of 
parameter space than Chang et al.23 apparently anticipated. 
[According to their calculations, the fundamental waves that 
are subject to the 3-D subharmonic instability are unstable to 
the 2-D subharmonic instability when the transverse noise 
level is low enough. We found instead that the herringbone 
region (Fig. 6) is very close to f,(R), where the waves are 
subject to the 2-D sideband instability, rather than the 2-D 
subharmonic instability.z] Chang et al. also predicted that 
the most amplified spanwise wave number decreases with 
increasing streamwise wave number of the fundamental 
waves, whereas we did not find a significant change of kY 
with k, in the experiments.37 It is possible that these differ- 
ences might be attributed to the fact that we use small incli- 
nation angles @=2.5”-7”), while the computations assume 
/3=90’ (vertical films). In another numerical study, 
Trifono? predicted that the herringbone patterns can appear 
for the primary waves far below f,(R); this result is also 
contrary to our observations. 

D. Further evolution of three-dimensional waves 

The evolution of the 3-D waves after their inception in- 
volves the development and interaction of additional two- 
and three-dimensional modes. We present some qualitative 
observations in this section. Far downstream, although the 
wave structure is essentially three dimensional, the solitary 
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FIG. 16. (a) Experimental asymmetric herringbone patterns generated by 
one asymmetric resonant triad, where p=4”, R=49.2, f=12 Hz, and 
ft=5.1 Hz. (b) Schematic lattice (a parallelogram) formed by the maxima of 
the herringbone patterns in (a). 

waves, which are largely two dimensional, become dominant 
eventually. The spacings between the solitary waves and the 
shapes of the individual pulses are irregular. 

We illustrate in Fig. 18 the downstream evolution of 
three-dimensional waves after the onset of the synchronous 
3-D instability shown in Fig. 1. The experimental conditions 
are the same as those of Fig. 1. These snapshots were taken 
at successive donwnstream positions, but do not show liter- 
ally the same waves. The film thickness averaged over the 
spanwise direction, (h(x,y)),lhO, is presented in Fig. 19 to 
show the development of streamwise structures. 

As the waves travel downstream, the 2-D wave fronts 
break into nearly isolated depressions [Fig. 18(b)]. The 
waves become disorganized, and the two-dimensional struc- 
ture, shown in the spanwise average of Fig. 19(b), is fairly 
weak. The liow becomes increasingly three dimensional 
[Fig. 18(c)]. However, the solitary wave structure soon be- 
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FIG. 17. Measurements of the angles 6, and f& defined in Fig. 16(b) as 
functions of the secondary forcing frequency fr . The solid ewes are the 
calculations. The agreement supports our discussion of the herringbone pat- 
terns as resulting from nonlinear resonances. 
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FIG. IX. Evolution i~f thrrr-dimensional w:~es after the onset of the synchronous 3-D instability. Four snapshots are taken at successive downstream 
positions. l‘he esprrimmtal conditions are the same as those of Fig. 1. 

gins to grow out c9f the 3-D disordered motion [Fig. 19(c)]; 
the small wa\ves preceding each solitary front are absorbed, 
in a process that is similar to what we previously noted for 

2-D flows at higher viscosity.” The increasing dominance of 
the solitary waves with distance downstream is particularly 
obvious in the sl9:mwisc avcragc [Fig. IV(d)]. 

The irregular spacing of these solitary pulses is on the 
average much larger than the initial primary wavelength. 
Though the solitary wave fronts are essentially three dimen- 
sional. thev mav bc viewed perhaps as being locally two 
Jitn~nsiotti~i. T/L:? solitqy H~V &ncunii:r phys on itnportmt 
t-ok in t/x jidw ~~~vlurirm of’ the? nwhulewt filtn j’ows. This 
observation is also applicable to the evolution after the onset 
of 3-D subharmonic instability. 

v. CONCLUSION 

A. Summary of the major results 

The major results of this study c9f three-dimensional in- 
stabilities of film flo\\~ may he summarized as follows. 

, (1) Two distinct three-dimensional instabilities have 
been identified in different regions of the parameter space 
defined 19y the Reynolds number R and the frequency f of 
the fundamental 2-D dives U+?g. 6). The synchronous insta- 
bility aLlpears over a wide range of frequency, while the 3-D 
subharmonic instability i leading to herringbone patterns) oc- 
curs for frequencies close to the neutral curve f,.(R). The 
synchronous transverse modulations maintain the streamwise 
periodicity of 2-D waves (Fig. 1). The herringbone patterns, 
on the other hand, double the 19txiod of 2-D waves, and the 
phase of the spanwise modulations differs by .n- for adjacent 
wave fronts (Fig. 49. “llhe results for pure water and several 
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glycerin solutions used in this experiment are qualitatively 
the same. 

(2) The synchronous transverse modulations occur 

mainly along the trough regions of the primary 2-D waves 
(Fig. 7). The spanwise wavelength is much longer than the 
film thickness and comparable to the streamwise wavelength 
for moderate R. It turns out that this instability involves 
many higher harmonics of the fundamental waves, so Ho- 

quet analysis may be an appropriate theoretical nict hod. 
(3) The herringbone patterns result from a l9n9ad band of 

subharmonic resonances (Figs. 5 and 12). (These patterns 
may be viewed as two oblique waves resonating with the 
fundamental 2-D wave.) A similar process also occurs in 
boundary layers.” When the perturbation is detuned from the 
exact subharmonic frequency, the herringbone patterns ap- 
pear in patches and are modulated in the streamwise direc- 
tion. Herringbone patterns can be stabilized by perturbing the 
primary waves at the subharmonic frequency. 

(4;) The 3-D synchronous instability causes the wave 
fronis eventually to break up into incarlyj isolated Jepres- 
sions (Fig. 11). The subsequent evolution is complczz [Figs. 
18(b) and lc*l(c)]. 

(5) Far downstream, disordered solitary waves become 
dominant [Fig. 18(d)]. This happens for a wide range of pa- 
rameters, no matter which 3-D instability initiates the gtow- 
ing complexity. 

B. Concluding remarks 

We have compared our observations with theoretical 
work on the three-dimensional instabilities in models of film 
flows. 1,7,23,26,3X While some predictions agree qualitatively 
with the present measurcntcnts, many of our observations 
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FIG. 19. Film thickness averaged in the spanwise direction, (h(x,r)),:h,, , for the snapshots of Fig. 18. Strong 2-D structure largely disappears in (h) and icl, 
but returns as the solitary waves begin to dominate in cd). 

remain to be explained. The synchronous 3-D instability 
merits special attention, since the most amplified waves re- 
sulting from the primary instability fall into this region of the 
3-D instability phase diagram, so this process is espe.cially 
important for natural (unforced) fiows. 

The three-dimensional instability mechanism depends on 
the nonlinear structure of the primary 2-D waves. When the 
fundamental waves are nearly sinusoidal, the process leading 
to three-dimensionality is weakly nonlinear, as in the case of 
the herringbone pattern of Fig. 4. On the other hand, when 
the primary wave profiles are far from sinusoidal, as in many 
of the other situations discussed in this paper (e.g., Figs. .l,2, 
and 31, weakly nonlinear theory cannot be used. Similar ob- 
servations have been made for boundary layers,’ where the 
subharmonic instability usually dominates at small wave am- 
plitudes and the synchronous K-type transition appears at 
large wave amplitudes. 

A striking property of turbulent film flows is the eventual 
dominance of solitary pulses. The statistical properties of 
these disordered strongly nonlinear flows will be the subject 
of a subsequent paper in this series. 
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