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ABSTRACT

We present a 3D inversion methodology for multisource

time-domain electromagnetic data. The forward model con-

sists of Maxwell’s equations in time where the permeability

is fixed but electrical conductivity can be highly discontin-

uous. The goal of the inversion is to recover the conductivity-

given measurements of the electric and/or magnetic fields.

The availability of matrix-factorization software and high-

performance computing has allowed us to solve the 3D time

domain EM problem using direct solvers. This is particularly

advantageous when data from many transmitters and over

many decades are available. We first formulate Maxwell’s

equations in terms of the magnetic field, ~H. The problem

is then discretized using a finite volume technique in space

and backward Euler in time. The forward operator is sym-

metric positive definite and a Cholesky decomposition can

be performed with the work distributed over an array of pro-

cessors. The forward modeling is quickly carried out using

the factored operator. Time savings are considerable and

they make 3D inversion of large ground or airborne data sets

feasible. This is illustrated by using synthetic examples and

by inverting a multisource UTEM field data set acquired at

San Nicolás, which is a massive sulfide deposit in Mexico.

INTRODUCTION

Electrical conductivity is a diagnostic physical property for many

problems in resource exploration, environmental, and engineering

applications. A variety of electromagnetic surveys can be carried

out to delineate the subsurface conductivity, and a generic scenario

is shown in Figure 1. Sources can be grounded or inductive,

located inside, on, or above the earth’s surface, and data ~E; ~H;

∂~B∕∂t can be measured at any location in the 3D volume. The wave-

form in the transmitter can be continuous “on-time” or have an

“off-time” so that data can be collected when no current flows

through the transmitter. To simulate time domain data, Maxwell’s

equations are either directly time-stepped, or solutions in the fre-

quency domain are Fourier transformed. The latter is often referred

to as a spectral method in time. Here, we adopt the time-

stepping formulation but our approach can be easily carried over

to the spectral method. Our goal is to develop a flexible and prac-

tical 3D algorithm to invert the time data to recover the electrical

conductivity with the assumption that the magnetic permeability

is fixed.

Recovering meaningful 3D distributions of any physical property

requires that the data contain adequate information. This is facili-

tated by measuring multiple components of the electromagnetic

fields, but it also requires that the earth is illuminated by many dif-

ferent sources. Airborne EM surveys typically acquire data from

thousands of transmitters, and even ground surveys employ multi-

ple transmitters. Inverting these data to find the causative 3D elec-

trical conductivity has been an ongoing challenge. In previous

research (Haber et al., 2007), we developed an inversion algorithm

that allowed data from a single, or a very few, transmitters to be

inverted. Unfortunately, the computational demands of that algo-

rithm were too large to invert typical ground or airborne surveys

acquired from many source locations. Other recent work on time

domain problems is presented in Zaslavsky et al. (2010), and it suf-

fers from a similar drawback when the number of sources is large.

Simulating data from multisources can be computationally onerous

because each transmitter requires that Maxwell’s equations be

solved with a specific right side. In our previous work, the forward

problem was solved using an iterative Krylov method, and the com-

putation time increased linearly with the number of transmitter

locations. However, as we discuss here, for a large number of

sources (right sides), efficiency can be increased significantly if

the forward modeling matrix is factored. Factorizing involves large
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computations and significant memory requirements, but once this is

accomplished, solving the factored system with a different right side

proceeds quickly (Oldenburg et al., 2008). The idea of decomposing

the matrix system and solving many right sides for different sources

is not new (Dey and Morrison, 1979; Pratt, 1999), and small pro-

blems have been solved in this manner. However, the matrices for

3D TEM problems have generally been considered to be too large to

be amenable for this approach. Over the last decade, however,

advances in mathematics and computational science have resulted

in factorization algorithms that can be implemented on large-scale

computing systems (Demmel et al., 1999; Amestoy et al., 2001).

Here, we advocate the use of such codes and, in particular, we

use the factorization code MUMPS and distribute the computation

over many different processors. This enables us to solve large-scale

problems with multiple sources in an efficient manner.

Our paper is divided into five sections. First, we introduce the

forward problem. Its components include our reformulation of

Maxwell’s equations for the ~H field, the discretized equations in

space and time, and practical strategies for implementing the de-

composition. Then, the inverse problem is presented and synthetic

examples are shown. Using synthetic examples, we compare the

computation time and memory cost for the forward and inverse pro-

blems when using direct and iterative solvers. Next, we invert

ground-based UTEM field data over a massive sulfide at the San

Nicolás deposit. We conclude with a discussion.

MAXWELL’S EQUATIONS IN THE TIME DOMAIN

The forward model consists of Maxwell’s equations in time,

where the permeability is fixed but electrical conductivity can be

highly discontinuous. For the case where we have N transmitters,

we write Maxwell’s equations as

∇ × ~E
ðjÞ

þ μ
∂ ~H

ðjÞ

∂t
¼ 0; (1a)

∇ × ~H
ðjÞ

− σ ~E
ðjÞ

− ϵ
∂~E

ðjÞ

∂t
¼ ~s

ðjÞ
r ðtÞ j ¼ 1; : : : ; N; (1b)

over a domain Ω × ½0; tf�, where ~E
ðjÞ

and ~H
ðjÞ

are the electric and

magnetic fields that correspond to the source ~s
ðjÞ
r , μ is the perme-

ability, σ is the conductivity, ϵ is the permittivity, and Ω denotes the

spatial domain. The equations are given with boundary and initial

conditions

~n × ~H
ðjÞ

¼ 0; (1c)

~Hð0; xÞ ¼ ~H
ðjÞ
0 ; (1d)

~Eð0; xÞ ¼ 0; (1e)

although other boundary and initial conditions could be used. In the

above, ~n is the unit normal on the boundary and equations 1d and 1e

are the initial conditions for t ¼ 0.

Solving the forward problem

In this subsection, we briefly discuss our approach for the solu-

tion of the forward problem. An elaborate discussion can be found

in Newman and Alumbaugh (1995), Hyman and Shashkov (1998),

Haber et al. (2000a, 2004), Aruliah and Ascher (2003), and Hu

et al. (2006).

For ease of notation, we consider a single source and the index i
refers to the time step. Maxwell’s equations in conductive media are

highly stiff, and therefore we use the backward Euler discretization

in time with step size δt (Ascher and Petzold, 1998; Ascher, 2010).

We obtain the following semidiscretized partial differential equation

for the fields at each time step

∇ × ~E
iþ1

þ μ
~H
iþ1

− ~H
i

δt
¼ 0; (2)

∇× ~H
iþ1

− σ ~E
iþ1

− ϵ
~E
iþ1

− ~E
i

δt
¼ ~siþ1

r . (3)

To discretize over the spatial domain, we use a staggered grid for ~E
and ~H. We employ the traditional Yee’s method (Yee, 1966), in

which ~H is discretized on edges and ~E on faces as demonstrated

in Figure 2.

With the finite volume method, the resultant matrix system is

C⊤ ~E
iþ1

þ αM ~H
iþ1

¼ αM ~H
i
; (4a)

C ~H
iþ1

− S~E
iþ1

− αϒ~E
iþ1

¼ ~siþ1
r − αϒ~E

i
; (4b)

where C and C⊤ are curl operators, respectively, going from edges

to faces and from faces to edges, S and ϒ are, respectively, the (har-

monic) averaged conductivity and electrical permittivity, M is the

arithmetically averaged magnetic permeability, α ¼ 1
δt, and ~siþ1

r is

the volumetric integral of the original current source.

Eliminating the electric field ~E
iþ1

from Maxwell’s equations, we

obtain an equation for the magnetic field ~H
iþ1

Figure 1. A generic electromagnetic experiment. The source can be
grounded or inductive, and it may be located in the air, on the sur-
face, or inside the conductive volume. The waveform is arbitrary.
The time-varying current in the transmitter induces electromagnetic

fields in the earth. Data ~E; ~H; d~B∕dt are recorded in the air, on the
surface, or inside the conducting medium as might be the case in
marine EM surveys, or in boreholes.
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ðC⊤
Γ
−1Cþ αMÞ ~H

iþ1
¼ C⊤

Γ
−1~siþ1

r − αC⊤
Γ
−1
ϒ~E

i

þ αM ~H
i
; (5)

where Γ ¼ Sþ αϒ. Once the magnetic fields have been computed,

the electric fields are obtained from

~E
iþ1

¼ Γ
−1C ~H

iþ1
− Γ

−1~siþ1
r þ αΓ−1

ϒ~E
i
. (6)

Equation 5 can be written as

~Aðσ; δtÞ ~H
iþ1

¼ rhs. (7)

Using finite volume or finite integration techniques (Madden and

Mackie, 1989; Bossavit, 1998), we obtain a symmetric positive de-

finite forward modeling matrix ~A. As a consequence, we can use the
Cholesky decomposition and write

~A ¼ LL⊤.

We now make an important observation which motivates our

approach. We note that by using the same time step δt, the linear

system 7 is identical for all times and all sources. Thus, a single

factorization can be used to solve all the linear systems.

The system 5 must be solved with initial conditions. If the system

starts from a null state, then all fields are zero. If the system starts

from a steady state condition, say with a constant current flowing in

a loop, then the steady state fields are needed. This requires solution

of the system

C⊤S−1C ~H ¼ C⊤S−1~sr. (8)

This system is singular and consistent. It can be made stable by

requiring that (the discrete analog of) ∇ · μH ¼ 0. Note that, on a

staggered grid, the divergence operator is the (negative) transpose of

the discrete gradient operator G (see, for example, Hyman and

Shashkov, 1999), and given a material property matrix M (the aver-

age of μ on the cell faces), we obtain that

G⊤M ~H ¼ 0.

Multiplying from the left by GM−1
Γ
−1 and adding to equation 8 we

obtain

C⊤S−1C ~H þGM−1
Γ
−1G⊤M ~H ¼ C⊤S−1~sr. (9)

This is a symmetric system which ensures that ∇ · μ ~H ¼ 0. We

choose the matrix Γ such that in regions with fixed material proper-

ties the differential operator is reduced to a vector Laplacian (see

Haber and Ascher, 2001).

The final system to be solved incorporates all time steps and we

can write the forward modeling generically as AðmÞu ¼ q where A
is the forward modeling matrix, u are the fields, and q is the right

side which contains the source terms. A is a large bidiagonal matrix

of the form

A ¼

0

B

B

B

B

@

~AðmÞ · · · 0

B ~AðmÞ · · ·

· · · · · ·

0 B ~AðmÞ

1

C

C

C

C

A

; (10)

where

Biþ1 ¼ αC⊤
Γ
−1
ϒ~E

i
þ αM ~H

i
qi ¼ C⊤

Γ
−1Ei~sr.

The first solution, ~AðmÞuð1Þ ¼ qð1Þ, establishes the initial fields.

If the initial state is a constant current, then this recovers the DC

fields. Subsequent solutions ~AðmÞuðiþ1Þ ¼ qðiþ1Þ − Bðiþ1Þui pro-

duce the fields marching in time.

Matrix factorization is an expensive computational process. If the

number of sources and time steps is small, then iterative methods for

solving the forward problem can be superior. However, when the

same forward-modeling matrix needs to be inverted many times,

the decomposition will be greatly superior to iterative techniques.

The benefits of decomposition are enhanced for the inverse problem

because the same factorization can be used for the computation of

the gradient as well as for the solution of the linear system which

arises at each Gauss-Newton iteration.

Software for matrix factorizations

In recent years, there has been a growing effort to obtain scalable

matrix factorizations on parallel machines. The mathematical pro-

gress made on this problem, coupled with the continued increased

power of computer workstations, allows 3D EM problems to be

solved with this technology. We use the package Multifrontal Mas-

sively Parallel Solver (MUMPS) developed by the CERFACS group

(Amestoy et al., 2001). Other packages can also be used (Demmel

et al., 1999), however our experience with MUMPS was favorable.

MUMPS is a package for solving systems of linear equations of the

form Ax ¼ b, where the matrix A is sparse, not symmetric,

symmetric positive definite, or general symmetric. MUMPS uses

a multifrontal technique which is a direct method based on either

the LU or the LDL⊤ factorization of the matrix. It exploits paral-

lelism arising from sparsity in the matrix A and from dense factor-

izations kernels. The main features of the MUMPS package include

Figure 2. Staggered discretization in 3D: E is defined on the faces
and H is on the edges.
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the solution of the transposed system, input of the matrix in

assembled format (distributed or centralized) or elemental format,

error analysis, iterative refinement, scaling of the original matrix,

and return of a Schur complement matrix. Finally, MUMPS is avail-

able in various arithmetics (real or complex, single or double pre-

cision). The software is written in Fortran 90. The parallel version of

MUMPS requires MPI for message passing and makes use of the

BLAS, BLACS, and ScaLAPACK libraries. We have tested

MUMPS on a cluster of PCs under Linux. In our setting, MUMPS

distributes the work tasks among the processors, but an identified

processor (the host) is required to perform most of the analysis

phase, distribute the incoming matrix to the other processors

(slaves) in the case where the matrix is centralized, and collect

the solution.

Comparing direct and iterative solvers

To obtain insight regarding the advantages of the decomposition,

we consider a generic problem in airborne geophysics. The trans-

mitter is a square loop, of 20 m on a side, flown at 50 m elevation.

Three components of d~B∕dt are acquired in the center of the loop.

The waveform is a step-off and 35 time channels, equispaced in

logarithmic time between 10−5 and 10−2 s, are measured. Data

are collected every 20 m along 20 east–west lines and there are

1000 transmitter locations. We discretize the volume with a regular

structured grid of n3 cells.

The current is a step-off and hence, in the numerical forward

modeling, the initial fields are steady state. Although the first ob-

servation time is at 10−5 s, our time stepping must start before that;

typically, we begin about a decade before the first observation time.

The rationale for this is that backward Euler (BE) is a highly stiff

time integrator. One important, well-known feature of BE is that it

“skips” fast decaying modes and, without significant loss of accu-

racy, captures the slow-decaying modes. (Ascher and Petzold,

1998). Thus, displacement currents and modes that have early

decay can be skipped without significant loss of accuracy. This does

not mean that accuracy for the slow modes is obtained without any

step control and one needs to verify that the step length is suffi-

ciently small to accurately capture the diffusion part of the system.

The total time to carry out a forward modeling is

T total ¼ ½NTXts þ tfs� þ ½NTXNδtts þ tf�; (11)

where NTX is the number of transmitters, Nδt is the number of time

steps taken with a time increment δt, ts is the solution time for a

single right side, and tfs and tf are respective factorization times for

the initial steady state problem 9 and the time-marching problem 5).

Usually tfs is fractionally larger than tf , and its factorization mem-

ory is a bit larger, but the differences are not significant for our pur-

poses of comparison.

Our equations are to be time-stepped between T1 ¼ 10−6 and

T2 ¼ 10−2 s. If a single δt is sought for the entire time interval,

then its size is determined by the smallest time needed. Thus, δt ¼
T1 and so the number of time steps is Nδt ¼ T2∕δt ¼ 104 for this

example. The factorization and solution times depend upon the size

of the problem, the number of CPUs, and the amount of available

memory. For a 703 mesh and our hardware configuration,

tf ¼ 163 s and ts ¼ 0.80 s. Further details about the solution time

are provided in the next section.

Unfortunately, the total time is 8e6 s or 92 days; this is prohibi-

tive. The difficulty arises because of the excessive number of time

steps; keeping the same δt for the entire modeling requires 107 for-

ward solutions. To circumvent this, we divide the modeling time

interval into P subintervals, each of which has a constant δt.
One additional factorization is required for each subinterval. The

time for a forward modeling is now

T total ¼ ½NTXts þ tfs� þ P½NTXNδtts þ tf�. (12)

For the example here, we use subintervals that are a decade in time,

and each subinterval is modeled with 15 equal time steps. Five fac-

torizations are required, but only 60,000 forward modelings. The

total time is thereby reduced to 17,373 s or about 4.8 h. The com-

putations were carried out on a single node having six cores and

16 GB per core.

Comparing computation times using
direct and iterative solvers

The choice of whether, or under what conditions, to use an itera-

tive or direct solver is problem-dependent. If the number of sources

and time steps is small, then an iterative technique might be more

efficient. Also, if the number of cells is exceedingly large, there

might not be enough memory to carry out and store the factoriza-

tions, and in such cases we may again have to appeal to an iterative

solver. However, there is a large range of problems for which a di-

rect solver can be much faster. To shed some quantitative light on

this, we carry out the following analysis.

As a first comparison, we examine the relative computation times

for a single solution of Maxwell’s equations. For the iterative solver,

the main aspects are the preconditioner, the desired tolerance, and

the maximum number of iterations. Here, we use the algorithm

BiCGstab Barrett et al. (1994), with an ILU preconditioner, and

have set a tolerance to 10−10. The maximum number of iterations

is limited to 1000. If this number is thought to be too conservative,

then it is a simple matter to adjust the final times because the time

for an iterative solver is linearly related to the number of iterations.

We consider different-sized meshes that range from 403 to 903. The

results are summarized in Table 1. For the small (403) and for the

large (903) systems, the total times for the direct and iterative solu-

tions are approximately equal. For 503 and 603 systems, the direct

solver is a factor of two to three times more efficient. The direct

solver however requires progressively more memory, needing about

101 Gb for the 903 system.

The major benefits of the direct solver arise when the number of

time steps and transmitters increase. To illustrate this, we consider

the 703 mesh and the problem addressed at the beginning of this

section. Data at 35 time channels are to be simulated. For the itera-

tive method, we can sample in variable increments in δt, but the time

marching still needs to be initiated before the first data time channel.

Solution of Maxwell’s equations at 42 times is sufficient. For the

direct method, we divide the total time interval into four partitions

and sample at 15 equispaced times in that interval. One factorization

is required for each interval and another to solve the initial steady

state problem. The results are summarized in Table 2. Even for a

single transmitter, the total simulation time for the direct solver

is substantially less than for the iterative method, 1036 s

versus 4930 s. That discrepancy is exacerbated as the number of

transmitters is increased.
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For the above statement to be properly interpreted, we also need

to factor in the number of processors being used. With the iterative

approach, each transmitter can be spawned to a different processor.

Thus, if np processors were used, then the total time for the iterative

method is the time for a single transmitter multiplied by NTX∕np.
For the example here, the direct solver used 12 processors.

The above comparisons illustrate the potential benefits of using a

direct solver for carrying out the forward modeling. The advantages

of this will become even more apparent in the next section.

INVERSION

The real benefit of using decomposition becomes apparent when

we treat the inverse problem. Our inversion algorithm is essentially

that described in Haber et al. (2007) and it bears similarity to other

work (Madden and Mackie, 1989; Newman and Alumbaugh,

1997a, 1997b; Dorn, 2000; Newman and Commer, 2005; Commer

and Newman, 2005). It is based upon a Gauss-Newton procedure

where a model m ¼ ln σ is sought. We thus solve the following

optimization problem

min ϕðmÞ ¼ ϕd þ βϕmðm;mrefÞ
s:t mL ≤ m ≤ mU . (13)

In equation 13, ϕd is the data misfit, β is an adjustable tradeoff para-

meter, and ϕm is the regularization term. Here, we choose

ϕd ¼
1

2
kWdðQAðmÞ−1q − dobsÞk22; (14)

where dobs are the observed data and Wd is a diagonal data weight-

ing matrix whose elements are the reciprocals of the estimated

uncertainty for each datum. Symbol Q is an interpolation matrix

(a discretization of a projection operator) that extracts data from

the computed fields u ¼ AðmÞ−1q.
The regularization functional, ϕm, is defined as

ϕmðm;mrefÞ ¼
αs

2
kWsðm −mrefÞk

2
2

þ
X

3

i¼1

αi

2
kWiðm −mrefk

2
2; (15)

where ði ¼ 1; 3Þ corresponds to the spatial directions ðx; y; zÞ. The
first term in ϕm is used to design a solution that is close to a refer-

ence modelmref . The remaining terms penalize variation in the three

spatial directions. Symbol Ws is a diagonal weighting matrix con-

taining cell volumes that arise from the midpoint discretization of

the integral
Z

Ω

ðm −mrefÞ
2dv;

and Wx, Wy, Wz are first-order finite difference matrices of the cor-

responding orientation multiplied by a cell volume term. The αs, αx,

αy, αz are adjustable constants that allow the user to emphasize struc-

tural variation in particular directions or closeness to a reference mod-

el. Although seemingly complicated, the flexibility afforded by this

generic objective function is important in incorporating a priori

information into the inversion and also in handling artifacts that

can arise when using a limited number of transmitters and receivers.

By writing

ϕmðm;mrefÞ ¼
1

2
kWmðm −mrefk

2; (16)

and differentiating the objective function ϕðmÞ in equation 13, we

obtain the gradient

Table 1. Comparison of solution times and memory for a
single time step using direct and iterative solvers on
variable-sized (n3) meshes: tf is the factorization time,
Iterations is the number of iterations used by the iterative
solver, ts is the solution time taken for single Maxwell
solution using the direct solver. All times are in seconds.

Size of
mesh Method tf (s)

Memory
(GB) Iterations ts (s)

Total
time (s)

403 iter — 0.1 228 — 7

403 dir 7 4 — 0.1 7

503 iter — 0.3 1000 — 63

503 dir 23 10 — 0.2 23

603 iter — 0.5 1000 — 113

603 dir 65 21 — 0.5 65

703 iter — 0.8 1000 — 205

703 dir 163 40 — 0.8 166

803 iter — 1.1 1000 — 279

803 dir 238 63 — 1.0 239

903 iter — 1.6 1000 — 463

903 dir 459 101 — 1.8 461

Table 2. Comparison of iterative and direct solvers for a
complete forward modeling for a variable number of
transmitters on a 703 mesh: Nδt is the number of time steps
taken, tf is the time taken to factor the matrix, ts is the solve
time for a single transmitter and a single time step for the
direct solver. The final column is the total time needed for
forward modeling.

NTX Method # Factorizations Nδt tf (s) ts (s)

Total
time (s)

1 iter — 42 — — 4930

1 dir 2 10,000 163 0.8 8476

1 dir 5 60 163 0.8 1036

10 iter — 42 — — 4.9E4

10 dir 5 60 163 0.8 1168

100 iter — 42 — — 4.9E5

100 dir 5 60 163 0.8 2660

1000 iter — 42 — — 4.9E6

1000 dir 2 10,000 163 — 8.0E6

1000 dir 5 60 163 0.8 17,373
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gðmÞ ¼ JðmÞTWT
dWdðdðmÞ − dobsÞ þ βWT

mWmmref (17)

where JðmÞ is the sensitivity matrix. For a fixed β, the minimization

of ϕðmÞ is achieved by using a Gauss-Newton approach, and at each
iteration, the system of equations equals

ðJðmÞTJðmÞ þ βWT
mWmÞδm ¼ −gðmÞ; (18)

is approximately solved to obtain a perturbation δm. We use a pre-

conditioned conjugate gradient least squares (CGLS) solver. The

preconditioner is a quasi-Newton estimate of the Hessian and is

composed of BFGS (Nocedal and Wright, 1999) update vectors that

are accumulated at successive iterations in the inversion. The deter-

mination of the unknown regularization parameter β is handled

through an iterative cooling process. The CGLS solver requires that

the matrix on the left side of equation 18 be applied onto a vector

many times. Symbol Wm represents a sparse matrix, so application

of Wm onto a matrix requires minimal computation. The sensitivity

matrix JðmÞ is a large full matrix and we cannot store it. It is well-

known (Haber et al., 2000b; Vogel, 2001) that the sensitivity matrix

can be expressed in factored form

JðmÞ ¼ −QAðmÞ−1Gðm; uÞ;

where Q is the interpolation matrix, AðmÞ is the forward-modeling

operator given in equation 10, u are the fields, and Gðm; uÞ is a

known sparse matrix,

Gðm; uÞ ¼
∂½AðmÞu�

∂m
. (19)

We note that G requires the fields for all transmitters and for all

times. Although these have been computed to evaluate the misfit

and gradient, they need to be stored or recomputed to carry out

the effect of multiplying J or JT on a vector.

The application of Jv or J⊤v requires that a forward modeling be

carried out, and thus the implications of factoring the forward-

modeling matrix now become apparent. First, the computation of

the gradient requires two forward modelings; one to compute the

responses with the current model m, and another to apply the

Jacobian. Second, even with a good preconditioner, the number

of CG iterations needed to get a good solution, NCG, is typically

10–20. Third, once the perturbation δm is calculated, a line search

is required to find the scale factor γ to update the model as

mnþ1 ¼ mn þ γδm. If NCG ¼ 15, the number of forward modelings

is 32 plus any required for a line search. If there are multiple trans-

mitters, then a single Gauss-Newton (GN) iteration can involve

tens of thousands of solutions of Maxwell’s equation. Because

10–15 GN iterations typically are needed to complete the inverse

problem, the number of solutions of Maxwell’s equations

needed for a single inversion can easily reach a million. For exam-

ple: NTX ¼ 100, Nδt ¼ 50, NCG ¼ 15;, and number of GN itera-

tions is 15, requires 2,400,000 solutions. Factorization is thus

highly important. Our experience has been that even with a

single transmitter, inversion using direct solvers can be substantially

faster than our previous inversion software which used iterative

solvers.

Last, we note that the above procedure necessitates the

storage of all factorizations used to solve a complete forward

problem. This requires computational resources with substantial

memory.

Working with different field components

The above GN procedure is valid for any of the fields
~E; ~H; d~B∕dt, but there are important details that need to be

incorporated in practice. Because the equations are formu-

lated in terms of ~H, the sensitivity is provided as JðmÞ ¼
−QAðmÞ−1Gðm; uÞ where Q is an interpolation matrix. If the data

are dB∕dt, then time derivatives of the fields are required. This is

done by first carrying out the forward modeling at all times and then

taking the derivative. These operations can be coded directly into

the matrix Q.

For electric field data, an alteration is needed. The electric field is

obtained from the magnetic field by equation 20

~E
iþ1

¼ Γ
−1Ce

~H
iþ1

− Γ
−1siþ1

r þ αΓ−1
ϒ~E

i
. (20)

The sensitivity is thus more complicated than for
~H alone. Detail is provided in the Appendix A.

Inversion of synthetic data

For a synthetic example, we consider a

conductive (1 S∕m) block and a resistive

(10−4 S∕m) block in a 0.01 S∕m half-space.

Our code is designed to invert any combination

of fields ~E; ~H; d~B∕dt from either grounded or

loop transmitters and thus there are many

potential survey designs that could serve as test

examples. We select two that are most commonly

employed; we invert d~B∕dt data from loop

transmitters, and ~E field data from grounded

sources. The earth model is that shown in

Figure 3. The conductive prism is a relatively

easy target for any inductive data, but the
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Figure 3. Geometry for ground surveys. In (a), there are nine loop transmitters and a
grid of 144 receivers measuring three components of dB/dt. In (b), there are nine
grounded transmitters and a grid of 144 receivers measuring the two horizontal com-
ponents of E.
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resistive prism is more difficult. However, the resistor should be

visible by using the E-field survey.

For these synthetic examples, the earth is discretized with a 67 ×

67 × 53mesh yielding 237,917 cells. Cell sizes in the interior of the

mesh are 20 × 20 × 15 m and the padded volume is a cube of about

5 km on each side. The waveform is a step-off and data are obtained

at 16 time channels in the time range 10−5 ∼ 10−2 s. The spatial

dimension of cells in the core region is smaller than the diffusion

distance for the earliest time for a background half-space conduc-

tivity of 10−2 S∕m. The outer boundaries of the volume are greater

than the diffusion distance associated with latest time channel of

data. The equations are time-stepped using three subintervals of uni-

form δt and a total of 50 time steps. One factorization of the matrix

is required to generate the initial fields and so four factorizations are

needed in total. A comparison of the responses with a 1D code, and

a uniform conductivity of 10−2 S∕m, confirmed the validity of the

spatial and time discretizations.

We chose not to add random noise to the data prior to inversion

but we did assign an uncertainty to each datum to be inverted.

Irrespective of whether a datum was ~E or d~B∕dt, the uncertainty

assigned was 1% of the absolute value of the datum plus a floor.

The inversions were carried out by minimizing the objective func-

tion in equation 3 with a reference and starting model equal to the

half-space resistivity.

The memory required to factor the forward modeling matrix

was about 14 Gb. There are four factorizations needed and

additional memory is required to store the fields from all transmit-

ters and to carry out computations. In total, we used 60 Gb of

memory and distributed the workload across

12 processors (two machines). The time for a fac-

torization was tf ¼ 75 s and the solve time was

ts ¼ 0.40 s. Once the matrix was factored, a

complete forward solution to simulate the data

for nine transmitters and 50 time steps took

about 104 s.

Experiment 1: Inductive source

with d~B∕dt data

We first invert data obtained from nine

transmitter loops on the surface a flat earth.

The data are three components of d~B∕dt on a

12 × 12 surface grid. The layout of the trans-

mitters and the data locations are shown in

Figure 3a.

There were 62,208 data (9 Tx, 144 Rx

location, three components, 16 time channels).

The inversion was stopped once the target misfit

ðϕd ¼ NÞ was achieved. Thirteen Gauss-Newton
steps were taken with a maximum of 10 CG itera-

tions per GN step. The progress of the inversion

is encapsulated in Figure 4.

Cross sections and plan view maps of the

recovered model are shown in Figure 5a. The

conductive prism is well-imaged. Its maximum

conductivity is somewhat larger than the true

value but this overshoot is mostly the result of

generating a smooth solution when the true mod-

el is blocky. The resistive prism is barely visible

in the final solution. This is not surprising.

Resistive bodies can be difficult to image with inductive sources

and magnetic field data.

Experiment 2: Grounded sources with E-field data

In this example, we substitute grounded dipoles for loop trans-

mitters. The locations of the transmitters are shown in Figure 3b.

The data are Ex, Ey measured at the same receiver sites as in

Example 1. The total number of data is 41,472. The inversion

N
o

rt
h

in
g

 (
m

)

Easting (m)

10−3

10−2

10−1

100

101

σ (S/m) σ (S/m)

E
le

v
a

ti
o

n
 (

m
)

E
le

v
a

ti
o

n
 (

m
)

a) b)

−500 −250 0 250 500 −500 −250 0 250 500

Easting (m)

10−3

10−2

10−1

100

−500

−250

0

250

500

−500

−400

−300

−200

−100

0

−500

−400

−300

−200

−100

0

Figure 5. Cross sections and plan view maps of the recovered conductivity. The black
squares indicate the locations of the resistive and conductive prisms. The left column
(a) corresponds to the model obtained from inverting dB/dt data (Experiment 1), the
right column (b) corresponds to the E-field data (Experiment 2).
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Figure 4. Convergence curves for the nine Tx example. The results
for dB/d data (Experiment 1) are shown by the solid line. The results

for ~E field data (Experiment 2) are shown by the dashed line. The
target misfit is ϕd ¼ N. The circles on the misfit curves indicate
when β is changed.
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was run with identical parameters as were used for Example 1. The

convergence curve and model are shown, respectively, in Figures 4

and 5b. Twenty-five GN iterations were required to achieve the tar-

get misfit. The planview and cross sections show that the conductive

and resistive prisms are well-imaged, but the magnitude of the con-

ductivity and resistivity contrasts with respect to the half-space has

been underestimated.

Solution times for iterative and direct solvers

To compare the solution times for the inverse problem using itera-

tive and direct solvers, we consider a single transmitter in the center

of the model domain and use the same mesh and time channels.

Both inversion algorithms begin with the same β regularization fac-

tor and use two CG iterations. We invert the surface E-field data and

the total number of data is 41,472. The results are summarized in

Table 3 and Figure 6. The solution using the direct method took

about 3.5 h, whereas the iterative method took about 3.5 days.

The iterative solver requires more Gauss-Newton iterations to

achieve the desired misfit than does the direct solver. Correspond-

ingly, it has also used a smaller value of β and thus the additive

perturbations and final model are somewhat rougher. This is quan-

tified by evaluating the model norm. The model norms for the two

solutions are, respectively, 4.96e4 and 5.80e4 (see Table 3). The

difference in the two solutions is likely caused by poorer accuracy

in solving the forward problem with the iterative method. The max-

imum number of iterations was set to 1000 and, for many model-

ings, our desired tolerance was not achieved.

The above example used a single transmitter. For the direct sol-

ver, when the number of transmitters is increased to nine, the total

time for inversion increases only to 7.25 h using six processors.

(Table 3).

In our comparisons of direct and iterative solvers, we limited the

number of CG iterations to two. The resultant perturbations have

been satisfactory because they have ultimately generated a final

model that acceptably fits the data. However, a better solution,

one that produces the same misfit but has less structure (evaluated

by the numerical value of the model norm) might be found if the GN

equations were solved more accurately at each iteration to yield a

higher quality update δm. The result of using NCG ¼ 10 is illu-

strated in Table 3 and Figure 6. The final solution is achieved in

only 17 iterations. The computation time, compared to NCG ¼ 2,

increases from 3.5 to 4.25 h. (See Table 3). The final β for

NCG ¼ 10 is 3.2 × 10−2 and the model norm is 3.3 × 104. Thus,

a superior solution is obtained compared to using NCG ¼ 2. A solu-

tion with the iterative solver and NCG ¼ 10 would have taken about

17 days.

The synthetic inversions carried out here illustrate the essential

workings of the algorithm. We next turn to the more challenging

problem of working with field data.

INVERSION OF UTEM DATA
AT SAN NICOLÁS

San Nicolás is an unmined, volcanic-hosted, Cu-Zn massive sul-

fide deposit located in central Mexico in the state of Zacatecas. The

reserve estimates are 72 million tons, grading 1.4% copper and

2.27% zinc, making it the largest massive sulfide deposit yet dis-

covered in Mexico, and a world-class deposit. The deposit is a

continuous but geometrically complex body which is covered by

175–250 m of variable composition overburden. The local geology

is also somewhat complex and contains numerous sedimentary and

volcanic units. The deposit has been thoroughly drilled and logged

and, as a result, the geology and physical properties of the deposit

are reasonably well understood. Figure 7 shows an east–west cross

section through the deposit. The massive sulfide is characterized by

having high density, magnetic susceptibility, electrical conductivity,

and chargeability. As a result, the deposit has been investigated

using several geophysical surveys, including gravity, magnetics,

DC resistivity, induced polarization, airborne EM, and ground-

based CSEM/CSAMT surveys (Phillips, 2001; Oldenburg and

Pratt, 2007). It has had a long history of being a test case for

the application of geophysics to the exploration of massive sul-

phides, and hence we have adopted it here.

For this paper, we are interested in the electrical conductivity. The

ore-body and the variable thickness overburden are moderately con-

ductive (0.02 ∼ 0.2 S∕m) compared to the background host rocks

(0.01 ∼ 0.001 S∕m). The goal is to locate the conductive sulfide,

but the challenge is that the overburden, a tertiary volcanic breccia,

has a conductivity in the range of that found in the sulfide. This

masks the sulfide.

A UTEM survey was conducted over the San Nicolás deposit in

December of 1998. The UTEM system uses a continuous on-time

loop transmitter with a sawtooth waveform. The system is described

in detail in the paper by West et al. (1984). At San Nicolás, the

UTEM survey consists of three large loops; a main loop which

Table 3. Time and memory requirements for single and multiple transmitter inversions. The modeling mesh is 67 × 67 × 53 mesh
yielding 237,917 cells. Variable Tfor is the time in seconds to carry out a forward modeling with all transmitters and all times.
The memory needed for factorization is 60 GB. The memory for the stored fields is 0.26 GB for each Tx. Here, Φm denotes the
final norm.

Data
type NTX Method Tfor (s) # GN # CG # β

Total time
(Hr:min)

Total
memory (GB) Φm Final β

E 1 dir 22 22 2 8 3:32 60 4.96E4 1.28E-3

E 1 iter — 25 2 9 3.5 days 1.5 5.80E4 2.56E-4

E 9 dir 104 21 2 7 7:14 63 3.28E4 6.40E-3

E 1 dir 22 17 10 6 4:15 60 3.33E4 3.20E-2

E 9 dir 104 14 10 5 12:31 63 2.59E4 1.60E-1

dB/dt 9 dir 98 13 10 5 9:43 63 2.44E4 1.60E-1
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is completely external to the deposit, a loop south of the deposit, and

a loop to the east of the deposit. Data, vertical component of dB∕dt
at nine time channels, were recorded along north–south and east–

west lines over the deposit. The survey geometry is shown in

Figure 8. The initial report on the UTEM survey indicated that

the San Nicolás deposit produced a late time response of, at most,

5% of the primary field of the transmitter. However, a more com-

plete interpretation of the data was hampered by the complexity of

the local geology and inability to invert the data.

The data used here have been inverted previously by Napier et al.

(2006) and Napier (2007) using our original code which is the

Gauss-Newton implementation of the work done in Haber et al.

(2004). The inversion result was satisfactory, but it took many

weeks to run.

The inversion of any field data set requires a workflow. Here, we

have capitalized on the work of Napier and use his final data and

assigned uncertainties. Our earth volume was discretized using a

rectangular mesh. The central volume consisted of 25 cubic meter

cells and padding cells that extended the mesh boundary out to sev-

eral kilometers from the survey area. The final volume consisted of

75 × 54 × 54 ¼ 218;700 cells.

The UTEM waveform is a triangular function starting at time

t ¼ 0. We found that the forward modeling needed to be time-

stepped for 3/4 of a cycle to achieve equilibrium. The resultant

waveform and our discretization are shown in Figure 9. The initial

3/4 cycle is modeled with a constant δt, and hence can be computed

with a single factorization. The waveform is densely sampled in

log-time on the final ramp and sampling on that ramp begins a

decade before the first datum time. The equations are therefore

time-stepped from T1 ¼ 10−6 to T2 ¼ 10−2 and this requires four

factorizations. The complete problem uses five factorizations which

must be stored.

Standard deviations were assigned based on a percentage ranging

from 3% for the earliest time channel to 7% for the latest time chan-

nel. The floor value of the standard deviation was set to 5% of the

median of the absolute value for the data in each channel. The total

number of data from three loops and nine time channels was 3523.

The inversion was run with half-space starting and reference

models and the convergence is illustrated in Figure 10. The final

misfit was 1660. A top view and a cross section of the conductivity

cube are shown in Figure 11. The high-conductivity overburden

appears to be quite variable in thickness and it has a strong

northwest–southeast trend over the deposit. The body near the cen-

ter and at a depth of about 300 m is the sought deposit. We see a

separation between the top of the deposit and the body.

Figure 7. A geologic cross section of the San Nicolás deposit.
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Figure 8. UTEM survey geometry at San Nicolás. Three transmitter
loops are indicated by the solid, dashed, and dotted lines. The
associated receiver locations are denoted by the dots, circles, and
triangles, respectively.

Figure 9. UTEM transmitter current waveform. The first 3/4 cycle
is plotted on a linear scale. The right portion of the plot shows the
time sampling on a logarithmic time axis. The dots indicate times at
which Maxwell’s equations are solved.
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Figure 6. Comparison of iterative and direct solvers for inversion.
Dotted line: Iterative solver with two CG iterations (total time
3.5 days). Dashed line: Direct solver with two CG iterations (total
time 3:32 hr:min). Solid line: Direct solver with 10 CG iterations
(total time 4:15 hr:min).
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Considerable drilling and logging has been carried out at San

Nicolás, and a 3D conductivity model has been generated. The de-

posit is 3D and consists of a bulky upper mass with a small keel

extending outward and downward from the bottom. The units of

high conductivity are the overburden and the deposit and these

are shown in two perpendicular cross sections in Figure 12. The

dashed lines on Figure 12 represent an approximate outline of

the sulfide body in two orthogonal directions. These outlines have

been transferred to the respective cross-sectional plots in Figure 12.

Overall, the inversion has imaged the deposit in the lateral and ver-

tical directions. The keel is not observed, but it has a small volume.

Numerical modeling shows that it would be undetectable from a

surface experiment.

CONCLUSION

Recent advances in matrix decomposition have allowed us to

generate a practical 3D inversion methodology for multisource time

domain electromagnetic data. The methodology is general in the

sense that either inductive or grounded sources can be used and

any combination of electromagnetic fields, collected in the air,

on the surface, or in boreholes can be inverted. Small and midsized

problems, 105 cells, can readily be handled on a single node, multi-

core machine, and inversion times are less than a day. Larger prob-

lems require multinodes with extended memory. The efficacy of our

technique was illustrated by inverting multisource UTEM field data

set acquired at San Nicolás.

The efficiency of an iterative solver depends upon the selected

preconditioner and the tolerance level for solution. In our synthetic

studies, we were able to achieve a better solution, as judged by the

final model norm, using a direct solver. Despite the attractiveness of

using a direct solver, the downside is that larger problems require

expanded memory, and at some point, the available memory may be

insufficient. One option is to break the model domain into segments

and introduce a tiling operation, or use a more formal domain

decomposition methodology where Maxwell’s equations are fac-

tored into smaller subdomains. Another option is to revert back

to an iterative technique.
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APPENDIX A

COMPUTATION OF SENSITIVITIES

There are two critical steps in the inversion of large-scale data.

The first is the forward problem, and the second is the computation

of the sensitivity matrix times a vector. It is im-

portant to note that the sensitivity matrix is not

needed explicitly and a sensitivity-vector product

and its adjoint can be computed effectively with-

out computing the sensitivity matrix directly

(Haber et al., 2000b).

Recall that the sensitivities are defined as the

derivatives of the data with respect to the conduc-

tivity. Its discrete analog is

JH ¼ QH

∂ ~H

∂m
and JE ¼ QE

∂~E

∂m
;

(A-1a)

where QH and QE are sparse matrices that com-

pute the data given the magnetic/electric fields.

Considering the finite volume formulation equa-

tion 4 we have
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Figure 10. Convergence curve for San Nicolás inversion.

Figure 11. Three-dimensional conductivity model at San Nicolás

Figure 12. Three-dimensional conductivity model and rock models at San Nicolás. Per-
pendicular cross sections of the inverted conductivity model are displayed on the top row.
The bottom row consists of cross sections of a 3D conductivity model obtained from drill
results. The dashed line, obtained from the rock model, denotes an approximate bound-
ary of the sulfide. This is superposed on the recovered conductivity in the top row.
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∂

∂m
ðC⊤ ~E

iþ1
þ αM ~H

iþ1
− αM ~H

i
Þ ¼ 0; (A-2a)

∂

∂m
ðC ~H

iþ1
− S~E

iþ1
− αϒ~E

iþ1
− ~siþ1

r þ αϒ~E
i
Þ ¼ 0. (A-2b)

Equation A-2a does not depend on σ, and therefore we obtain

C⊤ ~E
iþ1
m þ αM ~H

iþ1
m − αM ~H

i
m ¼ 0; (A-3)

where ð·Þm represents a derivative with respect to m. Differentiating

the second equation, we obtain

C ~H
iþ1
m − S~E

iþ1
m − αϒ~E

iþ1
m

þ αϒ~E
i
m þ

∂

∂m
ðS~E

iþ1
m Þ ¼ 0. (A-4)

Moving the new terms to the right side, we have

C ~H
iþ1
m − S~E

iþ1
m − αϒ~E

iþ1
m þ αϒ~E

i
m ¼ −

∂

∂m
ðS~E

iþ1
m Þ.

(A-5)

The equations are identical to the forward problem, but with a dif-

ferent right side. They imply that to obtain the sensitivities we need

to solve the forward problem for the sensitivity matrices ~E
iþ1
m and

~H
iþ1
m where the right side is the matrix

Viþ1 ¼
∂

∂m
ðS~E

iþ1
m Þ. (A-6)

Thus, the sensitivity is a product of three matrices, the matrix V ¼
½V⊤

1 ; : : : ; V
⊤
n �

⊤ andQwhich are sparse in general, and the inverse of

the forward modeling matrix which is dense. Although storing the

matrix is generally impossible, computing a matrix vector product is

possible by solving a linear system. Furthermore, if direct methods

have been used to compute a decomposition of the matrix, then such

product has a negligible cost.
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