
Iowa State University

From the SelectedWorks of Valery I. Levitas

2002

Three-dimensional Landau theory for
multivariant stress-induced martensitic phase
transformations. I. Austenite↔martensite
Valery I. Levitas, Texas Tech University
Dean L. Preston, Los Alamos National Laboratory

Available at: https://works.bepress.com/valery_levitas/44/

http://www.iastate.edu
https://works.bepress.com/valery_levitas/
https://works.bepress.com/valery_levitas/44/


Three-dimensional Landau theory for multivariant stress-induced martensitic phase
transformations. I. Austenite^martensite
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A three-dimensional Landau theory of stress-induced martensitic phase transformations is presented. It
describes transformations between austenite and martensitic variants and transformations between martensitic
variants. The Landau free energy incorporates all temperature-dependent thermomechanical properties of both
phases. The theory accounts for the principal features of martensitic transformations in shape memory alloys
and steels, namely, stress-strain curves with constant transformation strain and constant, or weakly temperature
dependent, stress hysteresis, as well as nonzero tangent elastic moduli at the phase transformation point. In part
I, the austenite↔martensite phase transformation is treated, while transformations between martensitic variants
are considered in part II.

DOI: 10.1103/PhysRevB.66.134206 PACS number~s!: 64.60.2i

I. INTRODUCTION

Landau theory1 is a phenomenological framework that
originated as a description of second-order~continuous!
phase transformations. Although the conventional Landau
approach is strictly valid only for continuous phase transfor-
mations, Landau theory has been generalized to encompass
first-order phase transformations, in particular displacive re-
constructive transitions, which include martensitic phase
transformations.

The basic ingredients of a Landau model are an order
parameter h, which encodes the atomic configurations
through the transformation, and the thermodynamic potential
G, which is a function of the order parameter. See Ref. 2 for
an excellent overview of modern Landau theory.

In Ginzburg-Landau theory, a gradient term is included in
the total energy to account for interface surface energy

GGL5G10.5(
k51

n
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The bk are positive definite second-rank tensors. Since the
driving force to changehk equals2dGGL/dhk , the kinetic
equations forhk are given by3–6
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Here Lkp are positive definite kinetic coefficients andjk is
the noise due to thermal fluctuations which satisfies the
dissipation-fluctuation theorem.

We construct a Landau free energy that describes strong
first-order martensitic phase transformations~PT’s! in steels
and shape memory alloys~SMA’s!. Hence the transformation
strain must be temperature independent, and the stress hys-
teresis must be constant or only weakly temperature depen-
dent. Further, the tangent elastic moduli at the PT point are

required to be nonzero. Finally, the theory should accommo-
date all of the thermomechanical properties of both phases.
We now discuss these required features of our Landau free
energy in some detail.

Deformation of the crystal lattice of the high-temperature
phase, the austenite (A), into the low temperature phase, the
martensite (M ), can be described in the small strain approxi-
mation by the transformation strain tensor«t ~also called
Bain strain7 or spontaneous strain.8,9! Due to the symmetry
of the crystal lattice, there are a finite numbern of crystallo-
graphically equivalent variants of martensite. All martensitic
variantsMi , i 51,2, . . . ,n, have the same components of
the transformation strain tensor in their respective crystallo-
graphic bases. A list of transformation strain tensors for
transformations between various crystal lattices can be found
in Ref. 10. Maximal components of the transformation strain
tensor are of order 0.1. In contrast to some ferroelastics,9 for
which the transformation strain can increase significantly as
the temperature is decreased, the transformation strain is
constant for SMA and steels. A small deformation of the
martensitic crystal lattice under temperature variation can be
described by a thermal expansion tensor ofM that has the
same order of magnitude as forA (a;10251/K).

Phase transformations in some classes of materials@see
Ref. 9 for Nb3Sn, BiVO4, LaNbO4, (KBr)0.27(KCN)0.73,
KH2PO4, TbVO4, and Ref. 11 for V3Si, Nb3Sn, and InTe
alloys! occur at vanishing tangent elastic modulusEt corre-
sponding to the transformation strain. The transformation
strains in such materials are usually small, and the PT are
close to second order. In contrast, martensitic PT occur at
nonzeroEt in both A and M . Examples include Cu-based
alloys:12 Fe-33.7% Ni, Fe-5.9% Ni-4.4% Mn-0.48% C steels,
Co - 32.5% Ni and Cu - 14.3% Al-5.8% Ni alloys,11

CuZnAl,13, and TiNi alloys.14 Consequently, the transition
mechanism cannot be attributed to phonon instability, and
the soft-mode approach15 cannot be applied.

Stress hysteresis in SMA is typified by a weak depen-
dence on temperature.14,16 For example, in Cu-Zn-Al alloys
the stress hysteresis is constant for a temperature variation
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from 12° to 78°C; the corresponding variation in the initia-
tion stress for theA→M PT is 10 to 120 MPa~Ref. 17! ~see
Ref. 13 for similar results!. This is again in contrast to some
ferroelastics9 for which the shape of the hysteresis loop re-
mains invariant, but the transformation strain and the differ-
ence between the stresses for direct and reverse PT, i.e., the
stress hysteresis, grows significantly with decreasing tem-
perature, starting from zero at the transition temperature.

A generic stress (s)-strain («) curve for monocrystalline
SMA under cyclic loading13 is shown in Fig. 1. TheA→M
(M→A) transformation takes place at the higher~lower!
stress modulus in each hysteresis loop. The volume fraction
of M varies from 0 to 1 along the path fromA to B, but
decreases from 1 to 0 along the path fromD to E. If unload-
ing starts before the direct PT is complete, then on the line
bd ~point d lies on the diagonalAD) the A1M mixture
responds elastically without further phase transformation,
and the curvede corresponds to theM→A PT. If we inter-
rupt the reverse PT at some pointm, then along the linemn
theA1M mixture deforms elastically, and along the linenp
the A→M PT occurs. The diagonalAD is the thermody-
namically unstable equilibrium stress-strain curve. The high-
temperature behavior, characterized by the occurrence of di-
rect and reverse PT at stresses of the same sign and zero
residual transformation strain at zero stress, is called pseu-
doelastic. At low temperatures, where stress reversal is nec-
essary to induce the reverse PT and there is a residual trans-
formation stress at zero strain, the behavior is referred to as
pseudoplastic.

One class of Landau theories of martensitic PT is based

on nonconvex Helmholtz free-energy polynomials in the
strain«: F(«)5a«21b«41c«6 ~Ref. 18! ~in Refs. 19, 20 a
Gibbs potentialG5F2s« is used which gives the same
results! or F(«)5a«21b«31c«4.21–24The elastic constants
a, b, and c are functions of the temperatureu; usually a
5a0(u2uc), whereuc is the critical temperature at which
the stress-free high-temperature phase loses its thermody-
namic stability. Stress-strain curvess5]F/] « at different
temperatures for the 2-4-6 potential are analyzed in detail in
Ref. 18 with the goal of applying them to SMA. This is the
only work we know of wheres-« curves are studied for a
Landau theory. In dimensionless form the stress-strain rela-
tion for the 2-4-6 potential iss̄56«̄524«̄312(t1 1

4 ) «̄,
wheret is the dimensionless temperature. The transformation
strain and stress hysteresis grow monotonically from zero at
t51/4 with decreasing temperature, and both phases lose
their stability at zero tangent elastic moduli. Similar behavior
is seen in the one-dimensional version of the 2-3-4
potential.8,9,23,24Olson and Cohen21 defined coefficients in a
2-3-4 potential so that it has stationary points at«50 and
«5g, where g is a constant. Their stress-strain curvess̄

52 (u2uc)h̄22(u12ue23uc)h̄
214(ue2uc)h̄

3 (ue is
the temperature of thermodynamic equilibrium between
stress-freeA and M , h̄5«/g, and s̄ is proportional to the
stress! are plotted at six temperatures in Fig. 2. These curves
describe qualitatively the pseudoplastic regime, but because
the stress is always zero at«50 and«5g the pseudoelastic
regime, whereM→A PT occurs at unloading, is not de-
scribed at all. Both phases lose their stability at zero tangent
elastic moduli, and hysteresis and transformation strain are
strongly temperature dependent. This behavior is generic for
free-energy polynomials in the strain.

An alternative description of first order PT is provided by

FIG. 1. Schematic stress-strain curves for shape memory alloys
at various temperaturesu1,u2,u3. The behavior is pseudoplastic
at u1 and pseudoelastic atu2 andu3. The constant transformation
strain and the weak temperature dependence of stress hysteresis for
pseudoelastic behavior is typical.

FIG. 2. Stress-strain curves at six temperatures for the 2-3-4
potential proposed in Ref. 21 atue5150 K anduc550 K: ~1! u
50 K; ~2! u550 K; ~3! u5150 K; ~4! u5300 K; ~5! u5400 K;
~6! u5500 K.
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a Landau polynomial in some order parameterh with linear
or quadratic coupling to the strain tensor:F5ah21bh4

1ch61E«2/22dhk«, wherek51, 2 andd is the striction
coefficient. The order parameter is usually related to atomic
shuffles; deformation of the crystal lattice is considered a
secondary order parameter. The thermodynamic equilibrium
conditions are

]F/]h52ah14bh316ch52kdhk21«50, ~3!

s5]F/]«5E«2dhk5E~«2« t!, ~4!

« tªdhk/E. ~5!

Due to coupling with the strain, the order parameter pro-
duces spontaneous transformation strain« t .3,4,8,9,25–27

A k51 polynomial5,9 was employed to model the cubic
to tetragonal transformation in FePd alloy,6 and a three-
dimensionalk51 theory was used to model martensitic PT
in SMA and steel.5 If «.0, then the solutionh50 of the
thermodynamic equilibrium condition~3! disappears, i.e., the
parent phase at any temperature is unstable at any prescribed
strain and the PT starts immediately with straining. The equi-
librium h and transformation strain defined by Eqs.~3! and
~5! grow monotonically with increasing strain. So a linear
coupling ofh to the strain tensor (k51) is unsuitable for the
description of martensitic PT. The same conclusion is
reached if one uses the 2-3-4 polynomial instead of the 2-4-6
potential.5

For the more common casek52,3,4,25–27 h50 ~corre-
sponding toA) is always a solution of Eq.~3!. Two other
solutions appear when«>«05(a2b2/3c)/d. One finds that
the stable solution for the transformation strain grows with-
out bound as strain increases. When«>«s5a/d the solution
h50 corresponds to a maximum of the free energy, i.e., it is
unstable to infinitesimal perturbations. The equilibrium
stress-strain curves5E(«2« t) is shown in Fig. 3. Loss of
stability of A at «5«s ~point A! does not occur at zero tan-
gent elastic modulus, and this model describes well the ex-
perimental relation between the elastic constant in the direc-
tion of the transformation shear and the zone-boundary
frequency of the associated phonon branch at the phase equi-

librium temperature for Cu-based alloys.12 However, the loss
of stability of martensite does occur at zero tangent elastic
modulus26 ~point C!, and the forward~AB! and reverse~CD!
transformation strains are unequal, which is at variance with
observation. AfterA loses stability, both strain and stress
decrease along the unphysical equilibrium stress-strain curve
AC. Moreover, thek52 potential cannot describe pseu-
doelastic behavior, only the pseudoplastic regime can be
modeled. Macroscopic stress-strain curves based on this
model and calculated in Refs. 3, 4 also exhibit pseudoplastic
behavior only.

A notable drawback of the above models is that the elastic
constantsa, b, andc of A completely determine the elastic
properties ofM . This is not the case in general. For example,
the Young’s moduli ofA andM are approximately the same
for CuZnAl alloys13 and differ by a factor of four for TiNi
alloys.14 These models do not have a sufficient number of
degrees of freedom to incorporate the thermoelastic proper-
ties ~elastic moduli of second, third, and higher order, ther-
mal expansion coefficients, and difference in thermal parts of
free energy! of both A andM , or the transformation charac-
teristics~transformation strain and stress hysteresis! and their
temperature dependences.

There are more general models which account for atomic
shuffles and involve more complex couplings with elastic
strain.25,28–30Nevertheless, they also cannot account for the
material properties of both phases or the transformation char-
acteristics of strongly first-order martensitic PT.

Known three-dimensional multivariant
theories3,4,19,20,23,24,31are simple generalizations of the above
one-dimensional models and they do not overcome their
drawbacks. New problems arise because of the necessity to
describe the transformation of one martensitic variant into
another. We do not know of any paper where this problem
has been studied analytically.

It seems that the theory advocated in Ref. 31 contains
enough parameters to encompass the transformation charac-
teristics and the material parameters of both phases. How-
ever, in one dimension it reduces to a 2-3-4 polynomial in
the strain, so it has all of the shortcomings of this potential.
A three-dimensional theory32 that generalizes the 2-4-6
potential18 discussed above by including additional param-
eters still suffers from the deficiencies of the 2-4-6 potential.
Group representation theory was used in each case31,32 to
derive quite complex polynomials which may have unphysi-
cal minima. The simplest possible polynomial which satisfies
all reasonable requirements~see Ref. 33! is preferable.

There has been significant progress in numerical model-
ing of microstructure formation during martensitic PT based
on Landau-Ginzburg theory. A number of
two-dimensional19,20and three-dimensional calculations3–5,34

have been performed. Despite the drawbacks discussed
above, numerical simulations based on existing models pre-
dict multivariant microstructures in qualitative agreement
with photomicrographs. The salient features of the micro-
structure are apparently controlled by the elastic-energy-
minimization constraint on the self-organization of the mar-
tensitic domains; material properties and transformation
characteristics presumably affect only the details in the mi-

FIG. 3. Equilibrium stress-strain curve described by Eqs.~3!–

~5! for k52, E5104 MPa, «050.005, «s50.01, «̄ t50.1, and ar-
bitrary d.
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crostructure. Agreement of the simulations with the data may
be attributed in part to the similarities among experimentally
observed microstructures~compare Ref. 9 for ferroelastics
and Ref. 35 for SMA!.

All martensitic PT~even thermally induced! are affected
or governed by internal stresses arising from transformation
strain and crystal defects~dislocations and point defects!.
Any Landau potential generates stress-strain relationships,
equilibrium diagrams, and transformation diagrams under
general three-dimensional loading. However, no known Lan-
dau potential is consistent with experimental stress-strain re-
lationships. Generally, the predictions of Landau theory
agree only qualitatively with observation. Nevertheless, the
Landau potential developed in this two-part paper does de-
scribe the typical features of experimental stress-strain
curves.

In Sec. II we develop our Landau model of austenite-
martensite transformations. The simplest case, namely equal
elastic compliances for austenite and martensite, and zero
thermal stresses, is considered in Sec. II A. In Sec. II B we
present the general case, including higher-order elastic com-
pliances. Our concluding remarks for part I are made in Sec.
III. In part II the Landau free energy constructed in part I is
extended to incorporate an arbitrary number of martensitic
variants, hence it accounts for PT between austenite and mar-
tensitic variants and transformations between martensitic
variants.

Direct tensor notations are used throughout this paper.
Vectors and tensors are denoted in boldface type;mn is the
dyadic product of vectorsm and n, A•B5(Ai j Bjk) and
A:B5Ai j Bji are the contraction of tensors over one and two
indices, uAu:5(A:A)1/2 is the modulus of tensorA, andª

means equal by definition. The indices 1 and 2 denote the
values inA andM respectively.

II. LANDAU MODEL OF AUSTENITE ^MARTENSITE

We assume that for the three-dimensional case all material
properties~elastic moduli tensors of second, third, and higher
order, thermal expansion tensors, and thermal parts of the
free energy! of both phases, the transformation strain tensor,
and all temperature dependences, are known for a given ma-
terial. Transformation characteristics, such as the critical
temperatureuc for the formation of martensite, the relation
between the stress tensor and the temperature at whichA and
Mi lose their stability, or are in thermodynamic equilibrium,
and the potential barriers are also known from experiment or
atomistic calculations. Our goal is to find the simplest ex-
pression for the Gibbs potential that describes theA↔Mi
andMi↔M j ~part II! PT for any type of symmetry ofA and
M and includes all of this information.

The following approach is followed in this section.
Shuffles are neglected or excluded by minimization of free
energy. We decompose the total strain tensor into elastic and
transformational parts. The magnitude of the transformation
strain tensor is uniquely related to the order parameterh,
which varies from 0 inA to 1 in M . We require that the
material be eitherA or M in thermodynamic equilibrium at
any temperature and stress tensor. This translates into the

requirement that the Gibbs potential at any temperature and
for any stress field has extrema ath50 andh51. We use a
2-3-4 polynomial for the thermal part of the Gibbs energy
~which is usual! and for the transformation strain~which is
new! and easily satisfy this requirement. Changes in the
second- and higher-order elastic compliance tensors and the
thermal strain tensor during the PT are taken into account.
Analysis of the model shows that we can include complete
material property information and describe all characteristic
features of martensitic PT. In part II, this approach will be
extended to the general multivariant case.

Our assumed decomposition of the total strain into elastic
and transformational parts is valid only for small strains. At
finite strain, this additive decomposition breaks down—one
has to use multiplicative decomposition of the deformation
gradient into elastic and transformational parts and take into
account finite rotations.36 Formal problems then arise, simi-
lar to those encountered in finite elastoplasticity.37 We will
limit ourselves in this paper to the small strain approxi-
mation.

A. h-independent elastic compliance and zero thermal strain

The strain tensor« is decomposed into elastic«e and
transformational«̃t(h)ª«tw(h) parts

«5«e1«tw~h!, ~6!

where «t is the transformation strain tensor at thermody-
namic equilibrium in the martensitic phase («t is determined
by crystallography!, h is the order parameter (0<h<1),
and w is a monotone function for whichw(0)50 and
w(1)51. As h varies from 0 to 1, the transformation strain
tensor varies from0 to its final value«t . The order param-
eter h is uniquely related to the magnitude of the transfor-
mation strainu«̃tu normalized by its maximum valueu«tu.

We assume for simplicity that the thermal strain is zero
and that the elastic moduli of the austenite and martensite are
equal ~these assumptions are relaxed below! and write the
specific~per unit volume! Gibbs free energy in the form

G52s:l:s/22s:«tw~h!1 f ~u,h!, ~7!

wheres is the stress tensor,l is the fourth-rank elastic com-
pliance tensor,u is the temperature, andf is the thermal or
chemical~stress-independent! part of the free energy. Then

«52]G/]s5l:s1«tw~h!, ~8!

which is consistent with Eq.~6!. Our goal is to find the
functions w(h) and f (u,h) satisfying the following three
conditions:

~1!w~0!50 and w~1!51; f ~u,1!2 f ~u,0!5DGu~u!.
~9!

The conditions onw imply «̃t(0)50 and «̃t(1)5«t .
DGu(u) is the difference between the thermal parts of the
Gibbs free energies of the martensitic and austenitic phases
as determined experimentally. It is clear thatf (u,0)
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5G1
u(u), however for the description of PT without loss of

generality we can putf (u,0)50.
~2! The free energyG has extrema atA andM

]G~s,u,ĥ !

]h
50⇒]w~ĥ!

]h
5

] f ~u,ĥ !

]h
50, ĥ50,1.

~10!

~3! The functionw(h) is monotone for 0<h<1.
If we choosew(h) and f (h) to be 2-3-4 polynomials,

then conditions~1!–~3! are satisfied by the functions

w~h!5ah21~422a!h31~a23!h4, 0,a,6,

f ~u,h!5Ah21~4DGu22A!h31~A23DGu!h4,
~11!

wherea and A are material parameters. The functionw(h)
has no extremum on the interval 0<h<1 for 0<a<6; we
include the end pointsa50 anda56 where infinite stress is
required to initiate direct and reverse PT@see Eq.~22!#. The
functionw(h) for variousa is shown in Fig. 4. By rescaling
h and energy, the potential can be put in the formG̃5Kh̃2

1h̃31h̃4. However, sinceK depends in a complex way on
stresses andDGu, and our goal is to study the effect of
stresses on the PT, we work directly with Eqs.~7! and ~11!.
The difference between the Gibbs potentials of theA andM
phases, which is the thermodynamic driving force for theA
→M PT, is G(s,u,0)2G(s,u,1)5s:«t2DGu. The ther-
modynamic equilibrium condition]G/]h50 has the three
roots

h150; h251;

h35
1

2
~A2as:«t!/@A23DGu2~a23!s:«t#. ~12!

The first two roots correspond to austenitic and martensi-
tic minima~if these phases are metastable!. If the third root is
between 0 and 1, it corresponds to the maximum of

G(s,u,h), which represents the activation barrier for the
A→M PT. The barrier height is

G~s,u,h3!2G~s,u,0!

5@A2s:«ta24~DGu2s:«t!#h3
3/2. ~13!

The activation barrier for M→A is G(s,u,h3)
2G(s,u,h2), which can be obtained by addingG(s,u,0)
2G(s,u,1)5s:«t2DGu to Eq. ~13!. The inequalities
]2G/]h2<0 ath50 andh51 are conditions for the loss of
A andM stability. They are theA→M andM→A PT crite-
ria @rather than the phase equilibrium conditionG(s,u,0)
5G(s,u,1)]

A→M : s:«t>
A

a
, M→A: s:«t<

6DGu2A

62a
. ~14!

The criteria~14! also follow from the conditionsh3<0
andh3>1, in which caseh3 corresponds to a minimum of
G andh1 ~or h2) to a maximum, and the barrier for the PT
disappears. For temperature-induced PT (s50) Eqs. ~14!
reduce toA<0 (A→M ) andA<6DGu (M→A). If the dif-
ference between the specific heats of the phases at zero stress
Dn is independent of temperature, then it is easy to obtain
~see, e.g., Refs. 13,36!

DGu5z~u2ue!2Dnu~ ln u/ue21!2Dnue ,

z52Dse.0. ~15!

Here ue is the equilibrium temperature@DGu(ue)50# and
Dse is the jump in specific entropy at the equilibrium tem-
perature. It is a good approximation over a modest range of
temperatures to takeDn50 and A5A0(u2uc),A0.0,
where uc is the critical temperature at which stress-freeA
loses its thermodynamic stability. The resulting linear tem-
perature dependence ofDGu is in good agreement with ex-
periments on shape memory alloys and some steels over a
wide range of temperatures. Letūc denote the critical tem-
perature at which stress-freeM loses its thermodynamic sta-
bility. From Eqs.~14! we obtain

A→M : u<uc ,

M→A: u>ūcªuc1
6z~ue2uc!

6z2A0
, A0,6z. ~16!

The inequalityA0,6z follows from the obvious inequalities
ūc.ue.uc . It is often assumed that the equilibrium tem-
perature is the average of the critical temperatures, but in fact
there are no experimental data to support this supposition.
Nevertheless, in that case we haveA053z,

DGu5A0~u2ue!/3,

f 5A0@~u2uc!h
222~u12ue23uc!h

3/31~ue2uc!h
4#.

~17!

FIG. 4. The functionw(h) at variousa.
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We now obtain a parametric representation of stress-strain
curves for transformations that can be treated as one-
dimensional, i.e.,s:«t5s« t , where s and « t are scalar
measures of stress and transformation strain. Four important
examples of one-dimensional transformations are

«t5
1

2
g t~mn1nm!, « t5g t , s5tªm•s•n; ~18!

«t5«nn, « t5«, s5n•s•n; ~19!

«t5
1

3
«0I , « t5«0 , s5

1

3
s:I ; ~20!

«t5«S e1e12
1

2
e2e22

1

2
e3e3D , « t5«,

s5e1•s•e12
1

2
e2•s•e22

1

2
e3•s•e3 . ~21!

Equation~18! describes simple shear in directionm in the
shear plane with normaln. The shear stress ist andg t is the
shear strain. Equation~19! describes simple tension~com-
pression! in the n direction. Equation~20! corresponds to a
pure volumetric transformation strain«0 with mean stress
~hydrostatic pressure! s. Equation~21! describes a cubic to
tetragonal transformation with elongation in thee1 direction
and compensating contractions along thee2 and e3 direc-
tions. In all four cases, Eq.~12! for h3 provides us with the
equilibrium stress-transformation strain curve

s5
2~A23DGu!h2A

« t@2~a23!h2a#
. ~22!

For 0,a,6, the denominator of Eq.~22! is nonzero for 0
<h<1. Since the parameterh maximizesG, for eachs and
u, the equilibrium curve Eq.~22! is unstable. This is re-
flected by a decrease ins with an increase inh. In the
approximation thatDn50, thes-h curve depends linearly
on temperature

s5
2@A0~u2uc!23z~u2ue!#h2A0~u2uc!

« t@2~a23!h2a#
. ~23!

The stress hysteresisHªs(h50)2s(h51) is given by

H5
6

« t

~A02za!u1zaue2A0uc

a~62a!
, ~24!

which is independent of temperature, as in SMA and steels,
for A05za. Equations~22! @or ~23!# and ~8! constitute a
parametric representation of the unstable branch of the equi-
librium stress-strain curve. Stress-strain curves at several
temperatures are shown in Fig. 5, where arrows indicate the
strain jump at constant stress in a stress-controlled experi-
ment. They agree qualitatively with the schematic stress-
strain curves of Fig. 1. They exhibit the most important fea-
tures of martensitic phase transitions in SMA, namely,
temperature independent stress hysteresis and transformation

strain and nonzero tangent moduli whereA andM lose sta-
bility. The experimentally observed diagonal AD in Fig. 1 is
described as well.

The parametersa and A do not affect thermodynamic
equilibrium conditions, instead they characterize energy bar-
riers. AfterDGu is determined from thermodynamic equilib-
rium conditions, the parametersuc and A0 ~or ūc) can be
determined from theA↔M transition temperatures under
stress-free conditions, and finally the parametera can be de-
termined from phase transformation condition~14! at various
temperatures. The dependence ofG̃ªG1s:l:s/2 on h is
presented in Fig. 6.

B. h-dependent thermal strain and elastic compliances
through fourth order

In order to account for nonzero thermal strain«u and
changes in the elastic compliances through fourth order dur-
ing the PT we define

G52s:l~h!:s/22@s:l3~h!:s#:s/3

2s:@s:l4~h!:s#:s/42s:«tw~h!

2s:«u~h!1 f ~u,h!, ~25!

lm~h!5l0
m1~l1

m2l0
m!wml~h!, ~26!

«u~h!5«u01~«u12«u0!wu~h!, «u05a0~u2u0!,

«u15a1~u2u0!, ~27!

wherel0
m andl1

m are themth order elastic compliances~rank
2m tensors! of A andM , lªl0

2, a0 anda1 are the thermal
expansion tensors ofA and M , and u0 is some reference
temperature, e.g.,ue . As the functionswml andwu have to
satisfy the same four conditions asw, one obtains

FIG. 5. Equilibrium stress-strain curves at various temperatures
~designated near curves! for l51024 MPa21, « t50.1, a53, uc

5290 K, ue5300 K, and A053 MPa/K. Unstable regions are
dashed.
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wml~h!5amlh21~422aml!h31~aml23!h4,

0,aml,6, ~28!

wu~h!5auh21~422au!h31~au23!h4, 0,au,6.
~29!

The difference between the Gibbs potentials of theA andM
is

G~s,u,0!2G~s,u,1!

5s:«t1s:~«u12«u0!1s:~l12l0!:s/2

1@s:~l1
32l0

3!:s#:s/3

1s:@s:~l1
42l0

4!:s#:s/42DGu. ~30!

The solutions of the thermodynamic equilibrium condition
]G/]h50 are

h150, h251, h35
1

2
~A2s:h1!/~A23DGu2s:h2!,

h1ªa«t1au~«u12«u0!1al~l12l0!:s/2

1a3ls:~l1
32l0

3!:s/31a4l@s:~l1
42l0

4!:s#:s/4,

h2ª~a23!«t1~au23!~«u12«u0!

1~al23!~l12l0!:s/21~a3l23!s:~l1
32l0

3!:s/3

1~a4l23!@s:~l1
42l0

4!:s#:s/4. ~31!

The conditions for theA→M andM→A PT,]2G/]h2<0 at
h50 andh51, respectively, are generalizations of Eq.~14!

A→M : as:«t1aus:~«u12«u0!1
al

2
s:~l12l0!:s

1
a3l

3
s:@~l1

32l0
3!:s#:s

1
a4l

4
s:@s:~l1

42l0
4!:s#:s>A,

M→A: ~62a!s:«t1~62au!s:~«u12«u0!

1
62al

2
s:~l12l0!:s1

62a3l

3
s:@~l1

32l0
3!:s#:s

1
62a4l

4
s:@s:~l1

42l0
4!:s#:s<6DGu2A. ~32!

They are consistent with the conditions for the disappearance
of activation barriers:h35h1 andh35h2. For temperature-
induced PT (s50), Eqs.~16! remain valid.

The tensorsl0
m , l1

m , a0, and a1 are assumed to be
known. As before,DGu is determined from thermodynamic
equilibrium conditions, and the parametersuc andA0 ~or ūc)
can be determined from theA↔M PT temperatures under
stress-free conditions. If the stresses for forward and reverse
phase transformations are determined experimentally at vari-
ous temperatures then the parametersa, aml , andau , which
control the energy barrier betweenA andM but not thermo-
dynamic equilibrium, can be obtained from Eq.~32!. If a,
al , and au are functions of temperature then they are not
uniquely determined by conditions~32!. One can model zero
tangential moduli at PT points, if necessary.

III. CONCLUDING REMARKS

In part I, a three-dimensional Landau theory for stress-
and temperature-inducedA↔M PT has been developed. In
contrast to previous approaches, our theory allows for inclu-
sion of all temperature-dependent thermomechanical proper-
ties of both phases and describes typical stress-strain curves
with constant transformation strain tensors~temperature and
stress independent!, constant or weakly temperature depen-
dent stress hysteresis, and transformation at nonzero tangent
moduli. The free energy polynomial is sufficiently simple
that spurious extrema do not appear.

Martensitic PT for which the leading transformation mode
is a transformation strain~the case considered in this paper!
are classified as proper PT according to Ref. 5. For proper
PT, the transformation strain is linearly dependent on the
order parameter. For improper PT, in which the soft optical
displacement mode is a primary transformation mode and

FIG. 6. G̃(h) for equal deviations of the critical temperatures
from the equilibrium temperature at various stresses~designated in
MPa near curves! for ~a! u5200 K and~b! u5250 K; « t50.1, a
53, uc5100 K, ue5200 K, A053 MPa/K.
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transformation strain is a secondary effect, the transforma-
tion strain is at least quadratic in the order parameters. Such
a classification scheme is not satisfactory because, as we
have shown, martensitic PT for which the leading mode is
transformation strain have a 2-3-4 polynomial dependence of
transformation strain on the order parameter. Note that the
order parameter is not a small parameter so a higher degree
polynomial does not mean a weaker effect. Maybe the term
‘‘strong’’ martensitic PT for the PT with transformation
strain as a leading mode in contrast to ‘‘weak’’ PT for the
case when transformation strain is a secondary effect would
be more suitable.

We see no way to describe all of the desirable features of
strong martensitic PT using a polynomial in the total strain
rather than a polynomial in order parameters related to the
transformation strain. It would be quantitatively incorrect to
determine barriers for theA↔M PT or the variant-variant
PT ~in part II! from experimental stress-strain curves for
single crystals. Stress-strain curves are strongly affected by
various defect distributions, surface energy, and the presence
of a fine twinned microstructure. Actual stresses in trans-
forming material may be very different from applied stresses
due to internal stresses induced by a heterogeneous distribu-
tion of transformation strain. Atomistic calculations are the
best way to determine transformation barriers in our theory.
Comparison with experimental stress-strain curves can be
made after solution of the corresponding boundary-value
problem with some prescribed~or determined by correspond-
ing evolution equations! defect distribution.

Our Landau theory captures the main features of macro-
scopic stress-strain curves notwithstanding the effects of the
microstructure. The transformation strain tensor~when twin-

ning is not involved, in particular, for the pseudoelastic re-
gime! and nonzero tangent elastic moduli are independent of
the above factors and are defined by deformation of the crys-
tal lattice. Stress hysteresis is strongly affected by defects so
we cannot exclude the possibility that defects change its tem-
perature dependence. Dislocation structure does not evolve
significantly during PT in the temperature range of interest;
the PT itself is the dominant mechanism of plasticity. Thus
we expect dislocations to change stress hysteresis by ap-
proximately the same value at any temperature. But the main
point is that even if this is not the case, our theory is flexible
enough to employ any temperature dependence for the stress
hysteresis.

Twinning can substantially increase the pseudoplastic
stress hysteresis relative to the pseudoelastic stress hyster-
esis. This behavior is not predicted by our Landau potential;
it is necessary to solve the corresponding boundary value
problem~see Ref. 33!.

Our Gibbs potential for theA↔M PT can be used to
describe twinning and transformations between martensitic
variants. Twinning can be regarded as the special case of our
A↔M PT theory where the jump in the thermal part of the
free energy is set of zero and the transformation strain cor-
responds to simple shear. Transformations between variants
can be modeled by takingDGu50 and accounting for the
nonzero transformation strain of the initial variant.
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