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Abstract: The registration of image volumes derived from different imaging modalities such as MRI, PET,
SPECT, and CT has been described in numerous studies in which functional and morphological data are
combined on the basis of macrostructural information. However, the exact topography of architectural
details is defined by microstructural information derived from histological sections. Therefore, a technique
is developed for integrating micro- and macrostructural information based on 1) a three-dimensional
reconstruction of the histological volume which accounts for linear and nonlinear histological deforma-
tions, and 2) a two-step procedure which transforms these volumes to a reference coordinate system. The
two-step procedure uses an extended principal axes transformation (PAT) generalized to affine transforma-
tions and a fast, automated full-multigrid method (FMG) for determining high-dimensional three-
dimensional nonlinear deformations in order to account for differences in the morphology of individuals.
With this technique, it is possible to define upwards of 1,000 times the resolution of ,1 mm in MRI, making
possible the identification of geometric and texture features of microscopically defined brain structures.
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INTRODUCTION

Computerized brain atlases are commonly used for
assigning functional activations to anatomical struc-
tures and for studying intersubject variability in order
to make generalizations about localizations of function
and structure at macroscopical and microscopical lev-
els in different individuals. In order to interpret infor-
mation derived from individual topologies, it is re-
quired to transform the volumes with highest accuracy.

The most important component of such an atlas is
therefore a spatial normalization (deformation) tech-
nique in order to fit the sizes and shapes of individual
brains (by deforming the volumes), and to map the
volumes into one coordinate system, i.e., the standard
reference system (‘‘reference’’ or ‘‘standard’’ brain
[Roland and Zilles, 1994, Schormann et al., 1997]).
Even microstructural information can be integrated, if
the deformation algorithm transforms each individual
brain data set nonlinearly, i.e., completely onto the
reference brain by a recently developed full multigrid
technique [Schormann et al., 1996]. In practice, this
means that the technique must account for large and
complex spatial differences, which can only be accom-
plished by high dimensional transformations derived
from nonlinear deformation algorithms. From a physi-
cal and a mathematical point of view the transforma-
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tion, with up to 24 million degrees of freedom, is
uniquely determined since the same number of con-
straints is introduced by the principle of Hamilton and
thus the three-dimensional deformation can be calcu-
lated precisely within a selected degree of accuracy for
each voxel. From a morphological point of view, the
correlation of corresponding structures in both vol-
umes is improved by a multiresolution full-multigrid
technique (FMG), whereby special attention is required
in the case of pathological structures (e.g., anomalous
sulcal and gyral patterns). Another advantage of the
FMG technique is that the number of operations
increases only linearly with the number of voxels.

A further important step toward the integration of
micro- and macrostructural information is the precise
three-dimensional reconstruction of the histological
volume on the basis of the undistorted MR reference
brain. Once the histological volume is three-dimension-
ally reconstructed, specific structures such as fiber
tracts or borders of architectonically defined areas can
be identified at microstructural resolution by using the
original histological sections. Thus the MR volume and
the original histological sections both show the same
regions, but with a resolution improved by a factor of
1,000 provided by the histological sections. Delineation
of structural entities is then performed on digitized
images of the histological sections, and this information is
subsequently introduced into the reference coordinate
system by linear and nonlinear transformations.

DATA ACQUISITION

The MR volumes were acquired with the Magnetom
SP (Siemens) at a magnetic field strength of 1.5 T. Each
volume consists of a series of 128 sagittal sections
which covers the entire brain and in which the contrast
depends on the specific tissue parameters (proton
density, T1-, T2-relaxation times) and on parameters of
the pulse sequence (repetition time, echo time, inver-
sion time). T1-weighted volumes are created by a fast,
low-angle shot (three-dimensional flash, flip-angle 40°)
with a repetition time of TR 5 40 msec and an echo
time of TE 5 5 msec for each image. The image space is
discretized into voxels in the form of rectangular
parallelepipeds of uniform size, each with a resolution
of 8 bits corresponding to 256 gray values. The integer
indices i, j, k denote the coordinates of the voxels and
are given by: 0 # i # imax, 0 # j # jmax, 0 # k # kmax. In
our application, imax, jmax are 255 and kmax 5 128. The
indices may be converted to real-world coordinates X,
Y, Z in object space by:

X 5 eij ? i; Y 5 eij ? j; Z 5 ek ? k

in which the scaling constants e are used to specify the
unit dimension of the volume element in object space
corresponding to a voxel in image space whereby the
isotropic voxel size for MR images is given by eij

M 5 1
mm. The voxel size in the z-direction amounts to
ek

M 5 1.17 mm.
The paraffin-embedded brain is sectioned in the

frontal plane and the Nissl-stained sections are then
digitized with a CCD camera. The gray value of a
voxel is then proportional to the optical density con-
verted from the transmission signal with isotropic
voxel eij

H 5 0.9 mm. The mean thickness of a histologi-
cal section is determined by DZ , 30 µm, resulting in a
Z-resolution of ek

H 5 1.8 mm, since each sixtieth section
is used for three-dimensional reconstruction. In order
to account for the different directions of sectioning
between the MR and the histological volumes and
anisotropic voxel sizes in both volumes, an affine
transformation is applied which is superior to a scaling-
rotation transformation for several theoretical and
practical reasons [Schormann et al., 1993]. As a result,
both volumes have isotropic voxel size and the same
direction of sectioning (frontal), but at slightly differ-
ing angles of ,10–20° due to lack of stereotaxic fixation
during data acquisition. This misalignment is cor-
rected by a three-dimensional affine transformation,
whereby the convergence to the best least-square
parameters is controlled by a matrix-norm (see below).

THREE-DIMENSIONAL RECONSTRUCTION
OF HISTOLOGICAL SECTIONS

In order to reconstruct the histological volume, each
brain is represented by three data sets: 1) the histologi-
cal data set with high contrast, but disorganized and
distorted because of the preparation procedures; 2) the
photo-data set with low contrast (resulting from the
unstained surface of the paraffin block) showing the
histological section before sectioning, together with a
reference system in order to establish the three-
dimensional integrity of the histological volume; and
3) an MR-data set with improved contrast but at a
slightly different orientation than the photo-data set.
The three-dimensional reconstruction and spatial cor-
rections of the histological images on the basis of a
photo-data set and a postmortem MR volume are
required in order to take into account:

1) Linear and nonlinear deformations resulting from
the histological preparation procedures;

2) Three-dimensional reconstruction of the histologi-
cal images, since the information on the position
of adjacent sections is lost during sectioning;
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3) Different direction of sectioning between photo-
and MR-data set (,10–20°, see above).

The entire sequence of algorithms for image process-
ing of the data sets can be described using the follow-
ing sequence of techniques.

In a first step, it is required to align the photo-data
set by using the reference system which is digitized in
conjunction with the surface of the paraffin-embedded
brain before sectioning. These images need to be
aligned, since the chuck of the microtome may have
different positions during data acquisition. For a pre-
cise alignment using one image of the series as refer-
ence, the images are transformed by an automated
rigid least-squares transformation (rotation and trans-
lation) whereby the definition and correlation of corre-
sponding landmarks encompassing the reference sys-
tem is similar to an image processing procedure
described earlier [Schormann et al., 1995]. After this
processing, the three-dimensional integrity of the
photo-data set is reestablished. The next step is to
reconstruct the digitized histological series, which has
higher contrast than the photo-data set. For this pur-
pose, each histological section is registered with the
corresponding photo by an extension of the principal
axes theory generalized to affine transformations
[Schormann et al., 1997]. This generalization is re-
quired, since the classical PAT cannot in principle
account for affine transformation parameters [Schor-
mann and Zilles, 1997]. Such parameters account for
shearing artifacts introduced during preparation proce-
dures. This three-dimensional reconstructed volume
defines a first approximation of the histological vol-
ume. For further improvement of registration quality,
the histological volume is three-dimensionally aligned
with the corresponding postmortem MR-volume in a
next step, whereby the convergence to the best param-
eters is controlled by a matrix-norm [Schormann et al.,
1993], since the determination of least-squares param-
eters are hampered by local deformations in the histo-
logical volume. After this three-dimensional align-
ment, both volumes have the same direction of
sectioning and can be used for a further global, linear
two-dimensional refinement by analyzing Rayleigh-
Bessel statistics, which describe the probability density
of local nonlinear deformations [Schormann et al.,
1995] in histological sections. In a last step, nonlinear
deformations are corrected by the three-dimensional
FMG technique (described below) restricted to two
dimensions. The histological volume is then recon-
structed with subvoxel accuracy and excellent contrast
(Fig. 1), and can be used for identifying microstrucural
features.

INTERINDIVIDUAL REGISTRATION

Linear alignment

In order to study the variability of microscopically
defined brain structures between individuals, it is
necessary to transform the individual data sets into

Figure 1.
Sections resulting from MR (a) and from the three-dimensional
reconstruction of the histological volume (b). As can be seen, the
same direction of sectioning is achieved whereby nonlinear defor-
mations are corrected by a two-dimensional version of the
three-dimensional nonlinear model (described below) on the basis
of the spatially undistorted MR reference section. The histological
specimen is used for the identification of microstructural informa-
tion, which can be mapped to the histological image with superior
contrast. cl, claustrum; cn, caudate nucleus; gp, globus pallidus; hi,
hippocampus; pu, putamen; th, thalamus.

r Integration of Histology andMRI by 3-D Transformations r

r 341 r



one common coordinate system prior to nonlinear
transformation, since the orientation of the reference
and individual volumes differs slightly, usually by
10–20° for each direction due to lack of appropriate
stereotaxic fixation during data acquisition. In addi-
tion, the data sets must be rescaled because of aniso-
tropic resolution and the different sizes of the brains.
Registration is achieved by means of an extended
principal axes theory [Schormann et al., 1997] which
accounts for global geometrical differences (scaling) as
well as rotation and translation. Twelve parameters are
therefore required to match both volumes in three
dimensions: three parameters for translation, three for
scaling along the three axes of the Cartesian coordinate
system, and six angles which can be calculated by
decomposing a three-dimensional affine transforma-
tion into a product of the forms rotation, scaling, and
another rotation. Six angles are therefore needed for
rotations around the three axes. Unfortunately, the
classical PAT can correct at most for scaling and
rotational parameters (1

2n(n 1 1) parameters in n
dimensions). This is due to the symmetrical inertia
matrices of the individual and reference objects. which
lead to large rotational and scaling errors even for

infinitesimal shearing resulting from mechanical treat-
ment or distortion caused by the imaging system. The
degree of misregistration depends on a shearing param-
eter D

a and a form parameter e
d which describes the ratio

of width to height of the object [Schormann and Zilles,
1997].

The rotation error is given by

fne 5
1

2
arctg 321Da 1

a

D
? 1e

2

d2
2 1224 (1)

and the scaling error by

es 5

11 1
D2

2 ? a22 1Î11 1
D2

2 ? a22
2

2 1

1u 1Îu2 2
d2

e2 2
2

with u 5
1

2 11 1
d2

e2 11 1
D

a 2
2

2 (2)

whereby the rotational error is shown in Figure 2.

Figure 2.
Rotational error fne as a function of the form factor e

d and the
shearing parameter D

a using the classical PAT. For e
d 5 1, the

rotational error varies from 145°–245° if 6D
a = 0. This misalign-

ment cannot be attributed to the principal axes algorithm itself, but

is a consequence of its application to data which do not completely
fulfill the assumption of rigid-body transformation and scaling. The
errors can be avoided by application of the extended PAT.
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As can be seen, minute shearing of highly symmetri-
cal objects results in misalignment of ,645°, depend-
ing on the sign of the shearing parameter in the case of
the classical PAT. This misalignment cannot be attrib-
uted to the PAT itself, but is a consequence of its
application to data which do not completely fulfill the
assumption of rigid-body transformation and scaling.
However, exact global registration is an important
prerequisite for subsequent matching with nonlinear
deformation techniques, since 1) global misalignment
does not need to be corrected locally, and 2) the
correlation of homologous structures is improved by
a unique initial position for the application of a
nonlinear model. This improvement is achieved by
an extended PAT which is generalized to affine trans-
formations by introducing a rotational matrix P 5
(e1,e2,e3), which parametrizes all solutions of possible
affine transformations T in three dimensions accord-
ing to

T 5 R2
t J2

1
2PJ1

2
1
2R1

t (3)

whereby the exact affine transformation parameters
Texact are calculated by independantly varying Euler
angles e1 [ [0,p], e2 [ [0, 1 2p], e3 [ [0,2p) [for details
see Budò, 1980] and simultaneously optimizing a
similarity citerion such as the extent of overlap. In Eq.
(3), t is the transpose of the matrix, R1 denotes an
eigenvector matrix which transforms the inertia matrix
M1 of the individual brain into the principal moment
matrix J1, and R2 denotes an eigenvector matrix which
transforms the inertia matrix M2 of the reference brain
into the principal moment matrix J2 by a similarity
transformation. Eq. (3) describes the determination of
affine transformation parameters used in this study.
See Schormann et al. [1997a] and Schormann and Zilles
[1997] for a detailed discussion on the extended PAT.
Translation is corrected by superposition of the centers
of mass ,x=.1 and ,x=.2 of both volumes. Thus, a
point x=1 of the template is transformed onto the
corresponding point x=2 of the reference coordinate
system by the relation

x=2 5 Texact (x=1 2 ,x=.1) 1 ,x=.2 (4)

Eq. (4) has the advantage that the calculation of
higher-order moments is not required and it is there-
fore not sensitive to noise. Moreover, there are no
restrictions with respect to symmetries which pose
problems for the classical PAT or PAT-based methods
using odd-order moments [Faber and Stokeley, 1988;
Cygansky and Orr, 1985]. After transforming the histo-

logical data, both volumes have the same global
orientation based on the linear transformation param-
eters (Fig. 1).

Nonlinear alignment

In order to account for differences in the morphol-
ogy of individuals, the objects (brains) are modelled as
an elastic medium by applying the theory according to
Navier-Lamé [Landau and Lifshitz, 1959; Broit, 1981;
Bajcsy and Kovacic, 1989; Miller et al., 1993; Chris-
tensen et al., 1994; Bro-Nielsen and Gramkow, 1996;
Schormann et al., 1996]. In the present approach,
investigation is focused on minimizing computation
time by applying an adapted full-multigrid (FMG)
technique which is known from numerical mathemat-
ics [Stüben and Trottenberg, 1982]. The elastic FMG
model also solves the problem of interactively correlat-
ing only a few homologous anatomical landmarks
[Rohr et al., 1996], since the three-dimensional nonlin-
ear deformation field results directly from the solution
of a system of partial differential equations describing
the unique movement (deformation) of the individual
onto the reference volume for each voxel. This move-
ment of the source onto the reference image is subject
to constraints (Eq. 6) imposed by the continuum theory
of mechanics and is therefore guided by the data
per se.

The aim of the nonlinear approach is to find a
transformation x= = x= 2 u=(x=) that maps all voxels with
coordinates x= 5 (x1,x2,x3) of the individual brain T onto
the reference brain R by the local displacements u= 5

(u1,u2u3). For this purpose, the volumes are modelled
as an elastic medium by applying an elastic potential
[Budò, 1980]

F 5 2
1

2
µu=Du=t

1
1

2
(l 1 µ) · (=

=

? u=)2 (5)

and minimizing a squared-error distance measure
D(u=)

D(u=) 5 0T(x= 2 u=(x=)) 2 R(x=)02 (6)

yielding the partial differential equation

2µD
=

u=(x=) 2 (µ 1 l)=
=

(=
=

? u=(x=))

5 2=
=

T(x= 2 u=(x=))(T(x= 2 u=(x=)) 2 R(x=)) (7)
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whereby u= denotes the local displacements; t the
transpose; µ, l the Lamé constants; D, =

=

and =
=

. are the
Laplacian, gradient, and divergence operators, respec-
tively.

The partial differential Eq. (7) has to be applied to
each voxel of the volume by discretization, thereby
working on a hierarchy of grids Vl

h, where V0
h denotes

the finest and l 5 6 the coarsest grid in our applica-
tions. h is a discretization parameter. Thus, the discrete
form of the Navier-Lamé equation applied to volumes

can be written as

NLEh ? u=h 5 f
=h

V0
h

u=h 5 0
=

V0
h (8)

where NLEh [ IR3?223
3 IR3?223

is a grid operator
corresponding to the finest resolution, u=h 5 (u1

h,u2
h,u3

h)
the deformation field, f

=h
5(f 1

h,f 2
h,f 3

h) the forces, and u=h 5 0
=

Figure 3.
Section of an individual three-dimensional brain data set with the
superimposed contour of the standard brain (b) before (a) and
after (c) three-dimensional nonlinear alignment. The outer con-

tour is only used to demonstrate accuracy before and after
alignment. As can be seen from the deformation field (Fig. 4), the
nonlinear transformation accounts also for internal structures.
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on V0
h the Dirichlet boundary condition. As an ex-

ample, Figure 3 shows the iterative application of the
model for 2 individuals without any interactive sup-
port, whereby the outer contour is only used to
visualize the spatial differences before and after regis-
tration. The deformation field (Fig. 4a) accounts for
large and complex spatial differences and results from
the application of the external forces shown in Figure
4b,c for the x- and y-direction. A further example of
interindividual alignment is shown in Figure 5.

Although the deformation field is derived from a
system with up to 24 million degrees of freedom, the

resulting transformation is unique, since the move-
ment (deformation) of the brain is a consequence of
applying the variational principle of Hamilton to an
elastic potential known from the theory of continuum
mechanics and a distance measure thereby introducing
the same number of constraints. Thus, after by applying
Dirichlet boundary conditions, the system of partial
differential equations is uniquely determined and
solved precisely, i.e., within a selected numerical accu-
racy of 1022 by the full-multigrid method for each
voxel and for a given initial position, which is also
uniquely determined in a first step by the extended

Figure 4.
a: Deformation field applied to a regular grid. The deformation
field is calculated from the sections shown in Figure 3a,b. It is
applied to a regular grid in order to make areas of deformation
visible. The external forces for the x- (b) and y- (c) direction are
shown, whereby the gray value of the background represents a

force of strength zero. The direction of the force is encoded in b
such that white indicates a force into the negative x-direction
(black, positive x-direction), whereas white in c indicates a force
into the positive y-direction (black, negative y-direction).
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PAT. Another advantage of the FMG is that the numeri-
cal effort increases only linearly with O(N), N being
the number of grid-points.

In addition to these physical and mathematical
aspects, there are in principle possible constellations of
corresponding objects (e.g., infinite periodical struc-
tures) for which an automatic alignment would lead to

different results, e.g., depending on the relative posi-
tion before nonlinear transformation. Also, misregistra-
tion may be introduced according to Eq. (6) in cases
where homologous structures in reference and source
volumes do not overlap (e.g., corresponding gyri).
However, due to the fact that the algorithm is addition-
ally embedded in a multiresolution framework, i.e.,

Figure 5.
Example of a two-dimensional interindividual alignment. Source image before (a) and after (c)
nonlinear alignment, with reference section (b). d: Deformation field. e,f: Forces for the x- and
y-directions, resepctively. Computation time for this example was approximately 20 sec on a SUN
SPARC20 workstation.

r Schormann andZilles r

r 346 r



alignment follows stepwise, from a coarse to a fine
registration, the correlation of homologous structures
is greatly improved, even when morphology is com-
plex such as in the human brain. It has to be mentioned
that further characterizations are required with respect
to the gray-value-dependent convergence and the
uniqueness of this complex algorithm, on which we
are currently working.

CONCLUSIONS

A technique has been developed for integrating
microscopical and MR information, in order to im-
prove the mapping of specific brain structures with
respect to their identification and localization, which
can be used in combining functional and morphologi-
cal data. Research was focused mainly on the develop-
ment of a system which provides high accuracy with
minor interactive support and minimization of compu-
tation time. This was achieved by a hierarchical tech-
nique which is based on an extended principle axes
theory (PAT) generalized to affine parameters and a
three-dimensional high-dimensional transformation de-
termined by a fast full-multigrid method (FMG). With
this technique it is possible to account for the global
alignment required for the high-dimensional transfor-
mation as well as for the different morphology with
complex neuroanatomical shape. In addition, a combi-
nation of the PAT and the FMG method is used for an
accurate three-dimensional reconstruction of histologi-
cal volumes.
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