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Abstract. The three-dimensional laminar and steady boundary layer flow of an 

electrically non-conducting and incompressible magnetic fluid, with low Curie 

temperature and moderate saturation magnetization, over an elastic stretching sheet, is 

numerically studied. The fluid is subject to the magnetic field generated by an 

infinitely long, straight wire, carrying an electric current. The magnetic fluid far from 

the surface is at rest and at temperature greater of that of the sheet. It is also assumed 

that the magnetization of the fluid varies with the magnetic field strength H  and the 

temperatureT . The numerical solution of the coupled and non linear system of 

ordinary differential equations, resulting after the introduction of appropriate non-

dimensional variables, with its boundary conditions, describing the problem under 

consideration, is obtained by an efficient numerical technique based on the common 

finite difference method. Numerical calculations are carried out for the case of a 
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representative water-based magnetic fluid and for specific values of the dimensionless 

parameters entering into the problem and the obtained results are presented 

graphically, for these values of the parameters. The analysis of these results showed 

that there is an interaction between the motions of the fluid which are induced by the 

stretching surface and by the action of the magnetic field and the flow field is 

noticeably affected by the variations of the magnetic interaction parameter β . 

The important results of the present analysis are summarized in Conclusions.     
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1   Introduction 

 

     The investigation of the two-dimensional flow problems, caused by a linearly 

stretching flat surface, in an otherwise quiescent incompressible fluid, has been 

proved of fundamental importance in recent years, due to their applications in a 

number of mechanical and technological processes and several authors have studied 

various aspects of this problem [1-10]. More specifically, the generalized three-

dimensional boundary layer flow of a viscous and in an otherwise ambient 

incompressible viscous fluid, due to a stretching sheet, was also studied by Wang 

[11], Ariel [12] and by Takhar et al [13].  

     On the other hand, during the last decades, there is a steady growth in the study 

and applications of colloidal stable magnetizable fluids. The new scientific advances 
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and the increasing importance of the technological applications of magnetic fluids, 

and especially of ferromagnetic ones, have led to widely dispersed growing research 

groups of many nationalities all over the world. The behavior of a ferrofluid, under 

the action of an applied magnetic field, is of fundamental importance not only in 

Ferro Hydro Dynamics (FHD) but also in Biomagnetic Fluid Dynamics (BFD) in 

which the blood is investigated as a magnetic fluid. So, an extensive work has been 

done in this field and some representative works can be found in ref. [14-25].   

    However, it is known that a magnetic fluid, also known as a ferrofluid, is a 

suspension of ferromagnetic or ferrimagnetic particles in a carrier liquid (water-based 

or oil-based ferrofluids). In certain applications, such as in energy conversion devices, 

it is necessary to use a fluid with large pyromagnetic coefficient K , i.e., with a high 

saturation magnetization and a low Curie temperature . So, the above mentioned 

magnetic particles are unsuitable for this purpose since they have Curie temperatures 

higher than the boiling point of the carrier liquid. To overcome this difficulty, some 

investigators [27-33], have synthesized fine particles of different types and obtained 

water-based magnetic fluids, such as EMG 901, EMG 909 and EMG 805, with large 

pyromagnetic coefficient

cT

K  and moderately low curie temperatures  .    cT

     So, the purpose of the present work is to study the three-dimensional laminar and 

steady boundary layer flow of an electrically non-conducting and incompressible 

magnetic fluid, with low Curie temperature and moderate saturation magnetization, 

over a stretching sheet. The fluid is subject to the magnetic field generated by an 

infinitely long, straight wire oriented along the x-axis of a Cartesian coordinate 

systemOxy . The wire carries an electric current z I  and it is placed parallel to the 

stretching surface (Ox -plane) at a distance d  bellow it. The magnetic fluid, far from 

the surface, is initially at rest and at temperature greater of that of the sheet. This 

y
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physical problem concerns the FHD flow, but it can be also considered as a BFD flow 

as long as the conditions refereed in [14] hold. It is also assumed that the 

magnetization varies with the magnetic field strength H  and the temperatureT , 

according to the relation ( )cM KH T T= −  (1) and this relation is the one derived 

experimentally in [25], suggested in [14] and also used in [26].  

    The formulation of the problem is obtained by an analogous manner presented in 

[23, 24] and the numerical solution is obtained by applying an efficient numerical 

technique based on the common finite difference method [34, 35]. The obtained 

numerical results, for a representative water-based magnetic fluid, with moderate 

saturation magnetization and low Curie temperature, are presented graphically, for 

specific values of the parameters entering into the problem under consideration, and 

analyzed in detail.   

  

2 Mathematical Formulation 

     The steady, three-dimensional, incompressible, laminar boundary layer magnetic 

fluid flow, induced by the stretching of a highly elastic flat surface in two lateral 

directions, in an otherwise quiescent fluid is considered. The stretching surface is 

placed in the plane , whereas the fluid occupies the upper half plane . The 

velocities of the stretching surface in 

0z = 0z ≥

x  and y  direction, respectively, and therefore 

of the fluid in contact with it, and in a Cartesian coordinate system , are given by Oxyz

           ,               xcu 1= yc2=υ ,              0=w                               (2) 

where  and are dimensional constants. The fluid temperature, far away of the 

sheet, is , whereas the stretching surface is kept at a constant temperature , less 

than . The viscous and electrically non conducting magnetic fluid is subject to the 

1c 2c

cT wT

cT
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action of a magnetic field H
r

which is generated by an electric current with 

intensity I . The electric current is going through an infinite thin wire placed parallel 

to the x -axis and at a distance d  below it. The electric current in the wire flows from 

the positive x -axis towards the negative and a schematic representation of this flow 

configuration is presented in Figure 1. 

     It is also assumed that this electric current in the wire gives rise to a magnetic field 

of sufficient strength to saturate the magnetic fluid so that the equilibrium 

magnetization is attained.  

     Under the above assumptions the equations governing the physical problem under 

consideration are the mass conservation, fluid momentum in x , y  and  direction 

and energy equation and can be written as ([14], [15], [18], [23], [24], [26] ): 
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In the above equation (7), is the dissipation function which, in the case under 

consideration, is given by the expression 

Φ

 

2 2 2 22[( ) ( ) ( ) ] [( ) ( )u w 2 ]u
x y z z z

υ υ∂ ∂ ∂ ∂ ∂
Φ = + + + +

∂ ∂ ∂ ∂ ∂
                                        (8)  

 

The system of equations (3) ~ (7) is subject to the following boundary conditions: 

 

wTTwycxcuz ===== ,0,,:0 21 υ                                                         (9) 

21: 0, 0, ,
2cz u T T p w p constυ ρ ∞→∞ = = = + = = .                                (10) 

 

     The terms )/(0 yHM ∂∂μ and )/(0 zHM ∂∂μ in (5) and (6), respectively, represent 

the components of the magnetic force, per unit volume of the fluid, and depend on the 

existence of the magnetic gradient. When the magnetic gradient is absent these forces 

vanish. The second term, on the left-hand side of the energy equation (6), accounts for 

heating due to adiabatic magnetization. 

The components  of the magnetic field zy HH , ,( y zH H H= ),
r

due to the electric 

current flowing through the wire with intensity are given by ,I
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Therefore, the magnitude H
r

,H= of the magnetic field, is given by 
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     It is reminded, once more, that when the applied magnetic field H
r

 is sufficiently 

strong to saturate the magnetic fluid, the magnetization M is, generally, determined 

by the fluid temperature T and the magnetic field strength H and, in the problem 

under consideration, it is expressed by the relation (1) i.e. ( )cM KH T T= − . 

 

 

3 Transformation of Equations 

 

     The mathematical analysis of the problem under study is simplified by introducing 

the following dimensionless coordinates  
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where  .2/)( 21 ccc +=

In addition, the corresponding velocity components of the fluid, defined by the 

expressions 
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where ( ) ( ) / η′ = ∂ ∂ , satisfy the continuity equation (3). 

Finally, the dimensionless pressure (magnetic and static) ),,( ηζξP and temperature 

),,( ηζξΘ  of the magnetic fluid are given by the following expressions 

 

2
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As far as the magnetic field is concerned, the magnitude H of the magnetic field 

strength, is given by the expression 

22 )(
1

2
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cIH ,                                                              (18) 

where α is the dimensionless distance of the electric wire from ξ - axis )/( dc να = . 

     For the calculation of the partial derivatives of the above expression, with respect 

to ζ andη , a similar procedure to that first used in [23] and [24] is followed. First, 

(18) is expanded in powers of ζ up to terms of the order of . Hereafter, the 

corresponding derivatives are calculated by partial differentiation of the resulting 

expansion already mentioned. So, the partial derivatives of the magnetic field, with 

respect to 

2ζ

ζ  andη , are given by the following expressions 
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     By substituting equation (1) and all the above expressions (14) ~ (20) into the 

momentum equations (4) ~ (6), and into the energy equation (7), and following 

standard procedure, the problem under consideration is finally described by the 

following system of ordinary differential equations 
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subject to the boundary conditions 
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:0=η  ,1δ=′f  ,2δ=′g  ,0== gf  ,11 =Θ  ,053 =Θ=Θ              (29) 
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     The dimensionless parameters appearing in these equations are defined as follows: 

 

kc p /Pr μ=  (Prandtl number),  

)(

2

wc TTk
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μλ (viscous dissipation parameter), 

)/( wcc TTT −=ε (dimensionless temperature parameter),  (31) 

dc 2/1)/( μρα = (dimensionless distance),                                        
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and the quantities 1δ  and 2δ are also defined as 

  

cc /11 =δ  and cc /22 =δ , where 2/)( 21 ccc += .                             (32) 

 

     For equal speeds of stretching in ξ  and ζ  direction, it is ccc == 21  and therefore 

the corresponding boundary conditions for the functions f ′  and  become g ′

1)0( 1 ==′ δf  and 1)0( 2 ==′ δg . It is worth noting however, that other cases could 

also be considered for these boundary conditions. For instance, when  and 

 there is stretching only towards the 

01 =c

cc 22 = ζ direction (two-dimensional flow) and 
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the corresponding boundary conditions become 0)0( 1 ==′ δf  and 2)0( 2 ==′ δg . 

However, in the problem under consideration, and due to lack of space, only the most 

representative case is examined.   ccc == 21

     The system of equations (21) ~ (28), subject to the boundary conditions (29) ~ 

(30), is a five-parameter ( , , , , Prα β λ ε ) coupled and non-linear system of ordinary 

differential equations, describing the magnetic fluid flow over the stretching sheet 

when the magnetization of the fluid is given as a function of temperature T   and 

magnetic field strength H . 

 

 

 

 

 

 

 

4 Numerical Solution Method  

 

For the numerical solution of the system of ordinary differential equations, of the 

problem under consideration, and for specific values of the dimensionless parameters 

appearing in it, a numerical technique is applied with the following characteristics. It 

is based on the common finite difference method with central differencing, a 

tridiagonal matrix manipulation and an iterative procedure. The whole numerical 

scheme can be programmed and applied easily, is stable, accurate and rapidly 

converging. This solution methodology, for a system of three equations, is described 

in detail in [34, 35]. It has also been extended, applied and validated in [24] and [26].  
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    In order to obtain and present numerical results, for the problem under 

consideration, and analyze them, the following assumptions are made for the 

magnetic fluid and the values of the dimensionless parameters, entering into the 

problem and defined in (31): 

a. The magnetic fluid is similar to that used in [33] (a water-based magnetic fluid 

Ferrotec TM   EMG 805, 300 Gauss, with density ρ =1180 kg/m , kinematical 

viscosity 

3

ν = 1.69×10 m /sec, coefficient of thermal diffusivity 6− 2 6a 0.119 10−= ×  

m /sec and saturation magnetization  A/m),  but with low Curie 

temperature and moderate saturation magnetization. The Prandtl number of this fluid 

is equal to Pr =14.20. 

2 315.61 10sM = ×

b. The temperature  of the stretching sheet is taken equal to 280 K whereas the 

fluid temperature far away of the sheet is taken equal to = 340 K. In such a case the 

dimensionless temperature parameter 

wT

cT

ε  is equal to ε =5.667. 

c. The dimensional constants and , express the rate of stretching of the elastic 

sheet, per unit length, along the 

1c 2c

x - axis and - axis, respectively. For equal speeds of 

stretching in   

y

x and y - direction (or in ξ  and ζ - direction) it is taken = = =1 

and in such a case, the boundary conditions for the functions 

1c 2c c

f ′  and  become g ′

1)0( 1 ==′ δf  and 1)0( 2 ==′ δg .  

d. The infinitely long and straight current carrying wire is placed at a distance 

=0.01m bellow the d x - axis and parallel to it. In such a case, the dimensionless 

distance , defined by the relation , is equal to a = 7.69. a 1/ 2( / )cα ν= d

e. According to its definition and to the physical properties of the fluid under 

consideration, the viscous dissipation parameter λ  is equal to . 119.5234 10λ −= ×
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f. Finally, the dimensionless magnetic interaction parameterβ , defined as 

22

2 )(
4 μ

ρμ
π

β wco TTKI −
= , can also be defined as 2 /s sM B a cβ μ= , where 

(0,0) ( )s c wM H K T T= − , 0 (0,0)sB Hμ=  and  is the value of the magnetic 

field strength for 

(0,0)H

0ζ η= = , that is =(0,0)H 1
2
I

dπ
⋅ .  

According to the assumptions made for the properties of the magnetic fluid and the 

flow configuration, a plausible value for the dimensionless magnetic interaction 

parameterβ , that saturates the fluid, is β  = . It is worth reminding here that 

the case

51.5 10×

β =0.0 corresponds to hydrodynamic flow. 

    For these values of the dimensionless parameters, entering into the problem under 

consideration, the obtained numerical results, concerning the dimensionless velocity 

field, temperature field, pressure, skin friction and rate of heat transfer coefficients, 

are shown in Figures 2 ~ 10 and analyzed in the following section. 

 

 

5 Analysis of the Results  

 

     The velocity components of the fluid, along the axis ,x y and , respectively, are 

defined by the expressions (15): 

z

 

),(),( ηξνηξ fcu ′=   ),(),( ηζνηζυ gc ′=    ( ) [ ( ) ( )]w c f gη ν η η= − + .  

 

It is clear that for a specific vertical plane, parallel for instance to the , e. g. Oyz

.x cont=  or .constξ = , the - velocity component is a function only of the u
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dimensionless variable ( )zη η= . The same is true for the υ - velocity component, 

whereas the - velocity component is a function only of the dimensionless 

variable

w

η . So, the variations of the dimensionless velocity components 

 

 ( ) ( , ) / , ( ) ( , ) /f u c g cη ξ η νξ η υ ζ η νζ′ ′= =  and [ ( ) ( )] ( ) / ,f g w cη η η− + = ν    (33) 

 

against the dimensionless distanceη , from the surface of the stretching sheet are 

shown in Figs. 2, 3 and 4, respectively. It is observed that inside the boundary layer 

over the stretching sheet, the velocity components )(ηf ′  and )(ηg ′ present the 

classical behavior of the velocity field taking their limiting value zero for away from 

the stretching surface (Figs. 2 and 3). It is worth noting, however, that when the fluid 

is saturated by the applied magnetic field )0.0( ≠β  and inside the boundary 

layer )0.60( =<< ∞ηη , the velocity component )(ηf ′ is greater than the 

corresponding one in hydrodynamics case (Fig.2). However, the opposite is true for 

the velocity component )(ηg ′ (Fig.3). This fact is due to the influence of the Kelvin 

force on the flow field in y and −z direction. This influence is also evident in Fig.4 

presenting, the variations of the dimensionless velocity component in −z direction. In 

ferromagnetic case )0.0( ≠β  the components of magnetic force per unit volume, act 

in the negative y and in positive −z direction, respectively, and opposed to the fluid 

motion which comes as a result of the stretching of the elastic surface. So, there is an 

interaction between the motions of the fluid which are induced by the stretching 

surface and by the action of the magnetic field. It is worth noting that in ferromagnetic 

case and very close to the elastic sheet )5.0( ≅η the velocity component in −y  

direction ))(( ηg ′ takes negative values which means that in that region the flow is 
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reversed. Quantitatively, when 0.1=η , for instance, and β  increases from 0.0 

to , the percentage changes (decrements) of the dimensionless velocity 

components 

51.5 10×

)(ηg ′  (Fig. 3) and )]()([ ηη gf +−  (Fig. 4), are 138.75% and 42. 8%, 

respectively. 

The interaction between the motions of the fluid which are induced by the stretching 

surface and by the action of the magnetic field is also shown in Figs. 2a and 3a. These 

figures present the variations of the dimensional velocity components and ( )u z ( )zυ  

against , at different distances along the z x  and y  axis, respectively. It is concluded 

that near to the surface the magnetic field interacts with the fluid motion which comes 

as a result of the stretching of the elastic surface. This interaction increases the 

velocity component but decreases the  ( )u z ( )zυ  velocity component. This different 

influence of the magnetic field on the velocity components  and u υ  is due to the 

orientation of the infinite electrical wire which is placed parallel to the x axis. 

     The numerical analysis and the obtained numerical results showed that the 

dimensionless temperature ),,( ηζξΘ of the fluid is represented only by the 

dimensionless temperature )(1 ηΘ , e. g.  0iΘ = , for 2,...,5i = . So, the dimensional 

temperature T  can be expressed, according to the equation (17), as 

 

1( ) ( ) ( ( ))c c wT z T T T zη= − − Θ          (34) 

 

     Fig.5 shows the variations of the dimensionless temperature )(1 ηΘ  in 

hydrodynamic case )0.0( =β  as well as in ferromagnetic one   ( ). From this 

figure it is concluded that the thermal boundary layer thickness 

51.5 10×

)8.0~( thth δδ  is much 

smaller than the corresponding viscous boundary layer thickness 0.5~( visvis δδ  and 
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this is in agreement with the relation that compares these thicknesses with Prandtl 

number
th

vis
rr PP

δ
δ

~( ). It is also concluded, from this figure, that the dimensionless 

temperature )(1 ηΘ  is greater in ferromagnetic case than the corresponding one in 

hydrodynamic. However, this increment is not important since, for instance, for 

2.0=η  the percentage increment is only 1.2%. However, for the dimensional 

temperature the opposite is true. The variation of the dimensional temperature 

 against the normal distance , from the elastic surface, for 

( )T z

( )T z z 0β = (hydrodynamic 

case) and for (ferromagnetic case), is shown in figure 5a. It is concluded, 

from this figure, that the fluid temperature inside the thermal boundary layer is greater 

in hydrodynamic case than that in ferromagnetic one. So, the contribution, in the 

increase of fluid temperature, of the second term, on the left-hand side of the energy 

equation (6), which accounts for heating due to adiabatic magnetization, can not 

counterbalance the decrement of temperature due to variation of the velocity field in 

ferromagnetic case. This was also verified by additional numerical calculations in 

which the contribution of this term was found to be not important.  

51.5 10β = ⋅

     The numerical analysis also showed that the dimensionless pressure ),,( ηζξP  is 

represented only by the function 1( )P η  in hydrodynamic case and by the functions 

1( )P η  and )(3 ηP  in ferromagnetic one. So, according to the equation (16), the 

dimensional pressure difference p p p∞Δ = −  is expressed as  

1 1( ) ( ) ( ( ))p z p z p c P zμ η∞Δ = − =           (35) 

in hydrodynamic case, and as 

2
1 3( , ) ( , ) { ( ( )) ( ( ))}cp x z p x z p c P z x P zμ η η

ν∞Δ = − = +          (36) 

in ferromagnetic one. 
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     The variations of these functions are presented in Figs. 6 and 7, respectively. It is 

concluded that in hydrodynamic case as well as in ferromagnetic one, the dimensional 

pressure differences decrease to zero (or p p∞→ ) as the distance from the stretching 

surface approaches to infinite.  

    It is worth reminding here that in ferromagnetic case by the term “pressure” it is 

insinuated the sum of the static and magnetic pressure of the fluid. In such a case the 

magnetic pressure represents the energy density (internal energy per unit volume of 

the fluid) associated with the induced magnetic field by the electric current of the 

wire. Isolation of the static or magnetic pressure is not an easy task and requires 

modification of the initial governing equations of the mathematical model of FHD.  

     For the physical problem under study the shearing stresses and the rate of heat 

transfer, at the stretching elastic surface, is defined as follows: 

 

0)()( =∂
∂

+
∂
∂

= zwzx z
u

x
wμτ  , 0)()( =∂

∂
+

∂
∂

= zwzy zy
w νμτ              (37) 

for the shearing stresses in x  and  direction, respectively, and  y

 

                      0( )w
Tq k
z z=

∂
= −

∂
&                                              (38) 

for the rate of heat transfer at the sheet. 

 Using transformations (14), (15) and (17) the corresponding dimensionless quantities 

 and  can be written as  fyf CC ,ξ Nu

( )( )(0) , (0) ,zy wzx w
f fC f C g

c cξ ζ

ττ
μ ξ μ ζ

′′ ′′= = = = 1(0)
( ) /

w

c w

qNu
k T T c ν

′= Θ =
−

&
.   (39) 

 

The corresponding dimensional quantities can also be written as: 
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( ) (0), ( ) (0)zx w zy wc f c gτ μ ξ τ μ ζ′′ ′′= ⋅ = ⋅  and  1( ) / (w c wq k T T c ν ′= − ⋅Θ& 0)     (40) 

                                  

     It was stated earlier that according to the assumptions made for the properties of 

the magnetic fluid and the flow configuration, a plausible value for the dimensionless 

magnetic interaction parameter β , that saturates the fluid, is β  = . It is worth 

examining, however, the behavior of the above mentioned dimensionless quantities 

 and supposing that the value of the magnetic interaction 

parameter

51.5 10×

(0),  (0)f g′′ ′′ )0(1Θ′

β , that saturates the magnetic fluid under consideration, can varies from 

 to .  51.3 10× 51.5 10×

So, Fig.8 shows the variation of the dimensionless skin friction coefficient 

 against the magnetic interaction parameter  )0(fC f ′′=
ξ

β  . It is 

observed from this figure that 0(f

*( 10β β −= × 5 )

)′′  increases as β  increases and this is in agreement 

with the variation of the velocity profile presented in Fig.2. On the contrary, as it was 

expected from the analysis of the velocity field, the skin friction coefficient )0(g ′′  

decreases w e magnetic interaction parameter ith th β  (Fig. 9).           F ally, from 

Fig.10, it is concluded that the amount of heat, per unit area and time wq& , (or the 

ensionless wall heat transfer parameter ' (0)Θ ) flowing the magnetic fluid to 

the elastic surface, that is in the negative z - direction, decreases as the magnetic 

interaction parameter increases. This conclusion is in agreement with the results 

obtained from Fig. 5a showing the variation of the dimensional temperature ( )T z  

t the normal distance z , from the elastic surface.  

in

dim from 

agains

1
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      6 Conclusions 

 

     In ferromagnetic case the velocity component )(ηf ′  is greater than the 

corresponding one in hydrodynamic case. The opposite is true for the velocity 

component )(ηg ′ . This fact is due to the influence of the Kelvin force on the flow 

field which is produced by the interaction between the motion of the fluid which is 

induced by the stretching surface and by the action of the magnetic field. 

     In ferromagnetic case and very close to the elastic sheet, the velocity component in 

 direction takes negative values which means that in that region the flow is 

reversed. The numerical analysis and the obtained numerical results showed that the 

dimensionless temperature 

y

),,( ηζξΘ  of the fluid is represented only by the 

dimensionless temperature )(1 ηΘ  and the dimensional temperature of the fluid is 

greater in hydrodynamic case than the corresponding in ferromagnetic one. On the 

other hand, the dimensionless pressure ),,( ηζξP is represented only by the function 

1( )P η  in hydrodynamic case and by the functions 1( )P η  and )(3 ηP  in ferromagnetic 

one. Finally, the magneto static pressure inside the boundary layer and the shearing 

stresses and the rate of heat transfer, on the stretching elastic surface, are noticeably 

affected by the variations of the magnetic interaction parameter β .     
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CAPTIONS FOR FIGURES 

 

Fig. 1: Schematic representation of flow configuration. 

Fig. 2: Dimensionless velocity component )(ηf ′ . 

Fig. 2a: Dimensional velocity component  at the plane y=0 and for different 

positions of x. 

( )u z

Fig. 3: Dimensionless velocity component )(ηg ′ . 

Fig. 3a: Dimensional velocity component ( )zυ  at the plane x=0 and for different 

positions of y. 

Fig. 4: Dimensionless velocity component [ ( ) ( )]f gη η− + . 

Fig. 5: Dimensionless fluid temperature )(1 ηΘ . 

Fig. 5a: Dimensional fluid temperature . ( )T z

Fig. 6: Dimensional fluid pressure difference 1pΔ  in hydrodynamic case. 

Fig. 7: Dimensional fluid pressure difference pΔ  in ferromagnetic case at the plane 

y=0 and for different positions of x. 

Fig. 8: Dimensionless skin friction coefficient )0(f ′′ . 

Fig. 9: Dimensionless skin friction coefficient )0(g ′′ . 

Fig.10: Dimensionless wall heat transfer coefficient 1Θ′ (0).  

 

 

     

 

 

 

 20



Nomenclature 

 

             = thermal diffusivity, a 2 1m sec−⋅  

            α = dimensionless distance 

            B = magnetic induction, Weber/ 2m  

           sB = saturation magnetic induction, Weber/ 2m  

    = dimensional constants, sec1, 2 ,c c c 1−  

          = specific heat at constant pressure, Jpc ⋅Kg 1− ⋅K 1−  

           = distance of the wire from the d x - axis,  m

           ( , , )
x y z
∂ ∂ ∂

∇ =
∂ ∂ ∂

r
 

         
2 2 2

2
2 2( 2 )

x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

(Laplacian operator) 

    ′f , = dimensionless velocity components in ′g x and y direction 

           H = magnetic field intensity, A ⋅m 1−  

            I = electric current intensity, A 

           K = pyromagnetic coefficient, K 1−  

            = thermal conductivity, Jk ⋅ sec 1− ⋅m 1− ⋅K 1−  

          M = fluid magnetization, A ⋅m 1−  

         Saturation magnetization, AsM = ⋅  m 1−  

           = dimensionless (magnetic and static) pressure P

          pP
cμ
∞

∞ =   = dimensionless pressure far away of the sheet 

           Pr= Prandtl number 

          = fluid pressure (magnetic and static), Np ⋅m 2−  

 21



        p∞ = fluid pressure far away of the sheet, N ⋅m 2−  

         ( , , )q u wυ=
r , velocity field 

          = fluid temperature, K T

         = Curie temperature (fluid temperature far away of the sheet), K cT

         = stretching sheet temperature, K wT

   , ,x y z = Cartesian coordinates, m 

  , ,u wυ = velocity components in , ,x y z - direction, m ⋅ sec 1−  

 

Greek 

 

        β = dimensionless magnetic interaction parameter 

   1 2,δ δ = dimensionless constants 

        ε = dimensionless temperature parameter 

, ,ξ ζ η = dimensionless coordinates 

       = dimensionless temperature Θ

       λ = viscous dissipation parameter (dimensionless) 

       μ = dynamic viscosity, Kg ⋅m 1− ⋅ sec 1−  

      0μ = magnetic fluid permeability, N ⋅A 2−  

        ν = kinematical viscosity, m 2 ⋅ sec 1−  

       π = 3.14159… 

      ρ  = fluid density, Kg ⋅m  3−

      = dissipation function, secΦ 2−  
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