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SUMMARY

We have developed an inversion procedure that uses conjugate gradient relaxation
methods. Although one can generalize the method to all inverse problems, we
demonstrate its use to invert magnetotelluric data for 3-D earth models. This
procedure allows us to bypass the actual computation of the sensitivity matrix A or
the inversion of the ATA term. In fact, with the relaxation approach, one only
needs to compute the effect of the sensitivity matrix or its transpose multiplying an
arbitrary vector. We show that each of these requires one forward problem with a
distributed set of sources either in the volume (for A multiplying a vector) or on the
surface (for A multiplying a vector). This significantly reduces the computational
requirements needed to do a 3-D inversion. For this paper, we have simplified the
boundary conditions by assuming the model is repeated in the horizontal directions,
but this is not a necessary constraint of the method. The algorithm reduces data

errors to the 2 per cent level for noise-free synthetic 3-D magnetotelluric data.
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INTRODUCTION

Inversion is the procedure of estimating physical earth
parameters from a set of observed data, perhaps subject to
certain constraints. Linearized inversion schemes provide
one method for dealing with non-linear inversion problems
(those problems where the data are non-linearly related to
the model parameters). They involve expanding the model
response in a Taylor series around some point in the model
space, and then solving for the model changes that minimize
the error between the model response and the observed
data. Many such schemes exist, such as the non-linear
least-squares method, but we prefer to use the maximum
likelihood inversion procedure (Mackie, Bennett & Madden
1988). The maximum likelihood soiution is the solution that
maximizes the joint probability of fitting the observed data
(subject to the data covariance) and adhering to an a priori
model (subject to the model covariance). One obtains this
solution with the help of the sensitivity matrix, which is the
matrix that relates small changes in the model parameters to
changes in the observed data.

For the 3-D magnetotelluric inversion problem, we apply
conjugate gradient relaxation methods (Hestenes & Stiefel
1952) to solve the maximum likelihood system of equations
instead of solving the system directly using matrix inversion
routines. In doing so, we avoid having to explicitly construct
the sensitivity matrix; indeed, we only need to know the
effect of the sensitivity matrix, or its transpose, multiplying

an arbitrary vector. We will show that each of these
operations requires one forward problem, with sources
distributed either in the volume, for the sensitivity matrix
multiplying a vector, or on the surface, for its transpose
multiplying a vector. This implementation greatly reduces
the computational enormity of 3-D inversion, making
practical 3-D inversions a possibility rather than an
impossibility. One can generalize this method to any other
inverse problem, but here we demonstrate the procedure for
the magnetotelluric problem.

MAXIMUM LIKELIHOOD INVERSE

The maximum likelihood inverse is one method to obtain a
solution to a non-unique inverse problem. There are many
procedures for obtaining solutions, and each one biased, but
the maximum likelihood inverse clearly exposes its biases.
The maximum likelihood inverse is an example of a
linearized inversion scheme. One can find the derivation of
the maximum likelihood inverse in Mackie er al. (1988) and
Madden (1990), and it closely follows the work of Tarantola
& Valette (1982) and Tarantola (1987). Our maximum
likelihood inverse, however, is somewhat different from that
of Aki & Richards (1980). Their maximum likelihood
inverse first minimizes the weighted data errors, then out of
that resulting model space finds the minimum model. The
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maximum likelihood inverse we use,
(A;{RJdlAk + R;uln)_l Am,
= A?R;dl[d —g(my)] + R;,.ln(mn —my). e}

is similar to the stochastic inverse of Franklin (1970), and it
gives the solution that minimizes a weighted sum of the
variance of the difference between the model response and
observed data, and the difference between the model
parameters and an a priori model. In eq. (1), we make the
following definitions:

A = sensitivity matrix (A, = dd,;/dm;),

d = observed data vector,

m = model vector,

g = operator that maps a model m to the data space,

R, = data covariance matrix,

R, = model covariance matrix,

m,, = a priori model,

Am = model changes for current iteration.

The sensitivity matrix is so named because its entries
describe the perturbations in the data (or sensitivity of the
data) due to perturbations in the model parameters. The
superscript H stands for Hermitian, or complex conjugate
transpose. Since the problem is non-linear, Am describes
only local changes so that one must iterate the inversion,
each time updating the model. The model at the £ + 1 step
is given by m,, =m, + Am,.

Equation (1) has a straightforward interpretation. The
model changes calculated at each step represent a
compromise between fitting the data and adhering to an 4
priori model. The compromise is weighted by the inverse of
the data and model covariance matrices. We usually do not
explicitly know g, but we can calculate the model response
g(m) by use of a forward modelling code.

In our implementation of the maximum likelihood
inverse, we use logarithmic parameterization of the data and
model parameters. This is useful for several reasons. First, it
removes any bias associated with using either conductivity
or resistivity as model parameters. Furthermore, it
guarantees the positiveness of the model parameters (i.e. no
negative resistivities or conductivities are allowed). In
addition, it is the natural way of dealing with complex-
valued data that are separated into log amplitude and phase
(InZ =1In|Z| +i6). Finally, logarithmic parametrization
allows for larger changes in the model parameters as one
iterates the inversion. For the electrical problem, where the
resistivity can vary by several orders of magnitude, this
reduces the total number of iterations needed to reach an
acceptable solution.

The data covariance is a measure of the uncertainties in
the data and can be computed or measured directly. The
model covariance, on the other hand, is much more
subjective because it cannot be measured directly. One can
use the model covariance to apply a set of weights, filters, or
constraints to the model parameters. Some simple
constraints include imposing smoothing between neighbour-
ing points, forcing certain parameters to be correlated with
each other, or increasing/decreasing the freedom with which
certain parameters can change. In the logarithmic
parametrization scheme, the covariance matrices actually
represent the covariances of the logarithms of the data and
model parameters.

SENSITIVITY ANALYSIS AND
RECIPROCITY

Madden (1990) and Mackie (1991) detail the sensitivity
analysis and reciprocity relationship for the magnetotelluric
problem. These are important issues in the relaxation
inversion algorithm, and hence, we will review the salient
points here.

One can write Maxwell’s equations in matrix form as

I M :
Vx —ipwllH 0 @)
where J are the media current sources, which for the MT
problem are usually represented by a uniform current sheet
far above the Earth’s surface. If the media conductivity is

perturbed by an amount 8o, then the E and H fields will also
be perturbed by amounts 6E and 8H respectively

757 Sl onl=[a)

Expanding this equation, subtracting it from eq. (2), and
dropping second-order terms, we obtain

[—o Vx ][65]_[E 60] s
vx —ipwlléHl L 0o I @)
Thus, the E and H field perturbations satisfy the original EM
equations except that the current sources are equal to the
media perturbations multiplying the original € field. That is,
one can solve for the field perturbations by doing forward
problems with the proper current source distribution. We

can rewrite eq. (2) in terms of Green’s functions as (Kong
1986)

[:g;] - j f f d*sG(r, 5) - J(s) 5)

where G(r, s) is the dyadic Green’s function. The elements
of the dyadic Green’s function are G(r, s); where r is the
observation point, s is the source point, { represents the
observed field component (i =1, 2, ..., 6 corresponding to
E,E, ..., H,) and j represents the source component
(j=1, 2, 3 corresponding to J,, J,, J,). Using this notation,
we can express eq. (4) as

[ ;5:2';] = [[[a560.9)- ) 0. ®

Thus, it would appear that one needs to compute a dyadic
Green’s function for every point in the media where one
wishes to determine the electrical properties.

Employing reciprocity, however, we find that we only
need to compute Green’s functions for every surface
location where a measurement was made. One can derive
the reciprocity relation from the bilinear identity along with
the use of adjoint operators (Lanczos 1961), and it is given
by

G/'(s, 1) = Gy (r,5);, )

where G refers to the Green’s function for the adjoint
operator. Since the curl operator and real constants are self
adjoint (imaginary constants have a change in sign), the
adjoint operator for Maxwell’s equations is

e B ®

&)
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Thus, the adjoint to Maxwell’s equations is also the
electromagnetic equations except with backwards time, or
alternatively, negative frequencies. Since the adjoint in the
frequency domain is simply the complex conjugated
electromagnetic equations, G* = G, we arrive at the desired
reciprocity relation,

G(s, ), = Gi(r, 5);. )

This simple relation is of tremendous importance for solving
the inverse problem. It means that the effect at the surface
due to a source in the interior is equivalent to putting a
source on the surface and solving for the effect in the
interior (one must also take into account the proper
interchange of vector components). In the magnetotelluric
case, for example, the term G,(r, 5), is the E, effect at r (at
the surface) due to a unit J, dipole source at s (in the
interior). By reciprocity, this is equal to G,(s, r),, which is
the E, effect at s (in the interior) due to a unit J, dipole
source at r (at the surface). Similarly, the term G,(7, 5), is
the H, effect at r (at the surface) due to a unit J, dipole
source at s (in the interior). Again by reciprocity, this is
equal to G,(s, r),, which is the E, effect at 5 (in the interior)
due to a unit H, magnetic source at r (at the surface). Thus,
if one were actually constructing the sensitivity matrix for
the 3-D MT problem, one would only need to do forward
modelling runs with sources at each surface measurement
site instead of doing forward modelling runs with sources in
each model block. This results in tremendous time savings.
As we will see, however, our inversion algorithm does not
actually require computing the sensitivity matrix, but the
reciprocity relationship will still play an important role.

RELAXATION SOLUTION OF THE INVERSE
PROBLEM

To carry out a linearized inversion using the maximum-
likelihood inverse, one must determine the sensitivity matrix
A, compute APA, and then invert APA (for the moment we
are neglecting the data covariance weighting). In the 3-D
case, computing A is a computationally enormous task even
when using reciprocity. This is because the total number of
forward problems needed to construct the sensitivity matrix
is on the order of (no. measurement sites) x (no.
frequencies). For a nominal 3-D problem, there might be 20
measurement sites and eight frequencies, thereby requiring
on the order of 160 forward problems simply to set up the
sensitivity matrix for one iteration of the inversion (of
course one must also take into account source polarization
and vector components of the fields so this estimate is just a
lower bound). In addition, for this modest 3-D problem,
there might be on the order of several thousand model
parameters (20 X 20 X 10 model = 4000 mode!l parameters).

For k =1 to max # inversion iterations
g(m,)
d - g(m,)
m, —m,;

b=A"R;/[d - g(m,)] + R (m,—m,)

Aoy,=0, r,=b
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Inverting the matrix A"A, which has the dimension of the
number of model parameters, is also a big computational
task. To make 3-D inversions computationally tractable, a
way must be found to circumvent these problems.

Smith & Booker (1991) derived an efficient iterative
inversion technique that is called the rapid relaxation
inverse (RRI). The important feature of their inversion
scheme is that they approximate the lateral gradients of the
electric and magnetic fields by the electric and magnetic field
values at the previous iteration. Furthermore, they solve the
forward problem with a relaxation scheme, thus yielding a
quick and efficient algorithm. Their algorithm requires the
solution of one forward problem per inversion iteration, but
to date, has only been tested on 2-D models.

We take a somewhat different approach in that we use
conjugate gradient relaxation techniques to solve the
maximum likelihood equations (Madden & Mackie 1989;
Madden 1990; Mackie 1991). At each iteration of the
inversion, we use conjugate gradient relaxation to obtain an
approximate solution for Am in the maximum likelihood
equations. This bypasses the need to do a large matrix
inversion at each iteration of the inversion procedure. We
can use standard conjugate gradient techniques because the
system is positive definite and Hermitian. We should make
clear that when using relaxation methods to solve the
non-linear inversion, there are two levels of iteration
involved. The outer loop is the iteration of the non-linear
maximum likelihood equations. The inner loop is the
iteration of the conjugate gradient relaxation procedure that
is used to solve for the approximate Am, at each iteration of
the inversion. It is our contention that only a few relaxation
iterations are necessary at each inversion iteration since one
must update the model and begin the whole process again.
Furthermore, when using relaxation techniques, we never
need to explicitly know A, the sensitivity matrix. We only
need to know the effect of A or A" muitiplying a vector. We
will show that one can do these operations without actually
constructing the sensitivity matrix.

Our motivation for this procedure came from our
experiences in implementing it in 1-D and 2-D geometries
(Madden & Mackie 1989). In 1-D and 2-D geometries, there
are no time savings involved in using relaxation methods
because the models are not too large, and the sensitivity
terms can be computed quickly and accurately. However,
we found that in 1-D and 2-D, the relaxation technique gave
results comparable to the direct results (those results
obtained by explicitly computing the sensitivity matrix and
solving the maximum likelihood equations by matrix
inversion). We therefore extended these concepts to the 3-D
inversion problem.

We will first outline our 3-D inversion algorithm before
we discuss its details:

NON-LINEAR INVERSION
response of current model
data residuals

model residuals

one forward problem with
surface sources per frequency
initialize conjugate gradient
algorithm
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For i = 1 to max # relaxation iterations

B = :T—ll'i—l/l';czl'i—z
Pi=r_+BPpi_
Bp; = [AHRJdIA + R;lrln]pi

_ T T
o, =r_r,_,/p;Bp;
Ao, = Ao;_,+ a;p;
r,=r,_; — a;Bp,

end loop on relaxation iterations
O =0+ Ao
end loop on inversion iterations.

Mora (1987) developed a similar approach that used the
conjugate gradient method of non-linear least squares to
invert seismic reflection data for P-wave and S-wave
velocities and density variations in two dimensions. He
correctly showed that the operation of A" multiplying a
vector was equivalent to doing one forward-modelling
problem with sources distributed on the surface. In addition,
he described how the operation of A" multiplying the
surface data residuals is very similar to migration in that one
properly images reflectors, but one does not obtain the
correct amplitudes of the physical properties (Mora 1987).
What he did not point out, however, is that the operation
Ax is equivalent to doing one forward problem, except that
in this case, as opposed to the A" problem, sources are
distributed throughout the volume and not on the surface.
Consequently, he approximated the term [AYR; /A + R} ]
in his stochastic inversion procedure by nR..., where the
model covariance matrix was assumed a diagonal matrix and
n was a step length that ensured his error functional was
minimized. Although Mora (1987) obtained good results
with his algorithm for the inversion of seismic reflection
data, he stated that for highly non-linear problems, the
method probably would not work well. Electrical properties
are very non-linear and can vary over several orders of
magnitude, so we feel that it is important to treat the A"A
term more rigorously. Furthermore, since one can compute
the APA effect on a vector with just two forward-modelling
runs, as we will show, it is obviously worthwhile to proceed
in this manner.

One can write the maximum likelihood eq. (1) as Bu=b
where B=(AYR;/A +R...), u= Am, and b= {A"R;/(d —
g(m)] + R, ! (m,—m)}. In the standard conjugate gradient
procedure (Hestenes & Stiefel 1952), we need to know the
initial residual, r,=b —Bu,, and we need to be able to
compute what B multiplying an arbitrary vector yields at
each iteration. Therefore, in terms of the maximum
likelihood equation, we need to be able to compute the
initial residual r, = {A"R,/[d — g(m)] + R\ (m, —m)}, and
at each relaxation step the effect of (A"R3,A + R...) on the
some vector. Since R34 and R} are known, we only need
to be able to compute quantities like q=A"'y and y = Ax.
We can compute these quantities using one forward-
modelling Tun each without ever constructing the actual
sensitivity matrix.

The sensitivity matrix describes the perturbation in a
surface measurement due to a small perturbation in a
physical property of the media. Although we have not stated
explicitly which surface measurements we will invert for,
they will involve derivatives of the surface E and H fields,

RELAXATION SOLUTION
(Bo=0)

(p, = r,) update search direction
two forward problems per
frequency

step length along search direction
update model perturbations
update residuals

update model parameters

and will consist of terms like dE,/d0, 9E,/d0, 3H,./J0,
8H,/30. The row space of the sensitivity matrix corresponds
to the model parameter space. That is, the ith element in a
particular row represents the perturbation in one of the
surface fields at one site, one frequency, and one
polarization due to a perturbation of the ith model
parameter. If one were actually constructing the sensitivity
matrix, one would put a unit current source at each surface
measurement site for each frequency, and then compute the
fields in the interior due to that current source (this utilizes
the reciprocity relationship). Since from eq. (6) it follows
that 3(E, H)/ 30 = G(r, s) - E(s) * (volume), these fields mul-
tiplying the original E fields would yield the values JE/d¢
and 3H/30. One could then compute the desired sensitivity
terms.

For the relaxation solution, however, we do not need to
construct the sensitivity matrix. Notice that the sensitivity
matrix multiplying an arbitrary vector x is simply a sum over
all model parameters of the sensitivity term multiplying the
vector component for that model block:

3(E, H)
=Ax ~ —_x. 10
P * méel aaj xj ( )
paran?etcrs

J

Each component of the vector p is defined at a particular
surface measurement site and a particular frequency. We
can use the principle of linear superposition to compute the
vector p without computing the sensitivity matrix A. The
superposition principle states that if T is the linear system
transformation, then for any two inputs in, and in, and any
scalar constant c,

T[in, + in,] = T[in,] + T[in,}, and

T[cin,] = cT[in,]. (1)

If this is true for two inputs, then it can be shown to be true
for any number of inputs. In our case, the linear system T is
represented by Maxwell’s equations, and the inputs are
current and magnetic sources. We saw that the sensitivity in
the surface fields is the response due to a unit current source
in the media multiplying the original E field at that location.
Therefore, the vector p goes like

TU(DE(Dx(1) + TIQ2)EW(2)x(2) + - - -
+ To(n)Eo(n)]x(n) (12)
where J,(i) is a unit current source, Ey(i) is the original E

field, x(i) is the component of the vector x, and i specifies
the model block. Employing the superposition principle
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allows us, however, to alternatively express the vector p as

TJo(DEo(1x (1) + Jy(2YE((2)x (2) + - - -
+Jo(n)Eo(n)x(n)]. (13)

We see that this is equivalent to putting all the sources in
the media at the same time and computing one forward
problem to determine the effect at the surface. The surface
fields from this calculation give the desired result of the
sensitivity matrix multiplying the vector x at every surface
measurement site at one frequency, and this is done without
ever actually computing the sensitivity matrix. We have
defined one forward problem as corresponding to two
polarizations at one frequency. We see that we have gained
tremendously in terms of computation time by using this
approach. Computing the sensitivity matrix by the
traditional, ‘non-reciprocal’ method required doing one
forward problem for each model parameter for each
frequency. Utilizing the reciprocity relationships reduces the
number of forward problems to the number of surface
measurement sites for each frequency. However, our
approach for computing Ax requires only one forward
problem for each frequency.

Likewise, we can employ a similar procedure for A"
multiplying an arbitrary vector y. We express the vector
q= A"y in terms of another vector Q where Q =A"y* and
q=Q*=(A"y*)*=A"y. The column space of the sen-
sitivity matrix corresponds to the data space, and each
element in a particular column corresponds to a
perturbation in one of the surface fields at one of the
measurement sites and one frequency for one particular
model parameter. The vector Q therefore goes as,

Q~ 2 2 19_(Eya—l-l)w—rfy;kur'(”v (14)
freq surf (4

which is a sum over all frequencies and all surface
measurements of the sensitivity term multiplying the
component of the vector y for that particular frequency and
surface measurement, the result being given at an interior
model block. As before, we can use the principle of linear
superposition to compute the vector Q. Using reciprocity,
we saw that the sensitivity in the surface fields is the
response due to unit current or magnetic sources on the
surface, depending on whether one is solving for the
perturbed E fields or H fields. Therefore, the vector Q goes
like

TSy "M+ TSO*@) +-- -+
+T[S(k)]y*(k)}Eo(D) (15)

where S(k) represents a unit surface current or magnetic
source, y(k) is the component of the vector y, and k
specifies the surface location. As before, E (i) is the original
E field in the ith model block. The principle of linear
superposition, however, allows us to rewrite the vector Q as

{TISy* M)+ SMy™ (1) + - - - + S(k)y* (K} Eo(@),  (16)

which corresponds to one forward-modelling run with all the
sources distributed at the surface simultaneously. This
computation is similar to a downwards propagation of
surface fields, but it is actually a downwards propagation in
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backwards time. Since we are really computing A"y, and
since by reciprocity G,(s, r); = G,(r, s);, the A"y operation is
actually a sum of the complex conjugate of the Green’s
function responses to the surface sources, and the complex
conjugate of the Green’s function involves negative
frequencies, or equivalently, backwards time.

Therefore, we can carry out iterations of the conjugate
gradient procedure without ever explicitly computing the
sensitivity matrix. For each iteration we need to compute
two forward problems per frequency with sources
distributed throughout the volume and across the surface.
At the initial iteration, one additional forward problem is
required to compute A" multiplying the data residuals. The
surface sources for this calculation are simply R3/[d—
g(m,)], which are given at each surface measurement
location and frequency. For each iteration of the conjugate
gradient procedure, one must first compute Ap; where p, is
the search direction at the ith iteration. The sources for this
calculation are therefore the vector p;, which has a value at
each interior model block. One must then compute
A"R;/Ap,. The sources for this calculation therefore are
R,4Ap;, which is a vector with values given at each surface
measurement location and frequency.

FORWARD MODELLING

The forward-modelling routine used in our 3-D MT
inversion algorithm is the direct solution described in
Mackie (1991) and Mackie, Madden & Wannamaker (1993).
This algorithm solves for the electromagnetic fields in a 3-D
model by propagating an impedance matrix from the bottom
of the model up to the Earth’s surface (this is very similar to
a Ricatti equation approach). The impedance matrix relates
the horizontal electric fields within a layer to the magnetic
fields within that same layer. Instead of doing a direct
decomposition on the entire 3-D operator, this algorithm
achieves its speed by doing a smaller matrix inversion for
each layer in the model. The advantage of using this
algorithm in the inversion routine is that once the forward
problem has been solved to compare the model response to
the observed data, one can then quickly compute the fields
for any source configuration if the layer inverses have been
stored. Thus, additional conjugate gradient relaxation steps,
which comprise the inner loop of the inversion algorithm,
come at little added time and cost above that required to
solve the problem once for the current model response.

Alternatively, we have developed a conjugate direction
relaxation algorithm for the 3-D MT forward problem
(Mackie 1991; Mackie & Madden 1993). This is an
approximate algorithm that is accurate, quick, and requires
much less memory than the direct solution. The advantage
of using this algorithm over the direct algorithm is that it is
much quicker for solving the 3-D MT forward problem. The
disadvantage is that completely independent forward
solution relaxations are required to compute the responses
for the different source configurations needed in the
inversion relaxations (the inner loop of the inversion
algorithm). This would start to be an issue if many
relaxation steps (the inner loop of the inversion) were
desired at each inversion iteration (the outer loop of the
inversion).
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3-D MT DATA PARAMETERS

In magnetotellurics, we typically measure the impedance
tensor over a range of frequencies at each measurement site.
One can write the impedance tensor, which relates the
horizontal E fields to the horizontal H fields, as

yx

Assuming that there are two linearly independent source
polarizations, one can express the impedance tensor as

[(Eley2 - E12Hyl) (ExZHxl - Elex2)]
(EylHyZ—Ey2Hyl) (EyZHxl —Ey]HXZ)
HleyZ - HxZHyl

Z= (18)
where the subscripts 1 and 2 refer to the fields from the two
different source polarizations. At first glance, it might seem
logical to just invert for the four complex impedance
elements. The difficulty with this, however, is that in many
situations, Z,, and Z,, are zero or close to zero. This is a
problem when using logarithmic parameterzation. Since
dInZ/3In 0 =0/Z(3Z/30), we see the possibility for a
division by zero if any of the impedance elements are zero.

Instead, we take an approach similar to the eigenstate
formulations of Eggers (1982), and LaTorraca, Madden &
Koringa (1986). They were mainly concerned with
extracting physically meaningful scalar parameters from the
complex impedance tensor, especially for 3-D geometries.
We use a somewhat simpler approach and decompose the
impedance tensor in terms of two complex vector fields (cf.
Jackson 1975). We consider the E field due to a unit H,
field, which is E,;, = [%Z,. + §Z, ], and the E field due to a
unit H, field, which is E, =[XZ,, +§Z,] These two
vectors can serve as the basis set for the impedance tensor.
Every complex vector can be described in terms of four
scalar quantities: amplitude, phase, direction, and ellipticity.
These quantities for the E vectors given above are closely
related to the apparent resistivity, phase, direction, and
ellipticity values usually computed from field data. In our
3-D inversion scheme, we invert for the amplitude, phase,
and direction of the E vectors described above. Ellipticities
are diffcult to determine accurately from field data, and
therefore, we have excluded them from our inversion
scheme. The derivatives of these quantities are found in
Appendix 1.

BOUNDARY CONDITIONS

Up to this point, we have not dealt specifically with the
issues of the boundary conditions. The 3-D forward
modelling algorithm described in Mackie et al. (1993)
assigns tangential H field values on the boundaries of the
3-D model. In this work, we use a modified version of the
algorithm that assumes the model is repeated in the
horizontal directions; that is, no side boundary terms are
assigned. In this way, we avoid having to deal with the
boundary values and their effect on the sensitivity terms. We
made this assignment to simplify the programming and to
test our concepts about relaxation inversion. In the future,
however, we will include the boundaries and their effect on

the sensitivity terms in order to deal with more realistic
earth models.

RESULTS FOR THEORETICAL DATA

In this section, we present results using the relaxation
inversion routine for inverting numerically computed,
noise-free 3-D magnetotelluric data. We have not
extensively tested the algorithm on a wide variety of models,
but nonetheless, we can demonstrate that even at this stage
in the development of the algorithm, it works as intended.
The model used to generate the data is shown in Fig. 1
and consists of a conductive, 3-D inhomogeneity embedded
at a shallow depth in an otherwise layered media. The

Plan View
30 km
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2
N
3 0%
-~
S
Q
10
30 km
30 km 10 3 10 30km
(Block widths)
Cross-section surface
200 ohm-m
0.1 km
400 ohm-m

3000 ohm-m
4.7
3000 ohm-m
147
30000 ohm-m
44.7
100 ohm-m
104.7
30 ohm-m

Figure 1. The 3-D model used to generate synthetic MT data.
These data were used to test the 3-D MT inversion algorithm. The
model was 5 blocks by 5 blocks by 9 layers. A 10Qm
inhomogeneity was buried in an otherwise layered earth.
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Figure 4. The observed and a priori model responses for the surface location xb =4, yb = 4. Shown are the amplitudes, phases (in degrees),
and directions (in degrees clockwise from the positive x-axis, which runs to the right) versus period. We define these values in the appendix.

model is composed laterally of five blocks in the x-direction
and five blocks in the y-direction. Vertically, there are eight
layers and a half-space. The impedance for a 30Qm
halfspace is used at the bottom of the layers in the 3-D
model, and it was held fixed throughout all the inversions.
Data were output for eight frequencies equally spaced in the
logarithm of period from 0.01s to 30s. The a priori model
used for all inversions had the same dimensions as the one
used to generate the ‘observed data’, but with a uniform
resistivity of 100 Qm and a 30 Qm half-space.

Shown in Figs 2, 3 and 4 are the observed and a priori
model responses for three different locations on the surface
of the 3-D model. These three sites were chosen because it
would be too voluminous to show the responses at all the
sites, and the sites at xb =2, yb=2 and xb =4, yb=4
represent sites where 3-D effects are the severest. Fig. 5
shows the error progression versus inversion iteration for an
inversion with five relaxation steps per inversion. We define
the data error as

) D) [<1n1E—”'|)2+(90—em)2+(lp‘,—\pm)2]

ndat nfreq npol IEm
ndat X nfreq X 2

X100 (19)

where @ and v are given in radians, the subscripts o and m
refer to observed and model respectively, ndat is the
number of data locations, nfreq is the number of
frequencies, and npol is the number of polarizations
(npol =2). The right-hand-side error is the error in the
right-hand side of the maximum likelihood equations, eq.
(1). When the maximum likelihood equations are exactly
satisfied, the right-hand side goes to zero. This does not
necessarily correspond to the solution in which the model
responses and observed data are exactly equal because the
fit is actually a compromise between fitting the data and
adhering to the a priori model. We computed the
right-hand-side error plotted in Fig. 5 by the following
equation, where r(i) represents the element of the
right-hand side corresponding to the ith model block:

"5 Ky G
x 100. (20)

For this example, we used five relaxation steps per inversion
iteration, and we assumed that both the model covariance
and the data covariance matrices were of the form o?l. That
is, we set R,,=03 and R, =02l, where the ratio
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Figure 5. The RMS error progression as a function of the inversion
iteration step. This particular run used five conjugate gradient
relaxation steps per inversion iteration. The ratio of o3/07, was
equal to 3 x 107°. We defined the data error in eq. (19), and the
right-hand-side error (rhs error) in eq. (20). The right-hand-side
error should go to zero when one obtains the solution to the
maximum likelihood equations.

03/0% =3 x 107°, This simply means that the variance of
the fit to the a priori model was assumed greater than the
variance of the data errors. In other words, the data were
trusted much more than the a priori model, and the fit to the
observed data was more important in the inversion than was
the fit to the a priori model. We added an additional
damping term to stabilize the inversions and we tied it to the
error in the right-hand side so that the damping decreased as
the error decreased. The damping term was equal to
(1.0) * (1/03) * (right-hand-side error). Damping terms re-
duce the influence of the small eigenvalues in the early
stages of the inversion, then allow them to become more
influential at the latter stages. Damping terms should
depend on the magnitudes of the eigenvalues, but the
damping term added in these 3-D inversions came about
largely from our experience with 2-D inversions and
experimenting with the damping factor for 3-D inversions.
This damping is somewhat larger than what we are use to
dealing with in 2-D inversions, but this is probably due to
the increased degrees of freedom in 3-D inversions as
compared to 2-D inversions.

For this particular example, 15 iterations reduced the
error in the fit to the data to approximately 2 per cent and
the right-hand-side error to 0.6 per cent. We show both the
resulting model and the actual model for this inversion in
Fig. 6, where the numbers are the resistivity values in
Qm. Note that the resistivity structure of the top four layers
is fairly well resolved, but that the image of the conductive
feature is smeared into the lower layers. This is a common
by-product of many inversion schemes where one only has
data coverage on one side of the feature one is trying to
image. The inherent difficulty magnetotellurics has of
resolving resistive bodies, especially if they are underneath
more conductive layers or bodies, enhances this phenome-
non. Figs 7, 8 and 9 show the responses for the model of

3-D MT inversion 223

Rmmfac=3.0e-5

Number of relaxaticn steps = 5
Damping=1.0

Number of inversion iterations = 15
No Rmm constraints

RESULTS FROM INVERSION PROGRAM ACTUAL MODEL

layerl layer 1
239 237 242 240 235 200 200 200 200 200
245 263 266 267 234 200 200 200 200 200
231 260 254 250 240 200 200 200 200 200
246 263 266 269 235 200 200 200 200 200
236 235 240 240 240 200 200 200 200 200
layer2 layer 2
344 347 353 353 343 400 4080 400 400 400
333 194 248 198 367 400 400 400 400 400
306 249 253 267 397 400 400 400 400 400
333 193 248 199 369 400 400 400 400 400
340 344 351 353 350 400 400 400 400 400
layer3 layer 3
537 491 519 545 600 €00 600 600 600
578 11 11 10 485 600 10 10 10 600
586 10 13 13 4S8 600 10 10 10 690
578 11 11 10 486 600 10 10 10 600
527 536 488 509 553 600 600 600 600 600
layerd layer 4
1196 1281 1218 1155 1278 1000 1000 1000 1000 1000
1280 154 1138 1000 1000 10 10 1000
1302 121 14 13 1228 1000 1000 10 10 1000
1281 154 9 9 1139 1000 1000 10 10 1000
1193 12980 1213 1149 1275 1000 1000 1000 12000 1000
layer5 layer 5
2346 2651 2681 2725 2444 3000 3000 3000 3000 3000
2792 4990 99 126 2637 3000 3000 3000 3000 3000
2833 23 99 82 2630 3000 3000 3000 3000 3000
2801 491 99 125 2625 3000 3000 3000 3000 3000
2366 2676 2686 2710 2418 3000 3000 3000 3000 3000
layer6 layer 6
3041 4717 4813 4938 3033 3000 3000 3000 3000 3000
4811 829 356 1021 4787 30600 3000 3000 3000 3000
4980 192 154 111 4462 3000 3000 3000 3000 32000
4826 828 355 1016 4804 3000 3000 3000 3000 3000
3074 4713 4823 4919 3001 3000 3000 3000 3000 3000
layer? layer 7
19461 14747 9627 14495 22294 30000 30000 30000 30000 30000
18683 373 173 365 12812 30000 3000C 30000 30000 30000
17577 149 94 131 5318 30000 30000 30000 30000 30000
18702 368 172 361 12847 30000 30000 30000 30000 30000
19390 14820 10843 14680 22130 30000 30000 30000 30000 30000
layer8 layer 8
90 86 85 85 88 100 100 100 100 100
87 114 102 102 86 100 100 100 100 100
86 107 99 99 86 100 100 100 100 100
87 114 102 102 86 100 100 100 100 100
90 86 85 86 89 100 100 100 100 100

Figure 6. On the left is the resulting model after 15 iterations of the
inversion procedure, and on the right, for comparison, is the actual
model. The resistivity values for each block are in Qm. We held the
30 Qm bottom half-space, which is not shown here, fixed during the
inversion.

Fig. 6 for the three surface locations shown earlier. We see
excellent agreement in both polarizations for amplitudes,
phases and directions. We find similarly good fits to the
observed data at all other locations, but we do not show
them here.

As a further example, we inverted the same data starting
from the same a priori model, except this time, we included
R,.., constraints to keep the bottom four layers 1-D (that is,
in each layer, all the resistivity values in that layer are tied
together). We ran this inversion for different numbers of
relaxation iterations per inversion iteration. Fig. 10 shows
the resulting model after 15 inversion iterations using only
one relaxation step per inversion iteration. Fig. 11 shows the
resulting model after 15 inversion iterations using three
relaxation steps per inversion iteration, and Fig. 12 shows
the resulting model after 15 inversion iterations using 10
relaxation steps per inversion iteration. The results using
only one relaxation step per iteration are surprisingly good,
although the results using 10 relaxation steps per iteration
are clearly the best. Tying together the resistivities within
each of the bottom four layers has removed the smearing
caused by the shallow conductive body and improved the
estimates of the resistivities for these layers. Of course, in
this example, we had the luxury of knowing beforehand that
the bottom four layers should be uniform, but nonetheless,
this demonstrates the usefulness of a priori information if it
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Figure 13. The RMS error progression as a function of the
inversion iteration step for three different runs of the inversion
algorithm. One run used one relaxation step per inversion iteration,
one run used three relaxation steps per inversion iteration, and one
run used 10 relaxation steps per inversion iteration. For each run,
we constrained the bottom four layers of the model to be 1-D. We
defined the data error and right-hand-side errors in the text, eqs
(19) and (20).

is available. Fig. 13 shows the progression of the data errors
and right-hand-side errors as a function of inversion
iteration for the cases just described. Even though the
inversions with three relaxation steps and 10 relaxation steps
per inversion iteration wound up at about the same data
error level, the one with 10 relaxation steps clearly did a
better job at imaging the original model and adhering to the
model covariance constraints.

We attempted to implement preconditioning of the
relaxation scheme for the 3-D inversion as we did for the
2-D inversion (Madden & Mackie 1989). As in that case, we
tried using the inverses of the 1-D sensitivity analyses for the
vertical strip of blocks beneath each data site. Implementing
this type of preconditioning in the 3-D case caused
numerical instabilities that made the inversion diverge away
from the correct solution. We do not know exactly what
caused this behaviour, although we will hazard a guess. The
1-D sensitivities are more closely related to the actual 2-D
sensitivities rather than the 3-D sensitivities because in both
the 1-D and 2-D cases, there are sensitivity terms for the
phase and resistivity, whereas in the 3-D case, there are
sensitivity terms for amplitudes, phases, and directions.
Furthermore, in the 3-D case, there are two electromagnetic
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modes that are coupled to each other. This coupling makes
the 3-D inversion inherently more difficult, but may also be
the reason for the numerical instabilities when we use
preconditioning. This is because the preconditioning may be
trying to drive the two separate electromagnetic modes in
opposite directions, and this may cause the divergence we
observed. Of course, the two modes increase the amount of
data one has at each data site, and this fact alone should
improve the convergence properties of the inversion so that
the preconditioning may not be absolutely necessary for 3-D
data and 3-D models. We saw in the examples presented
earlier that we obtained extremely good fits to the data with
just a few relaxation steps per inversion iteration without
any sort of preconditioning.

CONCLUSIONS

In this paper, we discussed a method to invert
magnetotelluric data for 3-D earth models. This method
uses conjugate gradient relaxation to solve the maximum-
likelihood inversion equations. Since at each iteration of the
inversion we update the model and begin the procedure
anew, we need only use a few relaxation steps at each step
of the inversion. Because we are using relaxation methods,
we do not need to explicitly construct and store the
sensitivity matrix; rather, we only need to known the effect
of the sensitivity matrix or its transpose multiplying an
arbitrary vector. Each of these is equivalent to solving a
forward problem with a given set of sources. This results in
tremendous time savings over more traditional approaches,
and makes 3-D inversions much more practical. We have
demonstrated that the procedure works well for simple 3-D
models.
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APPENDIX 1: DERIVATION OF
SENSITIVITY TERMS

We decompose the impedance tensor into two basis vectors
given by E, =[XZ,, +§Z,,] and E; =[XZ,, +§Z,,]. Any
complex vector in the frequency domain, E(w) = a + jb, can
be expressed in the time domain, assuming an e
dependency, as e(t) = Re [E(w)e "} =acos wt + bsin wt.
The magnitude of the complex vector is simply [E*E]'2. In
the time domain, the vector traces our an ellipse, which in
some cases degenerates to a circle. The major axis of the
ellipse defines the direction corresponding to that vector
field, and the phase is defined as the phase along that axis.
The ellipticity is the ratio of the major axis to the minor
axis. Ellipticities are difficult to determine accurately from
field data, but magnitudes, phases, and directions are more
robust in comparison. Consequently, we invert only for
amplitudes, phases, and directions. Following Eggers
(1982), we can write down the expressions for the
magnitudes, phases (¢), and directions () in terms of our
vector basis set:

IEHXI = [Zxe:x + ZyxZ;‘;x]”2
|EHy| = [nyZ:y + Z Z* ]”2

yy~='yy
o = tan" AZRZVL +Z32Z))
o2 (ZRV+(ZR) = (ZL )P - (2L,
2ZRZ, +ZR 7))
¢ =1tan™! xy©xy yy&yy Al
R 2Ry (2L ) - (ZL) (A
WH = % tan-l 2(le?rz)l§r+ Z,lrxz’;x)

(ZRV+(Z. ) = (ZR) —(Z),)?
2(Z,':vny + z;yz;y)

(Z3) +(Z,) = (Z3) - (Z,,)

7 —
WHyz % tan”'

where the terms like Z¥, stand for the real part of Z,, and
so on. We derive the sensitivity terms by algebraically
differentiating the above expressions. We first need the
partial derivatives of the components of the impedance
tensor, which are

oz, 1 [ aH,2+ H OB, 8H,,
90 detHH | ™' 80 ” 30 2 30
2]
—H, e Z,. aHH]
az,, 1 [ OH OE,, 8H,
= E +H -FE
30 detHHL ™ ao 1 3¢ ! 3¢
JE ]
- —-Z., 0HH
x2 aa xy
(A2)
8z, 1 [ 8Hy2+ H 9E,, E oH
do detHH| ™' do "2 30 "2 30
3k,
~H, 2oz, aHH]
3z, 1 [ 3H,, 3E , dH,,
6 detHHU " 86 ' 30 ' 50
JE,,
- sza—;- z, 8HH]
where we have made the following definitions:
det HH=H, H,, — H,H,,
oH -8H, OH, 3H,, (A3)
SHH = Hyy =2+ Hy =X = Hp == H, =

With these definitions, one finds the sensitivity terms for the
magnitudes are

3|E 1 oz
[Ep | _ [% (Z;; n)+%<z;kxazyx)]

do [Ey. | Jo 3o
SIE4 | 1 oz oz (A4)
__H.L=__ %(Z* XY>+%(Z* y_v):,
30 |Eyl { < 30 Y 3o
where we have used relationships such as
YA oz 8z
Z—=+ 7 —==2% [Z,j‘x—”] AS
™ do do do (A3)

in simplifying the expressions for the derivatives. The
expressions for the derivatives of the phase terms are a bit
more complicated, and are

3¢u, 1 [(Z;X_Zfou"> Y AN

30 1+u?l\uy, w3 do
N <g£ 2z;§u,,) oz},
uy u3 do
Zs_2Zu,) 3Z,,
(B2 2
Uqg 7 3o
N ( zy, 2Z;,xun) az;xJ
Uy u3 oo
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3y _ 1 [(Z_,'(y ZZ,'}y n) az,‘}y (A6)
30 1+v*l\w, v? do
z), ZZR azR
(-
Uy vy oo
R 1 1
+ (éz 2Z,,v, ) 3z,
Uy V3 80
N <ZR 2Z,,v, ) az;y]
vy v 3o

where we have made the following definitions

AzZRZ., +ZRZ!)

TR+ @R x)z (Z,.)°
AZRZ,, + 22y,

T@RPH (@R - (2 - (D)

(A7)

with uy4 and u,, representing the denominator and numerator
respectively of the expression given above for u, and v, and
v, likewise representing the denominator and numerator of
the expression given above for v. The sensitivity terms for
the directions of the major axes are

oy, 1 {(Zf, 27 rs ) 3Zy,

30 1+s? 55 80
R R
+ (_Zﬂ ZZxxsn) 3Z ;.
Sq4 53 80
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( o 2Z,,5 >az;x
+ ——
sf, 3o
+ ( ZZ' ) az! . ]
53 9o
(A8)
v, 1 [(ZR 2Z 1, ) oz},
—_—r
g0 1+ 3 3o
R
+< y 2 xy ")_aZ—
ty I oo
( 2Z'yyn) 3z,
I o
I 1
N (Z_;y Zny ,,) any]
ty 3 do
where we have made the following definitions
2(Zf;ZyRX +Z! Z'x)
ZEV +(Z ) —(Z}, z)?
T@ZR (2L ( ~(Z,2) (A9)

2(ZRZR + 7! 7! )

XY Yy XYYy

(ZL) +(ZL) = (25 = (2,

t=

with s, and s, representing the denominator and numerator
respectively of the above expression for s and t; and ¢,
representing the denominator and numerator of the above
expression for t.
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