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SUMMARY 
W e  have developed an inversion procedure that uses conjugate gradient relaxation 
methods. Although one can generalize the  method to all inverse problems, we 
demonstrate its use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto invert magnetotelluric data for 3-D earth models. This 
procedure allows us to bypass the actual computation of the sensitivity matrix A or 
the inversion of the ATA term. In fact, with the relaxation approach, one  only 
needs to compute the effect of the  sensitivity matrix or its transpose multiplying an 
arbitrary vector. W e  show that each of these requires one forward problem with a 
distributed set of sources either in the volume (for A multiplying a vector) o r  on the 
surface (for AT multiplying a vector). This significantly reduces the computational 
requirements needed to  d o  a 3-D inversion. For this paper, we have simplified the 
boundary conditions by assuming the model is repeated in the horizontal directions, 
but this is not a necessary constraint of the method. The  algorithm reduces data 
errors to  the 2 per cent level for noise-free synthetic 3-D magnetotelluric data. 

Key words: magnetotellurics, 3-D inversion, conjugate gradient relaxation 

INTRODUCTION 

Inversion is the procedure of estimating physical earth 
parameters from a set of observed data, perhaps subject to 
certain constraints. Linearized inversion schemes provide 
one method for dealing with non-linear inversion problems 
(those problems where the data are non-linearly related to 
the model parameters). They involve expanding the model 
response in a Taylor series around some point in the model 
space, and then solving for the model changes that minimize 
the error between the model response and the observed 
data. Many such schemes exist, such as the non-linear 
least-squares method, but we prefer to use the maximum 
likelihood inversion procedure (Mackie, Bennett & Madden 
1988). The maximum likelihood solution is the solution that 
maximizes the joint probability of fitting the observed data 
(subject to the data covariance) and adhering to an a pr ior i  

model (subject to the model covariance). One obtains this 
solution with the help of the sensitivity matrix, which is the 
matrix that relates small changes in the model parameters to 
changes in the observed data. 

For the 3-D magnetotelluric inversion problem, we apply 
conjugate gradient relaxation methods (Hestenes & Stiefel 
1952) to solve the maximum likelihood system of equations 
instead of solving the system directly using matrix inversion 
routines. In doing so, we avoid having to explicitly construct 
the sensitivity matrix; indeed, we only need to know the 
effect of the sensitivity matrix, or its transpose, multiplying 

an arbitrary vector. We will show that each of these 
operations requires one forward problem, with sources 
distributed either in the volume, for the sensitivity matrix 
multiplying a vector, or on the surface, for its transpose 
multiplying a vector. This implementation greatly reduces 
the computational enormity of 3-D inversion, making 
practical 3-D inversions a possibility rather than an 
impossibility. One can generalize this method to any other 
inverse problem, but here we demonstrate the procedure for 
the magnetotelluric problem. 

MAXIMUM LIKELIHOOD INVERSE 

The maximum likelihood inverse is one method to obtain a 
solution to a non-unique inverse problem. There are many 
procedures for obtaining solutions, and each one biased, but 
the maximum likelihood inverse clearly exposes its biases. 
The maximum likelihood inverse is an example of a 
linearized inversion scheme. One can find the derivation of 
the maximum likelihood inverse in Mackie et al. (1988) and 
Madden (1990), and it closely follows the work of Tarantola 
& Valette (1982) and Tarantola (1987). Our maximum 
likelihood inverse, however, is somewhat different from that 
of Aki & Richards (1980). Their maximum likelihood 
inverse first minimizes the weighted data errors, then out of 
that resulting model space finds the minimum model. The 

215 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
1
5
/1

/2
1
5
/6

0
4
1
4
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



216 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR.  L. Mackie and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. R. Madden zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
maximum likelihood inverse we use, 

is similar to the stochastic inverse of Franklin (1970), and it 
gives the solution that minimizes a weighted sum of the 
variance of the difference between the model response and 
observed data, and the difference between the model 
parameters and an a priori model. In eq. (l), we make the 
following definitions: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= sensitivity matrix ( A ,  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdd,/dmj), 
d = observed data vector, 
m = model vector, 
g = operator that maps a model m to the data space, 
Rdd = data covariance matrix, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R,, = model covariance matrix, 
m,, = a priori model, 
Am = model changes for current iteration. 

The sensitivity matrix is so named because its entries 
describe the perturbations in the data (or sensitivity of the 
data) due to perturbations in the model parameters. The 
superscript H stands for Hermitian, or complex conjugate 
transpose. Since the problem is non-linear, Am describes 
only local changes so that one must iterate the inversion, 
each time updating the model. The model at the k + 1 step 
is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmk+l = mk + Amk. 

Equation (1) has a straightforward interpretation. The 
model changes calculated at  each step represent a 
compromise between fitting the data and adhering to  an a 
priori model. The compromise is weighted by the inverse of 
the data and model covariance matrices. We usually do  not 
explicitly know g, but we can calculate the model response 
g(m) by use of a forward modelling code. 

In our implementation of the maximum likelihood 
inverse, we use logarithmic parameterization of the data and 
model parameters. This is useful for several reasons. First, it 
removes any bias associated with using either conductivity 
or resistivity as model parameters. Furthermore, it 
guarantees the positiveness of the model parameters (i.e. no 
negative resistivities or conductivities are allowed). In 
addition, it is the natural way of dealing with complex- 
valued data that are separated into log amplitude and phase 
(In 2 = In 121 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAif+). Finally, logarithmic parametrization 
allows for larger changes in the model parameters as one 
iterates the inversion. For the electrical problem, where the 
resistivity can vary by several orders of magnitude, this 
reduces the total number of iterations needed to reach an 
acceptable solution. 

The data covariance is a measure of the uncertainties in 
the data and can be computed or measured directly. The 
model covariance, on the other hand, is much more 
subjective because it cannot be measured directly. One can 
use the model covariance to apply a set of weights, filters, or 
constraints to the model parameters. Some simple 
constraints include imposing smoothing between neighbour- 
ing points, forcing certain parameters to be correlated with 
each other, or increasingldecreasing the freedom with which 
certain parameters can change. In the logarithmic 
parametrization scheme, the covariance matrices actually 
represent the covariances of the logarithms of the data and 
model parameters. 

SENSITIVITY ANALYSIS A N D  
RECIPROCITY 

Madden (1990) and Mackie (1991) detail the sensitivity 
analysis and reciprocity relationship for the magnetotelluric 
problem. These are important issues in the relaxation 
inversion algorithm, and hence, we will review the salient 
points here. 

One can write Maxwell’s equations in matrix form as 

where J are the media current sources, which for the MT 
problem are usually represented by a uniform current sheet 
far above the Earth’s surface. If the media conductivity is 
perturbed by an amount ha, then the E and H fields will also 
be perturbed by amounts 6 E  and 6H respectively 

(3) 

Expanding this equation, subtracting it from eq. ( 2 ) ,  and 
dropping second-order terms, we obtain 

[vx -‘ - ipu vx ][;HE] = “3. (4) 

Thus, the E and H field perturbations satisfy the original EM 
equations except that the current sources are equal to the 
media perturbations multiplying the original E field. That is, 
one can solve for the field perturbations by doing forward 
problems with the proper current source distribution. We 
can rewrite eq. ( 2 )  in terms of Green’s functions as (Kong 
1986) 

where G(r,  s) is the dyadic Green’s function. The elements 
of the dyadic Green’s function are Gi(r, s ) ~  where r is the 
observation point, s is the source point, i represents the 
observed field component (i = 1, 2, . . . , 6 corresponding to 
Ex, E,,, . . . , H,) and j represents the source component 
( j  = 1, 2, 3 corresponding to J x ,  J,,, J,). Using this notation, 
we can express eq. (4) as 

Thus, it would appear that one needs to compute a dyadic 
Green’s function for every point in the media where one 
wishes to determine the electrical properties. 

Employing reciprocity, however, we find that we only 
need to compute Green’s functions for every surface 
location where a measurement was made. One can derive 
the reciprocity relation from the bilinear identity along with 
the use of adjoint operators (Lanczos 1961), and it is given 

by 

G;(S, r ) k  = Gk(rt S > j ,  (7) 

where G refers to the Green’s function for the adjoint 
operator. Since the curl operator and real constants are self 
adjoint (imaginary constants have a change in sign), the 
adjoint operator for Maxwell’s equations is 
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Thus, the adjoint t o  Maxwell's equations is also the 
electromagnetic equations except with backwards time, or 
alternatively, negative frequencies. Since the adjoint in the 
frequency domain is simply the complex conjugated 
electromagnetic equations, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG ,  we arrive at  the desired 
reciprocity relation, 

(9) 

This simple relation is of tremendous importance for solving 
the inverse problem. It means that the effect at the surface 
due to a source in the interior is equivalent to putting a 
source on the surface and solving for the effect in the 
interior (one must also take into account the proper 
interchange of vector components). In the magnetotelluric 
case, for example, the term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG,(r,  s)* is the Ex effect at r (at 
the surface) due to a unit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJy dipole source at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs (in the 
interior). By reciprocity, this is equal to G2(s, T ) ~ ,  which is 
the Ey effect at s (in the interior) due to a unit J, dipole 
source at  r (at the surface). Similarly, the term G4(r, s ) ~  is 
the H, effect at  r (at the surface) due to a unit Jy dipole 
source at  s (in the interior). Again by reciprocity, this is 
equal to G2(s, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr)4, which is the Ey effect at  s (in the interior) 
due to a unit H, magnetic source at  r (at the surface). Thus, 
if one were actually constructing the sensitivity matrix for 
the 3-D M T  problem, one would only need to do  forward 
modelling runs with sources at  each surface measurement 
site instead of doing forward modelling runs with sources in 
each model block. This results in tremendous time savings. 
As we will see, however, our inversion algorithm does not 
actually require computing the sensitivity matrix, but the 
reciprocity relationship will still play an important role. 

RELAXATION SOLUTION OF THE INVERSE 
PROBLEM 

To carry out a linearized inversion using the maximum- 
likelihood inverse, one must determine the sensitivity matrix 
A, compute AHA, and then invert AHA (for the moment we 
are neglecting the data covariance weighting). In the 3-D 
case, computing A is a computationally enormous task even 
when using reciprocity. This is because the total number of 
forward problems needed to construct the sensitivity matrix 
is on the order of (no. measurement sites) x (no. 
frequencies). For a nominal 3-D problem, there might be 20 
measurement sites and eight frequencies, thereby requiring 
on the order of 160 forward problems simply to set up the 
sensitivity matrix for one iteration of the inversion (of 
course one must also take into account source polarization 
and vector components of the fields so this estimate is just a 
lower bound). In addition, for this modest 3-D problem, 
there might be on the order of several thousand model 
parameters (20 x 20 x 10 model = 4000 model parameters). 

For k = 1 to max # inversion iterations 
g(m,) 
d - g(m/c) 
mr - m, 

3-0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM T  inversion 217 

Inverting the matrix AHA, which has the dimension of the 
number of model parameters, is also a big computational 
task. To make 3-D inversions computationally tractable, a 
way must be found to  circumvent these problems. 

Smith & Booker (1991) derived an efficient iterative 
inversion technique that is called the rapid relaxation 
inverse (RRI). The important feature of their inversion 
scheme is that they approximate the lateral gradients of the 
electric and magnetic fields by the electric and magnetic field 
values at the previous iteration. Furthermore, they solve the 
forward problem with a relaxation scheme, thus yielding a 
quick and efficient algorithm. Their algorithm requires the 
solution of one forward problem per inversion iteration, but 
to date, has only been tested on 2-D models. 

We take a somewhat different approach in that we use 
conjugate gradient relaxation techniques to solve the 
maximum likelihood equations (Madden & Mackie 1989; 
Madden 1990; Mackie 1991). At  each iteration of the 
inversion, we use conjugate gradient relaxation to obtain an 
approximate solution for Am in the maximum likelihood 
equations. This bypasses the need to do  a large matrix 
inversion at each iteration of the inversion procedure. We 
can use standard conjugate gradient techniques because the 
system is positive definite and Hermitian. We should make 
clear that when using relaxation methods to solve the 
non-linear inversion, there are two levels of iteration 
involved. The outer loop is the iteration of the non-linear 
maximum likelihood equations. The inner loop is the 
iteration of the conjugate gradient relaxation procedure that 
is used to solve for the approximate Amk a t  each iteration of 
the inversion. It is our contention that only a few relaxation 
iterations are necessary at  each inversion iteration since one 
must update the model and begin the whole process again. 
Furthermore, when using relaxation techniques, we never 
need to explicitly know A, the sensitivity matrix. We only 
need to know the effect of A or AH multiplying a vector. We 
will show that one can do  these operations without actually 
constructing the sensitivity matrix. 

Our motivation for this procedure came from our 
experiences in implementing it in 1-D and 2-D geometries 
(Madden & Mackie 1989). In I-D and 2-D geometries, there 
are no time savings involved in using relaxation methods 
because the models are not too large, and the sensitivity 
terms can be computed quickly and accurately. However, 
we found that in 1-D and 2-D, the relaxation technique gave 
results comparable to the direct results (those results 
obtained by explicitly computing the sensitivity matrix and 
solving the maximum likelihood equations by matrix 
inversion). We therefore extended these concepts to the 3-D 
inversion problem. 

We will first outline our 3-D inversion algorithm before 
we discuss its details: 

NON-LINEAR INVERSION 
response of current model 
data residuals 
model residuals ._ .. 

b = AHR&'[d - g(mk)] + R;k(m,, - mk) 

Auo = 0, r0 = b 

one forward problem with 
surface sources per frequency 
initialize conjugate gradient 
algorithm 
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For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 to max # relaxation iterations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr ~ ~ l r i p l / r ~ ~ , r , p ,  
Pi = ri-I + PiPi-1 
Bpi = [AHR;dA + R;L]pj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

7 a. = r'!' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t I -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIri- IIPi Bpi 

Aui = AuiPl  + aipi 
ri = ri-l - aiBpi 

end loop on relaxation iterations 

end loop on inversion iterations. 
a,,, = uk + A U  

RELAXATION SOLUTION 

(pI = ro) update search direction 
two forward problems per 
frequency 
step length along search direction 
update model perturbations 
update residuals 

(Bo = 0) 

update model parameters 

Mora (1987) developed a similar approach that used the 
conjugate gradient method of non-linear least squares to 
invert seismic reflection data for P-wave and S-wave 
velocities and density variations in two dimensions. He 
correctly showed that the operation of AH multiplying a 
vector was equivalent to doing one forward-modelling 
problem with sources distributed on the surface. In addition, 
he described how the operation of AH multiplying the 
surface data residuals is very similar to migration in that one 
properly images reflectors, but one does not obtain the 
correct amplitudes of the physical properties (Mora 1987). 
What he did not point out ,  however, is that the operation 
Ax is equivalent to doing one forward problem, except that 
in this case, as opposed to the AH problem, sources are 
distributed throughout the volume and not on the surface. 
Consequently, he approximated the term [AHR;:A + R;:] 
in his stochastic inversion procedure by qR;;, where the 
model covariance matrix was assumed a diagonal matrix and 
7 was a step length that ensured his error functional was 
minimized. Although Mora (1987) obtained good results 
with his algorithm for the inversion of seismic reflection 
data, he stated that for highly non-linear problems, the 
method probably would not work well. Electrical properties 
are very non-linear and can vary over several orders of 
magnitude, so we feel that it is important to treat the AHA 
term more rigorously. Furthermore, since one can compute 
the AHA effect on a vector with just two forward-modelling 
runs, as we will show, it is obviously worthwhile to proceed 
in this manner. 

One can write the maximum likelihood eq. (1) as Bu = b 
where B = (AHR;dA + R;;), u = Am, and b = {AHR;:(d - 
g(m)] + R;;(m,, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm)}. In the standard conjugate gradient 
procedure (Hestenes & Stiefel 1952), we need to know the 
initial residual, r,, = b - Bu,,, and we need to be able to 
compute what B multiplying an arbitrary vector yields at 
each iteration. Therefore, in terms of the maximum 
likelihood equation, we need to be able to compute the 
initial residual ro = {AHR;d[d - g(m)] + R,k(m,, - m)}, and 
at each relaxation step the effect of (AHR;;A + R;:) on the 
some vector. Since R;: and R;; are known, we only need 
to be able to compute quantities like q = A H y  and y = A x .  
We can compute these quantities using one forward- 
modelling run each without ever constructing the actual 
sensitivity matrix. 

The sensitivity matrix describes the perturbation in a 
surface measurement due to a small perturbation in a 
physical property of the media. Although we have not stated 
explicitly which surface measurements we will invert for, 
they will involve derivatives of the surface E and H fields, 

and will consist of terms like dE,/du, dE,/du, dH,/du, 
dH,/du. The row space of the sensitivity matrix corresponds 
to the model parameter space. That is, the ith element in a 
particular row represents the perturbation in one of the 
surface fields at one site, one frequency, and one 
polarization due to a perturbation of the ith model 
parameter. If one were actually constructing the sensitivity 
matrix, one would put a unit current source at each surface 
measurement site for each frequency, and then compute the 
fields in the interior due to that current source (this utilizes 
the reciprocity relationship). Since from eq. (6) it follows 
that d(E, H ) / d u  = G(r ,  s) - E(s) * (volume), these fields mul- 
tiplying the original E fields would yield the values aE/du 
and dH/du. One could then compute the desired sensitivity 
terms. 

For the relaxation solution, however, we do  not need to 
construct the sensitivity matrix. Notice that the sensitivity 
matrix multiplying an arbitrary vector x is simply a sum over 
all model parameters of the sensitivity term multiplying the 
vector component for that model block: 

parameters 

Each component of the vector p is defined at  a particular 
surface measurement site and a particular frequency. We 
can use the principle of linear superposition to compute the 
vector p without computing the sensitivity matrix A. The 
superposition principle states that if T is the linear system 
transformation, then for any two inputs in, and in, and any 
scalar constant c, 

T[in, +in,] = T[in,] + T[in,], and 

T[c in,] = cT[in,]. 

If this is true for two inputs, then it can be shown to be true 
for any number of inputs. In our case, the linear system T is 
represented by Maxwell's equations, and the inputs are 
current and magnetic sources. We saw that the sensitivity in 
the surface fields is the response due to a unit current source 
in the media multiplying the original E field at that location. 
Therefore, the vector p goes like 

where J(,(i) is a unit current source, E,)(i) is the original E 
field, x(i) is the component of the vector x, and i specifies 
the model block. Employing the superposition principle 
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allows us, however, to alternatively express the vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp as 

We see that this is equivalent to putting all the sources in 
the media at the same time and computing one forward 
problem to determine the effect at  the surface. The surface 
fields from this calculation give the desired result of the 
sensitivity matrix multiplying the vector x at every surface 
measurement site at one frequency, and this is done without 
ever actually computing the sensitivity matrix. We have 
defined one forward problem as corresponding to two 
polarizations at  one frequency. We see that we have gained 
tremendously in terms of computation time by using this 
approach. Computing the sensitivity matrix by the 
traditional, ‘non-reciprocal’ method required doing one 
forward problem for each model parameter for each 
frequency. Utilizing the reciprocity relationships reduces the 
number of forward problems to the number of surface 
measurement sites for each frequency. However, our 
approach for computing Ax requires only one forward 
problem for each frequency. 

Likewise, we can employ a similar procedure for AH 
multiplying an arbitrary vector y. We express the vector 
q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= AHy in terms of another vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ where Q = ATy* and 
q = Q* = (A”’y*)* = AHy. The column space of the sen- 
sitivity matrix corresponds to  the data space, and each 
element in a particular column corresponds to a 
perturbation in one of the surface fields at one of the 
measurement sites and one frequency for one particular 
model parameter. The vector Q therefore goes as, 

which is a sum over all frequencies and all surface 
measurements of the sensitivity term multiplying the 
component of the vector y for that particular frequency and 
surface measurement, the result being given at  an interior 
model block. As before, we can use the principle of linear 
superposition to compute the vector Q. Using reciprocity, 
we saw that the sensitivity in the surface fields is the 
response due to unit current or magnetic sources on the 
surface, depending on whether one is solving for the 
perturbed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE fields or H fields. Therefore, the vector Q goes 
like 

where S ( k )  represents a unit surface current or magnetic 
source, y(k) is the component of the vector y. and k 

specifies the surface location. As before, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&(i) is the original 
E field in the ith model block. The principle of linear 
superposition, however, allows us to rewrite the vector Q as 

which corresponds to one forward-modelling run with all the 
sources distributed at the surface simultaneously. This 
computation is similar t o  a downwards propagation of 
surface fields, but it is actually a downwards propagation in 

backwards time. Since we are really computing AHy, and 
since by reciprocity Gj(s, r)i = Gi(r, s ) ~ ,  the AHy operation is 
actually a sum of the complex conjugate of the Green’s 
function responses to the surface sources, and the complex 
conjugate of the Green’s function involves negative 
frequencies, or equivalently, backwards time. 

Therefore, we can carry out iterations of the conjugate 
gradient procedure without ever explicitly computing the 
sensitivity matrix. For each iteration we need to compute 
two forward problems per frequency with sources 
distributed throughout the volume and across the surface. 
At  the initial iteration, one additional forward problem is 
required to compute AH multiplying the data residuals. The 
surface sources for this calculation are simply Rd;l[d- 
g(m,)], which are given at each surface measurement 
location and frequency. For each iteration of the conjugate 
gradient procedure, one must first compute Api where pi is 
the search direction at  the ith iteration. The sources for this 
calculation are therefore the vector pi, which has a value at 
each interior model block. One must then compute 
AHRiiApi. The sources for this calculation therefore are 
Rd;‘Ap,, which is a vector with values given at  each surface 
measurement location and frequency. 

F O R W A R D  MODELLING 

The forward-modelling routine used in our 3-D M T  
inversion algorithm is the direct solution described in 
Mackie (1991) and Mackie, Madden & Wannamaker (1993). 
This algorithm solves for the electromagnetic fields in a 3-D 
model by propagating an impedance matrix from the bottom 
of the model up to the Earth’s surface (this is very similar to 
a Ricatti equation approach). The impedance matrix relates 
the horizontal electric fields within a layer to  the magnetic 
fields within that same layer. Instead of doing a direct 
decomposition on the entire 3-D operator, this algorithm 
achieves its speed by doing a smaller matrix inversion for 
each layer in the model. The advantage of using this 
algorithm in the inversion routine is that once the forward 
problem has been solved to compare the model response to 
the observed data, one can then quickly compute the fields 
for any source configuration if the layer inverses have been 
stored. Thus, additional conjugate gradient relaxation steps, 
which comprise the inner loop of the inversion algorithm, 
come at little added time and cost above that required to 
solve the problem once for the current model response. 

Alternatively, we have developed a conjugate direction 
relaxation algorithm for the 3-D M T  forward problem 
(Mackie 1991; Mackie & Madden 1993). This is an 
approximate algorithm that is accurate, quick, and requires 
much less memory than the direct solution. The advantage 
of using this algorithm over the direct algorithm is that it is 
much quicker for solving the 3-D M T  forward problem. The 
disadvantage is that completely independent forward 
solution relaxations are required to compute the responses 
for the different source configurations needed in the 
inversion relaxations (the inner loop of the inversion 
algorithm). This would start to be an issue if many 
relaxation steps (the inner loop of the inversion) were 
desired at  each inversion iteration (the outer loop of the 
inversion). 
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3-D MT DATA PARAMETERS 

In magnetotellurics, we typically measure the impedance 
tensor over a range of frequencies at  each measurement site. 
One can write the impedance tensor, which relates the 
horizontal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE fields to the horizontal H fields, as 

Assuming that there are two linearly independent source 
polarizations, one can express the impedance tensor as 

where the subscripts 1 and 2 refer to the fields from the two 
different source polarizations. At  first glance, it might seem 
logical to just invert for the four complex impedance 
elements. The difficulty with this, however, is that in many 
situations, Zxx and Zyy are zero or close to zero. This is a 
problem when using logarithmic parameterzation. Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d In Z / d  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= a/Z(aZ/au), we see the possibility for a 
division by zero if any of the impedance elements are zero. 

Instead, we take an approach similar to the eigenstate 
formulations of Eggers (1982), and LaTorraca, Madden & 
Koringa (1986). They were mainly concerned with 
extracting physically meaningful scalar parameters from the 
complex impedance tensor, especially for 3-D geometries. 
We use a somewhat simpler approach and decompose the 
impedance tensor in terms of two complex vector fields (cf. 
Jackson 1975). We consider the E field due to a unit H, 
field, which is E ,  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[%Zxx + fZ,,]. and the E field due to a 
unit H, field, which is EHy = [?Zxy +fZ,,,]. These two 
vectors can serve as the basis set for the impedance tensor. 
Every complex vector can be described in terms of four 
scalar quantities: amplitude, phase, direction, and ellipticity. 
These quantities for the E vectors given above are closely 
related to the apparent resistivity, phase, direction, and 
ellipticity values usually computed from field data. In our 
3-D inversion scheme, we invert for the amplitude, phase, 
and direction of the E vectors described above. Ellipticities 
are diffcult to determine accurately from field data, and 
therefore, we have excluded them from our inversion 
scheme. The derivatives of these quantities are found in 
Appendix 1. 

BOUNDARY CONDITIONS 

U p  to this point, we have not dealt specifically with the 
issues of the boundary conditions. The 3-D forward 
modelling algorithm described in Mackie et al. (1993) 
assigns tangential H field values on the boundaries of the 
3-D model. In this work, we use a modified version of the 
algorithm that assumes the model is repeated in the 
horizontal directions; that is, no side boundary terms are 
assigned. In this way, we avoid having to deal with the 
boundary values and their effect on the sensitivity terms. We 
made this assignment to simplify the programming and to 
test our concepts about relaxation inversion. In the future, 
however, we will include the boundaries and their effect on 

the sensitivity terms in order to deal with more realistic 
earth models. 

RESULTS FOR THEORETICAL DATA 

In this section, we present results using the relaxation 
inversion routine for inverting numerically computed, 
noise-free 3-D magnetotelluric data. We have not 
extensively tested the algorithm on a wide variety of models, 
but nonetheless, we can demonstrate that even at this stage 
in the development of the algorithm, it works as intended. 

The model used to generate the data is shown in Fig. 1 
and consists of a conductive, 3-D inhomogeneity embedded 
at a shallow depth in an otherwise layered media. The 

Plan View 
I 1 

. ........................................................................ 

........................................................................ 

30km 10 3 10 30km 
(Block widfhsj 

Cross-section surface 

0.1 km 
200 ohm-m 

400 ohm-m 

3000 ohm-m 
, ., 

3000 ohm-m 
1A 7 

A T . ,  

3oooO ohm-m 
. r . I  

100 ohm-m 
ind 7 

Z " 7 . 1  

30 ohm-m 

Figure 1. The 3-D model used to generate synthetic MT data. 
These data were used to test the 3-D MT inversion algorithm. The 
model was 5 blocks by 5 blocks by 9 layers. A 10Qm 
inhomogeneity was buried in an otherwise layered earth. 
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E from H x ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxh=4 yb=4,a priori model Efrom H y .  xh=4 yb=4. a priori model 

IN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

10' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
_I L 

-I 
IUJ 10' 10' I @  I N  I @  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 4. The observed and a priori model responses for the surface location xb = 4, y b  = 4. Shown are the amplitudes, phases (in degrees), 
and directions (in degrees clockwise from the positive x-axis, which runs to the right) versus period. We define these values in the appendix. 

model is composed laterally of five blocks in the x-direction 
and five blocks in the y-direction. Vertically, there are eight 
layers and a half-space. The impedance for a 3 0 Q m  
halfspace is used at the bottom of the layers in the 3-D 
model, and it was held fixed throughout all the inversions. 
Data were output for eight frequencies equally spaced in the 
logarithm of period from 0.01 s to 30 s. The a priori model 
used for all inversions had the same dimensions as the one 
used to generate the 'observed data', but with a uniform 
resistivity of 100 Qm and a 30 Qm half-space. 

Shown in Figs 2, 3 and 4 are the observed and a priori 

model responses for three different locations on the surface 
of the 3-D model. These three sites were chosen because it 
would be too voluminous to show the responses at  all the 
sites, and the sites at xb = 2, yb  = 2 and xb = 4, yb  = 4 
represent sites where 3-D effects are the severest. Fig. 5 
shows the error progression versus inversion iteration for an 
inversion with five relaxation steps per inversion. We define 
the data error as 

where 8 and 3 are given in radians, the subscripts o and m 
refer to observed and model respectively, ndat is the 
number of data locations, nfreq is the number of 
frequencies, and npol is the number of polarizations 
(npol=2).  The right-hand-side error is the error in the 
right-hand side of the maximum likelihood equations, eq. 
(1). When the maximum likelihood equations are exactly 
satisfied, the right-hand side goes to zero. This does not 
necessarily correspond to the solution in which the model 
responses and observed data are exactly equal because the 
fit is actually a compromise between fitting the data and 
adhering to the a priori model. We computed the 
right-hand-side error plotted in Fig, 5 by the following 
equation, where r ( i )  represents the element of the 
right-hand side corresponding to the ith model block: 

c c c [(In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2) 1El + (o', - 8 , ~  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw,, - y m ) 2 ]  

ndat x nfreq x 2 

For this example, we used five relaxation steps per inversion 
iteration, and we assumed that both the model covariance 
and the data covariance matrices were of the form a21. That 

x 100 (19) is, we set Rdd= azl and R,,= ail, where the ratio 

ndat nfrcq r r p o ~  ( E m (  J 
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Nrel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 5, no Rmm constraints 

loo0 ~ 

..... 

1 

. I  
0 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 

iteration 

Figure 5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe RMS error progression as a function of the inversion 
iteration step. This particular run used five conjugate gradient 
relaxation steps per inversion iteration. The ratio of &a;, was 
equal to 3 x lo-'. We defined the data error in eq. (19), and the 
right-hand-side error (rhs error) in eq. (20). The right-hand-side 
error should go to zero when one obtains the solution to the 
maximum likelihood equations. 

= 3 x lo-'. This simply means that the variance of 
the fit to the a priori model was assumed greater than the 
variance of the data errors. In other words, the data were 
trusted much more than the a priori model, and the fit to the 
observed data was more important in the inversion than was 
the fit to the a priori model. We added an additional 
damping term to stabilize the inversions and we tied it to the 
error in the right-hand side so that the damping decreased as 
the error decreased. The damping term was equal to 
(1.0) * ( l /o i )  * (right-hand-side error). Damping terms re- 
duce the influence of the small eigenvalues in the early 
stages of the inversion, then allow them to become more 
influential at  the latter stages. Damping terms should 
depend on the magnitudes of the eigenvalues, but the 
damping term added in these 3-D inversions came about 
largely from our experience with 2-D inversions and 
experimenting with the damping factor for 3-D inversions. 
This damping is somewhat larger than what we are use to 
dealing with in 2-D inversions, but this is probably due to 
the increased degrees of freedom in 3-D inversions as 
compared to 2-D inversions. 

For this particular example, 15 iterations reduced the 
error in the fit to the data to approximately 2 per cent and 
the right-hand-side error to 0.6 per cent. We show both the 
resulting model and the actual model for this inversion in 
Fig. 6, where the numbers are the resistivity values in 
Qm. Note that the resistivity structure of the top four layers 
is fairly well resolved, but that the image of the conductive 
feature is smeared into the lower layers. This is a common 
by-product of many inversion schemes where one only has 
data coverage on one side of the feature one is trying to 
image. The inherent difficulty magnetotellurics has of 
resolving resistive bodies, especially if they are underneath 
more conductive layers or  bodies, enhances this phenome- 
non. Figs 7, 8 and 9 show the responses for the model of 

Number of relaxaticn s t e p  - 5 
Number of inversion iterations - 15 
N O  m constraints 

layer1 
239 
245 
231 
246 
236 

layer2 
344 
333 
306 
333 
340 

layer3 
531 
578 
586 
578 
527 

237 
263 
260 
263 
235 

347 
194 
249 
193 
344 

537 
11 
I0 
11 

536 

242 
266 
251 
266 
240 

353 
248 
253 
248 
351 

491 
11 
13 
11 

488 

240 
267 
250 
269 
240 

353 
196 
267 
199 
353 

510 
10 
13 
10 

509 

235 
234 
240 
235 
240 

343 
367 
397 
369 
350 

545 
485 
458 
486 
553 

layer4 
1196 1281 1218 1155 1278 
1280 154 9 9 1139 
1302 121 14 13 1228 
1281 154 9 9 1139 
1193 1290 1213 1149 1275 

layer5 
2346 2651 2681 2725 2444 
2792 490 99 126 2637 
2833 231 99 82 2630 
2801 491 99 125 2625 
2366 2676 2686 2710 2418 

layer6 
3041 4717 4813 4938 3033 
4811 829 356 1021 4787 
4980 192 154 111 4462 
4826 828 355 1016 4804 
3074 4713 4823 4919 3001 

layer7 
19461 14747 9627 14495 22294 
18683 373 173 365 12812 
17577 149 94 1 3 1  5318 
18702 368 172 361 12847 
19390 14820 10843 14680 22130 

90 86 85 85 88 
87 114 102 102 86 
86 107 99 99 86 
87 114 102 102 86 
90 86 85 86 89 

layer8 

Rmmfac-3.Oe-5 
Damping-1.0 

layer 1 
200 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ O O  200 200 200 
200 200 200 200 200 
200 200 200 200 200 
200 200 200 200 200 
200 200 200 200 200 

400 400 400 400 400 
400 400  400 400 400 
400 400 400 400 400 
400 400 400 400 400 
400 400 400 400 400 

600 600 600 600 600 
600 10 10 10 600 
600 10 10 10 600 
600 10 10 10 600 
600 600 600 600 600 

1000 1000 1000 1000 1000 
1000 I000 10 10 1000 
1000 1000 10 1 0  1000 
1000 1000 10 10 1000 
1000 1000 1000 I000 1000 

3000 3000 3000 3000 3000 
3000 3000 3000 3000 3000 
3000 3000 3000 3000 3000 
3000 3000 3000 3000 3000 
3000 3000 3000 3000 3000 

3000 3000 3000 3000 3000 
3000 3000 3000 3000 3000 
3000 3000 3000 3000 3000 
3000 3000 3000 3000 3000 
3000 3000 3000 3000 3000 

layer 2 

layer 3 

layer 4 

layer 5 

layer 6 

layer 7 
30000 30000 30000 30000 30000 
30000 30000 30000 30000 30000 
30000 30000 30000 30000 33000 
30000 30000 30000 30000 30000 
30000 30000 30000 30000 30000 
layer 8 

100 100 100 100 100 
100 100 100 100 100 
100 100 100 100 100 
100 I00 100 100 100 
100 I00 100 100 100 

Figure 6. On the left is the resulting model after 15 iterations of the 
inversion procedure, and on the right, for comparison, is the actual 
model. The resistivity values for each block are in Qm. We held the 
30 Qm bottom half-space, which is not shown here, fixed during the 
inversion. 

Fig. 6 for the three surface locations shown earlier. We see 
excellent agreement in both polarizations for amplitudes, 
phases and directions. We find similarly good fits to the 
observed data at  all other locations, but we do not show 
them here. 

As a further example, we inverted the same data starting 
from the same a priori model, except this time, we included 
R,, constraints to keep the bottom four layers 1-D (that is, 
in each layer, all the resistivity values in that layer are tied 
together). We ran this inversion for different numbers of 
relaxation iterations per inversion iteration. Fig. 10 shows 
the resulting model after 15 inversion iterations using only 
one relaxation step per inversion iteration. Fig. 11 shows the 
resulting model after 15 inversion iterations using three 
relaxation steps per inversion iteration, and Fig. 12 shows 
the resulting model after 15 inversion iterations using 10 
relaxation steps per inversion iteration. The results using 
only one relaxation step per iteration are surprisingly good, 
although the results using 10 relaxation steps per iteration 
are clearly the best. Tying together the resistivities within 
each of the bottom four layers has removed the smearing 
caused by the shallow conductive body and improved the 
estimates of the resistivities for these layers. Of course, in 
this example, we had the luxury of knowing beforehand that 
the bottom four layers should be uniform, but nonetheless, 
this demonstrates the usefulness of a priori information if it 
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Figure 13. The RMS error progression as a function of the 
inversion iteration step for three different runs of the inversion 
algorithm. One run used one relaxation step per inversion iteration, 
one run used three relaxation steps per inversion iteration, and one 
run used 10 relaxation steps per inversion iteration. For each run, 
we constrained the bottom four layers of the model to be 1-D. We 
defined the data error and right-hand-side errors in the text, eqs 
(19) and (20). 

is available. Fig. 13 shows the progression of the data errors 
and right-hand-side errors as a function of inversion 
iteration for the cases just described. Even though the 
inversions with three relaxation steps and 10 relaxation steps 
per inversion iteration wound up at about the same data 
error level, the one with 10 relaxation steps clearly did a 
better job at imaging the original model and adhering to the 
model covariance constraints. 

We attempted to implement preconditioning of the 
relaxation scheme for the 3-D inversion as we did for the 
2-D inversion (Madden & Mackie 1989). As in that case, we 
tried using the inverses of the 1-D sensitivity analyses for the 
vertical strip of blocks beneath each data site. Implementing 
this type of preconditioning in the 3-D case caused 
numerical instabilities that made the inversion diverge away 
from the correct solution. We do  not know exactly what 
caused this behaviour, although we will hazard a guess. The 
1-D sensitivities are more closely related to the actual 2-D 
sensitivities rather than the 3-D sensitivities because in both 
the 1-D and 2-D cases, there are sensitivity terms for the 
phase and resistivity, whereas in the 3-D case, there are 
sensitivity terms for amplitudes, phases, and directions. 
Furthermore, in the 3-D case, there are two electromagnetic 

modes that are coupled to each other. This coupling makes 
the 3-D inversion inherently more difficult, but may also be 
the reason for the numerical instabilities when we use 
preconditioning. This is because the preconditioning may be 
trying to drive the two separate electromagnetic modes in 
opposite directions, and this may cause the divergence we 
observed. Of course, the two modes increase the amount of 
data one has at each data site, and this fact alone should 
improve the convergence properties of the inversion so that 
the preconditioning may not be absolutely necessary for 3-D 
data and 3-D models. We saw in the examples presented 
earlier that we obtained extremely good fits to the data with 
just a few relaxation steps per inversion iteration without 
any sort of preconditioning. 

CONCLUSIONS 

In this paper, we discussed a method to invert 
magnetotelluric data for 3-D earth models. This method 
uses conjugate gradient relaxation to solve the maximum- 
likelihood inversion equations. Since at  each iteration of the 
inversion we update the model and begin the procedure 
anew, we need only use a few relaxation steps at  each step 
of the inversion. Because we are using relaxation methods, 
we do  not need to explicitly construct and store the 
sensitivity matrix; rather, we only need to known the effect 
of the sensitivity matrix or its transpose multiplying an 
arbitrary vector. Each of these is equivalent to solving a 
forward problem with a given set of sources. This results in 
tremendous time savings over more traditional approaches, 
and makes 3-D inversions much more practical. We have 
demonstrated that the procedure works well for simple 3-D 
models. 
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APPENDIX 1: DERIVATION OF 
SENSITIVITY TERMS 

We decompose the impedance tensor into two basis vectors 
given by E, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[%Z,, + $Zy,] and EHy = [%Zxy + $Zyy]. Any 
complex vector in the frequency domain, E ( o )  = a +jb, can 
be expressed in the time domain, assuming an e-""' 
dependency, as e(r) = 2% [E(w)e-""'] = a cos wc + b sin wt. 
The magnitude of the complex vector is simply [E*E]IC?. In 
the time domain, the vector traces our an ellipse, which in 
some cases degenerates to a circle. The major axis of the 
ellipse defines the direction corresponding to that vector 
field, and the phase is defined as the phase along that axis. 
The ellipticity is the ratio of the major axis to the minor 
axis. Ellipticities are difficult to determine accurately from 
field data, but magnitudes, phases, and directions are more 
robust in comparison. Consequently, we invert only for 
amplitudes, phases, and directions. Following Eggers 
(1982), we can write down the expressions for the 
magnitudes, phases (+), and directions (IJJ) in terms of our 
vector basis set: 

lE,I = [zxxz:x + z,xz,*x11'2 
IEHJ = [ZXYZ,:, + zyyZ;y11'2 

where the terms like Z,", stand for the real part of Z,,, and 
so on. We derive the sensitivity terms by algebraically 
differentiating the above expressions. We first need the 
partial derivatives of the components of the impedance 
tensor, which are 

dEy2 dHX2 [ E ~ ~ %  + H,,  - - E,, - 
=-YY - 1 
d o  detHH da dU 

where we have made the following definitions: 

det H H  = H,,H,, - HX2Hy,  

With these definitions, one finds the sensitivity terms for the 
magnitudes are 

where we have used relationships such as 

( '45) 

in simplifying the expressions for the derivatives. The 
expressions for the derivatives of the phase terms are a bit 
more complicated, and are 
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d a  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl + v  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv’, d o  

where we have made the following definitions 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAud and u, representing the denominator and numerator 
respectively of the expression given above for u ,  and v, and 
un likewise representing the denominator and numerator of 
the expression given above for v. The sensitivity terms for 
the directions of the major axes are 

where we have made the following definitions 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsd and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, representing the denominator and numerator 
respectively of the above expression for s and t ,  and t ,  
representing the denominator and numerator of the above 
expression for t. 
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