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Abstract

Real-time mapping and manipulation of electrophysiology in three-dimensional (3D) tissues could 

impact broadly fundamental scientific and clinical studies, yet realization lacks effective methods. 

Here we introduce tissue-scaffold-mimicking 3D nanoelectronic arrays consisting of 64 

addressable devices with subcellular dimensions and sub-millisecond time-resolution. Real-time 

extracellular action potential (AP) recordings reveal quantitative maps of AP propagation in 3D 

cardiac tissues, enable in situ tracing of the evolving topology of 3D conducting pathways in 

developing cardiac tissues, and probe the dynamics of AP conduction characteristics in a transient 

arrhythmia disease model and subsequent tissue self-adaptation. We further demonstrate 

simultaneous multi-site stimulation and mapping to manipulate actively the frequency and 

direction of AP propagation. These results establish new methodologies for 3D spatiotemporal 

tissue recording and control, and demonstrate the potential to impact regenerative medicine, 

pharmacology and electronic therapeutics.

Developments in cardiac tissue engineering over the past two decades1–5 have substantially 

advanced in vitro models for drug-screening6–8 and disease studies9, as well as in vivo 

implants to replace diseased or damaged tissues10, 11, for example, resulting from 

myocardial infarction11. However, effective methodologies for real-time 3D mapping and 

manipulation of electrical activity in studies of tissue development, drug modulation and 

implantation have thus far been missing. Optical imaging using exogenous or genetically-

encoded voltage-sensitive dyes12–14 has allowed high spatial-resolution mapping of AP 
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propagation but can be limited by a relatively slow time-resolution in 3D scanning13–15 and 

light scattering in tissues13, 15. On the other hand, multiplexed electrical recordings with 

planar microelectrodes8, 16 or field-effect transistor (FET)17, 18 arrays can map APs with a 

sub-millisecond temporal resolution, but have been limited to studies of 2D cultured cells17 

or the surfaces of 3D tissue samples18.

To overcome the key gaps in existing optical voltage sensing and planar electrode device 

methods, we previously introduced a 3D nanoelectronics scaffold concept that could access 

cellular response from within engineered tissues19, although the size and mechanical 

mismatches precluded 3D tissue mapping. Here we present a new class of tissue-scaffold-

mimicking nanoelectronics designed with both dimensions and mechanical properties 

comparable to the conventional cardiac tissue scaffold poly(lactic-co-glycolic acid) (PLGA) 

electro-spun fibers2, 4, 20 (Supplementary Information). These new nanoelectronics have 

been used as cardiac tissue scaffolds alone or together with PLGA auxiliary layers to enable 

real-time mapping of APs across 3D samples with sub-millisecond temporal resolution. In 

addition, incorporation of stimulator electrodes allows for simultaneous active control and 

mapping of cardiac tissue electrophysiology in 3D.

3D Activity Mapping from Nanoelectronics-Cardiac Tissues

The 3D nanoelectronics-cardiac tissues were prepared using a strategy that involves three 

major steps (Figs. 1a–c). First, 350–750-nm-thick 2D polymeric meshes with embedded 

nanoelectronics are fabricated on a substrate by photolithography on a Ni release layer with 

free-standing structures achieved following Ni etching. To meet the feature size and 

mechanical property criteria for tissue-scaffold-like nanoelectronics, we used high-density 

silicon nanowire assembly to obtain a >95% yield of 1–2 μm footprint free-standing FET 

arrays (Supplementary Information, Fig. 1a and Supplementary Fig. 4a). Significantly, this 

new design has stiffness values of SU-8/metal/SU-8 and SU-8 elements, 2.8 × 10−16 and 2.9 

× 10−17 N m2, respectively, comparable to 1 μm diameter PLGA electro-spun fibers, 1.0 × 

10−16 N m2, used as cardiac tissue scaffolds2, 4, 20 (Supplementary Information); that is, the 

free-standing nanoelectronics are tissue scaffold-like in terms of mechanical properties.

The 2D free-standing meshes were folded into 3D nanoelectronic scaffolds (Fig. 1b; 

Supplementary Figs. 4b–f), and then neonatal rat ventricular cells were seeded and cultured 

to yield nanoelectronics-cardiac tissue (Fig. 1c; Supplementary Information). While these 

studies focus on ca. planar structures typical for engineered cardiac tissue patches3, 7, 19, 

nanoelectronic scaffolds could also be folded over curved structures to yield nonplanar 

structures or rolled into cylinders. Representative confocal microscopy images taken at 7 

days in vitro (DIV; Supplementary Fig. 6) show characteristic adult sarcomere lengths of 2.1 

± 0.1 μm21 with alignment to the scaffold. Extracellular cardiac AP signals recorded from 4 

× 4 FET sensors in a single layer across 5 × 5 mm2 domain (Fig. 1d) show a synchronized 

beating rate of 1.8 Hz, amplitude of 1–2 mV and peak width of ca. 1 ms from all 16 

channels, consistent with extracellular recording results of FET devices on planar chips17. 

Higher resolution examination of these peaks (Fig. 1e) reveals sub-millisecond time latency 

between any given set of AP peaks recorded by the 16 FET sensors, where the intrinsic 

Dai et al. Page 2

Nat Nanotechnol. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



device time-resolution is 0.01–0.05 ms (Supplementary Information), substantially better 

than the time-scale of observed AP peak or peak latency.

To better visualize the AP propagation, we plot these data from the single layer as an 

isochronal map of time latency (Fig. 1f). This map, which covers 5 × 5 mm2 area of tissue, 

shows that the AP wavefront propagates from FET(x,y = 4,1) to FET(1,4). Combining the 

spatiotemporal AP recording results from all the 64 FET sensors designed in four layers, we 

plot a 3D isochronal map of time latency (Fig. 1g) that visualizes the 3D waveform of AP 

conduction in the nanoelectronics-cardiac tissue. The similarity but not identical latency 

between z-coordinates is consistent with the small (50 μm) distance between neighboring 

nanoelectronic mesh layers, and also highlights the well-developed 3D coherence of the 

cellular networks. Further evidence to this latter point is that the average conduction 

velocity, 28 ± 2 cm/s, is very similar with that of in vivo neonatal rat heart tissue, 21–27 

cm/s5.

3D Activity Mapping During Cardiac Tissue Development

We have investigated the evolution of electrophysiological activity during culture and tissue 

development using nanoelectronics-cardiac tissues. 3D real-time mapping of APs carried out 

at 2, 4, 6 and 8 DIV from a 6 × 4 × 2 array of integrated FETs (Fig. 2a), highlights several 

key points. Qualitatively, analyses of recorded AP maps show that the spontaneous beating 

volume expands to the entire sample for ≥6 DIV. Second, quantitative analyses of these data 

show that percentage volume of detectable activity at 2, 4, 6 and 8 DIV are ca. 46, 79, 98 

and 98%, respectively. Third, examination of real-time AP data recorded at 2 DIV where the 

spontaneous beating tissue regions are sparse (Supplementary Fig. 8) demonstrates that 

beating is synchronized within and between different device layers. These latter results 

suggest that the 3D topology of the conducting pathways develop early during engineered 

cardiac tissue maturation. More generally, while progress has been made on 3D structural 

visualization of cardiac tissue development22, it is still difficult to map directly 3D 

functional networking during tissue maturation, and thus the nanoelectronics-cardiac tissue 

provides a complementary method to address this key issue.

In addition, analysis of the AP data further demonstrates that at 2, 4, 6 and 8 DIV, the 

beating rate values (Supplementary Fig. 9) are 346, 470, 52 and 38 per minute, respectively. 

The beating rate shows a substantial decrease after 4 DIV, as expected during maturation of 

rat cardiac tissue23, 24. The average extracellular AP amplitude from the samples at 2, 4, 6 

and 8 DIV (Fig. 2b), 1.27 ± 42%, 1.77 ± 49%, 1.92 ± 34% and 1.27 ± 32% mV, respectively, 

also exhibit averaged amplitude variations, although the values are statistically overlapping. 

We do note that the smallest coefficient of variation (± 32%) occurs at 8 DIV suggesting an 

increase in uniformity of amplitudes and cell growth on the scaffolds along with tissue 

development, since the extracellular AP amplitudes are affected by factors such as the cell-

to-device distance and sealing25. These results show that nanoelectronics-cardiac tissue can 

provide insight into the electrophysiological development in 3D, and thus could impact 

research in cardiac tissue engineering and regeneration, including stem cell differentiation, 

growth factors and ischemia26, 27.
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3D Monitoring of Cardiac Pharmacological and Disease Models

We have used nanoelectronics-cardiac tissue to investigate responses to drugs (Fig. 3; 

Supplementary Figs. 10 and 11; Supplementary Information), with a focus on the 3D 

dynamics and AP propagation in a drug-induced ventricular arrhythmia model28. β-
Adrenergic receptor agonists such as norepinephrine are used to treat heart failure, but 

during local injection can produce ventricular arrhythmia and sudden cardiac death28. We 

investigate this phenomenon by focal injection of norepinephrine on 3D nanoelectronics-

cardiac tissues (Fig. 3a) while simultaneously recording real-time 3D APs. Representative 

data from three FET sensors in different layers before and following norepinephrine 

injection near sensor L1(4,3) (Figs. 3b–c) highlight dynamic instability of the conduction 

pathway. Examination of time-correlated AP peaks from these three devices before and 5–10 

s post-injection (Fig. 3c) shows that the AP propagates initially from sensor L3(4,1) to 

L1(4,3), but that ca. 10 s after drug injection the propagation direction is reversed. In the 

intermediate regime, the recorded peaks indicate an earlier depolarization around sensor 

L1(4,3), which then leads to the reversal of the overall propagation direction. At steady-state 

post-injection, the full 3D AP isochronal maps (Fig. 3d) show clearly that a new stable 3D 

AP propagation direction arising from the norepinephrine injection location has overridden 

the original pace-maker foci.

In contrast, independent experiments with homogeneous perfusion of norepinephrine 

(Supplementary Fig. 10) and 1-heptanol (Supplementary Fig. 11) serve both as controls and 

highlight additional capabilities of the nanoelectronics-cardiac tissue for pharmacological 

assays. Homogeneous norepinephrine perfusion yields a 150% increase in beating rate at 

steady-state, and importantly, measurements (Supplementary Fig. 10b) demonstrated full 3D 

synchronization of APs from sensors in different regions of the tissue, in contrast to focal 

injection (Fig. 3). Interestingly, the high temporal resolution 3D mapping exhibited a 

transient conduction velocity increase over the initial 60 s of perfusion (17% peak increase 

ca. 30 s after start). Perfusion of the gap-junction blocker8 1-heptanol, which inhibits cell-to-

cell current conduction via intercellular gap-junctions, results in a uniform decrease in AP 

conduction velocity/increase in latency (Supplementary Figs. 11b–c). High temporal 

resolution characterization of the AP conduction velocity at the single peak level without 

averaging allows monitoring diffusion and action of 1-heptanol from the top surface through 

the interior of the tissue in real-time. These temporally- and spatially-varying effects, 

including the dynamic instability associated with non-uniform norepinephrine addition (Fig. 

3), would otherwise have been difficult to detect using methods that require averaging of AP 

peaks and/or scanning in order to resolve accurate time latency in 3D.

Simultaneous Mapping and Manipulation of Cardiac Activity

Beyond real-time mapping of propagating APs, incorporation of stimulators could open up 

the capability for simultaneous manipulation of the tissue electrophysiology as required for 

closed-loop control of cardiac activity and/or to treat abnormalities. To this end, we 

incorporated individually addressable electrical stimulators together with nanowire FET 

sensors into nanoelectronics scaffolds (Fig. 4a; Supplementary Information). As an 

illustration, application of a variable amplitude 1.25 Hz stimulation spike train to one of the 
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stimulators in the nanoelectronics-cardiac tissue (Fig. 4b and Supplementary Fig. 12) yields 

AP peaks recorded in different regions (L1–L3) of the tissue locked to the stimulation 

frequency when the stimulator pulse amplitude is 1 V; and for amplitudes ≤100 mV the 

natural ca. 1 Hz beating frequency of the tissue is observed (Supplementary Fig. 12). 

Interestingly, the coefficient of variation of the beating rate increases by 4.3× (from 2.7% to 

11.7%) as the stimulation amplitude increases from 1 to 100 mV (Supplementary Fig. 12f), 

suggesting a dynamic instability of cardiomyocytes prior to the locking to the pacing rate. 

Further studies of stimulation at 1 V versus frequency (Supplementary Fig. 13) show stable 

locking of the tissue beating for 1.25, 1.67 and 2.5 Hz stimulation, and thus, suggest the 

potential to modulate cardiac activity on demand.

Last, we use the active stimulation and monitoring capabilities to illustrate spatial 

manipulation of AP propagation direction within tissues. Specifically, a nanoelectronics-

cardiac tissue sample with original pace-maker foci located at L1(1,1) (Fig. 4c) was 

sequentially paced by stimulator electrodes located at L4(1,4), L4(4,4) and L4(4,1). 

Following stimulation to lock the AP pace-maker foci to a given stimulator origin, the 

recorded 3D AP maps plotted as latency maps (Fig. 4d–f) demonstrate clearly that the AP 

propagation directions are rotated sequentially 90 degrees at each step. These results provide 

proof-of-concept for spatiotemporal manipulation together with real-time 3D interrogation 

of propagating APs, and thus offer the potential for sophisticated modulation of cardiac 

tissue electrophysiology compared to conventional stimulators29.

The results presented here open up high temporal resolution 3D electrophysiology mapping 

and manipulation in engineered cardiac tissues, and have potential for impacting several 

areas of cardiac research including in vitro models for drug-screening6–8 and in vivo 

implants to replace diseased or damaged tissues10, 11. In this latter context, we envision our 

nanoelectronics-cardiac tissue to be surgically-implanted with the input/output wiring (from 

the scaffold) allowing for continuous monitoring and stimulation of the implanted tissue. 

Alternatively, it might be interesting to consider syringe co-injection of both nanoelectronic 

scaffolds30 and cardiac progenitor cells or stem cells31 directly into damaged tissues for 

“smart” repairing with integrated self-monitoring and self-regulation functionality.

More generally, the successful miniaturization of the nanoelectronic scaffolds, which allows 

matching the size and mechanical properties to conventional passive tissues scaffolds, and 

the incorporation of large numbers of addressable nanoelectronic devices, which allows 3D 

mapping, can enable facile integration in a range of engineered tissues for drug screening 

models through regenerative medicine broadly defined32. For example, utilizing softer 

nanoelectronic and auxiliary scaffolds we could extend the application to engineered 3D 

neuronal tissues19. Rolling the tissue-scaffold-mimicking nanoelectronics into tubular 

structure could also allow engineering blood vessels19, and separating distinct cell layers 

with nanolectronic scaffold layers could be used to study blood brain barrier33, 34 tissue 

models in unique ways. Last, we believe it will be important to extend the functionality of 

the nanoelectronic scaffolds in the future by integrating chemical sensors35, pressure 

sensors36, 37, light-emitting-devices38 and active matrix addressing39 since these could 

expand substantially the capabilities for monitoring and stimulation.
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Online Methods

Nanowire synthesis

The Si nanowires (average length of 30 μm) were synthesized on a SiO2/Si substrate (p-type 

Si, 0.005 Ω cm, 600 nm oxide, Nova Electronic Materials, LLC., Flower Mound, TX) by a 

gold nanoparticle-catalyzed vapor-liquid-solid growth method.

Fabrication of free-standing nanoelectronic mesh scaffolds

The 2D free-standing macroporous nanoelectronic mesh scaffolds were fabricated on the 

oxide surface of SiO2/Si substrates before being released from the substrate. Key steps used 

in the fabrication were as follows: (1) 100 nm thick nickel relief film was deposited on 

substrate by thermal evaporation using PL. (2) A 350 nm layer of SU-8 photoresist (2000.5; 

MicroChem Corporation, Newton, MA) was spin coated over the entire substrate, followed 

by a UV exposure to define an array of rectangular pads. (3) The Si nanowires were 

transferred onto the target Si wafer with selectively patterned SU-8 layer using lubricant-

assisted contact printing method. Nanowires arrays were selectively transferred on the pre-

defined SU-8 pad arrays. (4) PL was used to pattern the mesh-like bottom SU-8 layer, 

connecting the pre-defined SU-8 pad arrays with nanowires, that serves as passivating and 

supporting layer. (5) PL was used to pattern symmetrical Cr/Pd/Cr (1.5/50/1.5 nm) metal 

S/D contacts followed by thermal evaporation and sequential liftoff process, forming Si 

nanowire FET sensor arrays on SU-8 meshes. (6) Another top SU-8 passivation layer was 

patterned using PL. In addition, four circular palladium/platinum electrodes (50/50 nm) were 

integrated into the nanoelectronic mesh scaffolds as electrical stimulators at four corners in 

the layer 4 (Fig. 4a). (See more details in Supplementary Methods)

Folding nanoelectronic mesh structures into 3D scaffolds

Free-standing nanoelectronic mesh with Si nanowire FETs were released from the Si wafer 

by etching the 100 nm nickel relief layer (Nickel Etchant TFB, Transene Company, Inc., 

Danvers). The nanoelectronic mesh was rinsed with DI water and stored in DI water. The 

free-standing nanoelectronic mesh scaffolds were folded into a multi-layer structure, with 

alignment assisted by optical microscope. In order to control a larger separation distance 

between different mesh layers, a 50 μm thick PLGA electro-spun fiber film was placed in 

between each mesh layer during folding step. The aligned and folded mesh scaffolds were 

fixed by Kwik-Sil silicone adhesive (World Precision Instruments, Inc., Sarasota, FL) at 

boundaries after each folding step. (See more details in Supplementary Methods)

Synthetic nanoelectronics-innervated cardiac tissues

Prior to cell plating, the nanoelectronic mesh scaffolds were thoroughly immersed in 0.5% 

fibronectin (F1141, Sigma-Aldrich Corporation, Atlanta, GA)/0.02% gelatin (Fisher 

Scientific, Pittsburgh, PA) solution for 2 h for surface modification. Primary neonatal rat 

cardiomyocytes were prepared according to previously published procedures17, 19. In brief, 

intact ventricles were isolated from 1–3 day old Sprague/Dawley rats and were then digested 

at 37 °C in Hanks’ balanced salt solution containing collagenase (class II, Worthington 

Biochemical Corporation, Lakewood, NJ). Isolated cells were purified through pre-plating in 
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a flask for 2 h to reduce the percentage of non-cardiomyocyte cells. Then the collected cells 

were concentrated and plated at a cell density of 3–6 × 106/cm2. (See more details in 

Supplementary Methods).

Electrophysiology measurements

All the electrophysiology measurements were carried out at 37 °C (TC-344D temperature 

controller, Warner Instruments Corporation) and in Tyrode solution (Sigma-Aldrich 

Corporation, Atlanta, GA). The conductance of Si nanowire FETs was measured with DC 

bias set to 100 mV. The drain current was amplified with 16 channel preamplifier (SIM918 

Precision current preamplifier, Stanford Research System) and the output data were band 

pass filtered (0–6000 Hz, home-built system) and recorded at an acquisition rate of 20–100 

kHz using a 16-channel A/D converter (Digidata 1440A; Molecular Devices, Sunnyvale, 

CA) interfaced with a computer running pClamp electrophysiology software (ver. 10.2, 

Molecular Devices, Axon Laboratory, Sunnyvale, CA). Data analysis was carried out using 

OriginPro (ver. 8.1, Origin Lab Corp.) and Matlab (ver. R2011a, Mathworks).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 3D spatiotemporal mapping of APs
(a) Schematic of free-standing macroporous nanoelectronic scaffold with nanowire FET 

arrays (red dots); inset, one nanowire FET. In (a–c), a limited number of input/output leads 

are shown for clarity; the total for the design as indicated in (b) is 68. (b) Folded 3D free-

standing scaffolds with four layers of individually addressable FET sensors. (c) Schematic of 

nanoelectronic scaffold/cardiac tissue resulting from culture of cardiac cells within the 3D 

folded scaffold; inset, nanoelectronic sensors (blue circles) innervate the 3D cell network. 

(d) Simultaneous traces recorded from 16 sensors in the top layer (L1) from 

nanoelectronics-cardiac tissue. The (x,y) coordinates of each element from the 4 × 4 array 

are shown. (e) Zoom-in view of a single AP spike recorded from each device during the time 

indicated by the dashed-box in (d). The time latency between APs recorded from different 

devices is evident and specifically indicated for FETs (4,1) to (1,4). (f) Isochronal map of 

time latency in L1; mapping area is ca. 25 mm2. (g) 3D isochronal map of time latency 

through the sample, where L1–L4 correspond to the four layers of 4 × 4 device arrays 

innervating the cardiac tissue. Mapping area is ca. 25 mm2 × 200 μm.
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Figure 2. AP evolution during tissue development
(a) Amplitudes of spontaneous extracellular APs recorded from 4 × 6 nanowire FET arrays 

in two layers at 2, 4, 6 and 8 DIV. White squares correspond to coordinates where 

extracellular APs are absent or below the detection limit (1× standard deviation of noise 

level). Time-dependent data recorded from four devices (2 × L1 and 2 × L2) indicated with 

asterisks at 2 DIV are shown in Supplementary Fig. 5. (b) Histogram of extracellular AP 

amplitudes recorded from the 3D nanoelectronics-cardiac tissue sample at 2, 4, 6 and 8 DIV.
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Figure 3. Arrhythmia induced by localized norepinephrine injection
(a) Schematic of measurement setup highlighting the syringe injection of norepinephrine at 

a localized spot on the 3D nanoelectronics-cardiac tissue. (b) Time-dependent traces from 

three sensors in L1, L2, L3 with synchronized and periodic APs. Blue arrow indicates the 

injection time point of ~25 μL norepinephrine at concentration of 100 μM. (c) Zoom-in view 

of the four dashed-box regions in (b) depicting time latency between APs before and 5–10 s 

after norepinephrine addition. (d–e) 3D isochronal time latency maps before (d) and 5 min 

after (e) local norepinephrine injection; blue arrow in (d) indicates injection position.
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Figure 4. Active spatiotemporal regulation of APs
(a) Schematic illustrating positions of individually addressable stimulator electrodes (purple 

dots) in the nanoelectronic scaffold. (b) Time-dependent traces recorded from nanowire 

FETs in layers L1, L2, L3 under periodic biphasic stimulation spike train in L4. Stimulation 

peak width, amplitude and frequency were 1 ms, 1 V and 1.25 Hz, respectively. Blue 

asterisks in L1 trace highlight APs (downward spikes) versus capacitive coupling peaks (red 

dashed-lines). (c–f) 3D isochronal time latency maps for original pace-maker foci location 

(c, blue arrow), and sequential 90 degree rotations of the AP propagation direction using the 

indicated simulator electrodes (lower corners panels d to f).
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