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<abs> Contact forces are inevitable whenever nanocrystals are prepared on a 

substrate and these must result in strain fields within the crystals which are 

relevant to their epitaxy1. Coherent X-ray diffraction patterns, measured using the 

latest third-generation synchrotron radiation sources, can be inverted to obtain 

full 3D images of the interior density within such nanocrystals2,3,4.  Diffraction 

from an ideal crystal lattice results in an identical copy of this continuous 

diffraction pattern at every Bragg peak.   When strain is present, the copies are no 

longer identical and contain additional information, appearing as broken local 

inversion symmetry about each Bragg point.  Here we show that one such pattern 

can be inverted nevertheless to obtain a complex crystal density, whose phase 

encodes a projection of the lattice deformation.  A lead nanocrystal was 

crystallized in ultra-high vacuum from a droplet on a silica substrate and 

equilibrated close to its melting point.  A 3D image of the density, obtained by 

inversion of the coherent X-ray diffraction, shows the expected facetted 

morphology, but in addition reveals a real-space phase that is consistent with the 

3D evolution of a deformation field arising from interfacial contact forces.  

Quantitative 3D imaging of lattice strain on the nanometre scale will have 
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profound consequences for our fundamental understanding of grain interactions 

and defects in crystalline materials1.  Our method of measuring and inverting 

diffraction patterns from nanocrystals represents a vital step towards the ultimate 

goal of atomic resolution single-molecule imaging that is a prominent justification 

for development of X-ray free-electron lasers5,6,7. 

<p> Coherent X-ray diffraction imaging is a rapidly advancing form of 

microscopy that was opened up by the realisation that oversampled diffraction patterns 

can be inverted to obtain real-space images.  The possibility was first pointed out by 

Sayre2 but not demonstrated until 1999 by Miao et al3.  The phase information of the 

diffraction pattern, which is lost in its recording, is embedded in a sufficiently 

oversampled diffraction pattern because this is intimately related to the Fourier 

transform of the object under investigation.  The inversion of diffraction back to an 

image has been proven to be unique in two or higher dimensions, except for 

‘pathological’ cases of internal symmetry of the object or its diffraction pattern8,9.  

Computational methods of performing the inversion are an active area of development; 

they are often based on the iterative Hybrid Input-Output (HIO) method introduced in 

the 1980's by Fienup10. 

<p> Lensless imaging using coherent X-rays is an attractive alternative to electron 

microscopy because of better penetration of the electromagnetic waves in materials of 

interest; multiple scattering effects can be neglected so the first Born approximation can 

be safely used.  In some cases X-rays are less damaging to the sample than electrons 

and, in either case, the collection of a diffraction pattern is inherently more efficient 

than the use of lenses11.  If the diffraction can be reliably inverted by computation, the 

method could be routinely used to reveal the structure of materials on the nanometre 

scale, far beyond the resolution of the traditional light microscope. The holographic 

method of combining a reference wave is an alternative way to perform the inversion12. 
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<p> The use of short-wavelength X-rays and crystalline materials introduces the 

additional possibility of Bragg diffraction.  In the simplest approximation of ideal 

crystals, this yields an identical copy of the forward diffraction centred around each 

Bragg peak.  Using Bragg diffraction patterns not only allows individual grains to be 

selected for analysis one-by-one and avoids losing data behind a beam-stop3, but also 

greatly facilitates the recording in three dimensions (3D), as demonstrated for micron-

sized gold crystals4.  The inversion is formally identical to that of the forward 

scattering3, but reveals only the density of the crystalline part of the sample, so is highly 

sensitive to defects.   

<p> Diffraction also opens the new possibility of directly imaging the strain fields 

within the crystal, an opportunity that is exploited in the current work.  It is easy to 

demonstrate that the presence of strain breaks the local symmetry of a diffraction 

pattern about the Bragg point, which would otherwise show inversion symmetry (as it 

does about the origin according to Friedel's law).  While the inverse Fourier transform 

of a symmetric function is real, that of the asymmetric distribution must in general be 

complex, possessing phase structure in real space.  It has been shown13 that, without 

loss of generality, the density of a crystal can be considered to be complex function 

whose magnitude is the physical electron density and whose phase is the projection of 

the local deformations of the crystal lattice onto the reciprocal lattice vector, Q, of the 

Bragg peak about which the diffraction is measured. 

<p> Since there are twice as many independent measurement points for an 

asymmetric diffraction pattern than a centrosymmetric one and twice as many variables 

needed to describe a complex density function as a real one, the problem is 

overdetermined to the same degree.  The oversampling ratio14, which determines 

whether such a pattern can be inverted, is the same.  The primary measure of the 

oversampling of the diffraction is the size of the ‘support’ region that is the volume of 
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space within which the finite-sized object is confined to exist14; this constraint is 

unchanged for the complex problem.  In our experience with test calculations, we have 

found no additional difficulty in the convergence of the HIO-like algorithms for the 

complex problem, and this has been confirmed by others15,16.  The greatest sensitivity 

arises from the choice of the support constraint, just as it does for the real density 

problem. 

<p> Following our earlier preparation of free-standing Au nanocrystals4, we 

developed a method to grow nanometre-sized Pb crystals inside the vacuum chamber of 

the 34-ID-C beamline at the Advanced Photon Source (APS), shown schematically in 

Fig 1.  X-ray diffraction measurements were then made in situ of the continuous 

diffraction pattern surrounding a (111) Bragg peak.  Figs 1 and S2 show slices through 

the concentric shells of intensity that correspond to the shape transform of the 

hemispherical crystal.  Additionally, a number of flares can seen, which arise from 

facets formed during solidification of the crystal.  Scanning Electron Microscope (SEM) 

images, also shown in Fig 1, subsequently found the sample to contain an array of 

isolated crystals with a facetted hemispherical morphology and a distribution of sizes 

centred around 200nm. 

<p> The 3D data were inverted to real space in the coordinate system of the 

measurement, following the two directions of the CCD's pixel array and the sample 

rotation angle.  Initial attempts to phase the background-subtracted diffraction pattern 

were made using established methods4,10,14-17.  We applied as many as 7 alternating 

cycles of Error Reduction (ER) and Fienup's HIO algorithm, each consisting of many 

iterations of the respective algortihm10, with real-valuedness and finite support as the 

real-space constraints.  The support region was allowed to shrink by thresholding the 

images obtained by prior inversions with a larger support17.  Despite using a tight 

support, the recovered density included a large region of low density within the crystal 
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boundary.  This region featured a non-uniform phase despite constraining the phases to 

be zero on every iteration.  

<p> When we phased the diffraction pattern without enforcing a real-space phase 

constraint, we obtained qualitatively better results.  Fifteen phasing calculations were 

performed in a 324x192x48 array, comprising 200 iterations of HIO followed by 1000 

iterations of ER, each starting with different random starting phases, using a simple 

41x37x24 rectangular support with more than twice the volume of the tight support used 

previously.  All fifteen results had an error metric, defined as the normalized integrated 

squared difference between the Fourier transform of the image and the data, between 

0.022 and 0.023.  When the results with the three lowest error metrics were compared, 

they showed a reproducibility of 0.024 (analogous definition), meaning that, within the 

accuracy of the data, they were identical18.  The magnitude of the complex density (Fig 

S4) is then assumed to be the physical density, while the phase (Figs 3 and S5) is 

interpreted as the scalar product of the local deformation and the momentum transfer 

vector13, Q.  A geometric calculation was then used to transform the result to orthogonal 

directions in real space19 for viewing the image in a Cartesian laboratory frame (Figs 2 

and S3).  These images showed a relatively uniform internal density, varying about 

15%, with a phase gradient where the density had been weaker before. 

<p> The physical density map in Fig S4 showed the crystal shape to be a sphere 

of diameter 750nm with flat facets, as expected20 for the equilibrium crystal shape of 

Pb, due to anisotropy of its surface free energy21, γ.  Angular variations of γ cause 

facetting along certain crystallographic directions through the Wulff construction21.  A 

least-squares fit to the density boundary of our sample, shown in Figs 2 and S6, 

identified clear facets along {111} directions as well as the plane of the interface with 

the substrate, which was non-crystallographic19.  To estimate the resolution of the final 

image, we plotted line scans of the density projected onto the normals of these facets, as 
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well as radial scans through the spherical regions in Fig S7.  These illustrate how 

steeply the density edge of the crystal drops across the boundary of the crystal. The 

density step could be well-described in Fig S7 by fitting error functions of width 40nm, 

which was taken to be the image resolution. 

<p> The main focus of our attention is the internal strain fields revealed by the 

phase of the complex density in Figs 3 and S5.  Most of the crystal was undeformed, 

with a constant phase, but significant deviations appeared in an egg-shaped bulge near 

the middle of its interface with the substrate, rising to a maximum of 1.1 radians at the 

bottom edge of the crystal where it makes contact with the substrate.  This corresponds 

to a maximum deformation of the crystal of (1.1/2π) (111) lattice spacings, or 0.5Å.  

The phase bulge is illustrated in Fig 4a as an isosurface of constant phase and as contour 

plots of a 2D slice through the phase map in Fig 4c.    Across the short direction of the 

bulge, the equal-phase contours are seen to have a roughly circular shape.  This is 

consistent with the radial deformation field u(r) of a classical point defect, such as a 

lattice interstital or vacancy.   When such a deformation field is projected onto the Q-

vector, the resulting phase forms two spheres (of constant Q·u(r)) which touch at the 

location of the defect22.  In our image, only part of a sphere is seen, indicating the point 

defect is virtual, lying outside the crystal.  To simulate the long direction of the phase 

bulge, we constructed a model that superimposes two lines of point defects of opposite 

sign.  The full calculated phase isosurface from the resulting deformation is shown in 

Fig 4b.  This model explains both the detailed shape of the phase contours and the 

inverse-square variation of the strain projection with distance, consistent with the 

observed spacing of the contours in Fig 4c. 

<p> The point defects assumed to explain the data are virtual sources of the 

deformation field, lying outside the crystal.  The physical origin of this strain is a 

surface deformation distributed across the interface with the SiO2 substrate.  The surface 
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distortion results in a long-range strain field within the crystal, exactly analogous to the 

effect of surface charges in electrostatics.  It is likely that the Pb crystal had nucleated 

from the melt at some surface defect of the substrate that imparts a residual contact 

strain.  The surface strain distribution is connected with the measured deformation 

distribution by the Poisson equation governing continuum elasticity theory. 

<p> Our result shows that physically reasonable strain fields can be imaged three-

dimensionally inside crystalline materials of nanometre dimensions.  The deformation 

field seen in our Pb nanocrystal is attributed to a surface defect on the substrate where 

the crystal nucleated.  It is clear that, by extension of this work, all of the classic defects, 

the basic ingredients of materials science, could be imaged in this way.  The use of a 

nanocrystal host limits the volume of space that has to be mapped to see an isolated 

defect, but also serves as the support needed for the diffraction phasing to succeed.  Our 

method of obtaining phase contrast is naturally complimentary to the real-space strain-

mapping methods that depend on the preparation of nanometre-sized beams23, and to the  

Fresnel zone-plate-based methods24.  Our resolution is presently 40nm, but can be 

improved substantially by the development of better detectors and optics or more 

powerful and more coherent x-ray sources, such as an X-ray free-electron laser6.  The 

3D imaging of complete nanocrystals, using the inversion methods demonstrated here, 

will naturally extend to atomic resolution when such measurements become possible5,7. 
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<LEGEND> Figure 1.  Schematic diagram of the coherent X-ray diffraction 

experiment.    Pb was evaporated onto a heated Si wafer support, with its native oxide 

intact, to make a film of about 20nm thickness.  After melting the film, it formed molten 

droplets, which were then cooled to overcome the (substantial) supercooling until the 

liquid crystallized, then raised again to 1.2K below the Pb melting point of 600.6K.  

Ultra-high vacuum (UHV) conditions were maintained throughout.  Later examination 

by SEM (inset) showed isolated hemispherical crystals.  Undulator X-rays from the 

Advanced Photon Source (APS) were monochromated using Si(111), selecting a 

wavelength of 1.38Å, and collimated by narrow slits  to illuminate a few hundred 

crystals of the sample.  A direct-reading CCD X-ray detector, 1.32m away, was centred 

on the (111) Bragg peak of one of the crystals, to give the diffraction patterns shown.  A 

rotation series of 50 diffraction patterns was collected by rotating the sample in steps of 

0.01° about the axis shown.  Two representative frames are shown in panels a and b, 

while a fuller series is given in Fig S2.  The total exposure time of each frame was 150s. 
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<LEGEND> Figure 2a and c.  Two views of the 3D reconstruction of the magnitude of 

the nanocrystal's complex density function, illustrated as a 50% density isosurface.   The  

fitted facet planes of the equilibrium crystal shape have been coloured.   2b, Schematic 

fitting model of a sphere (semi-transparent) and facet planes (disks).  The diameter of 

the nanocrystal is 750nm. 

<LEGEND> Figure 3.  Phase maps cutting through the crystal at three parallel planes 

shown schematically, separated 138 nm apart.  The colour map, labelled in radians, is 

indicated below.  The translucent box is the support region used in the phasing 

calculations, which was rectangular before the coordinate transformation.  The phase 

bulge is interpreted as a projection of strain fields in the crystal lattice arising from 

contact forces at the interface with the substrate.  Further sections of the phase map are 

provided in supplementary Figure S5. 

<LEGEND> Figure 4a and b.  Single isosurface of the reconstructed phase of the 

complex density function and its best fit, superimposed on a cut-away image of the 

crystal density.  The point defect lines used to generate the fit (dots) and the direction of 

Q (arrow) are also illustrated.  An animated version of this figure is presented in the 

Supplementary Information as Fig S1.   4c Contour map of the reconstructed phase on a 

cross-section plane passing near the middle of the nanocrystal in the same view.  

Smooth lines are the corresponding contours of the projection function Q·u(r) where 

u(r) is the strain field calculated for two rows of point defects (balls) of opposite sign.  

Both sets of contours have spacings of 0.24 radians.   
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