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SUMMARY

An iterative solution to the non-linear 3-D electromagnetic inverse problem is obtained
by successive linearized model updates using the method of conjugate gradients. Full
wave equation modelling for controlled sources is employed to compute model
sensitivities and predicted data in the frequency domain with an efficient 3-D finite-
difference algorithm. Necessity dictates that the inverse be underdetermined, since
realistic reconstructions require the solution for tens of thousands of parameters. In
addition, large-scale 3-D forward modelling is required and this can easily involve the
solution of over several million electric field unknowns per solve. A massively parallel
computing platform has therefore been utilized to obtain reasonable execution times,
and results are given for the 1840-node Intel Paragon. The solution is demonstrated
with a synthetic example with added Gaussian noise, where the data were produced
from an integral equation forward-modelling code, and is different from the finite
difference code embedded in the inversion algorithm

Key words: electromagnetic modelling, inversion, tomography.

INTRODUCTION

The solution of the non-linear 3-D electromagnetic inverse
problem has been a goal of geophysicists for many years. The
search for this solution has been motivated by its potential
applications in mapping electrical conductivity and dielectric
permittivity. Knowledge of these electrical properties is critical,
since they can be utilized in hydrological modelling, chemical
and nuclear waste-site evaluations, mineral, oil, and gas
exploration, and more recently reservoir and aquifer
characterization.

Up until now, a complete solution to this problem has been
hindered by insufficient computing resources. Realistic 3-D
reconstructions require the estimation of tens of thousands of
unknown electrical parameters. This demand, coupled with the
forward-modelling overhead, where up to several million field
unknowns may need to be calculated to determine model
sensitivities and predicted data, make the solution of the 3-D
inverse problem non-trivial. Attempts to circumvent this
difficulty have included the use of quasi-linear approximations
in both forward and inverse modelling (c¢f. Torres-Verdin &
Habashy 1995, 1994; Habashy et al. 1995; Zhdanov & Fang
1995) and the use of approximate model sensitivities
(Farquharson & Oldenburg 1995). Unfortunately, even these
approaches suffer when the number of parameters being esti-
mated exceeds several thousand. Only with the advent of
massively parallel (MP) computers could a realistic attack on
the problem be proposed.
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Even with an MP platform one must be careful when
implementing a solution to the inverse problem. Primarily, it
is important to avoid directly inverting large matrix systems
that are either sparse or full. Rigorous modelling of 3-D EM
fields can be carried out efficiently using staggered finite
differences, which produces a sparse linear system. On an MP
platform this system, if properly pre-conditioned, can be
quickly solved using iterative Krylov subspace methods
(Alumbaugh et al. 1996). On the other hand, the solution of
the least-squares inverse problem requires dealing with a full
linear system. However, since this system satisfies the normal
equations it can also be efficiently solved iteratively with
conjugate-gradient (CG) methods. Mackie & Madden (1993)
and Zhang et al. (1995) used this approach to attack the 3-D
magnetotelluric (MT) and direct current (DC) inverse prob-
lems, respectively, on scalar platforms. Here we will apply the
approach to the 3-D EM inverse problem for frequency-
domain dipolar source fields, where the source strengths and
locations are known. Because the controlled-source EM prob-
lem is far more computationally demanding than both the DC
problem, due to its vector nature, and the MT problem, due
to the sheer number of source fields to be considered (upwards
of several hundred), an MP platform is a necessity. As will be
demonstrated below, such a platform allows large models to
be reconstructed, which are not underparametrized, in a
reasonable amount of time.

A key consideration in developing any inverse solution is
the efficient computation of model sensitivities. Because we
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will solve the inverse problem from an underdetermined point
of view, we can efficiently carry out calculations involving
model sensitivities using reciprocity, which is known as the
adjoint solution to the problem. The use of reciprocity, where
the receivers act as sources, can be used to limit forward
modelling to the number of transmitter and receiver positions
at a given frequency. The traditional approach requires the
number of forward solves to be equal to the number of
parameters used in the inverse. When the number of parameters
far exceeds the number of transmitters and receivers, the
adjoint approach is obviously most efficient (cf. McGillivray
& Oldenburg 1990). In fact, by using the adjoint approach
coupled with the CG solution of the normal equations one
can even avoid forming individual components of the model
sensitivity matrix, resulting in a significant saving of compu-
tational memory.

In this paper we first present the theory behind the 3-D
inversion scheme, including details of how the scheme must be
modified to run on a parallel computer. Next, synthetic data
generated by an integral equation code will be inverted. This
provides an independent check on the solution, as the data
are produced by a code that is very different in nature from
the finite-difference code used in the inversion routine, and the
two methods are thus prone to different numerical errors. In
a companion paper (Alumbaugh & Newman 1996), the inver-
sion scheme will be employed to design a 3-D crosswell survey
and invert a crosswell data set collected at the Richmond field
station north of Berkeley California.

THE INVERSE SOLUTION

Regularized least squares

As already mentioned, the parametrization used in the 3-D
inverse solution will be kept fine because we are interested in
reconstructions that do not underparametrize the Earth. This
forces the 3-D inverse problem to be underdetermined, which
makes it unstable and ill-posed. Reliable estimates of the model
parameters (m) may be possible if the least-squares inver-
sion is stabilized with regularization (Tikhonov & Arsenin
1977). Regularization removes solutions that are too rough by
imposing an additional constraint on the data fit.
Reconstructions are required to be smoothed versions of the
Earth’s electrical properties at the expense of an increase in
the error between the measured and predicted data.

Linearizing about a given earth model, m®, at a given
iteration i, the following functional can provide smooth recon-
structions if it is minimized with respect to the model param-
eters, m, which can include both the electrical conductivity
and dielectric permittivity:

§=[{D[(d —dP") — AP (m —m)]} "
{D[(d—d*®) = APO(m —m®)]} —°]+ AWm)"(Wm). (1)

The terms in eq. (1) that control how well the data are fitted
by the model are as follows: (1) the observed data, represented
by the vector d; (2) the predicted data arising from the reference
model m® denoted by dP¥; (3) a data-weighting matrix D,
which is diagonal and consists of the reciprocal of the data
standard deviations, the reciprocal of the data amplitude or in
some instances an identity matrix if data weighting is unwar-
ranted; (4) the Jacobian or model sensitivities matrix given by

AP®: and (5) x? the estimated composite noise for all the
observed data. This noise can be determined by first estimating
the error (standard deviation) of each data point through a
series of repeated measurements, and then scaling it according
to the weighting scheme employed within the inversion. To
form x?, each individual weighted error is then squared and
summed. If the measured standard deviations of the data are
used as weights, then the expected value of ¥* is the number
of data employed, assuming the data errors are Gaussian-
distributed with zero mean.

In addition to the above-mentioned quantities in eq. (1), T
represents the transpose operator instead of the Hermitian
operator, because the data, predicted data, data-weighting
matrix and the Jacobian matrix have been split into real and
imaginary parts, where we assume the model parameters, m,
to be always real-valued. The parameters that control model
smoothness are (1) the regularization matrix W, which consists
of a finite-difference approximation to the Laplacian (V?)
operator and is sparse, and (2) the trade-off parameter 4,
which is used to control the amount of model smoothness in
the reconstruction. Its selection requires special care if the
inverse solution is to provide acceptable results. Selecting
trade-off parameters that are too small can produce models
that are physically unreasonable; although the models produce
superior data fits they are unreasonably rough. Selecting trade-
off parameters that are too large produces highly smoothed
models; however, these models show poor dependence on the
data. We defer further discussion of this parameter until we
discuss the iterative nature of eq. (1).

Minimization of eq. (1) with respect to m yields the model
update

m = [(DAP?)T(DAP®) + Z(W)T(W)]~*(DAPY)(D3AY) (2)
with
od® :(d_dp(i)+Ap(i)m(i}} . (3)

Because negative values of m are an admissible solution arising
from eq.(2), it is advisable that before minimizing eq. (1) it
should be reformulated so that one can invert for the natural
logarithm of the parameters instead of the parameters them-
selves (Appendix A). This causes the imaged properties to be
always positive, which is a physical requirement. By using
a log parametrization, it is also possible to incorporate a
lower-bound positivity constraint in the inverse solution.

Derivation of the Jacobian matrix elements

Deriving a computationally efficient form of the Jacobian
matrix elements is critical for a robust inverse solution, since
calculation and manipulation of these elements is the bottle-
neck within the inversion. To derive these elements, consider
a single predicted data point, d;, defined for a given frequency
and transmitter—receiver pair as

dj=d?+gJE,. (4)

In this equation, d? is a field arising from some specified
uniform-space or layered-space background model at location
j and E; is the scattered electric field vector arising due to 3-D
changes within this background. E; has dimension NTx 1,
where NT represents the number of electric field unknowns
that are determined from the finite-difference forward solution
(Alumbaugh et al. 1996). The vector g] is an interpolator
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vector for the jth measurement point and is of dimension
1 x NT. This vector will interpolate the sampled fields on the
forward-modelling grid to the measurement point, and can
also be used to numerically approximate magnetic field
measurements through the curl of the electric field. With this
definition, an element of the Jacobian matrix is written as

od,/om, =gl oE, fom, . ()

From the forward problem (Alumbaugh er al. 1996), the
scattered electric fields are determined from the linear system,

KE;=s, (6)

where K is the sparse finite-difference stiffness matrix with 13
non-zero entries per row and depends linearly on the electrical
parameters we desire to estimate. Because the forward problem
is formulated for the scattered fields, the source vector, s, for
a given transmitter also depends linearly on the model param-
eters. It is related to the difference between the mode! param-
eters and the background model, weighted by the background
electric field, E® refer to Alumbaugh et al. (1996) for the
details. Thus differentiating eq. (6) with respect to m, yields

OB, /om, =K~ 1(ds/0m, — K /om E,), (7

and an element of the Jacobian matrix in complex form can
be written as

od;/om, =gTK ™' (8s/dm, — OK /om,E,) . (8)

Model step via conjugate gradients

As the number of unknowns increases beyond several thousand,
using direct matrix inversion to compute the updated model,
m, in eq. (2) is not feasible, even with an MP platform. Instead
we opt for an iterative solution. Since eq. (1) satisfies the
normal equations, the conjugate-gradient method of Hestenes
& Stiefel (1952) can be used to obtain the solution. This
method offers a benefit over direct inversion in two ways: (1)
following Mackie & Madden (1993) and Zhang et al. (1995)
it is possible to avoid explicitly forming the Jacobian matrix,
AP® and its transpose altogether, thus saving considerable
computer memory; and (2) as the number of unknowns, n,
increases, the solution for the direct inverse goes as n°, com-
pared with n? for the iterative approach. Finally, it is much
easier to implement a CG routine on a parallel platform when
compared to a full matrix inversion.

In the CG method all that is needed is one matrix—vector
multiplication per relaxation step. However, because the matrix
given by this operation is [(DAP®T(DAP®) + A(W)T(W)], there
are several other matrix—vector multiplications to be con-
sidered. First, the matrix product of (DAP®)T with DAP®
requires two matrix—vector multiplications. In addition, the
regularization-matrix product with its transpose requires two
more matrix-vector multiplications. Since the latter matrix—
vector multiplications are easy to implement and compute, no
further elaboration will be given until the MP implementation
of the 3-D inverse is discussed.

For the Jacobian matrix—vector multiplications, DAP® and
(DAPYT we have

y=DAry 9)
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and
z=(DAP)Ty (10)

where u is an arbitrary real vector, known as a CG search-
direction vector. Because the data weighting and Jacobian
matrices are real (recall that we treat real and imaginary
components of the data separately), the vector y is real with
dimension 2N, where N is the number of complex data points
used in the inversion. The vector z is real since the model
parameters are assumed to be real-valued. We now determine
compact and computationally efficient forms for the two
matrix—vector multiplications. These forms will also be used
to treat the matrix-vector multiplications given in eqs (2) and
(3), ie APPm® and (DAPY)T(D8dY), which are needed to
initialize the CG solver at each iteration of the inversion. For
compact programmable expressions, we let the vector y in
eq. (9), the observed and predicted data, as well as the data
weighting matrix be redefined as complex so that they can be
conveniently stored in the computer memory. Using the results
from Appendix B and eq. (8), we have for the jth element of
the first matrix—vector multiplication

M

y;=Complx {%e [g}K'1 > uk(as/ﬁmk—aK/amkEs):| Re(Djy),
k=

1

M
Jm[gJTK‘l > uk(as/amk—aK/amkEs)] Jm(Djj)}, (11)
k=1

where M is the total number of parameters to be estimated
and Dj; is the jth diagonal entry of the matrix D. E; here
denotes the scattered electric field arising from a given transmit-
ter at a specific frequency used to determine the model
sensitivities and predicted data at location j. Using the same
approach, one can also show that, for the second matrix—
vector multiplication,

N
zkzyle{ Y Complx[#e(D;;)Re(y;), Fm(D};) I me(v;)]*
i=1

x gTK~1(ds/om, —BK/BmkES)}, (12)

where N is the number of complex data points used in the
inversion and the symbol ¥ stands for complex conjugation.
Note that even though the summation in eq. (12) is over all
the data points, parts of the sum could be over different
transmitters and/or frequencies, and hence E, will change.
Finally, the derivatives ds/dm, and dK/dm, in eqs (11) and (12)
are rapid to compute analytically; it is shown in Appendix C
that the vector ds/0m, and matrix dK/0m, each have 12 non-
zero entries when m, represents either the conductivity or
permittivity.

In addition to the forward solutions necessary to determine
E, for each source and frequency, the matrix—vector multipli-
cations in eqs (11) and (12) require solving a series of forward
problems corresponding to the total number of unique data
measurement locations, where

v}:g}-K—l, (13)
or since KT=K (Alumbaugh et al. 1996),
Kv;=g; (14)

(note: the fact that K is symmetric is simply a statement of
reciprocity). A unique measurement location consists of the
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measurement of a specific field component made at a site.
Thus the total number of forward solutions needed for each
model update is given by N, + N,,, where N, and N, are the
total number of transmitters and unique receiver positions
used in the inversion at a given frequency; note that multiple-
frequency data will require additional forward solutions for
both the source and unique receiver positions.

Handling the Jacobian matrix-vector multiplications in this
manner is much more efficient then attempting to explicitly
solve eq.(7) and using the results to form the matrix—vector
multiplications. For example, if we are estimating over 30 000
parameters, this would require 30000 separate forward solu-
tions, which is impractical. On the other hand, because the
amount of data used in the inversion is limited, we anticipate
no more than several thousand forward solutions per model
update. Limiting the number of forward solutions has also
been recommended by McGillivray & Oldenburg (1990) and
Oldenburg (1990), because of its efficiency, and has been used
by Park (1983), Mackie & Madden (1993) and Zhang et al.
(1995) in their constructions of the inverse solution.

An iterative solution and selection of the trade-off
parameter

Because of the computational cost of using an exact forward
solution in the inversion, we do not have the luxury of slowly
reducing the trade-off parameter or determining an optimal
trade-off parameter at a given iteration to ensure against
arbitrarily rough models. However, experience indicates that
smooth models can be produced with the strategy we are now
going to discuss.

We initiate an inversion assuming an initial background
model, where we compute the predicted data for all transmitter
locations. At the first iteration we use our scheme to determine
the matrix-vector multiplications efficiently in the CG algor-
ithm and to determine the model update via eq.(2). This
model is determined once the trade-off parameter, A, is selected.
Through extensive numerical experiments we have found that
a smoothed solution can be obtained when the trade-off
parameter is selected as the maximum row sum of the matrix
product [(DAPO)TDAPY] where

Z Qpj

/2“-“. (15)
j=1

Here a,; is an indicated element of [(DAP)"DAP?Y] with i=1
for the first iteration. The above expression is easy to compute
following from eqs (9) and (10) with u selected to be a vector
with unit entries. For models we have tested, eq. (15) delivers
smooth reconstructions, since weighting (W)T(W) by A allows
only the larger eigenvalues of the non-regularized least-squares
system matrix to influence the solution. This is particularly so
at the early iterations.

To digress for-a moment, we note that the CG method is
designed for linear systems that are symmetric positive-definite.
While the normal equations in eq.(2) are symmetric, both
(DAPYT(DAP®Y and (W)T(W) possess a zero eigenvalue. Thus
it appears that the matrix describing the normal equations
may be semi-definite. However, when (DAP?)T(DAP®) and
(W)T(W) are summed as (DAPY)T(DAP?) + J(W)T(W), experi-
ence shows the CG algorithm converges provided the trade-
off parameter is reasonably selected. One must avoid selecting
A too large such that non-zero elements of (W)T(W) are much

M
A= Max

1sm<M

greater than the corresponding elements of (DAP®)T(DAPY) as
this will cause a degradation of the convergence rate within
the CG algorithm. We have found for the examples presented
here that this problem can be avoided when eq. (15) is used
to determine A.

We proceed to the next iteration if the data error (sum of
square errors) is above y2 If this is true, the model is linearized
again about the new model m, new predicted data and electric
fields are computed from the updated background model, and
the new model update determined with the trade-off parameter
specified with eq. (15). In general, we have found that for the
first few iterations this method of selecting the trade-off par-
ameter reduces the error by about a factor of 2. The iter-
ative procedure, just outlined, is continued until the data
error matches 2, convergence of the data error occurs, or a
pre-specified number of iterations has taken place.

Even with this procedure, it is possible to drive the trade-
off parameter down too quickly, especially when one attempts
to fit the data to an unrealistic noise level or uses an excessive
number of iterations. However, it has been our experience that
if the trade-off parameter is not relaxed sufficiently the inver-
sion can stall out far above the estimated noise level. Our
solution to this difficulty is to have a good estimate of the
data noise, and monitor the trade-off parameter and squared
error in the inversion. If excessive model structure is being
incorporated into the image, or if the inversion is over-fitting
the data, we stop the inversion and relaunch it using a different
noise model; if the data are weighted by the noise this changes
the data weighting scheme such that bad data are given less
weight and good data more. While this strategy is somewhat
subjective, it has yielded acceptable results.

At each iteration we restrict the number of relaxation steps
in the CG routine, since only a modest number of steps are
sufficient to produce an accurate model update, especially
during the early stages of the scheme (Zhang et al. 1995). For
the first and second iterations, 20 and 40 relaxation steps are
used, respectively. Subsequent iterations use 60 steps.

MASSIVELY PARALLEL
IMPLEMENTATION

EM inversion in 3-D can easily require the solution of at least
several hundred forward solutions per iteration. Alumbaugh
et al. (1996) demonstrate how these forward solutions can be
efficiently computed on an MP machine, where each solution
could constitute over five million field unknowns. A significant
portion of the storage required to perform the inversion is
taken up by the electric field solution vectors, which are
produced by these forward solutions and are needed to com-
plete the matrix—vector multiplications in the CG routine.
Fortunately, on the 1840-node Intel Paragon at Sandia
National Laboratories it is possible to execute and store all
forward solutions without writing to disk; the Paragon has
approximately 30 Gbytes of accessible memory.

As determined by Alumbaugh et al. (1996), the most efficient
use of the processors is to divide the problem into, as close as
possible, an equal number of unknowns for which to solve on
each processor. Because each processor needs only to make
calculations for a subset of the forward and inverse problems,
and because the processors are making their calculations in
parallel, the solution time is reduced by a factor which is
approximately equal to the number of processors employed.
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The parallelization of the inverse problem is achieved by
assigning a given number of processors in each direction of
the forward-modelling domain (nx in x, ny in y and nz in z).
Hence the number of processors dedicated to the problem is
determined by nx*ny*nz. The actual estimation of the Earth’s
electrical properties is carried out on the same sets of processors
as dedicated to the forward problem, with all the processors
sharing the same data, but storing different parts of the
inversion and forward-modelling domains. However, it is poss-
ible that some of the processors may not contain portions of
the inversion domain, and thus will be idle during the CG
solve. The reason for this is that cells outside the inversion
domain are necessary to keep the boundary of the forward-
modelling domain at distance (Fig. 1). We desire parameter
estimates that are not adversely affected by grid truncation
errors in the forward modelling.

We now need to address the manner in which the model is
input into the parallel machine. The input could constitute a
starting model needed to launch the inverse or a restart model
in the event of a system crash or if excessive model structure
was being incorporated in the inversion. To accomplish this
input, we have decomposed the data into two different sets, a
global data set and a local data set (Alumbaugh et al. 1996).
Global data are those variables that each processor needs to
know, such as the source and receiver positions, the frequencies
and the mesh coordinates. These form a fairly small data set
which can easily be read in by a ‘lead’ processor and then
‘broadcast’ to all other processors. The second type of input
is the local data, or local model parameters (electrical conduc-
tivity and dielectric permittivity) that are assigned to each cell
within the model. Because each processor needs only a small
subset of this data and contains only a small amount of local
memory, the local data is broken up into multiple files, one
for each processor, which are then read in individually from a
parallel disk system which allows multiple files to be accessed
simultaneously.

Modeling Domain

% fm

Inversion Domain

\er 4 nx

Figure 1. The inversion domain is a subset of the forward-modelling
domain because of forward-modelling errors near grid boundaries.
Transmitters and receivers can be placed either inside or outside the
inversion domain. External transmitters and receivers could corre-
spond to surface or airborne configurations, while internal sources
and receivers could correspond to crosswell configurations.
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Communication or message passing amongst the processors
will be needed to complete calculations in both the forward
and inverse problems. Communication amongst processors
consists of both the global and local variety. Global communi-
cation is easy to implement and involves all the processors
working on a given calculation, such as a dot product. In this
type of calculation, each processor independently computes
and sends its portion of the dot product to a lead processor,
where it is then summed and broadcast across the machine
since all the processors need the result. This type of communi-
cation will be required to treat the five dot products within a
generic CG routine and an additional one in eq. (11). On the
other hand, calculations involving the matrix-vector multipli-
cations require local communication. Here a given processor
needs to communicate with some of its neighbours to complete
its local version of the computation.

Within the inversion, three types of local communication
will be needed; an additional local communication is needed
within the forward solve, which is discussed in Alumbaugh
et al. (1996). The first will involve communication of electric
field values on processor boundaries such that the matrix-
vector products in eqs (11) and (12) can be completed. This
communication will occur before the CG routine is called, for
efficiency. The second type of communication will involve the
CG search-direction vectors needed for the matrix—vector
products involving the regularization matrix and its transpose.
This occurs within the CG routine at every relaxation step,
because (1) we have explicitly formulated the regularization
matrix and (2) the CG vectors are constantly updated. The
final type of communication occurs after exiting the CG
routine. Electrical properties of cells along processor bound-
aries must be communicated with neighbouring processors for
proper averaging of electrical properties at cell edges; these
averages are needed in subsequent forward-modelling calcu-
lations. After this message passing, calculations with the for-
ward solution can proceed with the next iteration, given the
convergence criteria outlined above.

To deduce the communication pattern of the first type,
consider eight nodes located at the corners of a cell whose
properties we wish to estimate (Fig. 2). Consider the simplest
case where each processor is in charge of only one node and
cell. For example, node (i, j, k) has the cell in Fig. 2 assigned
to it as well as the three components of the electric field at
(i+1/2,j,k) (G, j+1/2, k)and (i, j, k+ 1/2). To complete its calcu-
lations, the processor that owns this node and cell also needs
the electric fields on the cell edges assigned to other nodes on
different processors. These processors will thus need to supply
the field components. Furthermore, the processor that owns
the node (i, j, k) may also have to send its electric field
components to nodes on other processors. For example, node
(i—1,j, k) will require the y-component of electric field assigned
to node (i, j, k).

The pattern for the second type of communication can be
obtained from Fig. 3. The stencil shows the required coupling
between the centre cell and its neighbours arising from the
Laplacian operator, as applied in the regularization matrix—
vector multiplications. Again consider the case where each
processor contains only a single cell. To complete its local
version of the matrix—vector multiplication, the centre pro-
cessor needs components of the CG search-direction vector
which are assigned to the other cells and hence processors. In
addition to this, the processor holding the centre cell will also
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ex(i+1/2,j,k)

LK) (+1,1K)
ey'ij+1/2,k
(f+1,0) 7 (+1,]+1,K)
T ezlij,k+1/2)
() k+1) (14+1,+1,k+1)
(L]+1,k+1) (141,]+1,k+1)

Figure 2. The electric field stencil needed to complete the Jacobian
matrix-vector multiplications in the inversion algorithm for a single
cell. Node (i,j, k) has the cell and the x, y and z electric field
components assigned at (i+13,j, k), (i,j+4, k) and (i, j, k+ 1), respect-
ively. Assignment of other electric field components to other nodes as
shown in the figure follows analogously. Using results for the single
cell, a processor map can be developed to carry out the required local
communication amongst the processors.

(+1/2j+1/2k-1/2)

/. {i+1/2j-1/2k+1/2)

L @ (+¥2i+1/2k+1/2)

cell (i+1/2,j+1/2,k+1/2)

\

(12j+1/2k+1/2) @———— .

(i+1/2,j+3/2k+1/2)

(i+1/2j+1/2k+3/2)

Figure 3. The stencil needed to complete local regularization matrix—
vector multiplications in the CG routine. Using results for the single
cell assigned to a single processor, a processor map can be developed
to carry out the required local communication amongst processors.

be required to send components to the neighbouring processors
so that they can complete their corresponding computations.
From Fig. 4, the final communication pattern can be inferred.
Consider the computation of the average electrical properties
at cell edges (i+1/2,j,k) (,j + 1/2,k) and (i, j, k+1/2), which
are assigned to node (i, j, k). The electrical properties of the
four cells that form each edge will be needed, and the compu-
tation at these positions will be carried out on the processor
that holds the solid cell also assigned to node (i, j, k); additional
cells that are required are indicated by the dashed outlines.
Let us now consider that each node, cell, and its associated
electrical properties belong to a different processor. Since the
dashed cells belong to different processors, their electrical
properties need to be passed to the processor (indicated by
the solid cell) that will compute the averages. In addition, this
processor will be required to send its electrical properties.
Consider computing average electrical properties at location
(i+1/2,j+1, k). Since this computation is carried out on a

Face Cells

Ai+14K

Y

(i,j+1,K)

{i,j,k+1)

£Edge Cells

.

(L4 1,6)

(i+1,,k)

{ijpk+1)

Figure 4. The different cells needed to compute average electrical
properties at (i+4,j, k) (i,j+13, k) and (i, j, k+13). These edges, as well
as the solid cell are assigned to node (i, j, k). The additional face and
edge cells needed to compute average electrical properties are indicated
by the dashed outlines. Using results for the single processor and cell,
a processor map can be developed to carry out the required local
communication amongst processors, necessary for subsequent forward-
modelling calculations.

different processor, the electrical properties assigned to the
solid cell in Fig. 4 will be needed.

The local communication pattern for the inverse problem
can now be summarized in Fig. 5, where each cube represents
a different processor with subsets of nodes and cells assigned
to it. For the matrix—vector multiplications involving the
Jacobian matrix and its transpose, communication is via the
faces of processors as well as their edges. Specifically, infor-
mation is passed from the central processor (marked by the
heavy outline) to those neighbours that are dashed in Fig. S.
Likewise, those neighbouring processors with solid boundaries
pass information to the central processor. Local communi-
cation for multiplications with the regularization matrix and
its transpose involve only communication along processor
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Figure 7. Synthetic example, with wellbores, used to test the inversion algorithm. The data were calculated from this model using an integral
equation solution. The model is shown at two different vertical perspectives in the earth for different horizontal depth slices with the wellbores
indicated. In this figure, the two shades of yellow represents the 0.2 Sm™* target, while two shades of dark blue represents the 0.005 Sm™!
background. The shading is needed to render the 3-D viewing perspective.
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Figure 8. Reconstructed log conductivity and conductivity for the synthetic example illustrated in Fig. 7 for different perspectives and slices. The
wellbores used in the simulation are again indicated. Because of the large number of conductivity estimates, a continuous colour scale is used to
describe the range of conductivity and log conductivity vatues.

© 1996 RAS, GJI 127, 345-354

220z 1snbny /| uo Jesn sosnr Jo uswedaq 'S'N Ad ZL0£ZL/SE/2/8Z L/IoNEB/wWoo"dno-oiwepese/:sdRy Wwoly papeojumoq



faces in Fig. 5, where all the processors send the required
elements of the CG vectors to the central processor as well as
receiving from it. Finally, the communication needed for
averaging electrical properties of the cells at adjacent processor
boundaries is in the opposite direction to that needed for the
communication of the Jacobian matrix—vector multiplications.
Those face and edge processors marked with a dashed outline
send to the central processor, while those that are solid receive
information from it.

To provide for the required message passing, we have chosen
to employ ‘message passing interface’ (MPI; Gropp, Lusk &
Skijellum 1995) instead of using machine-specific commands.
MPI provides portability to the code as it will be able to run
on any parallel machine and/or distributed network of
machines on which this public domain library is available.

As previously mentioned, the solution time will decrease
with the number of processors employed. This is demonstrated

Face Communication

Edge Communication

Figure 5. Local processor communication scheme used in the 3-D
MP inverse. The solid cube depicts the central processor that is
sending and receiving information to and from its neighbours. Both
face and edge communication patterns are indicated.
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in Fig. 6 for an example described in Paper II (Alumbaugh &
Newman 1996). A significant increase in speed is observed
starting from 80 processors for a single iteration of the inverse
algorithm. However, as the number of processors continues to
increase, inter-processor communication becomes more of a
factor, resulting in an asymptotic behaviour in the solution
time with increasing number of processors. Here the amount
of message passing will eventually limit the speed at which the
computation can proceed. Put simply, increased message pass-
ing implies more time communicating and less time computing.
Thus optimal use of the machine may entail running the
example in Fig. 6 using 200 processors and launching several
such jobs simultaneously. On the other hand, if turn-around
time is an issue, one would want to operate near the far right
end of the curve.

SYNTHETIC EXAMPLE

Fig. 7 shows two different perspectives of a model used to test
the 3-D inverse. The data from this model were generated
from the integral equation solution of Newman, Hohmann &
Anderson (1986), and provide a stronger check on the inversion
scheme than using data generated by the staggered finite-
difference code; use of data generated with the same forward
code as embedded in the inverse will be prone to the same
numerical errors and thus will not be fully independent. The
test model consists of a 0.2S m™! cube, with sides of 50 m,
residing in a 0.005 S m~! background. Eight wells surround
the target, with 15 vertical magnetic dipole (VMD) transmitters
at 10 m intervals straddling the target. The vertical magnetic
fields were calculated in all other wells at 10m intervals,
excluding the transmitter well. Because the frequency of exci-
tation used in this test is only 20 kHz, the dielectric properties
of the target and host are not important in the simulation,

100
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60

Solution Time(min)

40

20 [T T Ty T T I T [ Ty T A T [T T T [T T T T FT T Iy T I T [ IT7IT]

0 100 200 300 400 500 600 700 800 900 1000
Number of Processors

Figure 6. Solution time for one iteration of the inversion versus the
number of processors employed. Results are for the eight-well
Richmond model used in the design experiment discussed in Paper II.
The model is discretized at 114000 cells for the forward model
calculations, with the inverse parametrization using 88200 cells. The
total number of transmitter—receiver pairs used in the inversion is 1848,
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and only the conductivity properties need be estimated; the
magnetic permeability is assumed constant throughout the
model and set to that of free space. Gaussian noise equal to
two per cent of the data amplitude was added to the data set.
The data were then weighted by this percentage before inver-
sion. In total, the data consist of 12600 transmitter-receiver
pairs.

The inversion domain consists of 29791 cells, but only
13 824 cells are shown in the inter-well region in Figs 7 and 8;
cells outside this region are used to keep the boundary of the
inversion domain at distance, so as to not affect the conduc-
tivity estimates within the inter-well region. We assume in this
synthetic example that the structure is sufficiently deep for the
frequency employed, such that the inversion can be launched
assuming a 0.005 S m ! whole space. Note that if the structure
is sufficiently close to the Earth’s surface then the effect of the
air—earth interface has to be included in the inversion.
Incorporation of this interface is possible for the formulation
presented here, but this could cause the inversion to run more
slowly and is not critical for this example. Nevertheless, the
synthetic example is realistic since it is often possible to neglect
the air—earth interface with borehole data, as demonstrated in
Paper II.

The image in Fig. § has recovered the location and geometry
of the cube fairly well, but a smeared version of its conductivity
within the cube boundary; the estimates vary from 0.1 to
0.75Sm™'. The conductivity estimates of the background
range as low as 0.0016 Sm™". It has been our experience that
improved resolution of the background and cube can be
obtained by tightening the lower-bound positivity constraint.
In this example, the conductivity estimates were restricted to
be greater than 0.001 Sm™!.

Fifteen iterations were needed to obtain this reconstruction,
where the reduction in the normalized squared error against
iteration count is illustrated in Fig. 9. For our purposes, the
normalized squared error is defined by

el =[D(d-d")]"D(d —dP)/2N, (16)

where d and dP are the observed and predicted data and N is
the total number of complex data used in the inversion; in this
expression we treat the real and imaginary components of the
data separately. Notice that after the 15th iteration the error
begins to increase; in a non-linear inverse problem there is no
guarantee that an iterative technique will always reduce the
error (see Menke 1984, pp. 154-156).

Assuming Gaussian noise with zero mean, the inversion is
assumed to have converged when the normalized squared error
approaches the value of unity, since we have weighted the data
by the noise. Because the error level is still above one in Fig. 9,
this might suggest that more information could be extracted
from the data. However, we assume that the error level
originates from bias in the data. These data were produced
from a forward-modelling algorithm that is different from the
one used in the inverse. Finally, the processing time needed to
produce the image in Fig. 8 was approximately 31 hr on the
Paragon, with 512 processors utilized.

DISCUSSION

The MP inversion scheme we have presented has been demon-
strated on data sets that are impossible to invert on scalar
workstation platforms, due to the limitations in memory and

Table 1. Maximum problem size that can be treated by the Intel
Paragon assuming 1728 processors. Problem size is determined by the
number of cells used in the forward modelling and inversion and the
number of transmitters (Tx’s) and unique receivers (Rx’s) specifying a
data set. Each Tx and Rx position is for a unique frequency.

Prablem size (nodes): 120° 96° 72°
No. Tx’s and Rx’s: 700 1300 3000

processor speeds (refer to Paper Il for additional examples).
An important question to ask is what the largest model the
MP inversion can handle is. Certainly the maximum model
size (both forward and inverse) will be related to the number
of transmitters and receivers specified in the data set, because
this will determine the number of electric field vectors, E,, that
need to be computed and stored. Given a maximum memory
on the Intel Paragon of 16 Mbytes per processor, and consider-
ing a problem divided amongst 1728 processors (this corre-
sponds to 12 processors assigned along each coordinate
direction), Table 1 illustrates a range of problem sizes that can
be effectively handled. If 120% nodes are used to describe the
forward- and inverse-modelling domain, the total number of
transmitters and receivers that can be used is 700. To increase
the number of transmitters and receivers it appears that it is
necessary to reduce the number of nodes.

One way to increase the size of inverse problems that can
be tackled is to use a coarser parametrization for the inverse
problem, but retain the finer parametrization level for the
forward problem. The key idea here is to reduce the storage
of the electric field vectors needed in the inverse. For a given
source, the electric field and predicted data are computed at
the parametrization level specified in the forward modelling.
The electric field is then interpolated to the coarser or skel-
etonized grid corresponding to the inverse and stored in the
memory. Hence the forward-modelling accuracy is still retained
in the inverse. Note that the coarser grid can still produce
smooth images, since it can involve tens of thousands to
hundreds of thousands of cells.

The skeletonized electric field vectors allow for the number
of transmitters and receivers to increase dramatically. Consider
a problem where the inversion grid is eight times coarser than
the forward-modelling grid. If 120 nodes are used in the
forward calculations, the skeletonized inversion grid, which
still comprises 216 000 cells, allows for the number of transmit-
ters and receivers to increase from 700 to over 3000.

CONCLUSIONS

A 3-D EM inversion code has been successfully implemented
and tested on an MP platform. Reasonable, overnight to one-
to-two day, processing times have been obtained. Because of
the MP platform, reconstructions have been produced that do
not underparametrize the Earth; these are reconstructions that
involve tens of thousands of cells. Since the 3-D MP inverse
also includes rigorous 3-D forward modelling for computing
model sensitivities and predicted data, it is our hope that this
solution will also serve as an accuracy benchmark on approxi-
mate inverse methods now being implemented on workstation
platforms (see Torres-Verdin & Habashy 1995, 1994; Zhdanov
& Fang 1995, Habashy er al 1995, Farquharson &
Oldenburg 1995).
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Figure 9. The normalized squared error is plotted against iteration
number for the 5 Om test body shown in Fig. 7. Ideally the squared
error should approach 1 for convergence. Its failure to do so indicates
that the data are biased.

In this paper, we have presented the theory and demon-
strated the 3-D inversion capability on synthetic data. Because
the ultimate goal of any inversion scheme is to use it to image
field data, in Paper II we demonstrate how this scheme can
be used to design a 3-D crosswell survey and invert a crosswell
data set collected at the Richmond field station north of
Berkeley, California. Images before and after the injection of
a salt-water plume will be compared to determine the location
of the injected plume. In addition, we will also show how the
scheme can be employed to analyse the reliability of the images
as well as the accuracy and errors in the data.
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APPENDIX A: FORMULATION OF THE
INVERSE PROBLEM USING LOG
PARAMETERS

The inverse problem can be formulated to allow for positive
parameters with a lower bounding constraint by using a log
parametrization. To accomplish this we first define a pertur-
bation in a given earth model m® at a given iteration i. For
cell k, we can write

Smy = (my —m{?), (A1)

where m, is the updated model component we are seeking. We
then use a Taylor series to expand the natural log function,
In(m, —&,), about the point m{® with lower bounding constraint
& such that both m, and m{? > ¢, and >0 to write

(A2)

where second-order terms have been neglected. Thus, we arrive
at

In(my— &) =In(m’ — ;) + (M) — &)~ 0my,

Smy=(m’ —&,)d In(m, —¢,), (A3)
where
8 In(my, —e)=In(me—g)—In(m’ —¢g,). (Ad)

One can set up an inverse problem involving log parameters
by modifying elements of the original Jacobian matrix using
eq. (A3) and the chain rule, such that

(A5)

od;/om;, = od;/om (m{) — &),
@)

where mj=In(m;, —¢,) and where 0d;/0m, is evaluated at my).
Following the form of eq. (1) we can define a new functional,

§'=[{D[(d—d*®)— APP3m ]} T{D[(d — &) — APD$m]}
— T+ AWm') (Wm'), (A6)

where elements of the modified Jacobian matrix AP are given
by eq. (A5), and the perturbation vector ém’ is defined as
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m’'—m'?. Minimizing the above expression with respect to m’,
enforces the lower-bound positivity constraint, where

m’=[(DAP?))T(DAPD) 4 J(W)T(W)]~{(DAPT(DSd"?)

(A7)
and
8d'® =(d —drP? + APImM@y, (A8)

Once m’ is determined, the parameter components follow from
the expression

(A9)

With this new formulation, the inversion process is designed
to deliver smooth estimates of m’. Nevertheless, with a prudent
selection of the regularization parameter, we can also expect
smooth reconstructions for the model parameters, m,
themselves.

my=e"+g,.

APPENDIX B: DERIVATION OF THE
JACOBIAN MATRIX-VECTOR
MULTIPLICATIONS

Consider fully expressing the matrix—vector multiplication in
eqg.(9) as

M
yi= Z Dj;Ayuy, (B1)
k=1

where the summation is over M electrical parameters. The
entry Dj; is the jth entry of the data-weighting matrix and A
is an element of the Jacobian matrix. These elements are
assumed to be real-valued, since the real and imaginary
components of the data are treated as separate entries. The
index j ranges from 1 to 2N, where N is the number of complex
data used in the inversion. Thus j=1, N correspond to real
entries, while components j=N+ 1, 2N correspond to imagin-
ary ones. The second matrix—vector multiplication in eq. (10)
can be expressed as

2N
2= Z Ajijijv (B2)
j=1
By associating real and imaginary components as a joint term
in the above summation, we can also express eq. (B2) as
N
=y (ApDyyi+ AjeniDicnjenyien)- (B3)
i=1
Next, combining elements as  Complx(Ay A ni)s
Complx(D;;,D; .y ;+y) and Complx(y;,y;+n) and because z,
must always be real, we find

N
Zy=Re Z Complx(D;;y;, Dy yjin Vit )™

j=1
x Complx (4, Aj4+ni), (B4)

where “* stands for complex conjugation.
Because the real and imaginary components of the Jacobian
matrix are jointly expressed in eq. (8) as

od,/om,=gTK 1 (és/0m, — K/om,E,), (BS)

we can redefine A, D;; and y; as complex so that they can be
conveniently stored in computer memory to arrive at the
following compact programmable expressions for the two

matrix—vector multiplications:

M
yj=Cmplx{9?e|:g,TK_l Y uk(ﬁs/émk—ﬁK/amkEs):| Re(Dy)),

k=1

m[g}K"l g uk(as/ﬁmk-—éK/BmkEs)} Jm(Dj,-)}, (B6)

k=1

and

zk=@e{ Z Complx[Re(D ;) Re(y)), Fm(D ;) I m(y;)]*

Jj=1

X [g]TK_l(Os/amk—6K/6mkEs)]}. (B7)

APPENDIX C: PROOF ON THE SPARSITY
OF THE FINITE-DIFFERENCE STIFFNESS
MATRIX AND SOURCE VECTOR
DERIVATIVES

To show that the vector ds/dm, and matrix 0K/dm, each has
12 non-zero entries, we start with the vector Helmholtz equa-
tion for the scattered electric field, E (eq. 1 in Alumbaugh
et al. 1996), but we will modify it such that magnetic
permeability changes from free space, y, are minimal. Thus,

VXVXE(r) + iouy(o(r) + iwe(r))E (r}= —iwpeJ (), (Cl)
with the source of the scattering given by
J,(0)= {[o(r) — 6" ()] + iw[e(r) — (0]} E(r). (C2)

Here we have assumed anexp(iwt) time dependence with
i=./—1, where o represents the angular frequency. In egs
(C1) and (C2), the 3-D conductivity and permittivity variations
are given by a(r) and &(r), with ¢°(r) and €*(r) representing the
corresponding background properties, which for the present
purposes are either a uniform space or a layered space. The
electric field of the background media, E®(r), drives the source
vector, and arises from an impressed dipole source.

The scattered fields are determined by imposing a staggered
finite-difference approximation on eq. (C1), using a rectangular
grid with a Dirichlet boundary condition. Each cell in this
grid has a conductivity and dielectric permittivity assigned to
it, where the scattered and source fields are sampled at the
edges of the cell as illustrated in Fig. 2. Because of this sampling
scheme, the averaged electrical properties have to be deter-
mined at the cell edges (¢f Alumbaugh et al. 1996). These
averages can be evaluated by tracing out a line integral of the
magnetic field centred on the midpoint of the cell edge. The
resulting average conductivity and permittivity are simply a
weighted sum of the conductivities and permittivities of the
four adjoining cells, where the weighting is based on the drea
of each cell that is bounded by the line integral. This is a
simple application of Ampere’s Law. A study of Fig. 2 shows
that, with the 12 field samples, eqs (C1) and (C2) will require
12 averages of conductivity and permittivity, with each average
involving the conductivity and permittivity of the indicated
cell. Since with every field sample, we have one equation in
the linear system, KE,=s, where s=]J, it follows that ds/dm,
and the matrix dK/dm, each have 12 non-zero entries.
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