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SUMMARY 
An iterative solution to  the non-linear 3-D electromagnetic inverse problem is obtained 
by successive linearized model updates using the method of conjugate gradients. Full 
wave equation modelling for controlled sources is employed to compute model 
sensitivities and predicted data in the frequency domain with an efficient 3-D finite- 
difference algorithm. Necessity dictates that the inverse be underdetermined, since 
realistic reconstructions require the solution for tens of thousands of parameters. In  
addition, large-scale 3-D forward modelling is required and this can easily involve the 
solution of over several million electric field unknowns per solve. A massively parallel 
computing platform has therefore been utilized to  obtain reasonable execution times, 
and results are given for the 1840-node Intel Paragon. The solution is demonstrated 
with a synthetic example with added Gaussian noise, where the data were produced 
from an  integral equation forward-modelling code, and is different from the finite 
difference code embedded in the inversion algorithm 

Key words: electromagnetic modelling, inversion, tomography. 

INTRODUCTION 

The solution of the non-linear 3-D electromagnetic inverse 
problem has been a goal of geophysicists for many years. The 
search for this solution has been motivated by its potential 
applications in mapping electrical conductivity and dielectric 
permittivity. Knowledge of these electrical properties is critical, 
since they can be utilized in hydrological modelling, chemical 
and nuclear waste-site evaluations, mineral, oil, and gas 
exploration, and more recently reservoir and aquifer 
characterization. 

Up until now, a complete solution to this problem has been 
hindered by insufficient computing resources. Realistic 3-D 
reconstructions require the estimation of tens of thousands of 
unknown electrical parameters. This demand, coupled with the 
forward-modelling overhead, where up to several million field 
unknowns may need to be calculated to determine model 
sensitivities and predicted data, make the solution of the 3-D 
inverse problem non-trivial. Attempts to circumvent this 
difficulty have included the use of quasi-linear approximations 
in both forward and inverse modelling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(cf Torres-Verdin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Habashy 1995, 1994; Habashy et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1995; Zhdanov & Fang 
1995) and the use of approximate model sensitivities 
(Farquharson & Oldenburg 1995). Unfortunately, even these 
approaches suffer when the number of parameters being esti- 
mated exceeds several thousand. Only with the advent of 
massively parallel (MP) computers could a realistic attack on 
the problem be proposed. 

Even with an MP platform one must be careful when 
implementing a solution to the inverse problem. Primarily, it 
is important to avoid directly inverting large matrix systems 
that are either sparse or full. Rigorous modelling of 3-D EM 
fields can be carried out efficiently using staggered finite 
differences, which produces a sparse linear system. On an MP 
platform this system, if properly pre-conditioned, can be 
quickly solved using iterative Krylov subspace methods 
(Alumbaugh et al. 1996). On the other hand, the solution of 
the least-squares inverse problem requires dealing with a full 
linear system. However, since this system satisfies the normal 
equations it can also be efficiently solved iteratively with 
conjugate-gradient (CG) methods. Mackie & Madden ( 1993) 
and Zhang et al. (1995) used this approach to attack the 3-D 
magnetotelluric (MT) and direct current (DC) inverse prob- 
lems, respectively, on scalar platforms. Here we will apply the 
approach to the 3-D EM inverse problem for frequency- 
domain dipolar source fields, where the source strengths and 
locations are known. Because the controlled-source EM prob- 
lem is far more computationally demanding than both the DC 
problem, due to its vector nature, and the MT problem, due 
to the sheer number of source fields to be considered (upwards 
of several hundred), an MP platform is a necessity. As will be 
demonstrated below, such a platform allows large models to 
be reconstructed, which are not underparametrized, in a 
reasonable amount of time. 

A key consideration in developing any inverse solution is 
the efficient computation of model sensitivities. Because we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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will solve the inverse problem from an underdetermined point 
of view, we can efficiently carry out calculations involving 
model sensitivities using reciprocity, which is known as the 
adjoint solution to the problem. The use of reciprocity, where 
the receivers act as sources, can be used to limit forward 
modelling to the number of transmitter and receiver positions 
at a given frequency. The traditional approach requires the 
number of forward solves to be equal to the number of 
parameters used in the inverse. When the number of parameters 
far exceeds the number of transmitters and receivers, the 
adjoint approach is obviously most efficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(cf- McGillivray zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& Oldenburg 1990). In fact, by using the adjoint approach 
coupled with the CG solution of the normal equations one 
can even avoid forming individual components of the model 
sensitivity matrix, resulting in a significant saving of compu- 
tational memory. 

In this paper we first present the theory behind the 3-D 
inversion scheme, including details of how the scheme must be 
modified to run on a parallel computer. Next, synthetic data 
generated by an integral equation code will be inverted. This 
provides an independent check on the solution, as the data 
are produced by a code that is very different in nature from 
the finite-difference code used in the inversion routine, and the 
two methods are thus prone to different numerical errors. In 
a companion paper (Alumbaugh & Newman 1996), the inver- 
sion scheme will be employed to design a 3-D crosswell survey 
and invert a crosswell data set collected at the Richmond field 
station north of Berkeley California. 

THE INVERSE SOLUTION 

Regularized least squares 

As already mentioned, the parametrization used in the 3-D 
inverse solution will be kept fine because we are interested in 
reconstructions that do not underparametrize the Earth. This 
forces the 3-D inverse problem to be underdetermined, which 
makes it unstable and ill-posed. Reliable estimates of the model 
parameters (m) may be possible if the least-squares inver- 
sion is stabilized with regularization (Tikhonov & Arsenin 
1977). Regularization removes solutions that are too rough by 
imposing an additional constraint on the data fit. 
Reconstructions are required to be smoothed versions of the 
Earth's electrical properties at the expense of an increase in 
the error between the measured and predicted data. 

Linearizing about a given earth model, m"), at a given 
iteration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, the following functional can provide smooth recon- 
structions if it is minimized with respect to the model param- 
eters, m, which can include both the electrical conductivity 
and dielectric permittivity: 

The terms in eq. (1) that control how well the data are fitted 
by the model are as follows: (1) the observed data, represented 
by the vector d; (2) the predicted data arising from the reference 
model m") denoted by dp'"; (3) a data-weighting matrix D, 
which is diagonal and consists of the reciprocal of the data 
standard deviations, the reciprocal of the data amplitude or in 
some instances an identity matrix if data weighting is unwar- 
ranted; (4) the Jacobian or model sensitivities matrix given by 

AP"); and (5)  x2 the estimated composite noise for all the 
observed data. This noise can be determined by first estimating 
the error (standard deviation) of each data point through a 
series of repeated measurements, and then scaling it according 
to the weighting scheme employed within the inversion. To 
form x2, each individual weighted error is then squared and 
summed. If the measured standard deviations of the data are 
used as weights, then the expected value of x2 is the number 
of data employed, assuming the data errors are Gaussian- 
distributed with zero mean. 

In addition to the above-mentioned quantities in eq. (l), T 
represents the transpose operator instead of the Hermitian 
operator, because the data, predicted data, data-weighting 
matrix and the Jacobian matrix have been split into real and 
imaginary parts, where we assume the model parameters, m, 
to be always real-valued. The parameters that control model 
smoothness are (1) the regularization matrix W, which consists 
of a finite-difference approximation to the Laplacian (V2) 
operator and is sparse, and (2) the trade-off parameter 1, 
which is used to control the amount of model smoothness in 
the reconstruction. Its selection requires special care if the 
inverse solution is to provide acceptable results. Selecting 
trade-off parameters that are too small can produce models 
that are physically unreasonable; although the models produce 
superior data fits they are unreasonably rough. Selecting trade- 
off parameters that are too large produces highly smoothed 
models; however, these models show poor dependence on the 
data. We defer further discussion of this parameter until we 
discuss the iterative nature of eq. (1 ) .  

Minimization of eq. (1) with respect to m yields the model 
update 

m = [(DAp(i))T( DAP(')) + d(W)'(W)] - ( DAP('')'(DGd(')) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 )  

(3) 

Because negative values of m are an admissible solution arising 
from eq. (2), it is advisable that before minimizing eq. ( 1 )  it 
should be reformulated so that one can invert for the natural 
logarithm of the parameters instead of the parameters them- 
selves (Appendix A). This causes the imaged properties to be 
always positive, which is a physical requirement. By using 
a log parametrization, it is also possible to incorporate a 
lower-bound positivity constraint in the inverse solution. 

Derivation of the Jacobian matrix elements 

Deriving a computationally efficient form of the Jacobian 
matrix elements is critical for a robust inverse solution, since 
calculation and manipulation of these elements is the bottle- 
neck within the inversion. To derive these elements, consider 
a single predicted data point, d j ,  defined for a given frequency 
and transmitter-receiver pair as 

d j  = dy + gj'Es. (4) 

In this equation, d; is a field arising from some specified 
uniform-space or layered-space background model at location 
j and E, is the scattered electric field vector arising due to 3-D 
changes within this background. E, has dimension NT x 1, 
where NT represents the number of electric field unknowns 
that are determined from the finite-difference forward solution 
(Alumbaugh et al. 1996). The vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg; is an interpolator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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vector for the j th measurement point and is of dimension 
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx NT. This vector will interpolate the sampled fields on the 
forward-modelling grid to the measurement point, and can 
also be used to numerically approximate magnetic field 
measurements through the curl of the electric field. With this 
definition, an element of the Jacobian matrix is written as 

From the forward problem (Alumbaugh et al. 1996), the 
scattered electric fields are determined from the linear system, 

KE,=s, (6) 

where K is the sparse finite-difference stiffness matrix with 13 
non-zero entries per row and depends linearly on the electrical 
parameters we desire to estimate. Because the forward problem 
is formulated for the scattered fields, the source vector, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, for 
a given transmitter also depends linearly on the model param- 
eters. It is related to the difference between the model param- 
eters and the background model, weighted by the background 
electric field, Eb; refer to Alumbaugh et al. (1996) for the 
details. Thus differentiating eq. (6) with respect to mk yields 

aE,/amk = K - '(ds/amk - dK/amkE,), (7)  

and an element of the Jacobian matrix in complex form can 
be written as 

Model step via conjugate gradients 

As the number of unknowns increases beyond several thousand, 
using direct matrix inversion to compute the updated model, 
m, in eq. (2) is not feasible, even with an MP platform. Instead 
we opt for an iterative solution. Since eq. (1) satisfies the 
normal equations, the conjugate-gradient method of Hestenes 
& Stiefel (1952) can be used to obtain the solution. This 
method offers a benefit over direct inversion in two ways : (1) 
following Mackie & Madden (1993) and Zhang et al. (1995) 
it is possible to avoid explicitly forming the Jacobian matrix, 
AP") and its transpose altogether, thus saving considerable 
computer memory; and (2) as the number of unknowns, n, 

increases, the solution for the direct inverse goes as n3, com- 
pared with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnz for the iterative approach. Finally, i t  is much 
easier to implement a CG routine on a parallel platform when 
compared to a full matrix inversion. 

In the CG method all that is needed is one matrix-vector 
multiplication per relaxation step. However, because the matrix 
given by this operation is [(DAP'i))T(DAP'i))+ A(W)T(W)], there 
are several other matrix-vector multiplications to be con- 
sidered. First, the matrix product of (DAp(i))T with DAP") 
requires' two matrix-vector multiplications. In addition, the 
regularization-matrix product with its transpose requires two 
more matrix-vector multiplications. Since the latter matrix- 
vector multiplications are easy to implement and compute, no 
further elaboration will be given until the MP implementation 
of the 3-D inverse is discussed. 

For the Jacobian matrix-vector multiplications, DAP(') and 
(DAp(i))T, we have 

y = DAP(')u (9) 

and 

z = (DAp(i))Ty, 

where u is an arbitrary real vector, known as a CG search- 
direction vector. Because the data weighting and Jacobian 
matrices are real (recall that we treat real and imaginary 
components of the data separately), the vector y is real with 
dimension 2N, where N is the number of complex data points 
used in the inversion. The vector z is real since the model 
parameters are assumed to be real-valued. We now determine 
compact and computationally efficient forms for the two 
matrix-vector multiplications. These forms will also be used 
to treat the matrix-vector multiplications given in eqs (2) and 
(3), i.e Ap(i)rn(') and (DAP(i))T(DGd(i'), which are needed to 
initialize the CG solver at each iteration of the inversion. For 
compact programmable expressions, we let the vector y in 
eq. (9), the observed and predicted data, as well as the data 
weighting matrix be redefined as complex so that they can be 
conveniently stored in the computer memory. Using the results 
from Appendix B and eq. (8), we have for the j th element of 
the first matrix-vector multiplication 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I }  

M 

JJj=COItlplX W e  g,TK-' Uk(aS/&?Ik-aK/amkE,) &?&(Djj), { [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk = l  

M 

9 m  g 3 K - I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 Uk(aS/amk-dK/~m~E,) $m(Djj) , (11) [ k = l  

where M is the total number of parameters to be estimated 
and Djj is the jth diagonal entry of the matrix D. E, here 
denotes the scattered electric field arising from a given transmit- 
ter at a specific frequency used to determine the model 
sensitivities and predicted data at location j. Using the same 
approach, one can also show that, for the second matrix- 
vector multiplication, 

Z k = %  ComplxC~e(Djj)~&(yj),  9 m ( D j j ) 9 m ( y j ) l *  

where N is the number of complex data points used in the 
inversion and the symbol '*' stands for complex conjugation. 
Note that even though the summation in eq. (12) is over all 
the data points, parts of the sum could be over different 
transmitters and/or frequencies, and hence E, will change. 
Finally, the derivatives aS/dmk and 8K/amk in eqs (1 1) and (12) 
are rapid to compute analytically; it is shown in Appendix C 
that the vector ds/dm, and matrix aK/amk each have 12 non- 
zero entries when mk represents either the conductivity or 
permittivity. 

In addition to the forward solutions necessary to determine 
E, for each source and frequency, the matrix-vector multipli- 
cations in eqs (1 1) and (12) require solving a series of forward 
problems corresponding to the total number of unique data 
measurement locations, where 

or since KT= K (Alumbaugh et al. 1996), 

Kvj = gj (14) 

(note: the fact that K is symmetric is simply a statement of 
reciprocity). A unique measurement location consists of the 
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measurement of a specific field component made at a site. 
Thus the total number of forward solutions needed for each 
model update is given by N ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ N,,, where N,, and N,, are the 
total number of transmitters and unique receiver positions 
used in the inversion at a given frequency; note that multiple- 
frequency data will require additional forward solutions for 
both the source and unique receiver positions. 

Handling the Jacobian matrix-vector multiplications in this 
manner is much more efficient then attempting to explicitly 
solve eq. (7)  and using the results to form the matrix-vector 
multiplications. For example, if we are estimating over 30 000 
parameters, this would require 30 000 separate forward solu- 
tions, which is impractical. On the other hand, because the 
amount of data used in the inversion is limited, we anticipate 
no more than several thousand forward solutions per model 
update. Limiting the number of forward solutions has also 
been recommended by McGillivray & Oldenburg (1990) and 
Oldenburg (1990), because of its efficiency, and has been used 
by Park (1983), Mackie & Madden (1993) and Zhang et al. 
(1995) in their constructions of the inverse solution. 

An iterative solution and selection of the trade-off 
parameter 

Because of the computational cost of using an exact forward 
solution in the inversion, we do not have the luxury of slowly 
reducing the trade-off parameter or determining an optimal 
trade-off parameter at a given iteration to ensure against 
arbitrarily rough models. However, experience indicates that 
smooth models can be produced with the strategy we are now 
going to discuss. 

We initiate an inversion assuming an initial background 
model, where we compute the predicted data for all transmitter 
locations. At the first iteration we use our scheme to determine 
the matrix-vector multiplications efficiently in the CG algor- 
ithm and to determine the model update via eq. (2). This 
model is determined once the trade-off parameter, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, is selected. 
Through extensive numerical experiments we have found that 
a smoothed solution can be obtained when the trade-off 
parameter is selected as the maximum row sum of the matrix 
product zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[(DAP(i))TDAp(i)], where 

Here amj is an indicated element of [(DAp(i))TDAp(i)] with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi=  1 
for the first iteration. The above expression is easy to compute 
following from eqs (9) and (10) with u selected to be a vector 
with unit entries. For models we have tested, eq. (15) delivers 
smooth reconstructions, since weighting (W)T(W) by 1 allows 
only the larger eigenvalues of the non-regularized least-squares 
system matrix to influence the solution. This is particularly so 
at the early iterations. 

To digress for a moment, we note that the CG method is 
designed for linear systems that are symmetric positive-definite. 
While the normal equations in eq. ( 2 )  are symmetric, both 
(DAp(i))T(DAp(i)) and (W)'(W) possess a zero eigenvalue. Thus 
it appears that the matrix describing the normal equations 
may be semi-definite. However, when ( DAp(i))T( DAP")) and 
(W)T(W) are summed as (DAp(i))T(DAp(i)) + 1(W)'(W), experi- 
ence shows the CG algorithm converges provided the trade- 
off parameter is reasonably selected. One must avoid selecting 
1 too large such that non-zero elements of (W)'(W) are much 

greater than the corresponding elements of (DAP"))'(DAP")) as 
this will cause a degradation of the convergence rate within 
the CG algorithm. We have found for the examples presented 
here that this problem can be avoided when eq. (15) is used 
to determine 1. 

We proceed to the next iteration if the data error (sum of 
square errors) is above x2. If this is true, the model is linearized 
again about the new model m, new predicted data and electric 
fields are computed from the updated background model, and 
the new model update determined with the trade-off parameter 
specified with eq. (15). In general, we have found that for the 
first few iterations this method of selecting the trade-off par- 
ameter reduces the error by about a factor of 2. The iter- 
ative procedure, just outlined, is continued until the data 
error matches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxz, convergence of the data error occurs, or a 
pre-specified number of iterations has taken place. 

Even with this procedure, it is possible to drive the trade- 
off parameter down too quickly, especially when one attempts 
to fit the data to an unrealistic noise level or uses an excessive 
number of iterations. However, it has been our experience that 
if the trade-off parameter is not relaxed sufficiently the inver- 
sion can stall out far above the estimated noise level. Our 
solution to this difficulty is to have a good estimate of the 
data noise, and monitor the trade-off parameter and squared 
error in the inversion. If excessive model structure is being 
incorporated into the image, or if the inversion is over-fitting 
the data, we stop the inversion and relaunch it using a different 
noise model; if the data are weighted by the noise this changes 
the data weighting scheme such that bad data are given less 
weight and good data more. While this strategy is somewhat 
subjective, it has yielded acceptable results. 

At each iteration we restrict the number of relaxation steps 
in the CG routine, since only a modest number of steps are 
sufficient to produce an accurate model update, especially 
during the early stages of the scheme (Zhang et al. 1995). For 
the first and second iterations, 20 and 40 relaxation steps are 
used, respectively. Subsequent iterations use 60 steps. 

MASSIVELY PARALLEL 
IMPLEMENTATION 

EM inversion in 3-D can easily require the solution of at least 
several hundred forward solutions per iteration. Alumbaugh 
et al. (1996) demonstrate how these forward solutions can be 
efficiently computed on an MP machine, where each solution 
could constitute over five million field unknowns. A significant 
portion of the storage required to perform the inversion is 
taken up by the electric field solution vectors, which are 
produced by these forward solutions and are needed to com- 
plete the matrix-vector multiplications in the CG routine. 
Fortunately, on the 1840-node Intel Paragon at Sandia 
National Laboratories it is possible to execute and store all 
forward solutions without writing to disk; the Paragon has 
approximately 30 Gbytes of accessible memory. 

As determined by Alumbaugh et al. (1996), the most efficient 
use of the processors is to divide the problem into, as close as 
possible, an equal number of unknowns for which to solve on 
each processor. Because each processor needs only to make 
calculations for a subset of the forward and inverse problems, 
and because the processors are making their calculations in 
parallel, the solution time is reduced by a factor which is 
approximately equal to the number of processors employed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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The parallelization of the inverse problem is achieved by 

assigning a given number of processors in each direction of 
the forward-modelling domain (nx in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAny in y and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnz in z). 
Hence the number of processors dedicated to the problem is 
determined by nx*ny*nz. The actual estimation of the Earth’s 
electrical properties is carried out on the same sets of processors 
as dedicated to the forward problem, with all the processors 
sharing the same data, but storing different parts of the 
inversion and forward-modelling domains. However, it is poss- 
ible that some of the processors may not contain portions of 
the inversion domain, and thus will be idle during the CG 
solve. The reason for this is that cells outside the inversion 
domain are necessary to keep the boundary of the forward- 
modelling domain at distance (Fig. 1). We desire parameter 
estimates that are not adversely affected by grid truncation 
errors in the forward modelling. 

We now need to address the manner in which the model is 
input into the parallel machine. The input could constitute a 
starting model needed to launch the inverse or a restart model 
in the event of a system crash or if excessive model structure 
was being incorporated in the inversion. To accomplish this 
input, we have decomposed the data into two different sets, a 
global data set and a local data set (Alumbaugh et al. 1996). 
Global data are those variables that each processor needs to 
know, such as the source and receiver positions, the frequencies 
and the mesh coordinates. These form a fairly small data set 
which can easily be read in by a ‘lead’ processor and then 
‘broadcast’ to all other processors. The second type of input 
is the local data, or local model parameters (electrical conduc- 
tivity and dielectric permittivity) that are assigned to each cell 
within the model. Because each processor needs only a small 
subset of this data and contains only a small amount of local 
memory, the local data is broken up into multiple files, one 
for each processor, which are then read in individually from a 
parallel disk system which allows multiple files to be accessed 
simultaneously. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Modeing Domain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ 

/ lnvefsion Domain 

PRY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb Tx 

Figure 1. The inversion domain is a subset of the forward-modelling 
domain because of forward-modelling errors near grid boundaries. 
Transmitters and receivers can be placed either inside or outside the 
inversion domain. External transmitters and receivers could corre- 
spond to surface or airborne configurations, while internal sources 
and receivers could correspond to crosswell configurations. 

Communication or message passing amongst the processors 
will be needed to complete calculations in both the forward 
and inverse problems. Communication amongst processors 
consists of both the global and local variety. Global communi- 
cation is easy to implement and involves all the processors 
working on a given calculation, such as a dot product. In this 
type of calculation, each processor independently computes 
and sends its portion of the dot product to a lead processor, 
where it is then summed and broadcast across the machine 
since all the processors need the result. This type of communi- 
cation will be required to treat the five dot products within a 
generic CG routine and an additional one in eq. (11). On the 
other hand, calculations involving the matrix-vector multipli- 
cations require local communication. Here a given processor 
needs to communicate with some of its neighbours to complete 
its local version of the computation. 

Within the inversion, three types of local communication 
will be needed; an additional local communication is needed 
within the forward solve, which is discussed in Alumbaugh 
et al. (1996). The first will involve communication of electric 
field values on processor boundaries such that the matrix- 
vector products in eqs (11) and (12) can be completed. This 
communication will occur before the CG routine is called, for 
efficiency. The second type of communication will involve the 
CG search-direction vectors needed for the matrix-vector 
products involving the regularization matrix and its transpose. 
This occurs within the CG routine at every relaxation step, 
because ( 1) we have explicitly formulated the regularization 
matrix and (2) the CG vectors are constantly updated. The 
final type of communication occurs after exiting the CG 
routine. Electrical properties of cells along processor bound- 
aries must be communicated with neighbouring processors for 
proper averaging of electrical properties at cell edges; these 
averages are needed in subsequent forward-modelling calcu- 
lations. After this message passing, calculations with the for- 
ward solution can proceed with the next iteration, given the 
convergence criteria outlined above. 

To deduce the communication pattern of the first type, 
consider eight nodes located at the corners of a cell whose 
properties we wish to estimate (Fig. 2). Consider the simplest 
case where each processor is in charge of only one node and 
cell. For example, node (i, j ,  k )  has the cell in Fig. 2 assigned 
to it as well as the three components of the electric field at 
(i + 1/2, j ,  k) (i, j +  1/2, k )  and (i, j ,  k +  l/2). To complete its calcu- 
lations, the processor that owns this node and cell also needs 
the electric fields on the cell edges assigned to other nodes on 
different processors. These processors will thus need to supply 
the field components. Furthermore, the processor that owns 
the node (i, j , k )  may also have to send its electric field 
components to nodes on other processors. For example, node 
(i- 1, j ,  k )  will require the y-component of electric field assigned 
to node (i, j ,  k) .  

The pattern for the second type of communication can be 
obtained from Fig. 3. The stencil shows the required coupling 
between the centre cell and its neighbours arising from the 
Laplacian operator, as applied in the regularization matrix- 
vector multiplications. Again consider the case where each 
processor contains only a single cell. To complete its local 
version of the matrix-vector multiplication, the centre pro- 
cessor needs components of the CG search-direction vector 
which are assigned to the other cells and hence processors. In 
addition to this, the processor holding the centre cell will also zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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350 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA.  Newman zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. L. Alumbaugh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 2. The electric field stencil needed to complete the Jacobian 
matrix-vector multiplications in the inversion algorithm for a single 
cell. Node ( i , j ,  k )  has the cell and the x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz electric field 
components assigned at ( i + f .  j ,  k) ,  (i, j++, k )  and ( i ,  j ,  k + + ) ,  respect- 
ively. Assignment of other electric field components to other nodes as 
shown in the figure follows analogously. Using results for the single 
cell, a processor map can be developed to carry out the required local 
communication amongst the processors. 

(i + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1/2J + l/y /2)  

(i+112,i-1/2,1(+1/2) 
cell (i + V2,j + 1/2,k+ 1/2) 

\ ,  
(1-1/2,1+ 1 /2,k+ 1/2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0- (I +3/2.1 t 1/2, k+ 1 /2) 

/ 

( i t  1/2J + l/2,k+3/2) 

(i + 1/2j + 3/2,k+ 1 /2) 

Figure 3. The stencil needed to complete local regularization matrix- 
vector multiplications in the CG routine. Using results for the single 
cell assigned to a single processor, a processor map can be developed 
to carry out the required local communication amongst processors. 

be required to send components to the neighbouring processors 
so that they can complete their corresponding computations. 

From Fig. 4, the final communication pattern can be inferred. 
Consider the computation of the average electrical properties 
at cell edges (i+ 1/2, j ,  k )  ( i ,  j + 1/2, k )  and (i, j ,  k +  1/2), which 
are assigned to node ( i ,  j ,  k ) .  The electrical properties of the 
four cells that form each edge will be needed, and the compu- 
tation at these positions will be carried out on the processor 
that holds the solid cell also assigned to node (i, j, k) ;  additional 
cells that are required are indicated by the dashed outlines. 
Let us now consider that each node, cell, and its associated 
electrical properties belong to a different processor. Since the 
dashed cells belong to different processors, their electrical 
properties need to be passed to the processor (indicated by 
the solid cell) that will compute the averages. In addition, this 
processor will be required to send its electrical properties. 
Consider computing average electrical properties at location 
( i+ l /2 , j+ l ,  k) .  Since this computation is carried out on a 

Edge Cells 

Figure 4. The different cells needed to compute average electrical 
properties at (i+t j ,  k )  ( i ,  j++, k )  and ( i ,  j ,  k + + ) .  These edges, as well 
as the solid cell are assigned to node ( i ,  j ,  k) .  The additional face and 
edge cells needed to compute average electrical properties are indicated 
by the dashed outlines. Using results for the single processor and cell, 
a processor map can be developed to carry out the required local 
communication amongst processors, necessary for subsequent forward- 
modelling calculations. 

different processor, the electrical properties assigned to the 
solid cell in Fig. 4 will be needed. 

The local communication pattern for the inverse problem 
can now be summarized in Fig. 5, where each cube represents 
a different processor with subsets of nodes and cells assigned 
to it. For the matrix-vector multiplications involving the 
Jacobian matrix and its transpose, communication is via the 
faces of processors as well as their edges. Specifically, infor- 
mation is passed from the central processor (marked by the 
heavy outline) to those neighbours that are dashed in Fig. 5. 
Likewise, those neighbouring processors with solid boundaries 
pass information to the central processor. Local communi- 
cation for multiplications with the regularization matrix and 
its transpose involve only communication along processor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASynthetic example, with wellbores, used zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto test the inversion algorithm. The data were calculated from this model using an integral 
equation solution. The model is shown at two different vertical perspectives in the earth for different horizontal depth slices with the wellbores 
indicated. In this figure, the two shades of yellow represents the 0.2 S rn-' target, while two shades of dark blue represents the 0.005 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS m-l 
background. The shading is needed to render the 3-D viewing perspective. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 8. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAReconstructed log conductivity and conductivity for the synthetic example illustrated in Fig. 7 for different perspectives and slices. The 
wellbores used in the simulation are again indicated. Because of the large number of conductivity estimates, a continuous colour scale is used to 
describe the range of conductivity and log conductivity values. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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3-0 electromagnetic inversion-I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA351 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
faces in Fig. 5, where all the processors send the required 
elements of the CG vectors to the central processor as well as 
receiving from it. Finally, the communication needed for 
averaging electrical properties of the cells at adjacent processor 
boundaries is in the opposite direction to that needed for the 
communication of the Jacobian matrix-vector multiplications. 
Those face and edge processors marked with a dashed outline 
send to the central processor, while those that are solid receive 
information from it. 

To provide for the required message passing, we have chosen 
to employ 'message passing interface' (MPI; Gropp, Lusk & 
Skijellum 1995) instead of using machine-specific commands. 
MPI provides portability to the code as it will be able to run 
on any parallel machine and/or distributed network of 
machines on which this public domain library is available. 

As previously mentioned, the solution time will decrease 
with the number of processors employed. This is demonstrated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Face Communication zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Edge Communication zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 5. Local processor communication scheme used in the 3-D 
MP inverse. The solid cube depicts the central processor that is 
sending and receiving information to and from its neighbours. Both 
face and edge communication patterns are indicated. 

in Fig. 6 for an example described in Paper I1 (Alumbaugh & 
Newman 1996). A significant increase in speed is observed 
starting from 80 processors for a single iteration of the inverse 
algorithm. However, as the number of processors continues to 
increase, inter-processor communication becomes more of a 
factor, resulting in an asymptotic behaviour in the solution 
time with increasing number of processors. Here the amount 
of message passing will eventually limit the speed at which the 
computation can proceed. Put simply, increased message pass- 
ing implies more time communicating and less time computing. 
Thus optimal use of the machine may entail running the 
example in Fig. 6 using 200 processors and launching several 
such jobs simultaneously. On the other hand, if turn-around 
time is an issue, one would want to operate near the far right 
end of the curve. 

SYNTHETIC EXAMPLE 

Fig. 7 shows two different perspectives of a model used to test 
the 3-D inverse. The data from this model were generated 
from the integral equation solution of Newman, Hohmann & 
Anderson (1986), and provide a stronger check on the inversion 
scheme than using data generated by the staggered finite- 
difference code; use of data generated with the same forward 
code as embedded in the inverse will be prone to the same 
numerical errors and thus will not be fully independent. The 
test model consists of a 0.2 S mP1 cube, with sides of 50 m, 
residing in a 0.005 S m-' background. Eight wells surround 
the target, with 15 vertical magnetic dipole (VMD) transmitters 
at 10 m intervals straddling the target. The vertical magnetic 
fields were calculated in all other wells at 10m intervals, 
excluding the transmitter well. Because the frequency of exci- 
tation used in this test is only 20 kHz, the dielectric properties 
of the target and host are not important in the simulation, 

2 0 1 , ~ , , 1 , ~ ~ ~ l ~ ~ ~ ~ , ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~  / I Z I I I I I I I I  I I I b l I I I I I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 100 200 300 400 500 600 700 8 b O  9001000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N u m b e r  of Processors 

Figure 6. Solution time for one iteration of the inversion versus the 
number of processors employed. Results are for the eight-well 
Richmond model used in the design experiment discussed in Paper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXI. 
The model is discretized at 114000 cells for the forward model 
calculations, with the inverse parametrization using 88 200 cells. The 
total number of transmitter-receiver pairs used in the inversion is 1848. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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352 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. A.  Newman and D. L. Alumbaugh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and only the conductivity properties need be estimated; the 
magnetic permeability is assumed constant throughout the 
model and set to that of free space. Gaussian noise equal to 
two per cent of the data amplitude was added to the data set. 
The data were then weighted by this percentage before inver- 
sion. In total, the data consist of 12600 transmitter-receiver 
pairs. 

The inversion domain consists of 29791 cells, but only 
13 824 cells are shown in the inter-well region in Figs 7 and 8; 
cells outside this region are used to keep the boundary of the 
inversion domain at distance, so as to not affect the conduc- 
tivity estimates within the inter-well region. We assume in this 
synthetic example that the structure is sufficiently deep for the 
frequency employed, such that the inversion can be launched 
assuming a 0.005 S m- whole space. Note that if the structure 
is sufficiently close to the Earth’s surface then the effect of the 
air-earth interface has to be included in the inversion. 
Incorporation of this interface is possible for the formulation 
presented here, but this could cause the inversion to run more 
slowly and is not critical for this example. Nevertheless, the 
synthetic example is realistic since it is often possible to neglect 
the air-earth interface with borehole data, as demonstrated in 
Paper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. 

The image in Fig. 8 has recovered the location and geometry 
of the cube fairly well, but a smeared version of its conductivity 
within the cube boundary; the estimates vary from 0.1 to 
0.75 S m- I .  The conductivity estimates of the background 
range as low as 0.0016 S m-’. It has been our experience that 
improved resolution of the background and cube can be 
obtained by tightening the lower-bound positivity constraint. 
In this example, the conductivity estimates were restricted to 
be greater than 0.001 S m-’. 

Fifteen iterations were needed to obtain this reconstruction, 
where the reduction in the normalized squared error against 
iteration count is illustrated in Fig. 9. For our purposes, the 
normalized squared error is defined by 

e: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [D(d -dp)ITD(d - dP)/2N, (16) 

where d and dP are the observed and predicted data and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN is 
the total number of complex data used in the inversion; in this 
expression we treat the real and imaginary components of the 
data separately. Notice that after the 15th iteration the error 
begins to increase; in a non-linear inverse problem there is no 
guarantee that an iterative technique will always reduce the 
error (see Menke 1984, pp. 154-156). 

Assuming Gaussian noise with zero mean, the inversion is 
assumed to have converged when the normalized squared error 
approaches the value of unity, since we have weighted the data 
by the noise. Because the error level is still above one in Fig. 9, 
this might suggest that more information could be extracted 
from the data. However, we assume that the error level 
originates from bias in the data. These data were produced 
from a forward-modelling algorithm that is different from the 
one used in the inverse. Finally, the processing time needed to 
produce the image in Fig. 8 was approximately 31 hr on the 
Paragon, with 51 2 processors utilized. 

DISCUSSION 

The MP inversion scheme we have presented has been demon- 
strated on data sets that are impossible to invert on scalar 
workstation platforms, due to the limitations in memory and 

Table 1. Maximum problem size that can be treated by the Intel 
Paragon assuming 1728 processors. Problem size is determined by the 
number of cells used in the forward modelling and inversion and the 
number of transmitters (Tx’s) and unique receivers (Rx’s) specifying a 
data set. Each Tx and Rx position is for a unique frequency. 

Problem size (nodes): 12d 96’ 72’ 
No. Tx’s and Rx’s: 700 1300 3000 

processor speeds (refer to Paper zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 for additional examples). 
An important question to ask is what the largest model the 
MP inversion can handle is. Certainly the maximum model 
size (both forward and inverse) will be related to the number 
of transmitters and receivers specified in the data set, because 
this will determine the number of electric field vectors, E,, that 
need to be computed and stored. Given a maximum memory 
on the Intel Paragon of 16 Mbytes per processor, and consider- 
ing a problem divided amongst 1728 processors (this corre- 
sponds to 12 processors assigned along each coordinate 
direction), Table 1 illustrates a range of problem sizes that can 
be effectively handled. If 1203 nodes are used to describe the 
forward- and inverse-modelling domain, the total number of 
transmitters and receivers that can be used is 700. To increase 
the number of transmitters and receivers it appears that it is 
necessary to reduce the number of nodes. 

One way to increase the size of inverse problems that can 
be tackled is to use a coarser parametrization for the inverse 
problem, but retain the finer parametrization level for the 
forward problem. The key idea here is to reduce the storage 
of the electric field vectors needed in the inverse. For a given 
source, the electric field and predicted data are computed at 
the parametrization level specified in the forward modelling. 
The electric field is then interpolated to the coarser or skel- 
etonized grid corresponding to the inverse and stored in the 
memory. Hence the forward-modelling accuracy is still retained 
in the inverse. Note that the coarser grid can still produce 
smooth images, since it can involve tens of thousands to 
hundreds of thousands of cells. 

The skeletonized electric field vectors allow for the number 
of transmitters and receivers to increase dramatically. Consider 
a problem where the inversion grid is eight times coarser than 
the forward-modelling grid. If 1203 nodes are used in the 
forward calculations, the skeletonized inversion grid, which 
still comprises 216000 cells, allows for the number of transmit- 
ters and receivers to increase from 700 to over 3000, 

CONCLUSIONS 

A 3-D EM inversion code has been successfully implemented 
and tested on an MP platform. Reasonable, overnight to one- 
to-two day, processing times have been obtained. Because of 
the MP platform, reconstructions have been produced that do 
not underparametrize the Earth; these are reconstructions that 
involve tens of thousands of cells. Since the 3-D MP inverse 
also includes rigorous 3-D forward modelling for computing 
model sensitivities and predicted data, it is our hope that this 
solution will also serve as an accuracy benchmark on approxi- 
mate inverse methods now being implemented on workstation 
platforms (see Torres-Verdin & Habashy 1995, 1994; Zhdanov 
& Fang 1995; Habashy et al. 1995; Farquharson & 
Oldenburg 1995). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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3-0 electromagnetic inversion-1 353 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 9. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe normalized squared error is plotted against iteration 
number for the 5 Rm test body shown in Fig. 7. Ideally the squared 
error should approach 1 for convergence. Its failure to do so indicates 
that the data are biased. 

In this paper, we have presented the theory and demon- 
strated the 3-D inversion capability on synthetic data. Because 
the ultimate goal of any inversion scheme is to use it to image 
field data, in Paper I1 we demonstrate how this scheme can 
be used to design a 3-D crosswell survey and invert a crosswell 
data set collected at the Richmond field station north of 
Berkeley, California. Images before and after the injection of 
a salt-water plume will be compared to determine the location 
of the injected plume. In addition, we will also show how the 
scheme can be employed to analyse the reliability of the images 
as well as the accuracy and errors in the data. 
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APPENDIX A: FORMULATION OF THE 
INVERSE PROBLEM USING LOG 
PARAMETERS 

The inverse problem can be formulated to allow for positive 
parameters with a lower bounding constraint by using a log 
parametrization. To accomplish this we first define a pertur- 
bation in a given earth model m(’) at a given iteration i. For 
cell k, we can write 

am, = (mk - m y ) ,  (‘41) 

where mk is the updated model component we are seeking. We 
then use a Taylor series to expand the natural log function, 
In(mk-Ek), about the point m f )  with lower bounding constraint 
&k such that both mk and mf)>&k, and E ~ > O  to write 

In (mk - &k) = h(mf ’ -  ek) +(mi’- Ek)- ‘6mk > (‘42) 

where second-order terms have been neglected. Thus, we arrive 
at 

6mk =(my’ - & k ) 6  h ( m k  - &k) 9 

6 In (mk - Ek) = In (mk - E ~ )  - In (mt7 - Ek) . 

(‘43) 

(-44) 

where 

One can set up an inverse problem involving log parameters 
by modifying elements of the original Jacobian matrix using 
eq. (A3) and the chain rule, such that 

adj/am; = adj/amk(mf)- &k) , ( ‘45)  

where m;=In(mk-&k) and where adj/amk is evaluated at my). 
Following the form of eq. (1) we can define a new functional, 

s’= [{ D [(d-dP(”)-A’(i)sm’]}T{ D [(d-dP(i)) - A’di)&m’]) 

- x2] + A(Wm’)T(Wm’), (A61 

where elements of the modified Jacobian matrix AT(‘) are given 
by eq. (A5), and the perturbation vector 6m’ is defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 1997 RAS, GJl  128, 345-354 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
2
8
/2

/3
4
5
/7

2
7
0
1
2
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

7
 A

u
g
u
s
t 2

0
2
2



354 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. A. Newman zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. L. Alumbaugh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m’-mW zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMinimizing the above expression with respect to m’, 
enforces the lower-bound positivity constraint, where 

m’ = [(DA’p(i))T( DA’P‘’)) + l(W)T(W)] - l(DA’p(i))T( DEjd‘‘‘)) 
(A71 

(‘48) 

and 

&d’(i) = (d - dP(i) + A’PWrn4i)) . 

Once m’ is determined, the parameter components follow from 
the expression 

mk =em’+ & k .  (A91 

With this new formulation, the inversion process is designed 
to deliver smooth estimates of m’. Nevertheless, with a prudent 
selection of the regularization parameter, we can also expect 
smooth reconstructions for the model parameters, m, 
themselves. 

APPENDIX B: DERIVATION OF THE 

MULTIPLICATIONS 

Consider fully expressing the matrix-vector multiplication in 
eq. (9) as 

JACOBIAN MATRIX-VECTOR 

M 

where the summation is over M electrical parameters. The 
entry D j j  is the jth entry of the data-weighting matrix and A,, 

is an element of the Jacobian matrix. These elements are 
assumed to be real-valued, since the real and imaginary 
components of the data are treated as separate entries. The 
indexj ranges from 1 to 2N, where N is the number of complex 
data used in the inversion. Thus j=  1, N correspond to real 
entries, while components j = N + 1,2N correspond to imagin- 
ary ones. The second matrix-vector multiplication in eq. (10) 
can be expressed as 

2N 

zk= AjkDjjJ’j, (B2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
j = 1  

By associating real and imaginary components as a joint term 
in the above summation, we can also express eq. (B2) as 

N 

z k =  ( A j k D j j Y j + A j + N k D j + N j + N Y j + N ) .  (B3) 
j =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

Next, combining elements as Complx(Aj,. AjfNk), 
Complx(Djj,Dj+Nj+N) and Complx(yj,yj+N) and because z k  

must always be real, we find 
N 

zk=B8 1 CompWj jy j ,  Dj+Nj+nYj+n)* 
j =  1 

Complx(Ajk, Aj+Nk), (B4) 

where ‘*’ stands for complex conjugation. 

matrix are jointly expressed in eq. (8) as 
Because the real and imaginary components of the Jacobian 

we can redefine A,, Djj and yj as complex so that they can be 
conveniently stored in computer memory to arrive at the 
following compact programmable expressions for the two 

matrix-vector multiplications: 

yj=Cmplx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA98 gTK-’ 1 uk(as/dmk-aK/dmkE,) B,(Djj), 1 M 

{ [ k = l  

and 

Complx[9&(Djj)B8(yj), 9 m ( D j j ) Y m ( y j ) ] *  
j = 1  

APPENDIX C: PROOF ON THE SPARSITY 

MATRIX A N D  SOURCE VECTOR 
DERIVATIVES 

To show that the vector asjam, and matrix dK/amk each has 
12 non-zero entries, we start with the vector Helmholtz equa- 
tion for the scattered electric field, E, (eq. l in Alumbaugh 
et al. 1996), but we will modify it such that magnetic 
permeability changes from free space, p0, are minimal. Thus, 

OF THE FINITE-DIFFERENCE STIFFNESS 

VxVxE,(r) + iwpo(cr(r) + im(r))ES(r) = - iopt,J,(r), (C1) 

J,(r)= {[a(r)-ab(r)] + iw[~(r)-~~(r) ] }E~(r) .  (C2) 

with the source of the scattering given by 

Here we have assumed an exp(iwt) time dependence with 
i=m, where o represents the angular frequency. In eqs 
(C l )  and (C2), the 3-D conductivity and permittivity variations 
are given by o(r) and E(r), with ob(r) and Eb(r) representing the 
corresponding background properties, which for the present 
purposes are either a uniform space or a layered space. The 
electric field of the background media, Eb(r), drives the source 
vector, and arises from an impressed dipole source. 

The scattered fields are determined by imposing a staggered 
finite-difference approximation on eq. (C1 ), using a rectangular 
grid with a Dirichlet boundary condition. Each cell in this 
grid has a conductivity and dielectric permittivity assigned to 
it, where the scattered and source fields are sampled at the 
edges of the cell as illustrated in Fig. 2. Because of this sampling 
scheme, the averaged electrical properties have to be deter- 
mined at the cell edges ($ Alumbaugh et al. 1996). These 
averages can be evaluated by tracing out a line integral of the 
magnetic field centred on the midpoint of the cell edge. The 
resulting average conductivity and permittivity are simply a 
weighted sum of the conductivities and permittivities of the 
four adjoining cells, where the weighting is based on the area 
of each cell that is bounded by the line integral. This is a 
simple application of Ampere’s Law. A study of Fig. 2 shows 
that, with the 12 field samples, eqs (C l )  and (C2) will require 
12 averages of conductivity and permittivity, with each average 
involving the conductivity and permittivity of the indicated 
cell. Since with every field sample, we have one equation in 
the linear system, KE,=s, where s=J,, it follows that ds/amk 
and the matrix aK/am, each have 12 non-zero entries. 
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