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Since the electrical activities of neurons are closely related to complex electrophysiological environment in neuronal system, a novel
three-dimensional memristive Hindmarsh–Rose (HR) neuron model is presented in this paper to describe complex dynamics of
neuronal activities with electromagnetic induction. 	e proposed memristive HR neuron model has no equilibrium point but can
show hidden dynamical behaviors of coexisting asymmetric attractors, which has not been reported in the previous references
for the HR neuron model. Mathematical model based numerical simulations for hidden coexisting asymmetric attractors are
performed by bifurcation analyses, phase portraits, attraction basins, and dynamical maps, which just demonstrate the occurrence
of complex dynamical behaviors of electrical activities in neuron with electromagnetic induction. Additionally, circuit breadboard
based experimental results well con
rm the numerical simulations.

1. Introduction

In the past three decades, numerous simpli
ed neuronmodels
had been fantastically extended from the classical Hodgkin–
Huxley model [1] to reconstruct the main dynamical char-
acteristics of neuronal electrical activities [2–8], among
which the two- and three-dimensional Hindmarsh–Rose
(HR) neuronmodels are e�ective and available for dynamical
analysis in electrical activities of biological neurons [9, 10].
In the last few years, a wide variety of the HR neuron
models, such as original three-dimensional HR models [10–
16], extended or nonlinear feedback coupled HRmodels [17–
20], time delayed HR models [20–22], fractional-order HR
models [23, 24], and memristor based HR models under
electromagnetic radiations [9, 25–27], have been proposed
and further studied by bifurcation analysis methods for
understanding the dynamics of electrical activities among
neurons [8]. For this reason, bifurcation analysis theory plays
an essential role in describing mode transitions between
spiking and bursting in the neuronal electrical activities [9–
27].

Inspired by the constructing approach of the three-
dimensional HR neuron model [3, 24], a novel three-
dimensional memristive HR neuron model is presented in

this paper, which could be used to better describe complex
dynamical characteristics of neuronal electrical activities
with electromagnetic induction or further exhibit some
undiscovered complex dynamical behaviors in neuronal
electrical activities. Interestingly, our proposed memristive
HR neuron model has no equilibrium point, which can be
classi
ed as a particular dynamical system with hidden oscil-
lating patterns [28–31]. Furthermore, coexisting asymmetric
attractors’ behavior can also be observed in such memristive
HR neuron model as well, indicating the emergence of
bistability dynamics, which has been found in some speci
ed
neuronmodels [32–35].However, the phenomenonof hidden
coexisting asymmetric attractors has not been previously
reported for the HR neuron model.

	is paper is organized as follows. In Section 2, based
on the brief reviews on the HR neuron model, a three-
dimensional memristive HR neuron model is presented,
upon which hidden coexisting asymmetric attractors are
numerically revealed by phase portraits and time series and
its bistability dynamics are con
rmed by the attraction basins
related to the initial values. In Section 3, hidden coexist-
ing asymmetric attractors’ behaviors are demonstrated by
bifurcation diagrams, Lyapunov exponents, and dynamical
maps, from which numerous types of coexisting asymmetric
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attractors are easily observed. In addition, a physical imple-
mentation circuit is fabricated and breadboard experiments
are carried out to con
rm the hidden coexisting asymmetric
attractors in Section 4. 	e conclusions are summarized in
Section 5.

2. Three-Dimensional Memristive
HR Neuron Model

2.1. Brief Reviews on the HR Neuron Model. 	rough sim-
plifying the classical Hodgkin–Huxley model [1], the two-
dimensional Hindmarsh–Rose (HR) neuron model was pro-
posed byHindmarsh and Rose [2] in 1982, which is described
by two 
rst-order ordinary di�erential equations as

�̇ = � − ��3 + ��2 + �

̇� = � − 	�2 − �,
(1)

in which two variables � and � are the membrane potential
and recovery variable (also called spiking variable), respec-
tively, and a term � is the externally applied current. 	e
parameters �, �, �, and 	 are four positive constants, which are
o�en assumed as � = 1, � = 3, � = 1, and 	 = 5, respectively
[2, 11–14].

To permit numerous dynamical behaviors, for example,
chaotic dynamics, for the membrane potential, an extra third
equation was introduced by Hindmarsh and Rose [3] in 1984
to improve the two-dimensional neuron model (1), which is
expressed by three 
rst-order ordinary di�erential equations
as

�̇ = � − ��3 + ��2 + � − 


̇� = � − 	�2 − �


̇ = � ( (� − �1) − 
) ,

(2)

where the variable 
 is the bursting variable and the constant
�1 is the resting potential of the model. 	e newly added
parameters � and  are two positive constants but � is very
small. 	us, a new variable 
, a slowly evolving current, is
coupled into the 
rst equation of the two-dimensional model
(1) to tune the externally applied current �. If the three-
dimensional neuron model (2) is in its 
ring state, the value
of 
 increases [24].

2.2. ConstructedMemristive HRNeuronModel. Motivated by
the above constructing approach of the model (2), a three-
dimensional memristive HR neuron model with electromag-
netic induction e�ect is proposed through introducing a
�ux-controlled ideal memristor into the 
rst equation of the
model (1), which can be mathematically modeled by

�̇ = � − ��3 + ��2 + � + ���

̇� = � − 	�2 − �

�̇ = �,

(3)

where the new variable � is the magnetic �ux indicating the
time integral of the membrane potential �. 	e newly adding
term ��� represents the externally applied electromagnetic
induction and � is the strength of the electromagnetic
induction.

It is important to stress that the introduced memristor in
(3) is ideal and �ux-controlled. According to the de
nitions
of ideal memristor by state-dependent Ohm’s laws between
the terminal voltage V and terminal current � [36, 37], a �ux-
controlled ideal memristor� is thereby given as

� = � (�) V,

�̇ = V,
(4)

where the memductance �(�) can be interpreted as the
�ux-dependent rate of change of charge. 	erefore, the
memductance�(�) utilized in (3) can be written by

�(�) = ��, (5)

in which the coe�cient � is positive.
To exhibit three characteristic 
ngerprints of pinched

hysteresis loop of the memristor modeled by (4) and (5) [38],
a sinusoidal voltage source V = � sin(2���) is connected
at the input terminals of the memristor, where � and � are
the amplitude and frequency, respectively. Let � = 1. When
� = 4 is maintained unchanged and � is assigned as 0.1, 0.2,
and 0.5, respectively, the V − � plots are shown in Figure 1(a),
while when � = 0.1 is 
xed and � is determined as 3, 4,
and 5, respectively, the V − � plots are shown in Figure 1(b).
It is seen from Figure 1 that the V − � plots are the hysteresis
loops pinched at the origin. 	e hysteresis loop is pinched
regardless of the stimulus amplitudes but shrinks into a linear
function at in
nite frequency and its lobe area decreases with
increasing the frequency. 	e numerical results in Figure 1
indicate that the memristor modeled by (4) can behave three

ngerprints for distinguishing memristors [38].

In the next work, the three-dimensional memristive
HR neuron model given in (3) is considered. It should be
remarked that the adjustable parameters of interest are � and
�, and their regions are correspondent to the 
rst quadrant of
the parameter space (� > 0 and � > 0). For any uncertain
parameter �, the existence of any equilibrium point is not
allowed in the three-dimensional memristive HR neuron
model, neither stable nor unstable. Only if the applied current
� = −1 will the model show an equilibrium point, which
is not in the considered parameter region. 	is case is o�en
encountered in various kinds of nonlinear dynamical systems
that are known to generate the speci
ed hidden attractors
[28–31].

2.3. Coexisting Asymmetric Attractors. When the original
parameters are selected as � = 1, � = 3, � = 1, and
	 = 5, respectively [2], an example for model (3) with
� = 1 and � = 0.9 is given as shown in Figure 2, where
the orbits marked by the red and blue colors emerge from
the initial values (0, 0, −2) and (0, 0, 2), respectively. In
Figure 2(a), the phase portraits in the � − � plane display
the bistability phenomenon of hidden coexisting asymmetric



Complexity 3

F = 0.5

−4 −2 420
−4

−2

4

2

0

F = 0.1

F = 0.2
i
(×

10
−
3
)



(a)

−5 −3 −1 531

v

A = 5

A = 3

A = 4

−6

−4

−2

6

4

2

0

i
(×

10
−
3
)

(b)

Figure 1: Pinched hysteresis loops of the �ux-controlled ideal memristor. (a) � = 4 with � = 0.1, 0.2, and 0.5. (b) � = 0.1 with � = 3, 4, and
5.
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Figure 2: Hidden coexisting asymmetric attractors emerged from the initial values (0, 0, −2) and (0, 0, 2). (a) Phase portraits in the �-� plane.
(b) Time series of the variable �.

attractors consisting of chaotic attractor and limit cycle in
the memristive HR neuron model, whereas in Figure 2(b),
the time series of the membrane potential � demonstrate the
coexistence of chaotic and periodic spikes in the memristive
HR neuron model as well. Correspondingly, three Lyapunov
exponents for the initial values (0, 0, −2) are 0.0782, 0,
and −3.0684, respectively, while those for (0, 0, 2) are 0,
−0.2717, and −2.8556, respectively. Remark that Wolf et al.’s
method [39] with MATLAB ODE113 algorithm is here used
to calculate three Lyapunov exponents.

For the coexisting asymmetric attractors shown in Fig-
ure 2(a), the corresponding attraction basins in the �(0)-�(0)
and �(0)-�(0) planes of the initial values are drawn in
Figures 3(a) and 3(b), where the attraction basins for chaotic
attractors and periodic limit cycles are colored in the fuchsia
and cyan regions, respectively. 	e results e�ectively indicate
the emergence of bistability phenomenon in the memristive
HR neuron model.

Particularly, the emerging coexisting asymmetric attrac-
tors do not associate with any equilibrium point, indicating
that the memristive HR neuron model always operates
in hidden oscillating patterns [28–31]. Additionally, it is

interesting to note that, just like the self-excited coexisting
asymmetric attractors in hyperbolic-type memristor based
Hop
eld neural network [32], such hidden coexisting asym-
metric attractors in the memristive HR neuron model are
induced by electromagnetic induction also, which illustrates
the occurrence of complex dynamical behaviors of electrical
activities in neuron with electromagnetic induction.

3. Hidden Coexisting Asymmetric
Attractors’ Behavior

When the applied current � and electromagnetic induction
strength � are considered as two bifurcation parameters,
hidden coexisting asymmetric behaviors of the memristive
HR neuron model are numerically studied by MATLAB
ODE45 algorithm under two sets of the initial values (0, 0,
−2) and (0, 0, 2).

3.1. Bifurcation Behaviors with Increasing �. Figure 4 gives
the bifurcation diagrams of � and the 
rst two Lyapunov
exponents as � = 1 and � = 0.5∼1.4, where in Figure 4(a)
the orbits marked by the red and blue colors emerge from
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Figure 3: Attraction basins in two di�erent planes for � = 1 and � = 0.9, indicating the emergence of bistability phenomenon. (a) 	e
�(0)-�(0) plane with �(0) = 0. (b) 	e �(0)-�(0) plane with �(0) = 0.
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Figure 4: For the initial values (0, 0, −2) and (0, 0, 2), hidden coexisting asymmetric behaviors with � = 1 and � = 0.5∼1.4. (a) Bifurcation
diagrams of �. (b) First two Lyapunov exponents.

the initial values (0, 0, −2) and (0, 0, 2), respectively, and in
Figure 4(b) the Lyapunov exponents marked by the red and
fuchsia colors correspond to the initial values (0, 0, −2) and
thosemarked by blue and green colors correspond to (0, 0, 2).
It can be seen from Figure 4 that complex dynamics appear in
thememristiveHRneuronmodel, in which chaotic attractors
with di�erent topologies, limit cycles with di�erent periodic-
ities, period-doubling bifurcation routes, tangent bifurcation
routes, crisis scenarios, coexisting bifurcation modes, and so
on can be found. 	erefore, the electromagnetic induction
by the introduced memristor induces numerous complex
dynamics for the membrane potential �, especially including
hidden coexisting asymmetric behaviors.

	e concernedly coexisting behaviors of asymmet-
ric attractors mainly locate in two parameter regions
[0.718, 0.736] and [0.754, 0.909], in which some di�erent
types of hidden coexisting asymmetric attractors occur.
When � = 1 and � = 0.735 and 0.81, respectively, the phase
portraits in the �-� plane for the other two types of hidden
coexisting asymmetric attractors are depicted in Figure 5. In
detail, Figure 5(a) exhibits the coexistence of hidden chaotic

attractor and hidden limit cycle, and Figure 5(b) displays
the coexistence of two hidden limit cycles with di�erent
periodicities.

3.2. Bifurcation Behaviors with Increasing �. Figure 6 demon-
strates the bifurcation diagrams of � and the 
rst two
Lyapunov exponents as �= 0∼2.4 and �= 0.9, where the initial
values for di�erent colored orbits in Figure 6(a) and di�erent
colored Lyapunov exponents in Figure 6(b) are consistent
with those used in Figures 4(a) and 4(b). In the same way,
it can be observed from Figure 6 that complex dynamics
are coined in the memristive HR neuron model, re�ecting
the dynamical e�ect of the externally applied current � in
neurons.

	e parameter region [0.98, 1.65] has the bene
t for
the coexisting behaviors of asymmetric attractors, in which
several di�erent types of hidden coexisting asymmetric
attractors can be clearly found. When � = 0.9 is 
xed and � is
set to 1.15 and to 1.62, respectively, the phase portraits in the
�-� plane for the two types of hidden coexisting asymmetric
attractors are plotted in Figure 7, where in Figure 7(a) the
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Figure 5: Phase portraits in the �-� plane for the other two types of hidden coexisting asymmetric attractors. (a) � = 1 and � = 0.735. (b) � =
1 and � = 0.81.
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Figure 6: For the initial values (0, 0, −2) and (0, 0, 2), hidden coexisting asymmetric behaviors with � = 0∼2.4 and � = 0.9. (a) Bifurcation
diagrams of �. (b) First two Lyapunov exponents.

coexistence of hidden chaotic attractor and hidden period 1
limit cycle is displayed, and in Figure 7(b) the coexistence of
hidden period 2 limit cycle and hidden chaotic attractor with
large size is presented.

3.3. Coexisting Asymmetric Behaviors in the Parameter Space.
For intuitively manifesting the coexisting behaviors of asym-
metric attractors in the memristive HR neuron model,
dynamical maps depicted by the largest Lyapunov exponent
under two sets of the initial values are numerically plotted
in the �-� parameter space [40], as shown in Figures 8(a)
and 8(b), where the luminous yellow, red, and black colored
regions stand for the chaotic, periodic, and divergent behav-
iors, respectively. Figure 8 indicates how dynamical evolution
in the electromagnetic induction strength � and applied
current � a�ects the coexisting behaviors under di�erent
initial values being considered. When the two parameters
� and � are evolved, some chaotic regions are embedded
in the periodic regions; however, di�erent chaotic regions
appear on the parameter spaces of Figures 8(a) and 8(b),
which are caused by the coexisting asymmetric attractors’
behaviors under di�erent initial values.	e numerical results
in Figure 8 illustrate that the dynamical behaviors depicted

by the largest Lyapunov exponent based dynamical maps are
well agreed with those revealed by the bifurcation behaviors
in Figures 4 and 6.

It should be remarkable for the dynamical maps in
Figure 8 that the chaotic attractors in di�erent locations of
the chaotic region have di�erent topologies and the limit
cycles in di�erent locations of the periodic region have
di�erent periodicities. Speci
cally, except for several types of
coexisting asymmetric behaviors shown in Figures 2, 5, and
7, another type of coexisting asymmetric behaviors of chaotic
attractor and divergent orbit can also be uncovered, which
means that another formof bistability exists in thememristive
HR neuron model.

4. Circuit Design and Breadboard Experiments

4.1. Physical Circuit Designs and Parameter Selections. 	e
�ux-controlled ideal memristor� characterized by (4) and
(5) and its constructing three-dimensional memristive HR
neuron model expressed by (3) can be physically realized by
using an electronic circuit via analog multipliers and opera-
tional ampli
ers connected with resistors and/or capacitors
[41–43], as drawn in Figures 9(a) and 9(b), respectively. Of
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Figure 7: Phase portraits in the �-� plane for the other two types of hidden coexisting asymmetric attractors. (a) � = 1.15 and � = 0.9. (b) � =
1.62 and � = 0.9.
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Figure 8: In the �-� parameter space, dynamicalmaps depicted by the largest Lyapunov exponent under di�erent initial values. (a) Dynamical
map for the initial values (0, 0, −2). (b) Dynamical map for the initial values (0, 0, 2).

course, this three-dimensional memristive HR neuronmodel
also can be digitally implemented in 
eld-programmable gate
arrays (FPGA) as well [44, 45].

	e implementation circuit of the �ux-controlled ideal
memristor in Figure 9(a) contains an integrator with time
constant ��, an inverter, a multiplier�0, and a resistor ��.
For the input voltage V and output current �, themathematical
model for the memristor emulator can be easily given as

� = �(V�) V =
�0
���

V�V =
1
�� ⋅ �V�V

V̇� =
1
�� ⋅ V,

(6)

where V� is the inner variable of the memristor emulator and
�0 is the gain of the multipliers�0, � = �0�/��, and�(V�) =
�V�/��.

	e main circuit of the memristive HR neuron model in
Figure 9(b) has two integrating channels for implementing
the 
rst and second equations of (3). According toKirchho� ’s

circuit laws and electrical properties of the circuit compo-
nents, the circuit equations of Figure 9(b) are written as

��dV�
d� =

�
�2

V� −
�1�2�
�4

V�
3 + �2��3

V�
2 + �

�1
 �

+ �0���
V�V�

��
dV�

d� =
�
�6
 �0 −

�3�
�5

V�
2 − �

�7
V�

��
dV�

d� = V�,

(7)

where V� and V� are two circuit variables,  � and  �0 are
two applied voltages, and �1, �2, and �3 are the gains of the
multipliers�1,�2, and�3, respectively.

Considering that the dynamic amplitude of the recovery
variable � in the numerical simulations exceeds the linear
operation ranges of operational ampli
er and multiplier, the
following linear transformation

(V�, V�, V�) !→ (V�, 2.5V�, V�) (8)
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Figure 9: Physical electronic circuit implementation for the memristive HR neuron model. (a) Implementation circuit of the �ux-controlled
ideal memristor. (b) Main circuit of the memristive HR neuron model.

should be utilized to reduce the dynamic voltage amplitude
of V� in the circuit equations of the memristive HR neuron
model. 	us, by comparing (8) with (3), there yields

�1 =
�
� ,

�� =
�0�
� ,

�2 =
�
2.5 ,

�3 =
�2�
3 ,

�4 = �1�2�,

�5 =
�3�
2 ,

�6 = 2.5�,

�7 = �.

(9)

Let the time constant �� = 10 kΩ × 33 nF = 330 $s; that is,
� = 10 kΩ and � = 33 nF and the multiplier gains �0 = �1 =
0.1 and �2 = �3 = 1. According to (9), the circuit parameters
for the breadboard experiments of thememristiveHRneuron
model can be calculated, as listed in Table 1.

4.2. Results Captured from Breadboard Experiments. Accord-
ing to the circuit diagrams in Figure 9 and circuit parameters
in Table 1, a hardware circuit using commercially discrete
components can be welded on a breadboard. 	e opera-
tional ampli
ers AD711JN and analog multipliers AD633JN
supplied by ±15 V voltage modules are chosen. 	e DC
voltages  � and  �0 are provided by Tektronix PWS 2326 DC
Power Supply and the experimental results are measured by
Tektronix TDS 3054C Digital Phosphor Oscilloscope. 	e
photograph of the connectedly experimental prototype for
the memristive HR neuron model is displayed in Figure 10.

For experimentally measuring the pinched hysteresis
loops of the memristor emulator given in Figure 9(a),

Table 1: Circuit parameters of thememristive HR neuronmodel for
breadboard experiments.

Parameters Signi
cations Values

�, �7 Resistance 10 kΩ
�1 Resistance 10 kΩ (adjustable)

�� Resistance 1.11 kΩ (adjustable)

�2 Resistance 4 kΩ
�3 Resistance 3.3 kΩ
�4 Resistance 1 kΩ
�5 Resistance 5 kΩ
�6 Resistance 25 kΩ
� Capacitance 33 nF

 �,  �0 DC voltage 1 V

�0, �1 Multiplier gain 0.1

�2, �3 Multiplier gain 1

Figure 10: Photograph of the experimental breadboard and typical
chaotic attractor captured by the digital oscilloscope.

a sinusoidal voltage source V = � sin(2�%�) generated byTek-
tronix AFG 3102C Function Generator is linked to the input
terminals of the memristor emulator, where the physical
frequency is calculated by% = �/��. For � = 1, the adjustable
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Figure 12: Experimentally measured hidden coexisting asymmetric attractors while repeatedly switching on and o� the experimental power
supply. (a) Phase portraits in the V�-V� plane. (b) Time series of the variable V�.

resistance �� = 10 kΩ. When the amplitudes and frequencies
of the sinusoidal voltage source used during numerical
simulations in Figure 1 are employed, the pinched hysteresis
loops for the corresponding amplitudes and frequencies are
captured, as shown in Figures 11(a) and 11(b), respectively,
which experimentally validate the characteristic 
ngerprints
of the memristor emulator. It should be addressed that for
better observing the experimental results, all the output
currents sensed by the current probe are magni
ed by ten
times.

	e circuit parameters listed in Table 1 are used and
the di�erent initial voltages of three capacitors are randomly
sensed by repeatedly switching on and o� the experimental
power supply [46]. For the typical circuit parameters in
Table 1, two adjustable circuit parameters of �1 and ��
correspond to the adjustable model parameters of � = 1
and � = 0.9. Corresponding to Figure 2, the phase portraits
in the V�-V� plane and time series of the variable V� that
emerged from di�erent initial voltages are experimentally

obtained, as shown in Figure 12. 	e experimental results
indicate that hidden coexisting asymmetric attractors also
can be measured from the breadboard experiments of the
memristive HR neuron model as well.

When the applied current � = 1, that is, the resistance
�1 is 
xed as 10 kΩ and the resistance �� is set to 1.36 kΩ
and to 1.23 kΩ, respectively, the phase portraits in the V�-V�
plane are captured, as shown in Figures 13(a) and 13(b).
Furthermore, when the electromagnetic induction strength
� = 0.9, that is, �� = 1.11 kΩ and �1 is set to 8.70 kΩ and to
6.17 kΩ, respectively, the phase portraits in the V�-V� plane
are captured, as shown in Figures 13(c) and 13(d). Ignoring
some tiny di�erences between numerical simulations and
breadboard experiments due to the computational errors
and parasitic circuit parameters, the experimental results
are almost the same as the numerical simulations, which
imply that the coexisting asymmetric attractors’ behaviors
that emerged from the memristive HR neuron model can be
validated experimentally.
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Figure 13: Experimentally measured phase portraits in the V�-V� plane for hidden coexisting asymmetric attractors under di�erent circuit
parameters. (a) �1 = 10 kΩ and �� = 1.36 kΩ. (b) �1 = 10 kΩ and �� = 1.23 kΩ. (c) �1 = 8.70 kΩ and �� = 1.11 kΩ. (d) �1 = 6.17 kΩ and �� =
1.11 kΩ.

5. Conclusions

	is paper presents a novel three-dimensional memristive
HR neuron model to describe complex dynamics of neu-
ronal activities with electromagnetic induction. 	e most
prominent feature of this neuron model is that it does not
contain any equilibrium point but can exhibit hidden coex-
isting behaviors of asymmetric attractors.	rough executing
bifurcation analyses, phase portraits, attraction basins, and
dynamical maps, hidden coexisting asymmetric attractors
are uncovered from the mathematical model and veri
ed
from the corresponding breadboard experiments. 	us, the
proposedmemristive HR neuronmodel can imitate the com-
plex dynamical behaviors of electrical activities in neuron
with electromagnetic induction. Further investigations will
be performed in our future works.
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