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Abstract

Multiscale simulations are demanding in terms of computational resources. In
the context of continuum micromechanics, the multiscale problem arises from
the need of inferring macroscopic material parameters from the microscale. If the
underlying microstructure is explicitly given by means of µCT-scans, convolu-
tional neural networks can be used to learn the microstructure-property mapping,
which is usually obtained from computational homogenization. The CNN ap-
proach provides a significant speedup, especially in the context of heterogeneous
or functionally graded materials. Another application is uncertainty quantifica-
tion, where many expansive evaluations are required. However, one bottleneck
of this approach is the large number of training microstructures needed.

This work closes this gap by proposing a generative adversarial network
tailored towards three-dimensional microstructure generation. The lightweight
algorithm is able to learn the underlying properties of the material from a single
µCT-scan without the need of explicit descriptors. During prediction time, the
network can produce unique three-dimensional microstructures with the same
properties of the original data in a fraction of seconds and at consistently high
quality.

Keywords: artificial neural networks, generative adversarial networks,
microstructure generation, full-field homogenization

1. Introduction

Modern composite materials in aerospace, automotive, civil and mechanical
engineering consist of multiple constituents, which induce macroscopic properties
by means of their microstructure [1]. This introduces a multi-scale problem
understood as inferring quantities of interest on the macro-scale by means of
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microscopic entities [2]. To this end, computational homogenization algorithms
aim towards calculation of effective material properties by calculating quantities
of interest on the micro-scale and projecting them to higher scales [3]. This is
typically carried out using numerical algorithms like the finite element method
(FEM) or fast Fourier transform (FFT) based methods. While mostly leading to
more precise result than analytical homogenization methods, a major drawback
is the large computational effort.

A new direction in the field of engineering is opened up by machine learning
algorithms [4]. Especially, the homogenization procedure can be accelerated
by artificial neural networks (ANN), which are able to approximate arbitrary
Borel measurable functions [5]. Application of ANNs to deterministic full-field
homogenization can be found in [6, 7, 8, 9] and in the context of uncertainty
quantification in [10, 11]. The concept paper [12] provides a low-threshold
overview of the topic. To train an ANN for homogenization, training data is
needed. In the case of microstructures, these are usually obtained synthetically
or from µCT-scans [13]. Although the material characteristics are more realistic
for µCT-scans than for computed microstructures [14], the available amount of
image data usually is severely limited, as a single µCT-scan lasts several hours
and hence only a couple of them are available at reasonable cost [15]. Even
though several hundreds of microstructures can be extracted from these, this is
typically not enough for modern ANNs, which need thousands of unique three-
dimensional images during training [16]. There exist stochastic microstructure
generation approaches, such as [17] [18], [19], [20], [21], which use descriptors to
model the characteristics of the morphology. These descriptors are often non-
trivial and induce a human bias towards the properties of the microstructure.

To circumvent this problem, ANNs can be used to synthetically generate
microstructures drawn directly from the underlying generating distribution of
the µCT-scans. These special kind of ANNs are called generative adversarial
networks (GAN). They were originally introduced for two-dimensional images
in [22], where two ANNs take part in a two-player game of generating synthetic
images and trying to discriminate them from a set of real images, respectively.
When the Nash equilibrium [23] in this two-player game is reached, the discrim-
inating ANN cannot distinguish between real and synthetic images anymore, as
the quality of the generated ones is similar to the original. The basic GAN for-
mulation was improved in succeeding works to overcome problems like training
instability utilizing a Wasserstein distance used in optimal transport [24, 25]
leading to Wasserstein GANs [26, 27, 28]. The current state of the art topologies
are the StyleGAN models from NVIDIA and its successors [29, 30, 31]. For a
recent overview about standard GAN topologies see [32]. GANs are successfully
engaged in three-dimensional settings like high-energy physics [33] and espe-
cially in medical imaging domains such as brain image reconstruction [34] and
biomedical image generation [35].

In the context of microstructure generation, GANs were used on plane porous
material and rock µCT-scans using a two-dimensional StyleGAN architecture
[36]. In [37], a WGAN was used alongside physical constraints on the generated
two-dimensional microstructures of a synthetic dataset. Two-dimensional mi-
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crostructures of steel were produced in [38]. In the three-dimensional regime, the
porous media flow properties of generated microstructures were investigated in
[39], whereas in [40] and [41] solid oxide fuel cell electrodes for electrochemistry
simulations where synthesized.

To the best of the authors knowledge, no attempts were made in applying
the GAN approach in the context of solid micro-mechanical homogenization.
Furthermore, state of the art GANs like StyleGAN have many parameters and
take substantial effort to train, as in the case of [40], especially in the three-
dimensional regime. The above mentioned studies often base their network
topology on ad-hoc assumptions or fail to explain their choices. Important effects
like the number of samples needed in practical applications, where only a limited
amount of micrographs are available, were not investigated. To close these gaps,
the present study therefore aims towards the following key contributions:

• Three-dimensional GAN for micromechanics: A GAN for three-
dimensional microstructures based on µCT-scans is presented. The per-
formance is evaluated by computational homogenization based on FFT as
well as different microstructural descriptors.

• Lightweight network topology: The presented GAN utilizes several
techniques to achieve good results tailored towards microstructure genera-
tion while avoiding unnecessary complexity. The GAN can be trained on
a single workstation.

• Transfer to real-world applications: Numerical experiments consider-
ing important influencing factors on real-world applicability such as net-
work size and number of training samples are carried out on two different
microstructures, including a wood-plastic composite µCT-scan.

The remainder of this paper is structured as follows. In Section 2, a theoret-
ical overview of the most important aspects of this work are given. In detail,
Section 2.1 introduces ANN and Section 2.2 the main ideas of GANs. Com-
putational homogenization is briefly summarized in Section 2.3. The proposed
GAN is introduced and explained in Section 3. Then, two microstructures are
investigated in numerical examples. First, in Section 4, a challenging three-
dimensional microstructure of spherical inclusions is considered. Here, several
hyperparameters and techniques are discussed, such as overfitting effects and
topology choices. The resulting homogenized properties of the baseline and the
synthetic microstructures are compared. Second, in Section 5, a µCT-scan of a
wood-plastic composite is examined. The results of this work are discussed in
Section 6, moreover an outlook is given. Two appendices deal with the appli-
cability of geometrical and physical constraints in Appendix A and Appendix
B, respectively, for GANs in the context of microstructure generation and are
intended for researchers who may want to continue research along the direction
of this paper.
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2. Preliminaries

This section introduces the basic notations of ANNs, GANs and computational
homogenization, which are essential for the developments in Section 3.

2.1. Artificial neural networks
An ANN is a parametrized, nonlinear function composition. By the universal
function approximation theorem [5], arbitrary Borel measurable functions can
be approximated by ANN. There are several different formulations for ANN,
which can be found in standard references such as [42, 43, 44, 45, 46]. Following
[47], most ANN formulations can be unified. An ANN N is a function from an
input space Rdx to an output space Rdy , defined by a composition of nonlinear
functions h(l), such that

N : Rdx → Rdy

x 7→ N (x) = h(l) ◦ . . . ◦ h(0) = y, l = 1, . . . , nL. (1)

Here, x denotes an input vector of dimension dx and y an output vector of
dimension dy. The nonlinear functions h(l) are called layers and define an l-fold
composition, mapping input vectors to output vectors. Consequently, the first
layer h(0) is defined as the input layer and the last layer h(nL) as the output
layer, such that

h(0) = x ∈ Rdx , h(nL) = y ∈ Rdy . (2)

The layers h(l) between the input and output layer, called hidden layers, are
defined as

h(l) −< h(l)
• =

{
h

(l)
•,η, η = 1, . . . , nu

}
, h

(l)
•,η = ϕ(l) ◦ φ(l)

(
W (l)

η • h(l−1)
)
,

(3)
where h(l)

•,η is the η-th neural unit of the l-th layer h(l)
• and nu is the total number

of neural units per layer, while • denotes a product. Following the notation in
[48], the symbol −< denotes an abbreviation of a tuple of mathematical objects
(O1,O2, ...), such that O −< (O1,O2, ...). In Eq. (3), the details of type-specific
layers h(l)

• are gathered in general layers h(l) from Eq. (1). The specification
follows from the •-operator, which denotes the operation between the weight
vector W (l)

η of the η-th neural unit in the l-th layer h(l)
• and the output of the

preceding layer h(l−1)
• , where the bias term is absorbed [44]. If • is the ordinary

matrix multiplication • = ·, then the layer h(l)
· is called dense layer. If • is the

convolution or cross-correlation operation • = ?, then the layer h(l)
? is called

convolutional layer. In the context of convolutional layers, the weight vector
W

(l)
η from Eq. (1) is also called filter, such that nu = nf denotes the number

of filters. Furthermore, φ(l) : R→ R is a nonlinear activation function and ϕ(l)

is a function of the previous layer, such that ϕ(l) : h(l−1) 7→ ϕ(l)(h(l−1)). If ϕ(l)

is the identity function, the layer h(l) is called a feed forward layer. Otherwise,
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the layer h(l) is called residual layer. All weight vectors W (l)
η of all layers h(l)

can be gathered in a single expression, such that

θ =
{
W (l)

η

}
, (4)

where θ inherits all parameters of the ANN N (x) from Eq. (1). Consequently,
the notation N (x;θ) emphasizes the dependency of the outcome of an ANN on
the input on the one hand and the current realization of the weights on the other
hand. The specific combination of layers h(l)

• from Eq. (3), neural units h(l)
•,η

and activation functions φ(l) from Eq. (3) is called topology of the ANN N (x;θ).
The weights θ from Eq. (4) are typically found by gradient-based optimization
with respect to a task-specific loss function [43].

2.2. Generative adversarial neural networks
A GAN consists of two competing ANN from Eq. (1), namely the generator
G −< N (x;θ) = NG(z;θG) and the discriminator (sometimes called critic) D −<
N (x;θ) = ND(I;θD). The goal of the GAN approach is to create synthetic
images using the generator which have the same properties as original images
from a dataset. To this end, the generator G maps random input vectors z from
a dx = dZ -dimensional input space Z ⊂ Rdx = RdZ called latent space to images
I in the dy = dI -dimensional output synthetic image space I ⊂ Rdy = RdI , such
that

G : Z ⊂ RdZ → I ⊂ RdI

z 7→ G(z) = I. (5)

The discriminator D aims to distinguish between synthetic images I and real
images Idata ∈ D ⊂ Idata taken from a dataset D, a subset of the dI -dimensional
real image space Idata, which is defined as

D = {Ikdata, k = 1, ..., ns}, (6)

where ns denotes the number of images inside the dataset called samples. The
discriminator takes an image I ∈ I or Idata ∈ Idata and gives a single number
as an output, which is a measure of similarity of the input towards the dataset
D, such that

D : I ⊂ RdI → R
I 7→ D(I), (7)

and similarly for Idata ∈ Idata. This capability is realized by calibrating the
discriminator D with respect to the dataset D by means of a distance function.
There are several choices for the distance between synthetic and original images.
In this work the, Wasserstein distance W is used, which is defined as

W : I × Idata → R
(I, Idata) 7→W (I, Idata) = inf E [||I − Idata||1] , (8)
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where E denotes the expectation operator [49]. This expression is infeasible for
computation. Fortunately it can be approximated according to the Kantorovich–
Rubinstein theorem [24] by

W (I, Idata) ≈ W̃ (I, Idata) = sup
||D||L≤1

(
E [D(I)]
I∼I

− E [D(Idata)]
Idata∼Idata

)
. (9)

Here, ||D||L ≤ 1 denotes Lipschitz-1 continuity of the discriminator. For given
images Idata ∈ D the discriminator D can be trained to output the supremum in
Eq. (9) by maximizing the expression with respect to a generator G with fixed
weights θG from Eq. (4). Practical considerations such as the used loss functions
and the training procedure are given in Section 3.3.

2.3. Micromechanical numerical homogenization
The following section gives an overview of numerical homogenization in microme-
chanics. A comprehensive treatment of the topic can be found in [1, 2, 3].

Following the notation of [50, 51, 52, 53], a two-phase microstructure is
represented as a unit cell

M(xi) = (0, ξ1)⊗ (0, ξ2)⊗ (0, ξ3), xi = 0, . . . , ξi, i = 1, 2, 3, (10)

with indicator function

Φ(xi) =
{

1, xi ∈MI ⊆M
0, xi ∈MM ⊆M,

(11)

where ξi are dimensions and x = {xi} are coordinates inside the unit cell
M −<M(x), which consists of a matrix phase MM and inclusion phases MI with
M = MM∪MI andMM∩MI = ∅. The indicator function Φ in Eq. (11) identifies
the different phases at different coordinates x [54].

A micro-mechanical linear elastostatic problem is defined as

1. ∇ · σ(x) = 0

2. σ(x) = C(x) : ε(x)

3. ε(x) = 1
2(∇⊗ u(x) + (∇⊗ u(x))T )

4. b̄(x) on ∂M, (12)

where σ(x) is a second-order micro stress tensor, C(x) a fourth-order micro elas-
ticity tensor, ε(x) a second-order micro strain tensor and u(x) a first-order micro
displacement tensor. Here, Eq. (12) denotes equilibrium conditions, Hooke’s law,
strain-displacement conditions and boundary conditions, respectively. For the
boundary value problem in Eq. (12) to be well posed, boundary conditions b̄(x)
are introduced, where ∂M denotes the boundary of the corresponding unit cell
M in Eq. (10). Possible choices are Dirichlet, Neumann or periodic boundary
conditions.
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The micro elasticity tensor C(x) in Eq. (12) depends on material parameters
of phases MM and MI in Eq. (11), such that

C(x) = λ(x)1⊗ 1 + 2µ(x)Isym, (13)

where λ(x) is the first Lamé constant, µ(x) the shear modulus, 1 the second-
order unit tensor and Isym the symmetric fourth-order unit tensor. Solving
the boundary value problem in Eq. (12) on a microstructure M in Eq. (10) and
using an average operator on the micro fields, one obtains corresponding effective
macro fields

ε̄ = 〈ε(x)〉, σ̄ = 〈σ(x)〉, σ̄ = C̄ : ε̄, (14)

where σ̄ denotes an effective macro stress tensor, ε̄ an effective macro strain
tensor and C̄ an effective macro elasticity tensor. The average operator 〈•〉 in
Eq. (14) is defined as

〈•〉 = 1
M

∫
M

(•)dM. (15)

The macro and micro stress and strain fields need to satisfy the Hill-Mandel
condition:

〈σ(x) : ε(x)〉 = 〈σ(x)〉 : 〈ε(x)〉. (16)

In numerical or full-field homogenization, the microstructure M from Eq. (10) is
given explicitly and the boundary problem in Eq. (12) is solved by usage of e.g.,
FEM or FFT based methods, usually utilizing periodic boundary conditions. To
obtain all components of the effective elasticity tensor in Eq. (14), six uniaxial
macro strains ε̄ have to be applied on the microstructure M, such that

C̄ = [σ̄1, σ̄2, σ̄3, σ̄4, σ̄5, σ̄6], σ̄i = 〈C ε̄i〉, i = 1, · · · , 6, (17)

ε̄1 = [1, 0, 0, 0, 0, 0]T , ε̄2 = [0, 1, 0, 0, 0, 0]T , ε̄3 = [0, 0, 1, 0, 0, 0]T ,

ε̄4 = [0, 0, 0, 1, 0, 0]T , ε̄5 = [0, 0, 0, 0, 1, 0]T , ε̄6 = [0, 0, 0, 0, 0, 1]T ,

where • denotes the vector representation of a second-order tensor and • the
matrix representation of a fourth-order tensor. For details the reader is referred
to [3].

The microstructure M from Eq. (10) can be characterized by n-point corre-
lation functions [37]. In this work the first two n-point correlation functions are
used to describe the properties of M. In contrast to stochastic microstructure
generation approaches, where such descriptors are used explicitly during synthe-
sis, in this work these functions are only used to evaluate some characteristics
of the microstructure during post-processing. 1-point correlation function is
defined as

p1 = E
x∼M

[Φ(x)] , (18)

with indicator function Φ(x) from Eq. (11), which is equivalent to the inclusion
volume fraction of the microstructure. The 2-point correlation function is defined
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as

p2 = E
x1,x2∼M

[Φ(x1)Φ(x2)] , (19)

which includes information about the shape and distribution of inclusions.
The numerical homogenization problem in Eq. (17) becomes computational

demanding, if the dimensions ξi of the microstructure M from Eq. (10) get high.
Consequently, an efficient surrogate model using ANN was proposed in [11],
which is able to solve the forward problem magnitudes faster. One drawback in
the above mentioned work is the number of training µCT-scans needed, which
in practice are often not available due to financial constraints. In the following,
this gap is closed by proposing a fast generative algorithm based on ANN, which
does not include physical descriptors of any kind and is applicable to arbitrary
materials.

3. GAN for three-dimensional microstructure generation

In the following, the network topologies of the ANNs as well as the loss functions
used in this work are presented. Furthermore, evaluation metrics are discussed.

3.1. Generator topology
The generator G from Eq. (5) maps a random input vector z ∈ Z to an image I ∈
I. In this work, an independent multivariate normal random input vector is used,
where every component of the dZ -dimensional vector is normally distributed with
mean µ and standard deviation σ, such that

z = (zm ∼ N (µ, σ2)), m = 1, ..., dZ , (20)

where in contrast to the previous usage of N as an ANN, here, by convention,
∼ N (µ, σ2) denotes normally distributed [49]. In the following, the meaning will
be clear from the context. Similar to the StyleGAN architecture [29], the latent
vector z is first mapped to a dW -dimensional nonlinear transformed distribution
w ∈ W. This is carried out by a mapping network Nmap, such that

Nmap : Z ⊂ RdZ →W ⊂ RdW

z 7→ Nmap(z) = h
(l)
· ◦ . . . ◦ h(0)

· = w, l = 1, . . . , nLw. (21)

The mapping network consists of nwL dense layers h(l)
· from Eq. (3) with leaky

ReLU activation function [55]

φLReLU(x) =
{
x, x ≥ 0
γx, x < 0, γ ∈ R+,

(22)

for some input x ∈ R and a constant γ ∈ R+. Then, the nonlinear distribution w
is dimensionally upsampled by transpose residual convolution blocks NResConvT
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consisting of strided transpose convolutional layers [56] h(l)
?T (x) with kernel size

nk × nk × nk and strided transpose convolutional layers h(l)
?T (w) with kernel

size 1 × 1 × 1. Here, the 1 × 1 × 1 convolutional layer h(l)
? (w) acts as an

additive residual layer, adding the upsampled nonlinear random vector w to
every NResConvT block, such that

G (z) = htanh
? ◦N (l)

ResConvT ◦ . . .◦N
(1)
ResConvT ◦Nmap (z) = I, l = 1, ..., nGL, (23)

with
N (l)

ResConvT (x) = φLReLU

(
h

(l)
?T (w) + h(l)

?T (x)
)
, (24)

where nGL denotes the number of blocks of the generator. The strides for the
nk × nk × nk layers are chosen as 2 to double the dimension of the layer output
from block to block. The strides for the 1× 1× 1 residual layers h(l)

? (w) have
to be chosen in such a way that they match the dimensions of the h(l)

?T (x)
layers. As the dimensions grow in every block, successively larger strides have
to been chosen for upsampling w. The number of blocks defines the final output
dimension dI from Eq. (5) and therefore the dimension of the output image
I. All convolutional blocks use leaky ReLU activation functions from Eq. (22),
except the last one. The last layer htanh

? uses a modified tanh activation function,
which constraints the output values to lie between the minimum and maximum
voxel values, λmin and λmax respectively, apparent in the dataset D from Eq. (6).
It is defined as

htanh
? (x) = tanh(x+ 1)λmax − λmin2 + λmin1, (25)

with unit matrix 1 and

λmin = min v ∈ Idata ∀ Idata ∈ D, (26)
λmax = max v ∈ Idata ∀ Idata ∈ D,

where v denotes the value of a single voxel in the image Idata. As a slight abuse
of notation, the layer htanh

? (x) includes its activation function, as opposed to
the general definition given in Eq. (3), to shorten notation. An illustration of
the generator topology is shown in Figure 1a.

3.2. Discriminator topology
The discriminator D from Eq. (7) maps an image I to a real number D(I),
which is then incorporated into the Wasserstein distance LW in Eq. (9). The
image I is downsampled by means of their spatial dimension utilizing residual
convolution blocks NResConv consisting of convolutional layers [56] h(l)

? (x) with
kernel size 3× 3× 3 and 1× 1× 1, followed by average pooling (AvgPool) [43]
for dimension reduction. Here, the 1× 1× 1 convolutional layer h(l)

? (w) acts as
an additive residual layer, providing the output of the preceding layer h(l−1)

? (x)
in every block, such that

D (I) = hlin
· ◦ N

(l)
ResConv ◦ . . . ◦ N

(1)
ResConv (I) , l = 1, ..., nDL , (27)

9



with

N (l)
ResConv (x) = φLReLU ◦AvgPool ◦ h(l)

? ◦
(
h

(l−1)
? + h(l)

? (x)
)
, (28)

where nDL denotes the number of blocks for the discriminator. All convolutional
blocks use leaky ReLU activation functions Eq. (22). The last layer hlin

· is a dense
layer and uses a linear activation function. An illustration of the discriminator
topology is shown in Figure 1b.
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z

Nmap

w

N (1)
ResConvT

...

... N (nG
L)

ResConvT

htanh
?

I

(a) Generator G

I

N (1)
ResConv

...

N (nD
L )

ResConv

hlin
·

D(I)

(b) Discriminator D

dZ

...

dW

2× 2× 2× nGf ∗ 2nL−2

...

ξ1 × ξ2 × ξ3 × nGf

ξ1 × ξ2 × ξ3 × 1

ξ1 × ξ2 × ξ3 × nDf

...

2× 2× 2× nDf ∗ 2nL−2

1
(c) Image dimensions

Figure 1: The network topology of the generator G from Eq. (5) and the discriminator D
from Eq. (7). (a) For the generator, the spatial image dimensions go up from N (1)

ResConvT

to N
(nG

L
)

ResConvT, whereas the number of filters nG
f

goes down. (b) The opposite is true for

the discriminator. Here, the spatial image dimensions go down from N (1)
ResConv to N (nD

L )
ResConv,

whereas the number of filters nG
f
goes up. (c) The relation between spatial dimension of the

generated image and filter size is illustrated. The generated image has dimensions ξ1×ξ2×ξ3×1,
where ξi denotes the edge length of the microstructure from Eq. (10). In this work, an arbitrary
factor 2nL−2 has been chosen for the maximum number of filters in both networks, which
showed good performance. The power of two was chosen to accelerate the calculations on
modern TensorCore GPUs using mixed precision. The transition between generator and
discriminator is depicted by the red arrow.
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3.3. Loss function and training
The generator G from Eq. (5) and the discriminator D from Eq. (7) have differ-
ent loss functions, which are minimized during optimization of their respective
weights θG and θD from Eq. (4). The overall goal for the generator is to produce
synthetic images I from Eq. (5), which have a small Wasserstein distance W
from Eq. (9) with respect to a dataset D from Eq. (6).

3.4. Discriminator loss
The discriminator loss LD consists of two terms. The first, LW̃ , incorporates
the approximated Wasserstein distance W̃ from Eq. (9), the second, LGP, is a
gradient penalty term. The discriminator loss LD is therefore

LD = LW̃ + LGP, (29)

with
LW̃ = E

I∼I
[D(I)]− E

Idata∼Idata
[D(Idata)] . (30)

The gradient penalty term LGP ensures Lipschitz-1 continuity, which is defined
as

LGP = λ E
Î∼Î

[(
||∇x̂D(Î)||2 − 1

)2
]
. (31)

where Î is a uniform distribution interpolated between Idata from Eq. (6) and I
from Eq. (5) and λ is a weight term. The Lipschitz-1 constraint is necessary due
to the Kantorovich–Rubinstein theorem. Further details can be found in [28].
The minimization of the loss function increases the Wasserstein distance between
synthetic images I and real images Idata. The real images are standardized before
being provided to the discriminator, such that Idata ∼N (0,1) is a multivariate
standard normal distribution [49].

3.5. Generator loss
The generator loss LG is defined as

LG = − E
I∼I

[D(I)] . (32)

This is the negative version of the first term in Eq. (30). By minimizing towards
the opposite direction, the generator successively minimizes the Wasserstein
distance for its synthetic images I. During training, the generator adapts the
statistics of the synthetic images I towards the statistics of the real images, which
are follows a standard normal distribution Idata ∼N (0,1). These statistics can
be monitored during training and may aid as a convergence criterion.
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3.6. Training
The overall goal is to train the generator G to minimize the Wasserstein distance
W for its generated images I. To this end, the generator G produces synthetic
images I from random input z, while the discriminator D measures the distance
between the generated and real images by means of the Wasserstein metric. The
generator is then updated in the distance minimizing gradient direction, whereas
the discriminator is updated in the distance maximizing gradient direction, such
that

arg min
θG

LG , arg min
θD

LD, (33)

which is typically carried out by stochastic gradient descent using a learning rate
α and a batch size nB . The whole training process can only be successfully car-
ried out if the discriminator is trained to give successively better approximations
of the true Wasserstein metric, while the generator is trained to produce images
which minimize the Wasserstein metric. Because the discrimination capability
of the discriminator depends on the generation capability of the generator, the
training process is highly dynamic. Care has to be taken, such that the ap-
proximated Wasserstein distance in Eq. (9) is always close enough on the true
Wasserstein distance to give the generator meaningful feedback. This can be
achieved by choosing a higher learning rate during optimization for the discrim-
inator compared to the generator [28]. The training algorithm is summarized in
Algorithm 1.

Algorithm 1 GAN training
Require: Dataset D from Eq. (6)
Require: Generator G from Eq. (5)
Require: Discriminator D from Eq. (7)

for i in niter do
Sample random input vector z from Eq. (20)
Generate image G(z) = I
Sample real image Idata from dataset D
Calculate generator loss LG from Eq. (32)
Calculate discriminator loss LD from Eq. (29)
Update weights θG and θD from Eq. (4) as in Eq. (33)

end for

3.7. Evaluation metric
To quantify the quality of the generated synthetic images G(z) = I from Eq. (5),
three criterion metrics are considered, namely the

• scalar-valued 1-point correlation function p1 from Eq. (18)

• vector-valued 2-point correlation function p2 from Eq. (19)
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• scalar-valued effective elasticity C̄11-tensor component of the tensor C̄ from
Eq. (14)

The 1-point correlation function p1 measures the volume fraction of the inclusion
phase MI , whereas the 2-point correlation function p2 is characteristic for the dis-
tribution and shapes of the inclusions. Finally, the effective elasticity C̄11-tensor
component of the tensor C̄ measures the homogenized mechanical properties of
the microstructure in one loading direction. For these three evaluation criteria,
a scalar-valued error function can be defined, which measures the relative error
with respect to a baseline. The baseline is calculated from a training dataset D.

In this work, the mean relative error E is used, which is defined as

E•(•) = 1
ns

ns∑
i=1

||•̂i − •i||2
||•̂i||2

, (34)

for some input • and baseline •̂. Here, • equals • = p1 for the 1-point correlation
function, • = p2 for the 2-point correlation function or • = C̄11 for the effective
elasticity C̄11-tensor component.

4. Example 1: Spherical inclusions

The first numerical example deals with microstructures consisting of spherical
inclusions embedded into a matrix material, where the linear elastic material
parameters of both constituents differ from each other. The single microstruc-
tures are represented in a voxel format with 323 voxels, where the radius of the
spheres is 4 voxels. The inclusion volume fraction from Eq. (18) is p1 = 0.2.
The Young’s moduli for the matrix and inclusion are E = [103, 104], respectively.
The Poisson’s ratios are set as ν = [0.4, 0.1] in the same manner. These values
can be translated to the material parameters λ and µ given in Eq. (13) in the
well known way, see e.g., [57]. The microstructure is illustrated in Figure 2.

For all experiments, the same hyperparameters are used, if not indicated
otherwise. The experiments were carried out on a single workstation utilizing
a GeForce RTX 3090 GPU and TensorFlow 2 [58]. To take advantage of the
TensorCore [59] architecture of the GPU, mixed precision is used. Here, only
crucial numerical values, such as weights, biases and loss functions, are saved
in single precision, whereas most other variables, such as inputs, are converted
to half precision. Both networks are optimized using the stochastic gradient
Nadam optimizer, a variant of the Adam optimizer utilizing Nesterov momentum
[60]. The hyperparameters of this optimizer are the learning rate α and two
moment terms β1, β2, which are set to β1 = 0.9, β2 = 0.999 for all networks. For
additional numerical stability, global norm gradient clipping is used [44]. The
learning rate is limited by the usage of mixed precision due to numerical under-
and overflow. In this context, the learning rate is chosen as large as possible. For
all experiments, the learning rate for the discriminator is αD = 1× 10−4 and for
the generator αG = 5×10−5. This is because the discriminator has to be trained
more than the generator, as explained in Section 3.3. Furthermore, the gradient
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penalty factor λ from Eq. (29) is set to λ = 10. To avoid instabilities, as reported
in [31], the mapping network Nmap from Eq. (21) of the generator uses nwL = 8
layers and is updated with a reduced learning rate, such that αNmap = 0.1× αG .
The mean and standard deviation of the normal input random vector components
to the generator are chosen as µ = 0 and σ = 1. The batch size nB for both the
generator and discriminator was chosen to be nB = 8 to match the relatively
small learning rate and use the advantages of TensorCores. All networks are
initialized orthogonally [61]. The homogenization as outlined in Section 2.3
is carried out by FFT based on the framework presented in [50, 51, 52]. The
2-point correlation function from Eq. (19) is calculated using FFT and a radial
norm using a custom TensorFlow implementation of [62].

The goal of this section is to show the influence of specific hyperparameters
on the ability of the proposed GAN approach to create synthetic microstruc-
tures. The investigated hyperparameters are crucial for the performance of the
proposed GAN, both by means of precision and training time. A summary of
the most important hyperparameters used in this work can be found in Table 1,
where a range of values indicates, that the specific hyperparameter will be al-
tered in one of the following experiments. The exact value can be then found
in the corresponding section. To this end, the topological choice of filter sizes
is discussed in Section 4.1. The influence of the number of filters of the dis-
criminator and the number of training samples is shown in Section 4.2, whereas
the effect of the number of filters of the generator is outlined in Section 4.3.
The prediction behavior of the generator with respect to varying random input
vectors is analyzed in Section 4.4.

Remark: The microstructure considered in this section can easily be generated
without the usage of neural networks. Because of its simplicity, it is perfectly well
suited for the benchmark tests carried out. Furthermore, the well defined shape of
the inclusions simplifies qualitative judgement of the generated microstructures.
Interestingly, this seemingly trivial benchmark poses a significant challenge to
GANs, because it has to generate sharp phase contrasts and perfectly spherical
geometries from random noise. This was also reported in [39].

4.1. Filter topology for the discriminator: constant versus growing
First, two topology variants for the discriminator D from Eq. (7) are investigated
with respect to their performance in the evaluation metrics from Section 3.7 as
well as the number of parameters θ from Eq. (4). The generator topology
described in Section 3.1 is fixed for both discriminator topologies and works
with a decreasing number of filters to map the low dimensional random input
vector z to the image dimension, as shown in Figure 1. Here, the number of
filters of the last transpose convolutional block is kept at nGf = 32.

Concerning the discriminator, the number of filters can be distributed in the
same manner as for the generator, i.e. growing or evenly distributed. While
both variants were presented in the literature, e.g., [63] for growing and [39] for
constant filters, it is not clear which variant leads to the best results. Therefore,
in this experiment, the total number of parameters was fixed to lay within in
the order of θD = 3.5× 106 while distributing them either in a growing way or
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Hyperparameter Occurrence Generator Discriminator
Microstructure edge length ξi Eq. (10) 32-64 32-64
Batch size nB Section 4 8 8
Learning rate α Section 4 5× 10−5 1× 10−4

Nadam moment β1 Section 4 0.9 0.9
Nadam moment β2 Section 4 0.999 0.999
LeakyReLU γ Eq. (22) 0.2 0.2
Gradient penalty factor λ Eq. (29) – 10
No. layers nL Section 3 5-6 5-6
Kernel size nk Section 3 3 3
Initialization of θ Eq. (4) orthogonal orthogonal
Input random vector z Eq. (20) N (0,1) –
Dim. random vector dZ Eq. (5) 128 –
Dim. mapping network dw Eq. (5) 128 –
No. layers mapping network nLw Eq. (21) 8 –
No. filters nf Section 2.1 8-64 8-64

Table 1: Hyperparameter: Hyperparameter used in all experiments, if not indicated other-
wise, for the generator G from Eq. (5) and the discriminator D from Eq. (7).

evenly. Using nL = 5 residual blocks as defined in Section 3.2 for both topologies,
this results in nDf = 16 filters for the first layer of the growing topology and
nDf = 120 filters for the constant topology. Both the generator and discriminator
are trained for niter = 1× 105 iterations. The number of training samples was
chosen as 1× 104. The resulting metrics for ns = 1× 103 different samples can
be seen in Table 2. As reported in [64], this number of samples is sufficient
for the mean of the quantities of interest. The relative error, as defined in
Eq. (34), of the 1-point probability function or inclusion volume fraction defined
in Eq. (18) is Ep1 = 4.660 × 10−2 for the growing discriminator topology and
Ep1 = 1.378× 10−1 for the constant discriminator topology. The relative error
of the 2-point probability function defined in Eq. (19) is Ep2 = 2.786 × 10−2

for the growing discriminator topology and Ep2 = 6.892× 10−2 for the constant
discriminator topology. The 2-point probability distributions of both topologies
are illustrated in Figure 3. The relative error of the homogenized C̄11 component
as defined in Section 2.3 is EC̄11

= 7.266 × 10−3 for the growing discriminator
topology and EC̄11

= 6.399× 10−2 for the constant discriminator topology.
Besides leading to worse results, the constant filter topology takes with 3h

significantly longer time to train, compared to the growing topology with 1h. The
reason for this is the convolution operation with respect to the larger number of
filters in the first convolutional block for the constant layout nDf = 120 versus the
growing layout nDf = 16. In the first block, the spatial dimensions of the are high
compared to the later blocks. Here, the convolution operation is significantly
more expansive. For the rest of this paper, the growing topology is used for the
discriminator and a decreasing topology for the generator, where for the latter
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(a) 3D representation (b) 2D representation

Figure 2: Example 1: Training microstructure. Spherical inclusions embedded in a matrix
material as used throughout Section 4. (a) Three-dimensional representation of a single
microstructure with suppressed matrix. (b) Center plane slices of 1× 102 three-dimensional
microstructures.

the same reasoning applies.

Topology Ep1 Ep2 EC̄11

Growing 4.660× 10−2 2.786× 10−2 7.266× 10−3

Constant 1.378× 10−1 6.892× 10−2 6.399× 10−2

Table 2: Example 1: Deviation from a reference solution using different discriminator topolo-
gies as described in Section 4.1. Here, a topology with growing filter size is compared to
a topology using constant filter size, where the total number of parameters θ for both the
generator and the discriminator is kept equal.

4.2. Influence of filter number for the discriminator
This section deals with the influence of the number of filters nDf of the discrim-
inator D on the ability to generate synthetic microstructures, measured with
respect to the first component of the homogenized elasticity tensor, C̄11. To
this end, a fixed generator topology with nGf = 32 filters in the last transpose
residual convolution block NResConvT from Eq. (24) is chosen and a total of
nGL = 5 blocks is used. For the discriminator, the number of filters nDf = 32 in
the first residual convolutional block NResConv from Eq. (28) are varied, such
that nDf = [8, 16, 32, 64], where the total number of weights θD grows exponen-
tially. The number of convolutional blocks is nDL = 5 for all discriminators. For
nDf = [8, 16, 32, 64] and the given number of blocks, the number of weights for
the discriminator are θD = [0.9, 3.5, 14.3, 57]× 106, respectively. To investigate
the effect of the number of training samples ns of the dataset D from Eq. (6) on
the different discriminator topologies, all networks are trained on three different
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Figure 3: Example 1: Growing versus constant: Two-point correlation functions for the
dataset and the discriminators with growing and constant filter size from Section 4.1. Here, a
topology with growing filter size is compared to a topology using constant filter size, where
the total number of parameters θ for both the generator and the discriminator is kept equal.

amounts of microstructural realizations, namely ns = [102, 103, 104]. For all
experiments, the discriminator and generator are trained for niter = 1 × 106

steps each.
The resulting error of the first component of the elasticity tensor EC̄11

is shown
in Figure 4. A clear effect of both the number of filters as well as the number of
training samples can be observed. For the smallest amount of training samples,
ns = 1×102, the error increases for higher filter numbers until nDf = 32, where a
plateau is reached. Using ns = 1× 103 samples, a different behavior is observed.
Here the error goes down for increasing filter numbers until nDf = 32, from where
on the error rises. For the largest amount of training samples, ns = 1 × 104,
the error goes down steadily, despite of the number of filters. This effect can be
explained by an overfitting behavior of the discriminator, when the capacity, by
means of the total number of weights θD, is large with respect to the number of
samples ns. Then, the discriminator will always be able to distinguish between
generated images and training samples and assign large Wasserstein distances to
them, despite the quality of the synthetic images. This gives the generator poor
gradient updates. The significance of this effect towards practical application
is high. One has to take care of choosing the appropriate discriminator for the
specific number of training samples at hand to avoid overfitting effects.

4.3. Influence of filter number for the generator
This section deals with the influence of the number of filters nGf of the generator
G on the ability to generate synthetic microstructures, measured with respect
to the first component of the homogenized elasticity tensor, C̄11. To this end, a
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Figure 4: Example 1: Filter discriminator: Relative error of the homogenized elasticity
tensor component C̄11 with respect to the number of starting filters nDf of the discriminator
and different number of samples ns from Section 4.2. The hyperparameters of the generator
are fixed.

fixed discriminator topology with nDf = 64 filters in the first residual convolution
block NResConv from Eq. (28) is chosen and a total of nDL = 5 blocks is used. This
is the best performing topology from Section 4.2. For the generator the number
of filters nGf = 32 in the last transpose residual convolutional block NResConvT

from Eq. (24) are varied, such that nGf = [8, 16, 32, 64], where the total number of
weights θG grows exponentially. The number of transpose convolutional blocks
is nGL = 5 for all generators. For nGf = [8, 16, 32, 64] and the given number of
blocks, the number of weights for the generator are θG = [0.3, 0.6, 1.6, 5.5]× 106,
respectively. The number of training samples ns of the dataset D from Eq. (6)
is fixed at ns = 104 to prevent overfitting as observed in Section 4.2. For all
experiments, the discriminator and generator are trained for niter = 1×106 steps
each.

The resulting error of the first component of the elasticity tensor EC̄11
is

shown in Figure 5. As no convergence for the largest topology, nGf = 64 could
be observed, for that specific number of filters a re-run of the simulation for
niter = 2×106 steps was carried out. Besides slower convergence, a trend towards
lower errors for larger generators, in the sense of parameters θG and filter size
nGf , can be observed. This indicates the usage of the largest possible generator
topology available for the given computational power to achieve the lowest error.
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Figure 5: Example 1: Filter generator: Relative error of the homogenized elasticity tensor
component C̄11 with respect to the number of starting filters nG

f
of the generator for niter = 106

iterations from Section 4.3. The hyperparameters of the discriminator are fixed. The generator
with nf = 64 filters did not converge within the maximum number of iterations. Therefore,
an additional for niter = 2× 106 iterations was carried out and reported.

4.4. Influence of random input vector
Another interesting effect is observed at prediction time. To this end, in this
section two random input vectors are distinguished explicitly, namely the training
random input vector ztrain and the prediction random input vector zpred. During
training, the generator from Eq. (5) takes a normally distributed random vector
ztrain as input. Usually, the mean µ and standard deviation σ from Eq. (20)
are chosen as µtrain = 0 and σtrain = 1, which results in the best training
dynamics. Details can be found in standard texts such as [44] or [43]. In the
experiments carried out in this section it was found that during prediction,
the quality and variety of the generated microstructures strongly depends on
the standard deviation σpred of the random input zpred and the discriminator
capacity, in terms of parameters θD, used during training. To illustrate this
effect, we plot predictions of the same generator G from Eq. (5) trained with
different discriminators D from Eq. (7) with varying standard deviations σpred =
[0.1, 1.0, 10.0] in zpred. Here, a generator with nGf = 32 filters was trained
with discriminators using a filter size of nDf = [8, 16, 32, 64]. The remaining
hyperparameters are chosen equally to that reported in Section 4.2. The resulting
microstructures are shown in Figure 6.

It can be observed that the observed variety and quality of the generated
images is lower for larger discriminators with a large number of filters nDf using
a small standard deviation σpred. The larger the standard deviation is chosen,
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the higher the variety of the generated images. Furthermore, the largest dis-
criminator with nDf = 64 shows significant disturbance in the images for small
and medium standard deviations of σpred = [0.1, 1.0]. For smaller discrimina-
tors, this effect weakens the smaller the number of filters gets. For the smallest
discriminator with nDf = 8, for all investigated standard deviations, varying
microstructures without defects could be generated. For the largest standard
deviation, all networks produced high quality and diverse microstructures.

This effect is different from the well known truncation trick reported in [65],
where a normal random input variable was replaced by a truncated normal
random variable to reduce variance. Therein, the reduced variance led to higher
image quality but smaller variation.

Concerning practical implications, care should be taken if large networks are
used and only a small number of training samples is available. Then, a larger
standard deviation than during training should be chosen during prediction
time.
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f = 64, σpred = 1.0 (c) nD
f = 64, σpred = 10.0

(d) nD
f = 32, σpred = 0.1 (e) nD

f = 32, σpred = 1.0 (f) nD
f = 32, σpred = 10.0

(g) nD
f = 16, σpred = 0.1 (h) nD

f = 16, σpred = 1.0 (i) nD
f = 16, σpred = 10.0

(j) nD
f = 8, σpred = 0.1 (k) nD

f = 8, σpred = 1.0 (l) nD
f = 8, σpred = 10.0

Figure 6: Example 1: Random input vector: Generated images of spherical inclusions
from Section 4 for different discriminator filter sizes nDf used during training from Eq. (7). The
generator is kept fixed with nG

f
= 32. Varying standard deviations of the random input vector

zpred from Eq. (20) are chosen. (a) σpred = 0.1, (b) σpred = 1.0, (c) σpred = 10.0. Details can
be found in Section 4.4
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4.5. Best model
Finally, the best choice for the discriminator and generator were chosen as
described in Section 4.2 and Section 4.3, respectively. The GAN was trained
for niter = 2 × 106 steps on ns = 1 × 104 training samples. The resulting
metrics for ns = 1× 103 different samples can be seen in Table 3, Figure 7 and
Figure 8. The relative error of the 1-point probability function as defined in
Eq. (34), which is identical to the inclusion volume fraction defined in Eq. (18),
is Ep1 = 3.464 × 10−2. The relative error of the 2-point probability function
defined in Eq. (19) is Ep2 = 2.438×10−2. The 2-point probability distribution is
illustrated in Figure 7. The relative error of the homogenized C̄11 component as
defined in Section 2.3 is EC̄11

= 3.907×10−3. As can be seen in Table 3, the error
with respect to the homogenized C̄11 component is one magnitude lower than
the errors in the n-point correlation functions and way below 1% relative error.
This shows, that the microstructural descriptors are not the primary drivers for
the homogenized properties of the material. In this sense, the proposed GAN
offers an advantage over descriptor driven generative approaches, as these do
not enter explicitly in the optimization formulation. Moreover, the GAN learns
the optimal descriptors during training only through the Wasserstein loss.

The results indicate, that the proposed GAN is able to generate highly
accurate synthetic microstructures in the sense of micromechanical homogenized
properties with respect to a training dataset.

Ep1 Ep2 EC̄11

3.463× 10−2 2.438× 10−2 3.907× 10−3

Table 3: Example 1: Best model: Error measures for a generator with nG
f

= 64 filters
trained by a discriminator with nDf = 64 filters for the best models as explained in Section 4.5.
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Figure 7: Example 1: Best model. Two-point correlation functions for the dataset and a
generator with nG

f
= 64 filters trained by a discriminator with nDf = 64 filters as described in

Section 4.5.

(a) Real (b) Synthetic

Figure 8: Example 1: Best model. Spherical inclusions embedded in a matrix material.
Center plane slices of 1× 102 three-dimensional microstructures. (a) Original data. (b) Syn-
thetic microstructures generated by a generator with nG

f
= 64 filters trained by a discriminator

with nDf = 64 filters. The standard deviation for zpred was chosen as σpred = 10. Details can
be found in Section 4.5.
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5. Example 2: Micro CT scan

For the second numerical experiment, a GAN is used to generate synthetic
microstructures of a real-world µCT-scan of a wood-plastic composite (WPC).
A filtered, binary micrograph with dimensions 950× 240× 850 voxel, which is a
total of 193.8× 106 voxels, is sliced into 1× 103 sub-volumes with dimensions
64×64×64 via Latin-Hypercube sampling [66]. Every sub-volume has therefore
2.6× 105 voxels. The same material parameters for the matrix and inclusion as
in Section 4 were chosen. The original µCT is illustrated in Figure 9.

Figure 9: Micrograph of WPC as used in Section 5.

Because the image size is larger then the microstructures used in Section 4, an
additional block has been included for both the generator and the discriminator,
resulting in nGL = 6 and nDL = 6. For the generator, nGf = 64 filters in the last
layer have been chosen, which results in a total of θG = 21×106 trainable weights.
Given the number of training samples, for the discriminator, nDf = 8 filters in the
first layer have been chosen, which results in a total of θD = 3.6× 106 trainable
weights. The training was carried out for niter = 3× 106 steps.

The resulting metrics for ns = 1 × 103 different samples can be seen in
Table 4. The relative error as defined in Eq. (34) of the 1-point probability
function or inclusion volume fraction defined in Eq. (18) is Ep1 = 1.018× 10−2.
The relative error of the 2-point probability function defined in Eq. (19) is
Ep2 = 7.492 × 10−2. The 2-point probability distribution of both the original
µCT-scan and the generator are illustrated in Figure 10. The relative error of
the homogenized C̄11 component as defined in Section 2.3 is EC̄11

= 7.348×10−3.
Mid-plane sections of 1× 102 realizations of both the sub-volumes as well as the
synthetic three-dimensional images are depicted in Figure 11.

It can be seen from the resulting error measures as well as from the gener-
ated images, that the proposed GAN is able to produce high quality synthetic
microstructures on the basis of real-world µCT scans. It has to be pointed out,
that only a single micrograph was used to train the GAN.
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Ep1 Ep2 EC̄11

3.633× 10−2 5.121× 10−2 3.188× 10−2

Table 4: Example 2: WPC: Error measures for a generator trained on a real µCT-Scan from
Section 5.

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

correlation length

p
2(
x

)/
p

2(
0)

Data
GAN

Figure 10: Example 2: WPC: Two-point correlation functions for the WPC and the dis-
criminator as described in Section 5.

(a) Real (b) Synthetic

Figure 11: Example 2: Training microstructure. Short wood fiber inclusions embedded
in a polymer matrix material. Center plane slices of 1×102 three-dimensional microstructures.
(a) Original data. (b) Synthetic microstructures generated by a GAN from Section 5.
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6. Conclusion and outlook

In the present study, a GAN for three-dimensional microstructure generation was
proposed based on a convolutional-residual discriminator and a convolutional-
residual generator with a nonlinear mapping network using a Wasserstein loss.
Several numerical examples on different microstructures investigated the influ-
ence of hyperparameters on the synthesis quality with respect to evaluation
metrics, such as n-point correlation functions and homogenized elasticity tensor
components.

More specifically, the influence of the network topology was considered. A
growing discriminator topology as well as a constant topology was compared,
each with the same number of parameters. Both choices are present in the
literature. It was shown, that the constant topology not only was more time
consuming to train, but also suffered from slower convergence. Therefore, the
growing topology was used throughout the rest of the paper for both the generator
and discriminator.

Next, the influence of the number of filters of the discriminator with respect
to the evaluation metrics was investigated. It was shown, that more filters lead
to lower errors, if a large number of training samples are present. For smaller
numbers of training samples, an overfitting behavior was recognized, which led to
rising errors. This is an important finding due to its profound effects on practical
considerations and has not yet been reported in the related literature. Generally,
only a couple of hundreds of microstructures can be sliced from a handful of
µCT-scans. Therefore, the capacity of the discriminator has to be balanced out
with regard to the number of training samples. The effect of augmentation was
not investigated, as in the specific use case presented in this work, the actual
orientation of the microstructure is important due to its physical response with
respect to defined loading directions. If the training microstructures are, e.g.,
rotated during augmentation, it is difficult to keep track of these manipulation.

Similar experiments were carried out for the generator, where the error went
down for larger filter numbers, at the price of slower convergence. The gen-
eral recommendation would be to use the largest generator possible having the
hardware and project time schedule in mind.

An interesting effect with practical implications was observed at training time.
Here, larger networks showed the tendency to produce microstructures with low
variance and artifacts, if a random input vector with small standard deviation
was used. For smaller networks, this effect was reduced. Using larger standard
deviations in the input vector led to high quality, highly diverse microstructures
with the desired properties.

The last experiments dealt with a real-world WPC micrograph. From this
single micrograph, several sub-volumes were extracted. Given the limited amount
of training samples, a small discriminator was chosen. The resulting high quality
synthetic microstructures in combination with low error metrics underlined the
generative capability of the proposed GAN, which is smaller in the sense of overall
parameters as other state of the art generative networks proposed in the literature.
This enables practitioners to train the network on a single workstation. It has to
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be pointed out, that the algorithm presented is able to extract information from
a small number of µCT-scans to create artificial microstructures. Consequently,
these microstructures only resemble the morphology of the training sample.
Effects, which lie outside the considered training sample, cannot be captured.
Here, more training data is needed.

Geometrical and physical inductive biases were considered but their practical
use was declined. For a brief discussion about this, see the appendices.

Future communication will deal with the comparison with the wide range
of other techniques of microstructure generation. Especially, a well established
research area is the generation of microstructures using stochastic methods, e.g.,
[17] [18], [19], [20], [21]. Furthermore, the framework will be tested against
more microstructural descriptors, especially the full elasticity tensor. Addition-
ally, different materials, including more diverse morphologies of the underlying
microstructure, such as concrete with pores, need to be explored. Some are
currently under investigation by the authors.

The potential of this technology in engineering applications is high. To
train e.g., a CNN for microstructure defect recognition or carrying out full field
homogenization, such as in [11], a large number of training microstructures
is needed. The number of costly µCT-scans can be significantly reduced, as
the proposed GAN is able to efficiently amplify small datasets. The present
work therefore closes a gap towards an end-to-end ANN driven homogenization
framework, which is capable of predicting effective material properties from the
microscale, trained on a small number of µCT-scans. Applications of these highly
efficient approaches are real-time material property monitoring, i.e., structural
health supervision, and multiscale simulations.

Appendix A. S4-equivariant CNNs

In the literature, geometrical constraints to ANNs, exploiting equivariance to
certain group operations such as translation and rotation, were introduced. The
idea stem from the fact, that the convolution and cross-correlation operation in
standard CNN are translational equivariant. Therefore, it is natural to think of
different symmetry group operations, which aim to improve the accuracy and
the training process. General equivariant ANNs, especially, group-equivariant
convolutional neural networks (G-CNN), were first introduced for in [67]. Several
works in two dimensions [68, 69, 70, 71] and in three dimensions [72, 73, 74, 75]
followed. The idea was adapted to equivariant GANs for two-dimensional images
in [31, 76] and for three-dimensional brain image data in [77]. In these works
it was argued by the authors, that G-CNNs can reduce the amount of training
images needed to avoid overfitting.

The ordinary convolutional neural network (CNN) using h(l)
? from Eq. (3) is

translational equivariant. This enables the ANN to learn features of the image
in different locations in the image, as opposed to the case of dense networks
consisting only of dense layers h(l)

· from Eq. (3), which has to learn every feature
for every location in the image. To further include rotational equivariance, in
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this work a S4-equivariant CNN was investigated, following [72]. S4 is the
symmetry group of all 90◦ rotations of a cube. It is an expansion of the ordinary
convolutional layer, where for each weight matrix W a rotated copy is created.
This rotation can be achieved by the group action of S4, namely permutation of
the entries of W by a precomputed index matrix. Then, the rotated filters are
shifted or convoluted over the previous layer, such that

h
(l)
S4 =

{
h

(l)
S4,η, η = 1, . . . , nu

}
, h

(l)
S4,η = ϕ(l) ◦ φ(l)

(
P(W (l)

η ) ? h(l−1)
)
, A.1

where P is a permutation matrix. Details can be found in [72]. In this work, the
S4-convolutional layer was implemented as a custom TensorFlow 2 Keras layer
to make use of GPU acceleration and parallelization.

Whereas the resulting microstructures are qualitatively good, the utilization
of the S4 equivariant network was very challenging from a computational point
of view, as for every learned filter a number of rotated copies has to be generated
and stored. For practical applications, this becomes almost infeasible, as the
wall time between the network presented in this work versus the S4 network is
in the order of several hours to days versus several days to weeks, using a single
workstation. For every unique filter, 24 copies have to be stored. Therefore, due
to the large number of filters needed, the growing filter architecture is infeasible,
such that the less performant constant layout has to be chosen.

Nevertheless, it is shown, that constant filter S4 discriminators provide good
results. For the spherical inclusions investigated in Section 4, a standard gener-
ator with nGf = 32 filters was chosen. The discriminator utilized the equivariant
layers from Eq. A.1. Both networks used nL = 5 blocks. Both networks were
trained for niter = 1 × 105 iterations on ns = 1 × 103 training samples. Even
after this relatively small number of iterations, the error of the C̄11 compo-
nent of the elasticity tensor with respect to 103 different reference samples was
EC̄11

= 1.5873× 10−2. This is a good result and the generated microstructures
are of high quality as illustrated in Figure A.12. Nevertheless, the training was
carried out for over one week, which makes it currently infeasible for practical
applications, even more so due to memory limitations of current GPUs. In
the future, scientist and engineers could profit from the enhanced convergence
behavior of the S4 network.

Appendix B. Physics informed GANs

As it was shown in [57] and [78], physical constraints can be introduced to ANN
in the context of continuum mechanics, which enable the network to solve the
underlying partial differential equations directly, without the need of training
data. This approach is commonly known as physics informed neural networks.
The introduction of explicit physics into the loss function was investigated, e.g.,
in [37]. Here, the standard GAN loss as introduced in [22] was used instead of
the Wasserstein loss.

In this work, we also experimented with introducing a physical loss Lp1 , tak-
ing into account the discrepancy of the inclusion fraction between the dataset and
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Figure A.12: Center plane slices of 1× 102 3D RVEs. Prediction by S4 network from Eq. A.1.

the generated images. Using the 1-point correlation function p1 from Eq. (18),
Lp1 is defined as

Lp1 = E
[
||p1(Idata)− p1(Isynthetic)||22

]
. B.1

No enhancement of the quality of the solution or the convergence behavior
could be observed. Of course, more complex physical constraints could be
introduced, e.g., Minkowski functionals or Minkowski tensors [79], but it is
difficult to calculate these during training time due to computational burdens.
In the light of the comment [80], the attempt to guide the optimization of the
network by inductive bias is ultimately hopeless, as the universal approximation
capacity of the neural network and the very general nature of the Wasserstein
loss are sufficient, given enough computational power, to capture all properties of
the microstructure at hand. This is one key advantage of the proposed GAN for
microstructure generation, as no handcrafted descriptors of the microstructures
enter the optimization process and therefore reduce human bias. Additionally,
this enables the proposed GAN to be applicable to all possible kinds of materials,
whereas descriptors, e.g., Minkowski functionals in the case of porous materials,
are often tailored towards one specific material class.
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