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D3-D5-NS5-branes. In this paper, we present a systematic field theory prescription for

constructing 3d mirror pairs beyond the ADE quiver gauge theories, starting from a dual
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generalization of the S and the T operations, which arise in the context of the SL(2,Z)

action on a 3d CFT with a U(1) 0-form global symmetry. We implement this construction

in terms of two supersymmetric observables — the round sphere partition function and

the superconformal index on S2 ×S1. We discuss explicit examples of various (non-ADE)

infinite families of mirror pairs that can be obtained in this fashion. In addition, we use

the above construction to conjecture explicit 3d N = 4 Lagrangians for 3d SCFTs, which
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1 A brief summary of the paper

1.1 Background and the basic idea of the paper

In spite of the impressive success of perturbative QFT, the study of non-

perturbative/strongly coupled aspects of a QFT remains a challenge for theorists. Probing

the physics in this regime requires new computational tools, and there has been substantive

progress in this area over the last thirty years. In addition to String Dualities, advances in

AdS/CFT, as well as the more recent developments in the fields of Localization Methods

and Conformal Bootstrap, have provided us with a powerful toolbox for studying non-

perturbative phenomena in QFTs, particularly ones with supersymmetry.

A rather ubiquitous phenomenon in QFTs, living in different space-time dimensions, is

the existence of UV/IR dualities. Broadly speaking, existence of such a duality implies that

a set of theories, which have completely different descriptions (theories with different La-

grangians, for example) at a given energy scale, are described by a common physical theory

at another energy scale. The theory at the latter scale is often a strongly-coupled interact-

ing CFT. In addition to High Energy Theory, the study of these dualities play a significant

role in other branches of physics like Condensed Matter Theory. Given the strongly cou-

pled nature of the problem, some direct or indirect handle on the non-perturbative physics

of QFTs is necessary to probe these dualities. A special subclass of such dualities in (2+1)

space-time dimensions will be our primary focus in this paper.
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There has been significant progress in our understanding of UV/IR dualities for super-

symmetric QFTs in the last decade, largely due to the development of a set of computational

techniques which allows one to calculate certain supersymmetric observables exactly. These

are collectively referred to as “Localization Techniques/Methods” (see [1] for a recent re-

view). The basic idea involves putting a supersymmetric QFT, with a given Lagrangian

in flat space, on a d-dimensional Riemannian manifold Md, such that the theory has an

unbroken fermionic generator Q which squares to a bosonic symmetry L. A systematic

prescription for obtaining the supersymmetric Lagrangian on Md, using the rigid limit of

an appropriate supergravity theory with background auxiliary fields, was given in [2]. In

addition, one can turn on background gauge fields for the non-spacetime global symmetries

of the theory. The path integral corresponding to a supersymmetric observable on Md can

then be deformed in a way such that it localizes to a set of “saddle-point” configurations.

For a sufficiently restrictive bosonic symmetry L, this set may reduce to a set of finite num-

ber of isolated points on the moduli space. Given the set of saddle-point configurations,

one can attempt to compute the functional determinant associated with the fluctuations

of fields around these configurations and thereby evaluate the path integral exactly. For

the purpose of this paper, we will consider supersymmetric observables for which the an-

swer can be expressed as a matrix integral (with possible sum over flux sectors) over some

bosonic zero mode(s) with the integrand being completely determined by the gauge group

and matter content of the Lagrangian. Schematically, such a supersymmetric observable

computed using localization in a theory T , will have the following form:1

Z(T )(Â) =

∫
[dϕ]Z

(T )
classical(ϕ, Â)Z

(T )
quantum(ϕ, Â), (1.1)

where ϕ collectively denotes the bosonic zero modes, and Â denotes a space-time-

independent background gauge field2 associated with a 0-form global symmetry. Zclassical

is the part of the matrix integrand that arises from simply evaluating the (possibly reg-

ularized) classical action on the saddle point configuration. Zquantum captures the rest of

the functional determinant and is completely determined by the gauge group as well as the

representations of the matter multiplets under the gauge and the global symmetries.

A very important feature of the localization answer is that it is independent of di-

mensionful coupling constants and therefore invariant under a renormalization group flow.

This implies that the observable, although computed using a weakly-coupled description,

can be used to extract information about the strongly-coupled CFT.3 The RG-invariant

localization answer is particularly suited for studying the UV/IR dualities. For a pair of

theories (X,Y ) flowing to the same CFT in the UV/IR, RG-invariance of the supersym-

metric observable Z would imply

Z(X)(Â) = Z(Y )(Â). (1.2)

1There can also be a sum over flux sectors that we are choosing to ignore in these schematic equations.
2In supersymmetric theories, Â should be understood as a bosonic component of a background vector

multiplet.
3For example, the superconformal index in three dimensions counts primary operators of the IR SCFT,

the three sphere partition function is related to entanglement entropy across a disc, and so on.
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The above equation constitutes a very non-trivial check of the duality statement, since

one is comparing a function of the background gauge fields as opposed to a number. In

particular, the map of the background gauge fields across the duality can be non-trivial.

Historically, the discovery and analysis of these UV/IR dualities, beyond simple ex-

amples, have relied heavily on String Theory dualities. Localization techniques, on the

other hand, provide an efficient way for studying dualities, from a purely QFT perspective.

It is natural to ask whether, within a given class of dualities, one can use these tools to

construct a systematic field theory prescription for generating new dualities, starting from

certain “basic” ones. A related challenge for any such program would be to find QFT

dualities which are not realized by the standard String Theory constructions. We will try

to answer these issues for a class of IR dualities in three dimensions, explaining what we

mean by “basic” dualities along the way.

In order to implement such a program for 3d IR dualities, we would first need to

discuss a prescription for constructing a new 3d CFT from a given 3d CFT. In [3], the

author studied an SL(2,Z) action on 3d CFT X[Â] with a global U(1) symmetry with a

background gauge field Â. The action of the SL(2,Z) generators T and S are given as

T : L(Â) → L(Â) +
1

4π
Â ∧ dÂ,

S : L(Â) → L(a) +
1

2π
B̂ ∧ da (a dynamical),

(1.3)

where B̂ is the background gauge field for the topological U(1)J symmetry in 3d. The

action of the S generator, which amounts to gauging a global symmetry of the theory

X[Â], generically gives a new 3d CFT X ′[B̂], i.e.

S : X[Â] 7→ X ′[B̂]. (1.4)

In this paper, we will present a certain generalization of the S-operation on a class

of 3d CFTs, which have a weakly coupled description with a manifest global symmetry

subgroup Gsub
global =

∏
γ U(Mγ). We will refer to this class of 3d CFTs as class U . Similar to

the S-operation above, the generalized operation will allow us to construct new 3d CFTs

from a given 3d CFT X in the class U . We will refer to this generalized version as an

“elementary S-type operation”, and define it momentarily.

To begin with, we introduce a set of four independent operations on a generic 3d

Lagrangian theory T (not necessarily in U), where the operations act locally on a given

global symmetry factor Kγ (labelled by γ):

1. Gauging (Gγ): Promotes Kγ to a gauge group, adding a U(1)J background field, if

Kγ is unitary.

2. Flavoring (Fγ): adds matter fields charged under Kγ , and turns on background

gauge fields for an additional global symmetry Gγ
F associated with the added matter.

3. Identification (I
γ
γ′): identifies Kγ with other factors Kγ′ (Lie group of the same

type and same rank as Kγ) in the global symmetry of T , and turns on appropriate

background gauge fields for the new global symmetry that the operation leads to.

4. Defects (Dγ): turns on defects for Kγ (Wilson lines or vortex lines, for example).

– 3 –
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Now consider a Lagrangian theory X in the class U . Let us pick the α-th unitary factor

U(Mα) in the global symmetry subgroup Gsub
global =

∏
γ U(Mγ), and split it as U(Mα) →

U(rα) × U(Mα − rα). We will refer to the resultant theory as (X,P), where P denotes

the data which encodes how the U(rα) background gauge fields are chosen from those of

U(Mα).4 Also, let us label the U(rα) factor in (X,P) as α′. We will find it convenient

to consider a slightly general situation, where we split multiple unitary factors U(Mβ) →
U(rα)β × U(Mβ − rα) (β 6= α), in addition to the α-th unitary factor. We will call the

resultant theory (X, {Pβ}), and label the U(rα)β factors as β′. An identification operation

which identifies all the nodes labelled β′ with α′ will be denoted as Iα′

β′ , following the above

notation.

We will now define a “Q-operation” Qα
P acting locally at the unitary factor α of the

Lagrangian theory X in the following fashion:

Qα
P(X) := (Gα′

)n4 ◦ (Fα′
)n3 ◦ (Iα′

β′ )n2 ◦ (Dα′
)n1(X, {Pβ}), (ni = 0, 1, ∀i) (1.5)

:= (Gα
P)n4 ◦ (Fα

P)n3 ◦ (Iα
P)n2 ◦ (Dα

P)n1(X). (1.6)

The first equality is the definition of Q-operation on X. It states that the action of a

given operation Qα
P at a unitary factor U(Mα) (labelled α) on X, is defined by acting

on the theory (X, {Pβ}) a certain combination of G,F , I and D-operations locally at the

unitary factor U(rα) (labelled α′). The specific combination is determined by the integers

{ni}. Note that the composition of the operations F , I,D is commutative, but they do not

commute with G.

The second equality (1.6) defines a set of four basic Q-operations (discussed in detail

in section 3.1 for the specific case of 3d N = 4 quivers) in terms of the operations G,F , I
and D, and gives a rule to compose them:

• Q-Gauging (Gα
P): Gα

P(X) = Gα′
(X, {Pβ}),

• Q-Flavoring (F α
P ): Fα

P(X) = Fα′
(X, {Pβ}),

• Q-Identification (Iα
P): Iα

P(X) = Iα′

β′ (X, {Pβ}),

• Q-defects (Dα
P): Dα

P(X) = Dα′
(X, {Pβ}).

In the rest of the paper, we will refer to these basic Q-operations as gauging, flavoring,

identification and defect operations respectively, acting on a theory X, and the original

operations G,F , I and D will never appear again.

We can now define the “elementary S-type operation” Oα
P on a global symmetry factor

U(Mα) of X, as a special case of a Qα
P operation which necessarily includes the gauging

operation, i.e.

Oα
P(X) := Gα

P ◦
(
Fα

P

)n3 ◦
(
Iα

P

)n2 ◦
(
Dα

P

)n1

(X), (1.7)

where the r.h.s. is precisely defined in (1.6). The action of Oα
P on X gives a (generically)

new 3d CFT X ′, whose weakly coupled description has a different gauge group and matter

4See (3.1) for a concrete realization in the case of N ≥ 2 SUSY theories.
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X[Â] Y [Â]

X ′[B̂] Y ′[B̂]

Oα
P

IR duality

Õα
P

IR duality

Figure 1. Generating new dual pairs using an elementary S-type operation.

content from the theory X. The elementary S-type operation Oα
P can therefore be thought

of as an operation that acts on a 3d CFT X[Â] and produces a new 3d CFT X ′[B̂] (with

or without defect), i.e.

Oα
P : X[Â] 7→ X ′[B̂], (1.8)

where Â denotes the U(rα) background gauge field. B̂ collectively denotes the U(1)J back-

ground gauge field, background fields associated with the global symmetries coming from

the flavoring/identification operations, as well as additional data for the defects, if any. In

the trivial case, where Gsub
global = U(1), and Oα

P is constituted of simply a gauging operation,

the elementary S-type operation coincides with the action of the S generator in [3].

From (1.7), ignoring defect operations for the time being (which would be the case

for most of this paper), an elementary S-type operation can be classified into four distinct

types:

1. Gauging: Oα
P(X) = Gα

P(X).

2. Flavoring-Gauging: Oα
P(X) = Gα

P ◦ Fα
P(X).

3. Identification-Gauging: Oα
P(X) = Gα

P ◦ Iα
P(X).

4. Identification-Flavoring-Gauging: Oα
P(X) = Gα

P ◦ Fα
P ◦ Iα

P(X).

By definition, a “generic S-type operation” will be understood as a combination of elemen-

tary S-type operations of the four types listed above. Note that the construction (1.8) is

completely independent of the existence or the amount of supersymmetry of X[Â]. In a

similar fashion, one can define an “elementary T -type operation”, which turns on a Chern-

Simons term for U(rα), and combine it with S-type operations to construct new 3d CFTs.

Given the map (1.8), one can now address the issue of constructing new dual pairs

starting from a given dual pair. Suppose the theory X[Â] is IR dual to the theory Y [Â],

where both theories have a weakly coupled description and X is in class U . Then, given

an S-type operation Oα
P on X[Â], let us define a dual operation Õα

P on Y [Â],

Õα
P : Y [Â] 7→ Y ′[B̂], (1.9)

such that the pair of theories (X ′[B̂], Y ′[B̂]) are IR dual. This is summarized in the figure

below.

– 5 –
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The challenge then is to give a precise definition for the dual operation Õα
P , given

(X[Â], Y [Â]) and Oα
P , which should also allow one to read off the theory Y ′[B̂], if it turns

out to be Lagrangian (note that the IR dual of a Lagrangian theory is not necessarily

Lagrangian). For theories where an RG-invariant observable computable using localization

exists, as given in (1.1), this problem may be solved explicitly. For three space-time

dimensions, this forces us to restrict ourselves to theories with N ≥ 2 supersymmetry.

Given a pair of dual theories (X[Â], Y [Â]) and the S-type operation Oα
P , one can then

write explicit formulae for RG-invariant observables of Y ′[B̂] using (1.1) and (1.2). To

begin with, the operation Oα
P can be implemented at the level of the supersymmetric

observable in the following fashion:

Z(X′)(B̂) =

∫
[dÂ] ZOα

P
(X)(Â, B̂)Z(X)(Â), (1.10)

where ZOα
P

(X) is an explicitly known operator that depends on the specific elementary

S-type operation. The observable for the dual theory Y ′[B̂] then assumes the following

schematic form (substituting (1.2) in (1.10), and changing the order of integration):

Z(Y ′)(B̂) =

∫
[dϕ′]

(∫
[dÂ]ZOα

P
(X)(Â,B̂)

)
Z

(Y )
classical(ϕ

′, Â)Z
(Y )
quantum(ϕ′,Â) (1.11)

where Z(Y )(Â) =

∫
[dϕ′]Z

(Y )
classical(ϕ

′,Â)Z
(Y )
quantum(ϕ′,Â).

The relation (1.11) is the definition of the dual operation Õα
P on the theory Y . If the theory

Y ′[B̂] is Lagrangian, one should be able to rewrite Z(Y ′)(B̂) in (1.11) in the standard form

Z(Y ′)(B̂) =

∫
[dϕ′]Z

(Y ′)
classical(ϕ

′, B̂)Z
(Y ′)
quantum(ϕ′, B̂), (1.12)

which allows one to read off the gauge group and matter content of Y ′[B̂] from the r.h.s.

of the above equation. Note that this last step may not be easy to perform for a generic

duality, and might involve some non-trivial manipulation of the matrix integral.

The strategy for generating dualities using S-type operations is now clear. For a given

type of IR duality, we pick a convenient subset of dual theories (with (X,Y ) Lagrangian

and X in class U) for which the duality is completely understood in terms of RG-invariant

observables. We will refer to this as the set of “basic dualities” for the given IR duality.

Picking (X,Y ) from this set of basic dualities, one can now implement the construction of

figure 1 step-wise to generate new dual pairs.

In the present paper, we will choose a specific IR duality for 3d N = 4 theories, called

mirror symmetry [4–7], to illustrate how our construction can be realized in a concrete

setting. A discussion of more generic 3d N = 2 dualities will be deferred to a future work.

Mirror symmetry is a special IR duality for a pair of theories (X,Y ) which interchanges the

Coulomb branch of X with the Higgs branch of Y and vice-versa, in the deep IR regime.

In particular, this implies that flavor symmetry (i.e. the Higgs branch global symmetry)

on one side of the duality gets mapped to topological symmetry (i.e. Coulomb branch

global symmetry) on the other side. Non-supersymmetric versions of such dualities appear

– 6 –
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in a wide-range of condensed matter systems [8–10]. Recently, it was shown that these

supersymmetric dualities can also generate a large class of bosonization dualities [11–14]

via soft supersymmetry breaking [15, 16].

In the literature, mirror symmetry for quiver gauge theories of the ADE type (and

their affine cousins) has been studied in a lot of detail [17–23]. This is essentially due to

the fact that these theories have well-known realization in Type IIB String Theory [24–27]

and M-Theory [17, 28, 29]. In particular, the A-type quivers with unitary gauge groups

(also known as linear quivers) have a very simple realization in Type IIB, in terms of D3-

branes on a line segment, along with NS5 and D5-branes. More recently, a large class of

non-Lagrangian 3d SCFTs, whose mirror duals are Lagrangian, was also obtained using the

dimensional reduction of 4d N = 2 theories of class S [30, 31]. In all these String Theory/M-

Theory constructions, the QFT duality follows as a consequence of some String Duality.

One of the primary goals of this paper is to construct mirror dual quiver gauge theories

beyond these ADE quiver examples, using the S-type operations described above. The

strategy, as outlined before, is to start from a pair of basic dual theories (X,Y ), and imple-

ment one or more elementary S-type operation(s) defined above to obtain a new dual pair

(X ′, Y ′). As mentioned earlier, the theories (X,Y ) must both have Lagrangian descrip-

tions for the construction to work. Also, the precise localization procedure, as we will see

later, requires knowing the mirror map, i.e. how flavor symmetries of X map to topological

symmetries of Y . Given a Lagrangian quiver X in class U , the mirror dual Y is generically

not known. Therefore, a convenient choice of basic dualities is necessary. For the purpose

of this paper, we will choose the set of basic dualities as the set of good linear quivers [27]

with unitary gauge groups, where the mirror symmetry (including the mirror map) is com-

pletely understood, both from String Theory and QFT. With this choice of the pair (X,Y ),

the construction of figure 1 can be seamlessly implemented to generate a new dual pair

(X ′, Y ′). In particular, the expression (1.11) greatly simplifies as we will see in section 3.3.

For the examples treated in this paper, the relevant elementary S-type operations

are Abelian, i.e. they involve gauging of a single U(1) global symmetry combined with

flavoring and/or identification operations. Note that the generic S-type operations, built

out of these elementary ones, can generate dualities for Abelian as well as non-Abelian

theories, depending on the basic dual pair (X,Y ) one starts from. Examples involving

non-Abelian elementary S-type operations will be addressed in an upcoming paper.

The paper is organized as follows. Section 2 gives a brief review of the various aspects

of 3d N = 4 physics relevant for the paper. Section 3 sets up the general formalism for

constructing new dualities, as outlined above. Section 3.1 introduces the S-type and T -type

operations on a generic N = 4 quiver in class U , and discusses their realization in terms

of a specific RG-invariant observable — the round 3-sphere partition function [32, 33].

Section 3.2 then discusses the partition function construction of quivers using elementary

S-type operations from linear quivers (as well as more general quivers), while section 3.3

discusses the dual operations. A simple illustrative example, involving an affine A-type

theory, is presented in section 3.4, while more involved examples involving (affine) D-type

quivers are presented in appendix A. The S-type operations can also be implemented in

terms of other RG-invariant observables. We present the analysis in terms of the S2 × S1

superconformal index [34–36] (reviewed in appendix B) in appendix C.
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Section 4 focuses on Abelian S-type operations and examples of new dual theories that

can be constructed using them. Section 4.1 studies the Abelian version of the four different

types of elementary S-type operations and their duals. Section 4.2 and section 4.3 then

apply these operations to construct two infinite families of Abelian mirror pairs and two

infinite families non-Abelian mirror pairs respectively, consisting of non-ADE-type quiver

gauge theories in each case. These two subsections contain the main results of this paper

in terms of constructing new mirror dualities.

Finally, using results of section 4.2 and section 4.3, we demonstrate in section 5 that

3d SCFTs, obtained by compactifying a large family of Argyres-Douglas (AD) theories on

a circle and flowing to the IR, turn out to have Lagrangian descriptions. Our strategy

in this case involves showing that the 3d Lagrangian mirror [31, 37] predicted by the

class S construction of a given AD theory, itself has a Lagrangian mirror. Note that we

mean a manifestly N = 4 Lagrangian in this context, and not a Lagrangian with less

supersymmetry that flows to a theory with N = 4 supersymmetry [38].

1.2 Summary of the main results

In this paper, we introduce a systematic field theory prescription for generating infinite

families of 3d N = 4 mirror quiver pairs, using S-type operations, as outlined in figure 1.

We explicitly realize this program in terms of two RG-invariant supersymmetric observables

— the S3 partition function and the S2 ×S1 superconformal index, which can be computed

using localization techniques. This is then applied to construct examples of dual pairs

involving quiver gauge theories beyond the ADE-type. The main results of the paper can

be summarized as follows:

Construction of mirror pairs from S-type operations. Consider a pair of dual

quiver gauge theories (X,Y ) where X is in class U , with a Higgs branch global symmetry

subgroup Gsub
global =

∏
γ U(Mγ). We first realize the construction of a new pair of dual

theories (X ′, Y ′) starting from (X,Y ) in terms of the S3 partition function. In the matrix

integral, the background vector multiplets for the Higgs branch global symmetry appear as

real masses, while the twisted vector multiplets for the Coulomb branch global symmetry

appear as real FI parameters. Supersymmetry demands that, in each case, the background

multiplets live in the Cartan subalgebra of the respective global symmetry group. For a

generic elementary S-type operation Oα
P on the quiver, the partition function of the theory

X ′ = Oα
P(X) is given as (the more detailed form of this equation appears as (3.16) in the

main text):

ZOα
P

(X)(ηα,m
Oα

P ,η, . . .) =

∫ [
duα

]
ZOα

P
(X)(u

α, {uβ}, ηα,m
Oα

P ) · Z(X,{Pβ})({uβ},η, . . .),
(1.13)

which gives a concrete realization of (1.10). The function Z(X,{Pβ}) (given in (3.8)) is

the partition function of the theory (X, {Pβ}), which was introduced prior to (1.5). The

explicit form of the operator ZOα
P

(X) is given in (3.17). The parameters uβ denote the

real masses in the Cartan subalgebra of the group U(rα)β, ∀β, while the parameters uα

denote the masses for the chosen group U(rα)α with which the groups U(rα)β (for β 6= α)
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will be identified by the S-type operation Oα
P . The parameters ηα and mOα

P denote the FI

parameter for the U(rα) gauge group and the masses for the global symmetry introduced

by the identification and/or flavoring operation respectively. Also, η collectively denotes

the FI parameters of X, and the “. . .” in the argument of Z(X,{Pβ}) denote mass parameters

of X that remain unaffected by the S-type operation. For the special case of X being a

linear quiver, the corresponding equation is given in (3.22).

The partition function of the dual theory Y ′ = Õα
P(Y ) can then be written in the

following form (appears as (3.59) in the main text):

ZÕα
P

(Y )(m′(η, ηα); η′(mOα
P , . . .)) (1.14)

=

∫ ∏

γ′

[
dσγ′

]
Z

Õα
P

(Y )
({σγ′},mOα

P , ηα,η) · Z(Y,{Pβ})
int ({σγ′},mY (η),ηY ({uβ = 0}, . . .)),

which gives a concrete realization of (1.11). The function Z
(Y,{Pβ})
int is the full integrand for

the partition function matrix integral of (Y, {Pβ}), defined in (3.48). The masses and FI

parameters of Y ′ are denoted as (m′,η′), while (mY ,ηY ) denote the same for the quiver

gauge theory Y . Z
Õα

P
(Y )

is a function that can be formally written as a Fourier transform

of the operator ZOα
P

(X):

Z
Õα

P
(Y )

=

∫ [
duα

]
ZOα

P
(X)(u

α, {uβ}, ηα,m
Oα

P ) ·
∏

β

e2πi (gi
β({σγ′

},Pβ)+bil
β ηl) uβ

i , (1.15)

where gi
β({σγ′},Pβ) is a linear function in the variables {σγ′}, that can be read off from the

mirror map relating mass parameters of X and FI parameters of Y , while bil
β are integer-

valued matrices defined in (3.57). For the special case of (X,Y ) being linear quivers, the

functions gi
β are known a priori from the Type IIB construction, and the partition function

for the dual theory is given in (3.55). If the theory Y ′ is Lagrangian, then the matrix integral

on the r.h.s. of (1.14) can be recast into the standard form for a Lagrangian theory, such that

the gauge group and the matter content can be read off. Note that the computation of the

dual partition function essentially boils down to computing the function Z
Õα

P
(Y )

in (1.15).

Using the general formulae (1.13), (1.14) and (1.15), we write down the dual partition

functions for the four distinct types of elementary S-type operations — gauging, flavoring-

gauging, identification-gauging, and identification-flavoring-gauging. We refer the reader

to section 3.2 and section 3.3 for details.

The above construction can also be implemented in terms the S2 ×S1 superconformal

index. The equations analogous to (1.13), (1.14) and (1.15) are given by (C.11), (C.19)

and (C.20) respectively.

Abelian S-type operations and their duals. In section 4.1, we work out the general

rules for the dual operations associated with the four distinct types of elementary Abelian

S-type operations, in terms of the S3 partition function. For the constituent flavoring

operations, we restrict ourselves to hypermultiplets with charge 1 under the new U(1) gauge

group. Given any dual pair of quiver gauge theories (X,Y ) with X in class U , we show

explicitly that the dual theory Y ′ is a Lagrangian theory for each of the four operations.
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In each case, we first give the formula for the dual partition function for a generic quiver

pair (X,Y ), and then discuss the special case where (X,Y ) are linear quivers. We make

the following general observations:

• For gauging and identification-gauging operations, the function Z
Õα

P
(Y )

in (1.14)

turns out to be a single delta function. This implies that the dual theory Õα
P(Y ) is

given by ungauging a single U(1) factor from the gauge group of Y . The precise U(1)

being ungauged depends on the precise form of the functions gβ on the r.h.s. of (1.15).

The related equations can be found in (4.5) and (4.25) respectively in the main text.

• For flavoring-gauging and identification-flavoring-gauging operations, the function

Z
Õα

P
(Y )

in (1.14) is made up of Lagrangian building blocks (up to some overall phase

factors). This leads to a Lagrangian theory Õα
P(Y ). The related equations can be

found in (4.13) and (4.32) respectively in the main text.

The above findings lead to the following result. Consider a dual pair of quiver gauge

theories (X,Y ), and an Abelian S-type operation involving a sequence of the elementary

operations, acting on X. Using the results above, one can readily show that the resultant

theory X ′ is guaranteed to have a Lagrangian mirror dual Y ′, which can be worked out

explicitly.

These results on Abelian S-type operations can also be obtained using the supercon-

formal index on S2 × S1. The relevant discussion can be found in appendix C.2.

Explicit examples of mirror pairs beyond ADE quivers. Using the general rules

for Abelian S-type operations derived in section 4.1, we construct four infinite families of

dual quiver pairs, by a sequence of elementary Abelian S-type operations starting from

a pair of linear quiver gauge theories (X,Y ) in each case. The quiver gauge theories we

consider have the following generic features:

1. Loops attached to a linear quiver tail: loops built out of gauge nodes and

hypermultiplets in appropriate representations, such that one or more of the gauge

nodes are attached to linear quiver tail(s).

2. Loops with multiple edges: loops built out of gauge nodes and hypermultiplets,

such that one or more pairs of gauge nodes are connected by multiple hypermultiplets

transforming in a given representation of the associated gauge groups.

Table 1 lists the four infinite families of dual quiver gauge theories. Note that Family

I and Family II consist of Abelian quiver gauge theories, while Family III and Family

IV consist of non-Abelian quiver gauge theories. The details of the partition function

computation for these dual pairs can be found in section 4.2 and section 4.3 respectively.

As mentioned earlier, these results can be obtained using the superconformal index as well,

and the rules for the Abelian S-type operations, necessary for constructing the duals in

this paper, are worked out in appendix C.2. We therefore check every proposed duality

using two RG-invariant supersymmetric observables — the three-sphere partition function

– 10 –



J
H
E
P
0
7
(
2
0
2
1
)
1
9
9

and the superconformal index. For the sake of brevity, however, we will only include a

sample computation in the paper for the index, given in section C.3. Other examples can

be readily checked using the Abelian S-type operations for the index in appendix C.2, in

a fashion analogous to the S3 partition function.

3d N = 4 Lagrangians for Argyres-Douglas theories reduced on a circle. We

propose explicit N = 4 Lagrangians for 3d N = 4 SCFTs which arise by putting certain

4d Argyres-Douglas (AD) theories on a circle and flowing to the IR. These 4d SCFTs

can be constructed in class S [31, 39] by a twisted compactification of a 6d (2,0) AN−1

theory on a Riemann sphere with an irregular puncture with/without a single regular

puncture. The 3d mirrors of some of these SCFTs are known to be Lagrangian, and can

be constructed using the 6d description — we will refer to them as “class S mirrors”.

The list of 4d SCFTs with Lagrangian class S mirrors includes the (G,G′) theories of

Cecotti-Neitzke-Vafa [40] of the type (As, A(s+1)p−1) and (As, D(s+1)p+2) (where s and p

are positive integers). Our strategy is to show that the class S mirrors associated with

these 4d SCFTs have Lagrangian mirrors themselves, which in turn implies that the

original 3d SCFT has a Lagrangian description. Table 2 summarizes the class S mirror

and the Lagrangian that we propose for a given family of AD theories. Given the class

S mirror, the proposed Lagrangian can be read off from table 1 — Family I, II and IV

respectively — for appropriate choices of the integer parameters. A more detailed analysis

of the physics of these 3d theories will be presented in a future paper.

1.3 Future directions

Before embarking on the main text of the paper, we would like to briefly comment on certain

issues that have not been addressed in this work, but will be discussed in upcoming papers.

• Examples of dualities from non-Abelian S-type operations: in this paper, we

have restricted ourselves to examples of mirror symmetry which can be constructed

using Abelian S-type operations only. In a paper currently under preparation [41], we

show that a generic Non-Abelian S-type operation can be “abelianized” i.e. written in

terms of a set of Abelian S-type operations. A much larger class of mirror duals can

be generated using the construction above, once these Non-Abelian S-type operations

are incorporated.

• Duality maps for defects beyond linear quivers: even for Abelian S-type op-

erations discussed in this paper, we have chosen not to turn on the defect operations.

Incorporating them gives a powerful tool for analyzing the map of defect operators

across the duality. This is especially relevant for dualities beyond linear quivers,

where the aforementioned defect operators do not have a known realization in Type

IIB String Theory. Defects for Non-Abelian S-type operations enrich the story fur-

ther. We explore these directions in a work currently in progress.

• 3d N = 2 dualities: generic dualities in 3d N = 2 gauge theories with Chern-

Simons terms can also be generated from a set of basic dualities, in a way analogous
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Family Theory X Theory Y

I[n,l,p]

1

1 1

1

11

1 1 1 1 1

1

n− l + 1

n− l + 2 n− 1

n

1n− l

1 2 3 p− 2

1 1

n− l + 1 l − 1

p

II[n,l,l1,l2,p1,p2]

1

1

1

1

1

1

1

1

1

1 1 1 1 1

1

1

l

l + 1

l2
l2 + 1

n

1

l1

l − 1

1 2 p1 − 2

p2 − 1

p2 − 2

1

1 1

1

l1 n− l2

p2

p1

l − l1 l2 − l

III[p1,p2,p3]

2

1

1

1

1

1

1

1

3 1 1 1 1

1

2
p1

p2

2

1

1 2 p3 − 1

1

2 2

1

p2

1

p1

1

p3

IV[p1,p2,p3]

2

1

1

1

1

1

1

1

3 1 1 1 1

1

2
p2 − 1

p1

2

1

1 2 p3 − 1
A

1

1

2

1

1

p2

p3

p1

1

2

3

4

Table 1. Summary table of non-ADE families of quiver gauge theories which are mirror dual to

each other. The 3d N = 4 quiver notation, used throughout this paper, is explained in figure 2. In

particular, the line labelled A in quiver X of Family IV denotes a hypermultiplet which transforms

in the rank-2 antisymmetric representation of the U(2) gauge group (i.e. has charge 2 under the

U(1) ⊂ U(2) and is a singlet under the SU(2)) and has charge 1 under the U(1).
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AD Theory 3d mirror from Class S Proposed Lagrangian

(A2, A3p−1)

1 1

p p

p

1

1 1

1

11

1 1 1 1 1

1

p

p+ 1 2p− 1

2p

1p− 1

1 2 3 p− 2

(A3, A4p−1)

1 1

1

p p

p

p

p p

1

1

1

1

1

1

1

1

1

1 1 1 1 1

1

1

2p

2p+ 1

3p

3p+ 1

4p

1

p

2p− 1

1 2 p− 2

p− 1

p− 2

1

(A2, D3p+2)

1 1

1

p p

1

p

(X)

1

1 1

1

11

1 1 1 1 1

1

p+ 1

p+ 2 2p+ 1

2p+ 2

1p

1 2 3 p− 2

(Y )

Amaximal
2,p

1

1

2

1

1

p

p

p
2

1

1

1

1

1

1

1

3 1 1 1 1

1

2
p− 1

p

2

1

1 2 p− 1
A

Table 2. Summary table of 3d mirror pairs associated with certain Argyres-Douglas theories

realized in the class S construction. The third column tabulates the proposed Lagrangians for

the 3d SCFTs obtained by putting the Argyres-Douglas theory on a circle and flowing to the

deep IR. The theory labelled Amaximal
2,p in the fourth row is an AD theory realized by the twisted

compactification of a 6d (2,0) A2 theory on a Riemann sphere with an irregular puncture and a

maximal regular puncture.
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to the construction presented here. This brings into play the T -type operations, in

addition to the S-type operations. In these classes of dualities, there will be additional

constraints on the S-type operations (in gauging a certain flavor symmetry) coming

from the parity anomaly.

2 N = 4 mirror symmetry and linear quivers: generalities

In this section, we review some of the important basic concepts and computational tools

for three dimensional gauge theories with eight real supercharges, which will be useful in

the rest of the paper. The reader familiar with 3d N = 4 physics can skip to section 3.

2.1 Supermultiplets and Lagrangian description

Supersymmetry and supermultiplets. N = 4 supersymmetry in three dimensions

has 8 real supercharges. We will work in terms of complex supercharges QαAA′ which are

doublets of Spin(2, 1) ∼ SL(2,R) (indexed by α = 1, 2) and transform as (2, 2) under the

R-symmetry group, SU(2)H × SU(2)C (indexed by A = 1, 2 and A′ = 1, 2 respectively).

The complex supercharges on R1,2 (i.e. with signature (−,+,+)) generate the following

supersymmetry algebra:

{QαAA′ , QβBB′} = (γµC)αβP
µǫABǫA′B′ , (2.1)

where γµ = (γ0, γ1, γ2) = (iτ3, τ1, τ2) (τi being the standard Pauli matrices), and the

charge conjugation matrix C = τ2. The complex supercharges obey the reality condition

Q†
αAA′ = (τ1) β

α ǫ
ABǫA

′B′
QβBB′ .

A Lagrangian theory with N = 4 supersymmetry consists of a vector multiplet in

the adjoint representation of a gauge group G, and hypermultiplets in a given quaternionic

representation of G. The field content of the vector multiplet and the hypermultiplet can be

obtained from dimensional reduction of the 4d N = 2 vector multiplet and hypermultiplet

respectively, and is given by the second column of table 3.5 The third column of table 3 lists

the representations of the SU(2)H × SU(2)C R-symmetry in which the constituent fields

transform. Note that the supermultiplets are not symmetric with respect to the SU(2)H

and the SU(2)C representations, and this allows one to define corresponding “twisted”

multiplets, i.e. multiplets where the representations of the two SU(2)s are exchanged. In

addition, the theory has a global symmetry group GH ×GC , that we will describe below.

In this paper, we will only consider theories with unitary (or special unitary) gauge

groups with matter in a given representation R of the gauge and global symmetries. For

a given theory, the field content is most conveniently represented by a 3d N = 4 quiver

diagram — the conventions are explained in terms of an illustrative example in figure 2.

5A 3d gauge field can be dualized to a circle-valued scalar only for an Abelian gauge group. But a

non-Abelian gauge group is Higgsed to at most an Abelian subgroup, at a generic point on the moduli

space. Therefore, the counting can be carried over to describe the low energy theory.
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Supermultiplets Constituent Fields SU(2)H × SU(2)C

Vector
Bosons (σ,Φ, γ)

Fermions (λAA′)

(1, 3 ⊕ 1)

(2, 2)

Hyper
Bosons(φ, φ̃†)

Fermions (ψ, ψ̃†)

(2,1)

(1,2)

Table 3. The field content of three dimensional N = 4 vector multiplet and hypermultiplet, along

with the representations of R-symmetry in which they transform. Note that for the vector multiplet

bosons, σ is a real non-compact scalar, Φ is a complex scalar, and γ is a real compact scalar dual

to the 3d gauge field. For the hypermultiplet bosons, φ and φ̃ are both complex scalars.

N1

N2 N3

N4M1

M2

M3

M4

N
U(N) vector mul-

tiplet

N
SU(N) vector

multiplet

MN
M hypers in

fund. of U(N)

MN
M hypers in

fund. of SU(N)

N2N1
U(N1) × U(N2)

bifund. hyper

N2N1
U(N1) × SU(N2)

bifund. hyper

N2N1
SU(N1) × SU(N2)

bifund. hyper

N M

R Hyper in rep. R
of U(N) × U(M)

R

Figure 2. L.h.s.: a quiver diagram representing the field content of a 3d N = 4 theory with gauge

group G = U(N1) × U(N2) × SU(N3) × SU(N4), and fundamental/bifundamental matter. The

various conventions are listed on the r.h.s. In a quiver diagram, we will refer to the circles as gauge

nodes and the boxes as flavor nodes.

Lagrangian description. The action for the N = 4 supersymmetric gauge theories is

most conveniently presented in the 3d N = 2 superspace language (see [42] for a recent

review). An N = 4 vector multiplet consists of one N = 2 vector multiplet V and one

N = 2 chiral multiplet Φ in the adjoint of the gauge group. The action for an N = 4

quiver gauge theory on R1,2 consists of the following terms [5, 33]:

• A Super-Yang-Mills term for the gauge group G:

SSYM[V,Φ] =
1

g2
Y M

∫
d3x d2θ d2θ̃Tr

(
− 1

4
Σ2 − Φ†e2V Φ

)
, (2.2)

where “Tr′′ is an invariant inner product on the Lie algebra of G, V is an N = 2

vector multiplet and Φ is an N = 2 adjoint chiral multiplet inside the N = 4 vector
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multiplet, while Σ is an N = 2 multiplet (often called a linear multiplet), which

includes the field strength of the gauge field in V . In terms of V, the superfield Σ is

defined as:

Σ = − i

2
ǫαβD̃αDβV

(
xµ, θα, θ̃α

)
, (2.3)

Dα =
∂

∂θα
+ iγµ

αβ θ̃
β∂µ,

D̃α = − ∂

∂θ̃α
− iθβγµ

βα∂µ.

• Kinetic terms and minimal gauge couplings for the hypermultiplets transforming in

a representation R of G:

Smatter[φ, φ̃, V ] =

∫
d3xd2θd2θ̃Tr

(
φ†

ie
2V φi + φ̃†

ie
(−2V )φ̃i

)
(2.4)

where φi, φ̃i are N = 2 chiral multiplets constituting a N = 4 hypermultiplet with i

being the global symmetry index.

• A holomorphic superpotential term for the N = 2 chiral multiplets, which preserves

N = 4 supersymmetry.

Ssup[φ, φ̃,Φ] = i
√

2

∫
d3xd2θTr

(
φ̃iΦφ

i
)

+ h.c. . (2.5)

In addition, there are two possible N = 4-preserving deformations of the theory, which

correspond to turning on mass terms for the hypermultiplets and Fayet-Iliopoulos (FI)

terms for the U(1) factors in the gauge group G.

• The hypermultiplet masses transform as triplets under SU(2)C and can be interpreted

as the scalar components of a background N = 4 vector multiplet associated with

the Cartan subalgebra of the global symmetry group GH . They couple to the flavor

symmetry current in the standard way:

Smass[φ, φ̃, Vm,Φm] =

∫
d3xd2θd2θ̃Tr

(
φ†

ie
2V ij

m φj + φ̃†
ie

(−2V ij
m )φ̃j

)

+ i
√

2

∫
d3xd2θTr

(
φ̃iΦ

ij
mφj

)
+ h.c. (2.6)

where V ij
m = V a

mT
ij
a and Φij

m = Φa
mT

ij
a are respectively the N = 2 vector and chiral

multiplet which make up the N = 4 background vector multiplet, with T ij
a being a

Cartan generator of the Lie algebra of GH . The Tr is an invariant inner product on

the Lie algebra of the gauge group G, as before.

• The FI parameters transform as triplets under SU(2)H and can be thought of as the

scalar components of a twisted N = 4 background vector multiplet associated with
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the Cartan subalgebra of the global symmetry group GC . They couple to the 3d

topological currents for the U(1) factors in the gauge group G by a BF term:

SFI[V,Φ, V̂FI, Φ̂FI] =

∫
d3xd2θd2θ̃Tr ΣV̂FI +

∫
d3xd2θTr ΦΦ̂FI + h.c. (2.7)

where V̂FI, Φ̂FI denote the twisted N = 2 vector and chiral multiplet that constitute

an N = 4 twisted vector multiplet.

The complete 3d N = 4 action is a sum of the terms listed above:

SN =4[V,Φ, φ, φ̃, Vm,Φm, V̂FI, Φ̂FI] = SSYM[V,Φ] + Smatter[φ, φ̃, V ] + Ssup[φ, φ̃,Φ]

+ Smass[φ, φ̃, Vm,Φm] + SFI[V,Φ, V̂FI, Φ̂FI]. (2.8)

2.2 IR physics of 3d N = 4 theories and mirror symmetry

Moduli spaces and LEET. A 3d N = 4 theory has a dimensionful gauge coupling

constant — the theory is asymptotically free in the UV and generically flows to a strongly-

coupled interacting SCFT in the deep IR. The moduli space of vacua of these theories is a

hyperkähler manifold with certain distinguished branches, which we will describe momen-

tarily. The low energy effective theory (LEET) around any point on the moduli space gives

the physics at the associated energy scale. In particular, the low energy theory at a generic

smooth point on the moduli space is a free theory, while LEETs living on the singular loci

of the moduli space can involve interesting SCFTs.

The moduli space of vacua has the following distinguished branches:

• Higgs branch: the Higgs branch MH corresponds to the branch of the moduli space

where all hypermultiplet scalars have non-zero vacuum expectation value (vev), all

the adjoint scalars have zero vev, and generically, the gauge group is completely

Higgsed. It is a hyperkähler manifold and additionally admits a realization as a

hyperkähler quotient. The quaternionic dimension of the manifold is given in terms

of the dimensions of the gauge group and matter representation R (of the gauge

group and the global symmetry group GH) by the following formula:

dim MH = dimC (R) − dimR (G). (2.9)

The hyperkähler metric on the Higgs branch is protected against quantum corrections

by supersymmetry. There is a natural action of SU(2)H ×GH on the Higgs branch,

where GH is a manifest symmetry of the Lagrangian and commutes with the R-

symmetry.

Viewed as an algebraic variety in a chosen complex structure, the associated chiral

ring of holomorphic functions is generated by the expectation values of half-BPS local

operators, which transform in irreps of SU(2)H ×GH (and are singlets under SU(2)C).

These are built out of gauge-invariant polynomials of the hypermultiplet scalars.

• Coulomb branch: the Coulomb branch MC corresponds to the branch of the mod-

uli space where the triplet of real adjoint scalars have non-zero vev, all hypermultiplet
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scalars have zero vev, and the gauge group G, at a generic point on the branch, is

broken to its maximal torus. The resultant Abelian gauge fields can be dualized to

scalar fields, which together with the adjoint scalars give a hyperkähler manifold (but

not necessarily a hyperkähler quotient). The hyperkähler metric on the manifold is

not protected against quantum corrections, and the full quantum corrected metric

can be directly computed only for very special cases. The quaternionic dimension of

the manifold is:

dim MC = rank (G). (2.10)

There is a natural action of SU(2)C × GC on the Coulomb branch, where GC is a

global symmetry which commutes with the R-symmetry. In the UV, the manifest

form of this global symmetry is GC = U(1)k, where k is the number of U(1) factors

in the gauge group G, while in the IR, GC can be enhanced to a nonabelian group

with rank k.

An alternative and modern way to describe the Coulomb branch is given in terms of

BPS monopole operators [43, 44], which are local disorder operators very similar to

the ’t Hooft defects in four dimensions. In a 3d N = 4 theory, a monopole operator

is defined by introducing a Dirac monopole singularity, labelled by a cocharacter

B, for the gauge fields at an insertion point. Preserving half of the supersymmetry

requires that one of the three real adjoint scalars should be singular at the insertion

point. This implies introducing the following boundary condition in the 3d QFT at

the insertion point x:

A± ∼ B

2
(±1 − cos θ) dφ, σ ∼ B

2r
, (2.11)

where (r, θ, φ) are spherical coordinates with x as origin, A± are the gauge fields

on the northern/southern patches of the S2 with x as the center, and σ is a real

adjoint scalar. The remaining two real scalar fields, combined into a single complex

scalar Φ, are regular and must transform in the adjoint of the subgroup of G left

unbroken by the monopole singularity. A monopole operator with Φ = 0 is referred

to as a “bare monopole operator” while those with Φ 6= 0 is referred to as a “dressed

monopole operator”. The monopole operators transform in irreps of SU(2)C × GC

and are singlets under SU(2)H .

In a chosen complex structure, the Coulomb branch can be viewed as an algebraic

variety and the associated chiral ring of holomorphic functions is generated by the

expectation values of the bare and dressed monopole operators described above. The

choice of the complex structure, in particular, determines which of the real scalars is

picked to be singular at the insertion point.

• Mixed branches: a mixed branch MM corresponds to a branch of the moduli space,

where some of the hypermultiplet scalars as well as some of the adjoint scalars have

non-zero vevs. The Higgsing of the gauge group on a given mixed branch depends

on the precise scalar vevs turned on.
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Good, bad, and ugly classification. A 3d N = 4 SCFT has an Spin(4)IR R-symmetry.

Generally speaking, the IR R-symmetry may not coincides with the SU(2)H × SU(2)C R-

symmetry manifest in the UV Lagrangian. Assuming that Spin(4)IR
∼= SU(2)H × SU(2)C ,

one can check [27] whether the various 1/2-BPS chiral primary operators of the SCFT

satisfy the unitarity bound ∆ ≥ 1
2 , where ∆ is the conformal dimension of the operator in

the IR. The Higgs branch chiral operators, which are built out of hypermultiplet scalars,

trivially satisfy the bound. The Coulomb branch monopole operators, however, receive

non-trivial corrections to their conformal dimension. For a theory with gauge group G,

Higgs branch global symmetry GH , and hypermultiplets transforming in a representation

R of G×GH , the conformal dimension of a monopole operator is given as [45, 46]:

∆(B) = qR = −
∑

α∈∆+

|α(B)| +
1

2

∑

ρ∈R

|ρ(B)|, (2.12)

where B ∈ Λcochar(G) labels the monopole operator, qR is the charge of the monopole

operator under the U(1)R R-symmetry of the N = 2 subalgebra that it preserves, α is a

positive root of the Lie algebra of G, and ρ is a weight of the G × GH Lie algebra in the

representation R.

Consistency with unitarity leads to the following classification of 3d N = 4 theories:

• Good theory: a given theory is good if ∆(B) > 1
2 for all B ∈ Λcochar. For such

a theory, the most singular locus (i.e. singular locus of highest codimension) on the

Coulomb branch is a point where the Coulomb and the Higgs branches intersect.

The local geometry around this point is that of a conical variety and represents the

moduli space of an N = 4 SCFT for which Spin(4)IR
∼= SU(2)H × SU(2)C . In the

deep IR, the good theory flows to this SCFT.

• Ugly theory: a given theory is ugly if there exists at least one monopole operator

for which ∆(B) = 1
2 , but none with ∆(B) < 1

2 . The most singular locus on the

Coulomb branch is generically not a point. However, the local geometry around a

generic point in the most singular locus is a product of some flat directions and a

conical singularity, such that the former represents the moduli space of certain free

twisted hypermultiplets, while the latter represents the moduli space of an N = 4

SCFT for which Spin(4)IR
∼= SU(2)H × SU(2)C . In the deep IR, the ugly theory

therefore flows to an SCFT along with some free decoupled twisted hypermultiplets.

• Bad theory: a given theory is bad if there exits at least one unitarity violating

monopole operator, i.e. for which ∆(B) < 1
2 . Similar to ugly theories, the most

singular locus on the Coulomb branch is not a point, and the local geometry around

a generic point in this singular locus is a product of some flat directions and a conical

singularity, with the former representing the moduli space of certain free twisted

hypermultiplets. However, the conical singularity represents the moduli space of an

N = 4 SCFT for which Spin(4)IR does not coincide with the UV R-symmetry of

the original theory, and is realized as an embedding inside the product of the UV

R-symmetry and certain accidental flavor symmetry that appear in the IR [47–49].
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Three dimensional mirror symmetry. An IR duality implies that a set of theories

with different UV Lagrangians flow to the same IR SCFT. Mirror symmetry is a special

case of an IR duality in three dimensions with the following properties:

• Given a pair of dual theories X and Y , mirror symmetry exchanges the Coulomb and

the Higgs branches in the deep IR, i.e. as g2
Y M → ∞:

M(X)
C = M(Y )

H , M(X)
H = M(Y )

C . (2.13)

• The duality exchanges SU(2)C and SU(2)H , and therefore exchanges background

vector and twisted vector multiplets. This implies that hypermultiplet masses and

FI parameters are exchanged under mirror symmetry.

Mirror symmetry relates observables in theory X with observables in theory Y , and the

precise map is referred to as the “mirror map”. The simplest mirror map is the one which

relates hypermultiplet masses on one side of the duality with FI parameters on the other

(or vice-versa).

2.3 Checking mirror symmetry using RG flow invariant observables

Localization techniques [32, 50] can be used to compute exact expressions for various RG

flow-invariant supersymmetric observables in a theory using the UV Lagrangian. A non-

trivial check of an IR duality is to show that such supersymmetric observables for a given

pair of dual theories agree. In this subsection, we present a brief review of a supersym-

metric observable — the partition function of a 3d N = 4 theory on a round three sphere,

which will be one of the main tools of analysis in this paper. Consider an N = 4 quiver

gauge theory with gauge group G and global symmetry group GH , such that the matter

hypermultiplets transform in a representation R of G×GH . We turn on background vec-

tor multiplets in the Cartan subalgebra of the global symmetry group GH (hypermultiplet

masses) as well as twisted background vector multiplets in the Cartan subalgebra of the

topological symmetry group GC (FI parameters). However, instead of the full triplet, we

can only turn on a single real parameter in each case to preserve supersymmetry. In addi-

tion, one can turn on various supersymmetric defects in the theory. For a generic 3d N = 2

theory, one can also turn on Chern-Simons interaction for the gauge group. In this paper,

we will focus exclusively on N = 4 theories, for which we set the Chern-Simons level κ = 0.

The rules for writing down the S3 partition function for a generic 3d N = 4 theory [32,

33] may be summarized as follows. Localization on S3 ensures that the partition function

can be written as a matrix integral in terms of a single real scalar s which lives in the Cartan

of the gauge group, where s is the zero-mode associated with the real adjoint scalar that sits

inside a 3d N = 2 vector multiplet (which in turn sits inside a 3d N = 4 vector multiplet).

The partition function is a function of the real masses m and real FI parameters η, which

should be thought of as real adjoint scalars inside the respective background N = 2 vector

multiplets (which in turn sits inside a 3d N = 4 vector multiplet). In presence of defects,

the partition function will also depend on some additional data D. For example, Wilson
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line defects, wrapping a great circle on S3, will be labelled by a representation RW of the

gauge group.

Since S3 does not have any instantons (unlike the case of S4), the partition function

may be written as a matrix integral where the integrand is built out of classical (FI and

Chern-Simons) and one-loop contributions, as well possible supersymmetric defects:

Z(m; η; k; D) =

∫ [
ds
]
Zint(s,m,η,D)

=

∫ [
ds
]
ZCS(s,k)ZFI(s,η)Zdefect(s,D)Zvector

1−loop(s)Zhyper
1−loop(s,m), (2.14)

where
[
ds
]

= dks
|W (G)| , and |W (G)| is the order of the Weyl group of G. The individual

terms in the integrand on the r.h.s. are given as follows.

• The Chern-Simons interactions for various factors in the gauge group gives the clas-

sical contribution:

ZCS(s,k) =
∏

γ

e2πikγTr(sγ)2
, (2.15)

where γ runs over all the factors in the gauge group.

• The l U(1) factors in the gauge group gives the following classical contribution

ZFI(s,η) =
l∏

γ=1

e2πiηγ Tr(sγ) , (2.16)

where γ runs over the l gauge nodes with a U(1) factor and ηγ is the associated FI

parameter.

• The contribution of a Wilson line defect in a representation RW of the gauge group,

is given as

Zdefect(s,D) := ZWilson(s,RW ) =
1

dim(RW)
TrRW

(
e2πs

)
. (2.17)

• The N = 4 vector multiplet contributes a one-loop term:

Zvector
1-loop(s) =

∏

α

sinh πα(s) , (2.18)

where the product extends over the roots of the Lie algebra of G. In fact, this is

precisely the contribution of an N = 2 vector multiplet since contribution of the

adjoint chiral which is part of the N = 4 vector multiplet is trivial [33].6

6Strictly speaking, the vector one-loop contribution contains a factor of the Vandermonte determinant∏
α

α(s) in the denominator. However, this factor exactly cancels with another factor of Vandermonte deter-

minant coming from the measure of the integration over the Cartan of the gauge group. We will also ignore

certain factors of 2 that appear in the 1-loop contributions for the vector multiplet and the hypermultiplet.
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• The one-loop contribution from N = 4 hypermultiplets transforming in a represen-

tation R of G×GH :

Zhyper
1-loop(s,m) =

∏

ρ(R)

1

cosh πρ(s,m)
, (2.19)

where the product extends over the weights of the representation R.

Consider a pair of theories X and Y which are mirror dual to each other. Assuming

no line defects and Chern-Simons terms are turned on, the IR duality implies that the

partition functions of the theories7 are related as:

Z(X)(m; η) = e2πiaklmkηl Z(Y )(m′(η); η′(m)), (2.20)

where (m,η), (m′,η′) are the masses and FI parameters for X and Y respectively. The

mass parameters m′ of Y are linear functions of the FI parameters η of X, while FI

parameters η′ of Y are linear functions of the FI parameters m of X, as expected under

mirror symmetry. The overall phase factor e2πiaklmkηl , whose exponents are linear in m

and η with integer akl, correspond to three-dimensional contact terms as discussed in [51].

The localization computation relies on the assumption that the IR conformal dimen-

sions of fields can be read off from their transformation properties under the R-symmetry

visible in the UV Lagrangian, which in turn implies that the UV R-symmetry is assumed to

be the same as the R-symmetry of the IR SCFT. In terms of the classification of 3d N = 4

theories presented in section 2.2, the formula for the sphere partition function presented

in (2.14) is only valid for the good and ugly theories, and not for the bad theories. In fact,

one can show that the condition — ∆(B) ≥ 1
2 for all cocharacters B — for a good/ugly

theory derived by Gaiotto and Witten [27] is equivalent to the condition for the above

partition function to be absolutely convergent in the absence of defects. This can be seen

in the following fashion [52]. First note that the integrand is regular at all finite real values

of s (the poles coming from hyperbolic cosine functions are all located on the imaginary

axis), and therefore any divergence in the integral must arise from very large values of

the integration variable s. Consider a ray in the Cartan subalgebra of G in the direction

specified by a cocharacter B, and let r ∈ R+ be a coordinate along the ray. The subset of

such rays is dense in the set of all rays in the Cartan subalgebra of G. Now, at large values

of the coordinate r, the integrand behaves as e−rq(B), where q(B) ∈ Z is

q(B) = −
∑

α∈∆+

|α(B)| +
1

2

∑

ρ∈R

|ρ(B)|. (2.21)

The Gaiotto-Witten condition ∆(B) ≥ 1
2 for good/ugly theories guarantees that q(B) ≥ 1

for all cocharacters B, which implies that the integrand falls off sufficiently fast at large s

along any ray in the Cartan subalgebra and therefore gives a finite integral. For a bad the-

ory, one can have q(B) = 0 for some cocharacter(s) B which will lead to a divergent integral.

In this paper, we will use another RG-invariant supersymmetric observable, i.e. super-

conformal index on S2 × S1, which we review in section B.

7We will denote the partition function of a quiver Q with real mass parameters x and FI parameters y

as Z(Q)(x; y).
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N1 N2 N3 Nα−1 Nα Nα+1 NL−2 NL−1 NL

M1 M2 M3 Mα−1
Mα Mα+1 ML−2 ML−1

ML

Figure 3. A generic linear quiver with L gauge nodes.

0 1 2 3 4 5 6 7 8 9

NS5 x x x · · · · x x x

D5 x x x · x x x · · ·
D3 x x x x · · · · · ·

Table 4. Basic Type IIB brane construction.

2.4 Mirror symmetry as S-duality in type IIB construction: linear quivers

In this section, we present a brief review of a very special class of 3d N = 4 quiver gauge

theory — linear quivers with unitary gauge groups. A generic example with L gauge nodes

is shown in figure 3. For a more detailed account on the physics and geometry of linear

quivers, we refer the reader to the papers [26, 27].

The linear quivers have a very simple realization in terms of a Type IIB brane con-

struction of the Hanany-Witten type [24]. A large class of 3d N = 4 Lagrangian theories

can be obtained by considering D3 branes extending along a compact direction L, with

1/2-BPS boundary conditions at the two ends [27]. For linear quivers, the set-up involves

D3, D5 and NS5 branes, with their respective world-volumes specified in table 4. The

gauge theory data can be read off from a configuration where all D3 branes end on NS5

branes using the following set of rules:

• D3-D3 open strings in the γ-th NS5 chamber containing Nγ D3 branes give a U(Nγ)

vector multiplet.

• D3-D5 open strings in the γ-th NS5 chamber, containing Mγ D5 branes, give Mγ

hypermultiplets in the fundamental representation of U(Nγ).

• D3-D3 open strings running between the γ-th and the γ + 1-th NS5 chambers give

hypermultiplets in the bifundamental of U(Nγ) × U(Nγ+1).

• The triplet of mass parameters mZ
β , with β = 1, . . . ,

∑L
γ=1Mγ , correspond to the

position of the D5 branes in R3
7,8,9, while for the triplet of FI parameters ηY

γ =

tYγ − tYγ+1, with γ = 1, . . . , L, the parameters tY correspond to the position of the

NS5 branes in R3
4,5,6. Given the translational symmetry on R3, both sets of moduli

should be counted up to an overall shift.

Figure 4 gives an illustrative example of how one can read off the gauge theory con-

tent from the brane set up. Mirror symmetry in three dimensions can be understood

– 23 –



J
H
E
P
0
7
(
2
0
2
1
)
1
9
9

1 2 1

2

x3

R3
7,8,9

Figure 4. The figure on the left shows the Type IIB brane construction for the linear quiver on the

right. The red nodes represent D5 branes, the horizontal blue lines are D3 branes, and the vertical

black lines represent NS5 branes.

as an S-duality of the above brane construction, followed by a rotation R : x7,8,9 →
−x4,5,6, x4,5,6 → x7,8,9. NS5 and D5 branes are exchanged under S-duality, while D3

branes are self-dual. To read off the dual gauge theory from the rotated S-dual brane

system, one has to move to a configuration where the all D3 branes end on NS5 branes.

This can be done by performing a series of Hanany-Witten moves, where NS5 and D5

branes are moved past each other along the compact direction x3. This generically results

in creation/annihilation of D3 branes which are required to keep the linking numbers of

the individual 5-branes invariant [24, 27]. The linking numbers of the 5-branes (lNS5
γ , lD5

β )

in a generic brane configuration are given as:

lNS5
γ = nleft(D5) − ñleft(D3) + ñright(D3), γ = 1, . . . , L+ 1, (2.22)

lD5
β = nleft(NS5) − ñleft(D3) + ñright(D3), β = 1, . . . , L∨ + 1, (2.23)

where L∨ =
∑L

γ=1Mγ − 1, nleft,right(D5/NS5) denotes the number of D5/NS5-branes to

the left or right of the 5-brane in question, while ñleft,right(D3) denotes the number of D3

branes ending on the 5-brane from the left and the right respectively. The mirror dual of

the generic quiver in figure 3 is then given by the linear quiver in figure 7, where the ranks

of the gauge group factors and the flavor symmetry factors can be computed from

M∨
γ′ =

L+1∑

γ=1

δγ′ lNS5
γ
, γ′ = 1, . . . , L∨, (2.24)

N∨
β+1 +N∨

β−1 − 2N∨
β +M∨

β = lD5
β+1 − lD5

β , β = 1, . . . , L∨, (2.25)

where the latter equation should be solved subject to the boundary conditions M∨
0 =

M∨
L∨+1 = 0, and N∨

0 = N∨
L∨+1 = 0.

The S-duality followed by a rotation exchanges the positions of NS5 and D5 branes

up to a sign, which explains the form of the mirror map in (2.26). As a concrete example,
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2

4

x3

R3
7,8,9

Figure 5. The figure on the left shows the Type IIB brane construction for the linear quiver on the

right. The red nodes represent D5 branes, the horizontal blue lines are D3 branes, and the vertical

black lines represent NS5 branes.

1 2 1

2

(X)

2

4

(Y )

Figure 6. An example of a pair of linear quivers with unitary gauge groups which are 3d mirrors.

N∨
1 N∨

2 N∨
3 N∨

α′−1 N∨
α′ N∨

α′+1 N∨
L∨−2 N∨

L∨−1 N∨
L∨

M∨
1 M∨

2 M∨
3 M∨

α′−1
M∨

α′ M∨
α′+1 M∨

L∨−2 M∨
L∨−1

M∨
L∨

Figure 7. The linear quiver which is mirror dual to the generic linear quiver in figure 3. The total

number of gauge nodes is L∨.

consider the linear quiver and its Type IIB realization in figure 4. The rotated S-dual

configuration, after appropriate Hanany-Witten moves, is shown in the l.h.s. of figure 5

and the corresponding 3d quiver is shown on the r.h.s. The latter is the mirror dual of the

linear quiver in figure 4.

Note that we can easily generalize this Type IIB description to include affine ÂN

quivers with unitary gauge groups. In this case, the compact direction x3 wrapped by D3

branes is a circle.
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We will now summarize a set of properties of linear quivers that will be useful in the

rest of the paper:

• Global symmetries: the global symmetry on the Higgs branch of a linear quiver

is GH = (
∏L

γ=1 U(Mγ))/U(1), while the global symmetry on the Coulomb branch

manifest in the Lagrangian is GC = U(1)L. The Coulomb branch symmetry can be

enhanced if one or more gauge nodes are balanced, i.e. Nγ−1 + Nγ+1 + Mγ = 2Nγ

for a balanced gauge node γ. For an array of n consecutive balanced nodes, the

corresponding global symmetry is enhanced as U(1)n → SU(n+ 1).

• “Goodness”: a linear quiver is a good theory in the Gaiotto-Witten classification if

every gauge node in the quiver is individually good, i.e. ∆γ = Nγ−1 +Nγ+1 +Mγ −
2Nγ ≥ 0, for γ = 1, . . . , L. Note that this is a special property of linear quivers, and

a similar statement is not true for quivers of arbitrary shape.

• Mirror symmetry: the mirror dual of a good linear quiver is another good linear

quiver. In addition, the mirror map between the masses and FI parameters is ex-

tremely simple. Let the FI parameters of the linear quiver in figure 3 be parametrized

as ηY
γ = tYγ − tYγ+1, with γ = 1, . . . , L and Y = 1, 2, 3, and the hypermultiplet masses

be mZ
β = {mZ γ} = {mZ 1, . . . ,mZ L}, with β = 1, . . . , L∨ + 1, γ = 1, . . . , L, and

Z = 1, 2, 3. Recall that the mass parameters are triplets of SU(2)C (indexed by

Z), and the FI parameters are triplets of SU(2)H (indexed by Y ). The dual theory,

where SU(2)C and SU(2)H are exchanged, is given by the linear quiver in figure 7,

with the ranks of the gauge group and flavor symmetry group given in (2.24)–(2.25).

The dual theory has mass parameters m∨ Y
β′ = {m∨ γ′

Y } = {m∨ 1
Y , . . . ,m∨ L∨

Y }, with

β′ = 1, . . . , L + 1, and FI parameters η∨ Z
γ′ = t∨ Z

γ′ − t∨ Z
γ′+1, with γ′ = 1, . . . , L∨. The

mirror map in this case is simply given by:

m∨ Y
β′ = −tYβ′ , ∀Y, ∀β′ = 1, . . . , L+ 1, t∨ Z

β = mZ
β , ∀Z,∀β = 1, . . . , L∨ + 1. (2.26)

• Partition function and its dual: as discussed in section 2.3, one can directly check

mirror symmetry for a pair of theories using RG-invariant supersymmetric observables

computed using localization. The partition function on round S3 (where only a real

deformation parameter is turned on instead of a triplet) of the quiver X is given as

Z(X)(m; t) =

∫ L∏

γ=1

[
dsγ

]
Z

(X)
int ({sγ},m, t)

=

∫ L∏

γ=1

[
dsγ

]
Z

(X)
FI ({sγ}, t)Z(X)

1−loop({sγ}, {mγ})

=

∫ L∏

γ=1

[
dsγ

]
Z

(X)
FI ({sγ}, t)

L∏

γ=1

Zvector
1−loop(sγ)Zfund

1−loop(sγ ,mγ)

×
L−1∏

γ=1

Zbif
1−loop(sγ , sγ+1, 0) . (2.27)
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The classical and the 1-loop contributions to the integrand are given as

Z
(X)
FI ({sγ},t)=

L∏

γ=1

e
2πi
∑Nγ

iγ =1
sγ

iγ
(tγ−tγ+1)

, Zvector
1−loop(sγ)=

∏

iγ 6=jγ

sinhπ(sγ
iγ

−sγ
jγ

),

Zfund
1−loop(sγ ,mγ)=

1
∏Nγ

iγ=1

∏Mγ

lγ=1coshπ(sγ
iγ

−mγ
lγ

)
,

Zbif
1−loop(sγ ,sγ+1,mbif

γ )=
1

∏Nγ

iγ=1

∏Nγ+1

iγ+1=1coshπ(sγ
iγ

−sγ+1
iγ+1

−mbif
γ )

, (2.28)

where the fundamental masses and the bifundamental masses are labelled as mγ and

mbif
γ respectively. The partition function of the dual quiver Y is similarly given as

Z(Y )(m∨; t∨) =

∫ L∨∏

γ′=1

[
dσγ′

]
Z

(Y )
int ({σγ′},m∨, t∨)

=

∫ L∨∏

γ′=1

[
dσγ′

]
Z

(Y )
FI ({σγ′}, t∨)Z

(Y )
1−loop({σγ′}, {m∨ γ′})

=

∫ L∨∏

γ′=1

[
dσγ′

]
Z

(Y )
FI ({σγ′}, t∨)

L∨∏

γ′=1

Zvector
1−loop(σγ′

)Zfund
1−loop(σγ′

,m∨ γ′
)

×
L∨−1∏

γ′=1

Zbif
1−loop(σγ′

,σγ′+1, 0), (2.29)

where the classical and the 1-loop contributions to the integrand are given as follows:

Z
(Y )
FI ({σγ′}, t∨) =

L∨∏

γ′=1

e
2πi
∑N∨

γ′

iγ′ =1 σγ′

iγ′
(t∨

γ′ −t∨
γ′+1

)
,

Zvector
1−loop(σγ′

) =
∏

iγ′ 6=jγ′

sinh π(σγ′

iγ′
− σγ′

jγ′
),

Zfund
1−loop(σγ′

,m∨ γ′
) =

1
∏N∨

γ′

iγ′ =1

∏M∨
γ′

lγ′ =1 cosh π(σγ′

iγ′
−m∨ γ′

lγ′
)
,

Zbif
1−loop(σγ′

,σγ′+1,m∨ γ′

bif ) =
1

∏N∨
γ′

iγ′ =1

∏N∨
γ′+1

iγ′+1=1 cosh π(σγ′

iγ′
− σγ+1

iγ′+1
−m∨ γ′

bif )
. (2.30)

Mirror symmetry implies that the partition functions of X and Y are related as

Z(X)(m; t) = e2πiaklmktl Z(Y )(−t; m), (2.31)

where the overall phase factors can interpreted as three-dimensional contact terms.

Here akl is an M × (L+ 1) matrix with integer entries, M =
∑L

α=1Mα and L is the

number of nodes in quiver A. The general proof of the above equality is non-trivial,

and we refer the reader to [33] for details.
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We would like to emphasize an important feature of this partition function equality.

For quiver X, the integrand is manifestly invariant under a SMγ -transformation of the

mass parameters mγ (this is the Weyl symmetry of the flavor group U(Mγ)), which

in turn makes the partition function of X invariant under these transformations.

However, for the dual theory Y , where mγ appear as FI parameters, the partition

function is not manifestly invariant under these transformations. In fact, one can

show that the matrix integral for (Y ), generically changes by some overall phase

factor under these transformations. The contact term contribution also changes by

a phase factor. It turns out that these two phase factors exactly cancel each other.

There is an analogous argument for permutation of the parameters t, which appear

as mass parameters of Y , and FI parameters for X.

Finally, let us show the equality (2.31) explicitly for the simple example of the pair of

theories in figure 6. The partition function of the quiver X is

Z(X)(m; t) =

∫ 2∏

α=1

dsα
d2s0

2!

e2πis1(t1−t2)e2πi
∑

i
si

0(t2−t3)e2πis2(t3−t4) sinh2 π(s1
0 − s2

0)
∏2

i=1 cosh π(s1 − si
0)
∏2

a=1 cosh π(si
0 −ma) cosh π(s2 − si

0)
,

(2.32)

where m1 and m2 are the masses of the fundamental hypermultiplets in the middle node,

and the FI parameters of the three gauge nodes are η1 = t1 − t2, η0 = t2 − t3, η2 = t3 − t4.

Similarly, the partition function of the quiver Y is

Z(Y )(m̃; t̃) =

∫
d2σ

2!

∏2
i=1 e

2πiσi (̃t1−t̃2) sinh2 π(σ1 − σ2)
∏2

i=1

∏4
a=1 cosh π(σi − m̃a)

, (2.33)

where m̃1, m̃2, m̃3, m̃4 are hypermultiplet masses, while the FI parameter of the gauge

group is η = t̃1 − t̃2. Evaluating the two matrix integrals explicitly, one can check that

Z(X)[m; t] = e2πim1(t1+t2)e−2πim2(t3+t4) Z(Y )[−t; m]. (2.34)

The expressions agree exactly (i.e. the phase factor vanishes) when one imposes the con-

straints m1 +m2 = 0, t1 + t2 + t3 + t4 = 0.

3 Generating mirrors from linear quiver pairs using S-type operations

In this section, we define the S-type operations on a generic 3d N = 4 quiver gauge theory

X in class U , i.e. the Higgs branch global symmetry of X has a subgroup of the form∏
γ U(Mγ). We then discuss the field theory machinery for generating new pairs of mirror

dual theories starting from a pair of linear quivers, in terms of the S3 partition function.

In section 3.1, we discuss the four basic Q-operations (defined in (1.5)–(1.6)) on X,

and then define an elementary S-type operation in terms of these operations. We discuss

the realization of these operations at the level of the N = 4 quiver diagram as well as the

S3 partition function. In section 3.2, we discuss how quivers of arbitrary shapes can be

constructed in steps by the action of elementary S-type operations starting from a linear

quiver. In particular, we discuss the four distinct types of elementary S-type operations
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separately. We give a partition function prescription for writing down the duals of these

elementary S-type operations in section 3.3. Sections 3.2–3.3 therefore gives the complete

partition function recipe for constructing a new pair of dual theories from the original dual

pair of linear quivers. In section 3.4, we present a simple illustrative example involving a

dual pair of Abelian quiver gauge theories that can be constructed following the recipe of

section 3.2 and section 3.3. Another set of examples involving (affine) D-type quivers can

be found in appendix A.

In appendix C, we discuss how the elementary S-type operations can be implemented

in terms of the superconformal index on S2 × S1. Analogous to the case of the partition

function on S3, this leads to a natural prescription for the dual operations.

3.1 Elementary S-type and T -type operations on a generic quiver

Consider a quiver gauge theory X in class U . We will assume that the theory X is good in

the Gaiotto-Witten sense [27], which in turn implies that the round three sphere partition

function of the theory is convergent [52], as discussed in section 2.3. Given the quiver X,

one can describe the set of four basic Q-operations in the concrete case of 3d N = 4 quiver

gauge theories as follows:

• Gauging operation: a gauging operation Gα
P at a flavor node α of the theory X

(shown schematically in figure 8) involves the following two steps:

1. Given a flavor node U(Mα), we split it into two flavor nodes, corresponding to

a U(rα) × U(Mα − rα) global symmetry. At the level of the Lagrangian, this

simply implies identifying the U(1)Mα background vector multiplets as U(1)rα ×
U(1)Mα−rα background vector multiplets. In particular, this implies identifying

the U(1)Mα mass parameters
−−→
mα with the U(1)rα ×U(1)Mα−rα mass parameters

(
−→
uα,

−→
vα). There is an SMα (permutation group of Mα objects) worth of freedom

in this identification, and a specific choice is part of the data for this procedure.

We will choose to parametrize this identification as:

−→
mα

iα =Piαi
−→u α

i +Piαrα+j
−→v α

j , iα =1,...,Mα, i=1,...,rα, j=1,...,Mα−rα,

(3.1)

where P is a permutation matrix of order Mα. A choice of P therefore encodes

the additional data of how the U(1)rα ×U(1)Mα−rα background fields are chosen

from the original U(1)Mα ones. We will denote the theory deformed by the

U(rα) × U(Mα − rα) mass parameters as (X,P).

2. Given the theory (X,P), we promote the flavor symmetry node U(rα) to a gauge

node, as shown on the r.h.s. of figure 8, i.e. make the vector multiplets for U(rα)

dynamical, as well as turning on a background twisted vector multiplet for the

U(1)J topological symmetry.

The operation can be implemented in terms of the S3 partition function for the quiver

X. Recall that preserving supersymmetry on S3 permits turning on a single real mass
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X Mα X

Mα − rα

rα

Gα
P

Figure 8. A gauging operation Gα
P on a U(Mα) subgroup of the global symmetry group of a

generic quiver gauge theory (represented by the grey circle).

parameter as opposed to the triplet in the Cartan of GH . The partition function of

(X,P) is given as

Z(X,P)(uα,vα, . . . ; η) := Z(X)(mα(P,uα,vα), . . . ; η), (3.2)

where the . . . denote the mass parameters of theory X aside from mα, and η col-

lectively denotes the FI parameters. Let Gα
P(X) denote the quiver gauge theory

obtained from the theory X via the gauging operation. The partition function of the

theory Gα
P(X) is therefore given by:

ZGα
P (X)(vα, . . . ; η, ηα) =

∫ [
duα

]
ZGα

P (X)(u
α, ηα)Z(X,P)(uα,vα, . . . ; t), (3.3)

where uα live in the Cartan subalgebra of the group U(rα),
[
duα

]
=

∏rα
i=1

duα
i

|Wα| with

|Wα| = rα! being the order of the Weyl group for the new gauge node. The function

ZGα
P (X) is given as

ZGα
P (X)(u

α, ηα) = ZFI(u
α, ηα)Zvector

1−loop(uα), (3.4)

where ZFI(u
α, ηα) and Zvector

1−loop(uα) are the appropriate classical and one-loop contri-

butions respectively of a U(rα) vector multiplet.

• Flavoring operation: a flavoring operation Fα
P at a flavor node α of the theory X

(shown schematically in figure 9) involves the following two steps:

1. Given the flavor node U(Mα), we split it into two flavor nodes, corresponding

to a U(rα)×U(Mα −rα) global symmetry. This requires identifying the U(1)Mα

background vector multiplets as U(1)rα × U(1)Mα−rα background vector multi-

plets which is parametrized by a permutation matrix P, as given in (3.1). The

resultant theory is denoted as (X,P).

2. Given the theory (X,P), we attach a flavor node denoted by Gα
F to the flavor

node U(rα), as shown on the r.h.s. of figure 9. This amounts to introducing some

free hypermultiplets in the theory which transform under some representation

of the global symmetry group U(rα) ×Gα
F .
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X Mα X

Mα − rα

rα Gα
F

Fα
P

R

Figure 9. A flavoring operation Fα
P on a U(Mα) subgroup of the global symmetry group of a

generic quiver gauge theory (represented by the grey circle).

The operation can be implemented in terms of the S3 partition function as follows.

Let Fα
P (X) denote the theory obtained by implementing the flavoring operation on

X. The partition function of the theory Fα
P (X) is then given as (with Z(X,P) defined

in (3.2))

ZF α
P (X)(uα,vα, . . . ; η) = ZF α

P (X)(u
α,mα

F )Z(X,P)(uα,vα, . . . ; η). (3.5)

The function ZF α
P (X) is given as

ZF α
P (X)(u

α,mα
F ) = Zhyper

1−loop(uα,mα
F ), (3.6)

where the factor Zhyper
1−loop(uα,mα

F ) denotes the contribution of the free hypermutiplets

which are charged under the symmetry U(rα) ×Gα
F , with the parameters mα

F in the

Cartan subalgebra of the group Gα
F .

• Identification operation: given the quiver gauge theory X with a global sym-

metry subgroup
∏L

γ=1 U(Mγ), let N
{γj}
p,rα denote a set of (not necessarily consecu-

tive) p ≤ L flavor nodes — γ1, . . . , γp, with rα being a positive integer such that

rα ≤ Min({Mβ}|β ∈ N
{γj}
p,rα ). Let α be a chosen node in N

{γj}
p,rα . An identification

operation Iα
P (shown schematically in figure 10) is then performed in two steps:

1. For all β ∈ N
{γj}
p,rα , we split the corresponding flavor node U(Mβ) into two flavor

nodes, associated to a U(rα)β × U(Mβ − rα) global symmetry. The special case

of p = 2 nodes β = α − 1, α, is shown in figure 10. For a given β, the choice

of U(1)rα
β × U(1)Mβ−rα background vector multiplets from the original U(1)Mβ

background vector multiplets is parametrized by a permutation matrix Pβ of

order Mβ, i.e.
−→
mβ

iβ
= (Pβ)iβi

−→u β
i + (Pβ)iβ rα+j

−→v β
j , (3.7)

where iβ = 1, . . . ,Mβ, i = 1, . . . , rα, and j = 1, . . . ,Mβ − rα. We denote the

resultant theory as (X, {Pβ}).

2. Given the theory (X, {Pβ}), we identify the flavor nodes U(rα)β for all β 6= α

to the flavor node U(rα)α, as shown on the r.h.s. of figure 10.
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X

Mα

Mα−1

X

Mα−1 − rα

rα

Mα − rα

Iα
P

Figure 10. An identification operation Iα
P

involving two flavors nodes U(Mα) and U(Mα−1) in a

generic quiver gauge theory.

The identification operation can be implemented in terms of the S3 partition function

in the following fashion. First, the partition function of the theory (X, {Pβ}) is given

as:

Z(X,{Pβ})({uβ}, {vβ}, . . . ; η) =: Z(X)({mβ(Pβ, u
β, vβ)}, . . . ; η). (3.8)

The identification operation on (X, {Pβ}) then implies imposing the following con-

straints on the mass parameters {uβ}:

uγ1
i − µγ1 = uγ2

i − µγ2 = . . . = u
γp

i − µγp = uα
i , with i = 1, . . . , rα , (3.9)

where {µγi} are constant parameters. The choice of α = γk for a certain γk ∈ N
{γj}
p,rα

corresponds to setting µγk = 0 in the above equation. We will, however, prefer to

keep the parameters {µγi} arbitrary in our computation and express the final answer

in terms of independent linear combinations of these parameters, instead of using the

constraint µγk = 0 upfront.

Let Iα
P(X) denote the quiver gauge theory obtained by an identification operation on

the quiver X. The partition function of Iα
P(X) is then given as

ZIα
P (X)(uα, {vβ}, . . . ,µ; η) = ZIα

P (X)(u
α, {uβ},µ) · Z(X,{Pβ})({uβ}, {vβ}, . . . ; η),

(3.10)

where ZIα
P (X) should be thought of as an operator acting on the function Z(X,{Pβ}),

which is explicitly given as

ZIα
P (X)(u

α, {uβ},µ) =

∫ p∏

j=1

rα∏

i=1

du
γj

i

p∏

j=1

δ(rα)
(
uα − uγj + µγj

)
, (3.11)

• Defect operation: given a U(Mα) flavor node of a quiver gauge theory X, the

operation Dα
P can be defined in the following fashion. One first constructs the theory

(X,P) deformed by the U(rα) × U(Mα − rα) masses, as before. One can then turn
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on a defect for the flavor node U(rα), labelled by some data D. In terms of the S3

partition function, the operation is implemented as

ZDα
P (X)(uα,vα, . . . ; η,D) = ZDα

P (X)(u
α,D)Z(X,P)(uα,vα, . . . ; η), (3.12)

where Dα
P(X) is the quiver obtained by implementing the operation Dα

P on X, and

D is the data associated with the defect. The function ZDα
P (X) is given as

ZDα
P (X)(u

α,D) = Zdefect(u
α,D). (3.13)

The simplest example of such a defect will be a Wilson line in a representation R of

U(rα). In this case, we have

Zdefect(u
α,D) := ZWilson(uα,R) =

∑

ρ∈R

e2πρ(uα), (3.14)

where ρ is a weight of the representation R of U(rα).

Definition. An elementary S-type operation Oα
P on X at a flavor node α, is defined by

the action of any possible combination of the Fα
P , Iα

P , and Dα
P operations followed by a

single gauging operation Gα
P .

Oα
P(X) := (Gα

P) ◦ (Fα
P)n3 ◦ (Iα

P)n2 ◦ (Dα
P)n1(X), (ni = 0, 1, ∀i). (3.15)

The operation Oα
P can be implemented in terms of the partition function as follows.

Let β label the flavor nodes of the theory X on which the given S-type operation Oα
P acts,

via identification/gauging operations. The partition function of the theory Oα
P(X) is then

given by

ZOα
P

(X) =

∫ [
duα

]
ZOα

P
(X)(u

α, {uβ}, ηα,m
Oα

P ,D) · Z(X,{Pβ})({uβ}, {vβ}, . . . ; η), (3.16)

where ZOα
P

(X) should be understood as an operator acting on the function Z(X,{Pβ}). The

explicit operator can be constructed using the expressions of ZGα
P (X), ZF α

P (X), ZIα
P (X),

and ZDα
P (X), given in (3.4), (3.6), (3.11) and (3.13) respectively, and following the defini-

tion (3.15) of Oα
P in terms of the gauging, flavoring, identification, and defect operations:

ZOα
P

(X) = ZGα
P

(X) ·
(
ZF α

P
(X)

)n3 ·
(
ZIα

P
(X)

)n2 ·
(
ZDα

P
(X)

)n1

, (3.17)

where the dependence on the mass and FI parameters is implicit. A generic S-type opera-

tion on the quiver gauge theory X is defined simply as the action of successive elementary

S-type operations:

O(α1,...,αl)
(P1,...,Pl)

(X) := Oαl
Pl

◦ Oαl−1

Pl−1
◦ . . . ◦ Oα2

P2
◦ Oα1

P1
(X). (3.18)

Note that the gauging operation in a given constituent elementary S-type operation can

either involve flavor symmetries present in the theory X, or flavor symmetries introduced
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by a previous Oα
P . The partition function of the theory O(α1,...,αl)

(P1,...,Pl)
(X) can be obtained by

using (3.16) iteratively.

Finally, let us define an elementary T -type operation Tα
P , analogous to Witten’s T

operation in [3]), at a flavor node α of the quiver gauge theory X. Given a flavor node

U(Mα) of X, one first constructs the theory (X,P) deformed by the U(rα) × U(Mα − rα)

masses. Then, one turns on a Chern-Simons term for the flavor symmetry group U(rα). In

terms of the S3 partition function, the operation is implemented as

ZT α
P (X)(uα,vα, . . . ; η, k) = ZT α

P
(uα, k)Z(X,P)(uα,vα, . . . ; η)

= ZCS(uα, k)Z(X,P)(uα,vα, . . . ; η), (3.19)

where Tα
P (X) is the quiver obtained by implementing the operation Tα

P on X, k is the

level of the Chern-Simons term, and ZCS(uα, k) is the partition function contribution

of the Chern-Simons term given in (2.15). Obviously, one can consider the action of

generic operations built out of elementary S-type and T -type operations on the quiver X.

The partition function of the resultant theory can be written down by combining (3.16)

and (3.19) appropriately.

3.2 Construction of generic quivers from linear quivers using S-type opera-

tions

Given a quiver gauge theory X in class U and an elementary S-type operation Oα
P , finding

the mirror dual of the theory Oα
P(X) requires knowing the mirror dual of the theory X.

For a generic X, the mirror dual Y is obviously unknown, and there is no guarantee that

Y will be a Lagrangian theory. Therefore, one needs a convenient starting point where

both the theories X and Y are good Lagrangian theories, and the map of masses and FI

parameters across the duality is explicitly known.

Our strategy in this paper will be to construct a quiver gauge theory X ′ from a good

linear quiver X using a sequence of elementary S-type operations with no defects. The

dual of the theory X ′ can then be read off from the associated dual operations on the

good linear quiver Y .8 In this subsection, we will present the formula for the partition

function realization of an elementary S-type operation on a linear quiver X, discussing

the four distinct types of S-type operations separetely. In section 3.3, we will present the

corresponding dual operations.

Consider a generic linear quiver theory X with L nodes, as shown in figure 3. The

mass parameters of X can be parametrized in the following fashion:

mi = {m1
i1
,m2

i2
, . . . ,mα

iα
, . . . ,mL−1

iL−1
,mL

iL
}, i = 1, . . . , L∨ + 1, (3.20)

with i1 = 1, . . . ,M1, i2 = 1, . . . ,M2,. . ., iα = 1, . . . ,Mα, iL = 1, . . . ,ML, and

L∨ =
∑L

γ=1Mγ − 1. Recall that the Higgs branch global symmetry of X is G
(X)
H =

(
∏L

γ=1 U(Mγ))/U(1). If β labels the set of flavor nodes on which an Oα
P acts, then we will

8The mirror dual of a good linear quiver is guaranteed to be a good linear quiver [27]. Note that this is

only true for a linear quiver, and not for quivers of arbitrary shape.
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assume that the U(1) quotient has been implemented by constraining some mass parameters

{mα′

iα′
} with α′ 6= β, so that the parameters {mβ

iβ
} for all β are completely unconstrained.

Also, let the FI parameters of the linear quiver in figure 3 be parametrized as

ηγ = tγ − tγ+1, γ = 1, . . . , L. (3.21)

Now, proceeding in the same fashion as in section 3.1, we can write down the partition

function of the theory Oα
P(X) with X being a linear quiver:

ZOα
P

(X) =

∫ [
duα

]
ZOα

P
(X)(u

α, {uβ}, ηα,m
Oα

P ) · Z(X,{Pβ})({uβ}, {vβ}, {mγ}γ 6=α; t),

(3.22)

where the operator ZOα
P

(X) can be constructed from the gauging, flavoring and identifica-

tion operators, as described in (3.17), and the function Z(X,{Pβ}) is defined as

Z(X,{Pβ})({uβ}, {vβ}, {mγ}γ 6=α; t) := Z(X)({mβ(Pβ, u
β, vβ)}, {mγ}γ 6=α; t). (3.23)

One can then continue building more general quivers by implementing another elementary

S-type operation on the quiver Oα
P(X) (which is generically not a linear quiver), and so

on, following the general recipe given in (3.16) for implementing S-type operations on a

generic quiver.

We would like to emphasize that the Lagrangian of the theory Oα
P(X) is manifestly

independent of the permutation matrices P . However, as we will see in the discussion of

the dual operations, the Lagrangian of the theory dual to Oα
P(X) manifestly depends on

the data P . This is related to the fact that while the integrand for the partition function

of X is manifestly invariant under a permutation of the Mβ masses mβ for a given β, the

integrand for the partition function of Y (where mβ appear as FI parameters) is not.

The four distinct types of elementary S-type operations can be read off from (3.15),

when no defect is turned on. We will now present the partition function realization

of these operations on linear quivers. Extending these operations to generic quivers is

straightforward, and the corresponding partition functions can be written down from the

general formula (3.16).

• Gauging operation: the simplest example of an elementary S-type operation is a

gauging operation acting on a flavor node α of the quiver X, as shown in figure 11.

The partition function of the theory Gα
P(X) is given by:

ZGα
P (X)(vα, {mγ}γ 6=α; t, ηα) =

∫ [
duα

]
ZGα

P (X)(u
α, ηα)Z(X,P)(uα,vα, {mγ}γ 6=α; t),

(3.24)

where the function ZGP (X) is given as

ZGα
P (X)(u

α, ηα) = ZFI(u
α, ηα)Zvector

1−loop(uα). (3.25)

Using the results (3.2), (3.25) and (2.27), the partition function can be put in the

standard form of (2.14) (with no defects):

ZGα
P (X)(vα, {mγ}γ 6=α; t, ηα) =:

∫ [
duα

] L∏

γ=1

[
dsγ

]
Z

Gα
P (X)

FI · ZGα
P (X)

1−loop , (3.26)
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Mα−1

rα Mα − rα

Mα+1

Ml−2 Ml−1
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M1 M2 M3

Mα−1

rα Mα − rα

Mα+1

Ml−2 Ml−1
Ml

Figure 11. This figure illustrates the gauging operation Gα
P on a generic linear quiver X at a flavor

node U(Mα).

where the functions Z
Gα

P (X)
FI and Z

Gα
P (X)

1−loop are given as

Z
Gα

P (X)
FI ({sγ}, uα, t, ηα) = ZFI(u

α, ηα)Z
(X)
FI ({sγ}, t), (3.27)

Z
Gα

P (X)
1−loop ({sγ},uα, {mγ}γ 6=α,v

α) =

(
Zvector

1−loop(uα)
L∏

γ=1

Zvector
1−loop(sγ)

)

×
(
Zfund

1−loop(sα,vα)
∏

γ 6=α

Zfund
1−loop(sγ ,mγ)

)
(3.28)

×
(
Zbif

1−loop(sα,uα, 0)
L−1∏

γ=1

Zbif
1−loop(sγ , sγ+1, 0)

)
.

The Lagrangian of the theory Gα
P(X) can be read off from the integrand of the matrix

integral on the r.h.s. of (3.26), and reproduces the quiver gauge theory in the third

line of figure 11.

• Flavoring-gauging operation. The second elementary S-type operation involves

a flavoring operation combined with a gauging operation, as shown in figure 12. In

the notation of (3.15), the combined operation can be denoted as

Oα
P(X) = Gα

P ◦ Fα
P (X), (3.29)
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where P is a permutation matrix of order Mα. We will refer to Oα
P as the flavoring-

gauging operation. Following (3.22), the partition function of the theory Gα
P ◦Fα

P (X)

is given as:

ZGα
P ◦F α

P (X)(vα,mα
F , {mγ}γ 6=α; t, ηα)

=

∫ [
duα

]
ZGα

P ◦F α
P (X)(u

α,mα
F , ηα)Z(X,P)(uα,vα, {mγ}γ 6=α; t), (3.30)

where the function ZGα
P ◦F α

P (X) can be constructed using (3.17):

ZGα
P ◦F α

P (X)(u
α,mα

F , ηα) = ZFI(u
α, ηα)Zvector

1−loop(uα)Zhyper
1−loop(uα,mα

F ). (3.31)

Using the results (3.2), (3.31) and (2.27), the partition function can be put in the

standard form of (2.14) (with no defects):

ZGα
P ◦F α

P (X)(vα,mα
F , {mγ}γ 6=α; t, ηα) =:

∫ [
duα

] L∏

γ=1

[
dsγ

]
Z

Gα
P ◦F α

P (X)
FI · ZGα

P ◦F α
P (X)

1−loop ,

(3.32)

where the functions Z
Gα

P ◦F α
P (X)

FI and Z
Gα

P ◦F α
P (X)

1−loop are given as

Z
Gα

P ◦F α
P (X)

FI ({sγ}, uα, t, ηα) = ZFI(u
α, ηα)Z

(X)
FI ({sγ}, t), (3.33)

Z
Gα

P ◦F α
P (X)

1−loop ({sγ},uα, {mγ}γ 6=α,v
α,mα

F ) =

(
Zvector

1−loop(uα)
L∏

γ=1

Zvector
1−loop(sγ)

)

×
(
Zfund

1−loop(uα,mα
F )Zfund

1−loop(sα,vα)
∏

γ 6=α

Zfund
1−loop(sγ ,mγ)

)

×
(
Zbif

1−loop(sα,uα, 0)
L−1∏

γ=1

Zbif
1−loop(sγ , sγ+1, 0)

)
. (3.34)

The Lagrangian of the theory Gα
P ◦ Fα

P (X) can be read off from the integrand of the

matrix integral on the r.h.s. of (3.32), and reproduces the quiver gauge theory in the

third line of figure 12. The parameters mα
F , which live in the Cartan subalgebra of

Gα
F , can be identified as masses of the added hypermultiplets.

• Identification-gauging operation: the third elementary S-type operation involves

an identification operation combined with a gauging operation, as shown in figure 13

for p = 3 nodes. In the notation of (3.15), the combined operation can be denoted as

Oα
P(X) = Gα

P ◦ Iα
P(X) (3.35)

where P = {Pβ} collectively denotes the permutation matrices of order Mβ. We

will refer to as Oα
P as the identification-gauging operation. The quiver gauge theory

Gα
P ◦ Iα

P(X) has the partition function:

ZGα
P

◦Iα
P

(X)({vβ}, {mγ}γ 6=β ,µ; t, ηα)

=

∫ [
duα

]
ZGα

P
◦Iα

P
(X)(u

α, {uβ}, ηα,µ)Z(X,{Pβ})({uβ}, {vβ}, {mγ}γ 6=β; t), (3.36)
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Figure 12. This figure illustrates the flavoring-gauging operation Gα
P ◦ Fα

P on a generic linear

quiver X at the flavor node U(Mα).

where ZGα
P

◦Iα
P

(X) is an operator of the following form:

ZGα
P

◦Iα
P

(X) = ZFI(u
α, ηα)Zvector

1−loop(uα)

∫ p∏

j=1

rα∏

i=1

du
γj

i

p∏

j=1

δ(rα)
(
uα − uγj + µγj

)
.

(3.37)

Using the results (3.2), (3.37) and (2.27), the partition function can be put in the

standard form of (2.14) (with no defects):

ZGα
P

◦Iα
P

(X)({vβ}, {mγ}γ 6=β,µ; t, ηα) =:

∫ [
duα

] L∏

γ=1

[
dsγ

]
Z

Gα
P

◦Iα
P

(X)

FI · ZGα
P

◦Iα
P

(X)

1−loop ,

(3.38)
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where the functions Z
Gα

P
◦Iα

P
(X)

FI and Z
Gα

P
◦Iα

P
(X)

1−loop are given as

Z
Gα

P
◦Iα

P
(X)

FI ({sγ}, uα, t, ηα) = ZFI(u
α, ηα)Z

(X)
FI ({sγ}, t), (3.39)

Z
Gα

P
◦Iα

P
(X)

1−loop ({sγ},uα, {mγ}γ 6=β, {vβ},µ) =

(
Zvector

1−loop(uα)
L∏

γ=1

Zvector
1−loop(sγ)

)

×
( p∏

j=1

Zfund
1−loop(sγj ,vγj )

∏

γ 6=β

Zfund
1−loop(sγ ,mγ)

)

×
( p∏

j=1

Zbif
1−loop(sγj ,uα,−µγj )

L−1∏

γ=1

Zbif
1−loop(sγ , sγ+1, 0)

)
. (3.40)

The Lagrangian can now be read off from the integrand of the matrix model on

the r.h.s. of (3.38), and agrees with the quiver gauge theory in the third line of

figure 13. Note that the parameters µ appear as masses of the hypermultiplets in

the bifundamental of U(Mγj ) × U(r).

• Identification-flavoring-gauging operation: the fourth elementary S-type oper-

ation involves a combination of an identification operation, a flavoring operation, and

a gauging operation, as shown in figure 14 for p = 3 nodes. In the notation of (3.15),

therefore, the combined operation can be denoted as

Oα
P(X) = Gα

P ◦ Fα
P ◦ Iα

P(X) (3.41)

where P = {Pβ} collectively denotes the permutation matrices of order Mβ. We will

refer to as Oα
P as the identification-flavoring-gauging operation. The quiver gauge

theory Gα
P ◦ Fα

P ◦ Iα
P(X) has the partition function:

ZGα
P

◦F α
P

◦Iα
P

(X)({vβ}, {mγ}γ 6=β,µ,m
α
F ; t, ηα) (3.42)

=

∫ [
duα

]
ZGα

P
◦F α

P
◦Iα

P
(uα, {uβ}, ηα,µ,m

α
F )Z(X,{Pβ})({uβ}, {vβ}, {mγ}γ 6=β ; t),

where ZGα
P

◦F α
P

◦Iα
P

(X) is an operator of the following form:

ZGα
P

◦F α
P

◦Iα
P

(X) = ZFI(u
α, ηα)Zvector

1−loop(uα)Zhyper
1−loop(uα,mα

F )

×
∫ p∏

j=1

rα∏

i=1

du
γj

i

p∏

j=1

δ(rα)
(
uα − uγj + µγj

)
. (3.43)

By using the result (3.2) and the formula (2.27), the partition function can be put in

the standard form of (2.14) (with no defects):

ZGα
P

◦F α
P

◦Iα
P

(X) =:

∫ [
duα

] L∏

γ=1

[
dsγ

]
Z

Gα
P

◦F α
P

◦Iα
P

(X)

FI · ZGα
P

◦F α
P

◦Iα
P

(X)

1−loop , (3.44)
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Figure 13. This figure illustrates the identification-gauging Gα
P

◦ Iα
P

operation on a generic linear

quiver X involving p = 3 nodes labelled by β = α− 1, α, α+ 1.

where the functions Z
Gα

P
◦F α

P
◦Iα

P
(X)

FI and Z
Gα

P
◦F α

P
◦Iα

P
(X)

1−loop are given as

Z
Gα

P
◦F α

P
◦Iα

P
(X)

FI ({sγ},uα,t,ηα) =ZFI(u
α,ηα)Z

(X)
FI ({sγ},t), (3.45)

Z
Gα

P
◦F α

P
◦Iα

P
(X)

1−loop ({sγ},uα,{mγ}γ 6=β,{vβ},µ,mα
F ) =

(
Zvector

1−loop(uα)
L∏

γ=1

Zvector
1−loop(sγ)

)

×
( p∏

j=1

Zfund
1−loop(sγj ,vγj )

∏

γ 6=β

Zfund
1−loop(sγ ,mγ)Zhyper

1−loop(uα,mα
F )

)

×
( p∏

j=1

Zbif
1−loop(sγj ,uα,−µγj )

L−1∏

γ=1

Zbif
1−loop(sγ ,sγ+1,0)

)
. (3.46)
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Figure 14. This figure illustrates the identification-gauging Gα
P

◦ Fα
P

◦ Iα
P

operation on a generic

linear quiver X involving p = 3 nodes labelled by β = α− 1, α, α+ 1.

Similar to the previous examples, the Lagrangian for the theory Gα
P ◦Fα

P ◦Iα
P(X) can

now be read off from the integrand of the matrix integral on the r.h.s. of (3.44), and

agrees with the quiver gauge theory in the fourth line of figure 14. The parameters µ

appear as masses of the hypermultiplets in the bifundamental of U(Mγj )×U(r), while

mα
F are the masses of the hypers transforming in a representation R of U(r) ×Gα

F .
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3.3 Reading off the dual gauge theory

In the previous section, we have described how new quivers can be constructed from a

given linear quiver gauge theory X using the elementary S-type operations. To determine

the IR dual of the new quiver, one needs to understand the dual operations acting on the

mirror quiver gauge theory Y , as one performs the S-type operation on quiver X. In this

section, we will write down a general formula for the partition function of the mirror dual

of the theory Oα
P(X) (as defined in (3.22)) in terms of the partition function of Y . We will

denote the mirror dual as Õα
P(Y ). We will give explicit expressions for the dual partition

functions of the four elementary S-type operations discussed in section 3.2. Finally, we will

also give a formula for the dual partition function, when the theory X is a generic quiver

gauge theory (i.e. not a linear quiver) and has a Lagrangian mirror dual Y .

The properties of linear quivers imply that the partition functions of the mirror pair

X and Y are related follows:

Z(X)(m; t) = e2πiaklmktlZ(Y )(−t; m), (3.47)

where akl is an M×(L+1) matrix with integer entries, M =
∑L

α=1Mα and L is the number

of nodes in quiver X. Note that Z(X) is convergent since X is a good quiver. Given that

X is a good linear quiver, the mirror Y is guaranteed to be a good linear quiver [27], which

implies that Z(Y ) is also convergent. Therefore, the above equation is well-defined.

The partition function of the theory (X, {Pβ}) is given in (3.23). Similarly, the parti-

tion function of the mirror dual, which we denote as (Y, {Pβ}), is given as

Z(Y,{Pβ})(t; {uβ}, {vβ}, {mγ}γ 6=β) := Z(Y )(t; {mβ(Pβ,u
β,vβ)}, {mγ}γ 6=β). (3.48)

The mirror symmetry statement (3.47) can be rewritten for the theory (X, {Pβ}) and its

mirror dual (Y, {Pβ}) as follows:

Z(X,{Pβ})({uβ}, {vβ}, {mγ}γ 6=β; t) = e2πibil
β uβ

i tl Z(Y,{Pβ})(−t; {uβ}, {vβ}, {mγ}γ 6=β),

(3.49)

where for a given β = γ1, . . . , γp, bil
β is an rα × (L + 1) matrix with integer entries for a

given β. In writing the above equality, we have suppressed a phase factor independent of

the parameters uα.

Since Y is a good linear quiver, the function Z(Y,{Pβ}) can be written as a matrix

integral as follows:

Z(Y,{Pβ})(t; {u
β}, {v

β}, {m
γ}γ 6=β) =:

∫ L∨∏

γ′=1

[
dσ

γ′
]

Z
(Y,{Pβ})

int ({σ
γ′

}, t, {u
β}, {v

β}, {m
γ}γ 6=β),

Z
(Y,{Pβ})

int = Z
(Y,{Pβ})

FI ({σ
γ′

}, {u
β}, {v

β}, {m
γ}γ 6=β) · Z

(Y )
1−loop({σ

γ′

}, t), (3.50)

where the function Z
(Y )
1−loop is independent of {uβ} and {Pβ}, and explicitly given as

Z
(Y )
1−loop({σγ′}, t) =

L∨∏

γ′=1

Zvector
1−loop(σγ′

)Zfund
1−loop(σγ′

, t)
L∨−1∏

γ′=1

Zbif
1−loop(σγ′

,σγ′+1, 0). (3.51)
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The {uβ}-dependent FI term, which also depends on {Pβ}, can be written in the following

fashion:

Z
(Y,{Pβ})
FI ({σγ′}, {uβ}, {vβ}, {mγ}γ 6=β) = Z

(Y )
FI ({σγ′}, {mβ(Pβ ,u

β,vβ)}, {mγ}γ 6=β)

=

(∏

β

e2πi gi
β({σγ′

},Pβ) uβ
i

)
· Z(Y,{Pβ})

FI ({σγ′}, {uβ = 0}, {vβ}, {mγ}γ 6=β), (3.52)

where for the second equality, we have isolated the {uβ}-dependent part. Given that the

function Z
(Y )
FI ({σγ′}, {mγ}) is precisely known for any linear quiver Y (and given in (2.30)),

we can explicitly write down the functions gi
β({σγ′},Pβ):

gi
β

(
{σγ′},Pβ

)
= −TrσM1+...+Mβ−1 Pβ 1i +

Mβ−1∑

iβ=1

TrσM1+...+Mβ−1+iβ (Pβ iβi − Pβ (iβ+1)i)

+ TrσM1+...+Mβ−1+Mβ Pβ Mβi

=

Mβ∑

iβ=1

Pβ iβi(−TrσM1+...+Mβ−1+iβ−1 + TrσM1+...+Mβ−1+iβ )

= (−TrσM1+...+Mβ−1+j−1 + TrσM1+...+Mβ−1+j) (3.53)

where Pβ iβi = 1 for some iβ = j and a fixed i, and vanishes otherwise. The relation

is subject to the boundary conditions TrσM0 = TrσM1+...+Mα = 0. Now, let Õα
P(Y )

denote the mirror dual of the theory Oα
P(X). The IR duality, along with the fact that

both Oα
P(X) and Õα

P(Y ) are assumed to be good theories, will imply that their partition

functions are related as

ZOα
P

(X)(m; η) = ZÕα
P

(Y )(m′(η); η′(m)), (3.54)

up to some phase factor, where (m,η) and (m′,η′) collectively denote the N = 4

preserving masses and FI parameters of Oα
P(X) and Õα

P(Y ) respectively.

Using (3.22), the mirror symmetry relation (3.49), and the equations (3.50)–(3.52),

in (3.54) above, the partition function of the theory Õα
P(Y ) can be written in the following

fashion:

ZÕα
P

(Y )(m′(t,ηα);η′({vβ},{mγ}γ 6=β,m
OP )) (3.55)

=

∫ L∨∏

γ′=1

[
dσγ′

]
Z

Õα
P

(Y )
({σγ′},mOP ,ηα,t) ·Z(Y,{Pβ})

int ({σγ′},−t,{uβ = 0},{vβ},{mγ}γ 6=β),

where the function Z
(Y,{Pβ})
int is given in (3.50). The function Z

Õα
P

(Y )
can be explicitly writ-

ten (as a formal Fourier transform) in terms of the operator ZOP (X) that appears in (3.22):

Z
Õα

P
(Y )

=

∫ [
duα

]
ZOα

P
(X)(u

α, {uβ}, ηα,m
Oα

P )
∏

β

e2πi (gi
β({σγ′

},Pβ)+bil
β tl) uβ

i . (3.56)

We shall take (3.55)–(3.56) as the working definition of the dual operation Õα
P on quiver

Y . Given the expression for Z
(Y,{Pβ})
int in (3.50), and the expression for Z

Õα
P

(Y )
computed
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above, the goal is to rewrite the r.h.s. of (3.55) in the standard form of (2.14). Of course,

this is only possible if the theory Õα
P(Y ) is Lagrangian. From the standard form, the

gauge group and the matter content of the theory Õα
P(Y ) can then be simply read off. In

addition, the precise form of the linear functions m′(t, ηα) and η′({vβ}, {mγ}γ 6=β,m
OP ))

can also be read off from the standard form of the partition function.

Note that the integrand of the partition function of the dual theory ÕP(Y ) explicitly

depends on the permutation matrix P , even though the partition function itself is inde-

pendent of it. Therefore, the Lagrangian description of the theory ÕP(Y ) depends on P .

If the theory ÕP(Y ) can be written as a Lagrangian theory for more than one P (and

they are not related by some trivial change of variables), then all such Lagrangians are

conjectured to be IR dual among themselves.

Given the general expression (3.55), we can write down explicitly the dual par-

tition functions for the four types of elementary S-type operations discussed in sec-

tion 3.2 — gauging, flavoring-gauging, identification-gauging, and flavoring-identification-

gauging. The appropriate expressions for ZOα
P

(X)(u
α, {uβ}, ηα,m

Oα
P ) are given

in (3.4), (3.31), (3.37) and (3.43) respectively.

We end this subsection by writing a formula for the dual partition function when

an elementary S-type operation Oα
P acts on a generic quiver X in class U , as discussed

in (3.16), when no defect is turned on. This is only possible if the quiver X has a Lagrangian

mirror dual Y . The mirror symmetry relation between X and Y can be written as:

Z(X,{Pβ})({uβ}, {vβ}, . . . ; η) = e2πibil
β uβ

i ηl Z(Y,{Pβ})(mY (η); ηY ({uβ}, {vβ}, . . .)), (3.57)

where η collectively denotes the FI parameters of X, and the . . . in the argument of

Z(X,{Pβ}) denote the other masses of X. The masses and the FI parameters of Y are

collectively denoted as (mY ,ηY ). The partition function of (Y, {Pβ}) (being a Lagrangian

theory) can again be written as

Z(Y,{Pβ})(mY (η); ηY ({uβ}, {vβ}, . . .)) (3.58)

=

∫ ∏

γ′

[
dσγ′

] ∏

β

e2πi gi
β({σγ′

},Pβ) uβ
i Z

(Y,{Pβ})
int ({σγ′},mY (η),ηY ({uβ = 0}, {vβ}, . . .)),

where γ′ labels the gauge nodes of the theory Y . Note that the functions gi
β({σγ′},Pβ) are

not known a priori since X,Y are not linear quivers, but have to be provided as additional

data about the duality. In cases where X,Y appear as intermediate dual pairs in our

construction of a given dual pair starting from linear quivers, these functions are known

by construction.

Proceeding in the same fashion as we did for the linear quiver case, the formula for

the partition function of the theory Õα
P(Y ) can be written as:

ZÕα
P

(Y )(m′(η,ηα);η′({vβ},...,mOP )) (3.59)

=

∫ ∏

γ′

[
dσγ′

]
Z

Õα
P

(Y )
({σγ′},mOP ,ηα,η) ·Z(Y,{Pβ})

int ({σγ′},mY (η),ηY ({uβ =0},{vβ},...)),
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Figure 15. Ân−1 quiver X ′ with two fundamental hypermultiplets, and its mirror Y ′ which is an

Â1 quiver with a total of n fundamental hypers.

where the function Z
(Y,{Pβ})
int is given in (3.58), and (m′,η′) collectively denote the masses

and FI parameters of the theory Õα
P(Y ). The operator Z

Õα
P

(Y )
can be explicitly written

(as a formal Fourier transform) in terms the operator ZOP (X) that appears in (3.16):

Z
Õα

P
(Y )

=

∫ [
duα

]
ZOα

P
(X)(u

α, {uβ}, ηα,m
Oα

P ) ·
∏

β

e2πi (gi
β({σγ′

},Pβ)+bil
β ηl) uβ

i , (3.60)

where gi
β({σγ′},Pβ) is a function linear in the variables {σγ′}, and can be read off from

the mirror map relating mass parameters of X and FI parameters of Y .

3.4 Simple illustrative example: flavored Ân−1 quiver

In this section, we present a simple illustrative example of an Abelian mirror dual pair that

can be constructed from a dual pair of Abelian linear quivers, following the general recipe

given in section 3.2 and section 3.3. The former dual pair, shown in figure 15, are affine

A-type quiver gauge theories (circular quivers) with some flavors, and are known to have

simple Type IIB descriptions.

The quiver pair (X ′, Y ′) in figure 15 can be obtained from a linear dual pair (X,Y ) by

a single elementary S-type operation O = (G◦F ◦I) on X and the dual operation Õ on Y ,

as shown in figure 16.9 The flavor nodes of X (marked in red) on which O acts, correspond

to U(1) flavor symmetries, and therefore the permutation matrix P is trivial in this case.

The dual operation in this case is particularly simple — it amounts to adding a single

bifundamental hyper to the linear quiver Y . We will derive this fact using the S3 partition

function,10 following the general formulae for the dual partition function derived in sec-

tion 3.3. The purpose of this exercise is to demonstrate how the computation works for the

simple example under consideration. Therefore, we will be very detailed in our presentation.

The S3 partition function for linear quivers and their mirror dual was discussed in

section 2.4. Following the notation in (2.27), the partition function of the linear quiver X

9In this example and subsequent ones, we drop the superscript α from the notation Oα
P , when there is

no ambiguity regarding the flavor node on which the S-type operation acts. In cases where P is trivial, we

drop the subscript as well.
10The same fact will be derived using the superconformal index in appendix C.3.

– 45 –



J
H
E
P
0
7
(
2
0
2
1
)
1
9
9

1 1 1

1

1 1

1 1

n− l + 1 n− l + 2 n− 1n− l1

(X)

1

l − 1

1

n− l + 1

(Y )

O Õ

1

1 1

1

11

1

1

n− l + 1

n− l + 2
n− 1

n

1
n− l

(X ′)

1

l − 1

1

n− l + 1

(Y ′)

Figure 16. The quiver (X ′) and its mirror dual (Y ′) are generated by an elementary S-type

operation O = G ◦F ◦ I of the identification-flavoring-gauging type on the linear quiver X and the

dual operation Õ on the linear quiver Y . The flavor nodes on which O acts are shown in red on the

first line. The dual operation simply involves adding a single bifundamental hyper in the quiver Y .

is given as

Z(X)(m;t)=

∫ n−1∏

γ=1

[
dsγ

]
Z

(X)
int ({sγ},m,t)=

∫ n−1∏

γ=1

[
dsγ

]
Z

(X)
FI ({sγ},t)Z(X)

1−loop({sγ},m)

=

∫ n−1∏

γ=1

[
dsγ

]
Z

(X)
FI ({sγ},t)Zfund

1−loop(s1,m1)Zfund
1−loop(sn−l+1,m2)Z fund

1−loop(sn−1,m3)

×
n−2∏

γ=1

Zbif
1−loop(sγ ,sγ+1,0), (3.61)

where Z
(X)
FI and the one-loop factors are given in (2.28). The Higgs branch global symmetry

of X is given by GX
H = U(1)3/U(1) = U(1) × U(1), where the quotient by the overall

U(1) factor in the flavor symmetry of quiver X can be implemented by the constraint

m2 = 0. The U(1) × U(1) flavor symmetry of X can then be identified with the two

terminal U(1) flavor nodes, parametrized by the masses (m1,m3). Following the general

recipe in section 3.2, let us define:

u1 = m1, u
2 = m3. (3.62)

From the general formula in (3.42), the partition function of the theory O(X) is

ZO(X)(µ,mα
F ; t, ηα) =

∫
duα ZO(X)(u

α, u1, u2, ηα,µ,m
α
F )Z(X)(u1, u2; t), (3.63)
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where O = G ◦ F ◦ I is the S-type operation shown in figure 16. The operator ZO(X)

assumes the following form in this case:

ZO(X)(u
α,u1,u2,ηα,µ,m

α
F ) =ZFI(u

α,ηα)Zhyper
1−loop(uα,mα

F )

∫
du1du2

2∏

β=1

δ
(
uα −uβ +µβ

)

=
e2πiηαuα

coshπ(uα −mα
F )

∫
du1du2

2∏

β=1

δ
(
uα −uβ +µβ

)
. (3.64)

Using (3.63)–(3.64), and performing the integration over uβ , it trivially follows that:

ZO(X)(µ,mα
F ; t, ηα) = Z(X′)(µ,mα

F ; t, ηα), (3.65)

where the quiver X ′ is given in figure 15. Shifting the integration variable uα → uα − µ1,

and redefining the mass parameter mα
F → mα

F −µ1, one can show that Z(X′) only depends

on the parameters µ = µ2 − µ1 and mα
F . The parameter µ is the mass associated with one

of the bifundamental hypers in the loop, while mα
F is the mass of the new fundamental

hyper. The parameters (µ,mα
F ) parametrize the Cartan subalgebra of the U(1) × U(1)

flavor symmetry of X ′.

Now, let us compute the dual partition function. Following (2.29), the partition func-

tion of the quiver Y is given as

Z(Y )(t;m) =

∫ 2∏

γ′=1

[
dσγ′

]
Z

(Y )
int ({σγ},t,m) =

∫ 2∏

γ′=1

[
dσγ′

]
Z

(Y )
FI ({σγ′},m)Z

(Y )
1−loop({σγ′},t)

=

∫ 2∏

γ′=1

[
dσγ′

]
Z

(Y )
FI ({σγ′},m)

n−l+1∏

i=1

Zfund
1−loop(σ1, ti)

×
l−1∏

j=1

Z fund
1−loop(σ2, tn−l+1+j)Zbif

1−loop(σ1,σ2,0), (3.66)

where Z
(Y )
FI and the one-loop factors are given in (2.30). In particular, the FI term Z

(Y )
FI

can be explicitly written as

Z
(Y )
FI ({σγ′},m) = e2πi(m1−m2)σ1

e2πi(m2−m3)σ2
, =⇒ Z

(Y )
FI ({σγ′},u) = e2πiu1σ1

e−2πiu2σ2
.

(3.67)

Mirror symmetry implies that the partition functions of X and Y are related in the following

fashion:

Z(X)(m; t) = e2πit1m1 e−2πitnm3 Z(Y )(−t; m),

=⇒ Z(X)(u; t) = e2πibl
βuβtl Z(Y )(−t; u) = e2πit1u1

e−2πitnu2
Z(Y )(−t; u). (3.68)

Using the general formula (3.56), the function Z
Õ(Y )

is given by the expression:

Z
Õ(Y )

(σ1, σ2, η,µ,mα
F ) =

∫
duα ZO(X)(u

α, u1, u2, η,µ,mα
F ) e2πiu1σ1

e−2πiu2σ2
e2πiuβbl

βtl ,

(3.69)
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where the operator ZO(X) is explicitly given in (3.64). To simply the expression on the

r.h.s., we first shift the integration variable uα → uα − µ1, redefine the mass parameter

mα
F → mα

F −µ1, and use the identity 1
cosh π(uα−mα

F ) =
∫
dτ e

2πiτ(uα−mα
F

)

cosh πτ . Finally, integrating

over uα we obtain (up to some overall phase factor):

Z
Õ(Y )

(σ1,σ2,ηα,µ,m
α
F )=

∫
dτ
e−2πiµσ2

e−2πiτmα
F

coshπτ
δ


τ+ηα+σ1−σ2+

∑

β

bl
βtl




=
e−2πiµσ2

e
2πimα

F (σ1−σ2+ηα+
∑

β
bl

βtl)

coshπ(σ1−σ2+ηα+
∑

βb
l
βtl)

(3.70)

=e−2πiµσ2
e

2πimα
F (σ1−σ2+ηα+

∑
β

bl
βtl)Zbif

1−loop


σ1,σ2,−ηα−

∑

β

bl
βtl


,

where µ = µ2 −µ1. Given the expression of the dual partition function in (3.55), the above

form of Z
Õ(Y )

implies that dual operation Õ amounts to adding a bifundamental hyper to

the theory Y , along with some phase factors which contribute to the FI terms. The dual

partition function can be written as,

ZÕ(Y )(m′(t,ηα);η′(µ,mα
F ))

=

∫ 2∏

γ′=1

[
dσγ′

]
Zbif

1−loop

(
σ1,σ2,−ηα−

∑

i

biltl

)
Z

(Y )
int ({σγ′},−t,mα

F ,0,m
α
F +µ) (3.71)

=

∫
Z

Õ(Y )
FI ({σγ′},η′)

n−l+1∏

i=1

Zfund
1−loop(σ1,m′1

fundi)
l−1∏

j=1

Zfund
1−loop(σ2,m′2

fundj)
2∏

k=1

Zbif
1−loop(σ1,σ2,m′bif

k ),

where, for the second equality, we have used the expression for Z
(Y )
int from (3.66), followed

by shifting the integration variables and ignoring some overall phase factors. From the

second equality, one can manifestly see that

ZÕ(Y )(m′(t, ηα); η′(µ,mα
F )) =

∫ 2∏

γ′=1

[
dσγ′

]
Z

(Y ′)
FI ({σγ′},η′)Z

(Y ′)
1−loop({σγ′},m′) (3.72)

= Z(Y ′)(m′(t, η); η′(µ,mα
F )), (3.73)

where Y ′ is the quiver in figure 15. The fundamental and bifundamental masses of Y ′ are

given as linear functions of the FI parameters of X ′ as:

m′1
fund i = −ti + δ1, (i = 1, . . . , n− l + 1), δ1 =

1

n− l + 1

n−l+1∑

i=1

ti,

m′2
fund j = −tn−l+1+j + δ2, (j = 1, . . . , l − 1), δ2 =

1

l − 1

l−1∑

j=1

tn−l+1+j ,

m′
bif 1 = δ1 − δ2, m′

bif 2 = (δ1 − δ2) −

ηα +

∑

β

bl
βtl


 .

(3.74)
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These masses parametrize the Cartan subalgebra of the Higgs branch global symmetry

SU(n − l + 1) × SU(l − 1) × U(2) of Y ′. The FI parameters of Y ′ are similarly given in

terms of the mass parameters of X ′ as:

η′
1 = mα

F , η′
2 = −mα

F − µ, (3.75)

which parametrize the Cartan of the U(1)×U(1) Coulomb branch global symmetry for Y ′.

Note that reading off the Coulomb branch global symmetry of the quiver X ′ can be a

bit counter-intuitive. Naively, one would guess the SU(n− l+1)×SU(l−1) factor from the

presence of the two unbalanced linear subquivers in X ′, consisting of n− l and l− 2 gauge

nodes respectively. However, in this case, the remaining U(1) × U(1) also gets enhanced to

an U(1) × SU(2). This can be directly seen by computing the character expansion of the

Coulomb branch Hilbert Series of X ′, as we do in (C.77) in course of our discussion of the

superconformal index realization of the S-type operation.

4 Non-ADE mirror duals from Abelian S-type operations

In this section, we study 3d mirror symmetry for several infinite families of quiver gauge

theories, starting from linear quivers, using Abelian S-type operations. A Hanany-Witten

construction for these quiver gauge theories is not known, and therefore the standard Type

IIB description for mirror symmetry is not understood for these cases. Some special cases

of these theories have realization as 3d mirrors of certain 4d N = 2 theories of class S on

a circle in the deep IR. We will comment on some of these special cases in section 5.

The quivers studied in this section have the following generic features:

1. Loops attached to a linear quiver tail: loops built out of gauge nodes and matter

in appropriate representations, such that one or more of the gauge nodes are attached

to linear quiver tails.

2. Loops with multiple edges: loops built out of gauge nodes and matter, such

that one or more pairs of gauge nodes are connected by multiple hypermultiplets

transforming in a given representation of the associated gauge groups.

In section 4.1, we present a general discussion of elementary Abelian S-type operations

and their duals. In particular, we discuss Abelian versions of the four distinct types of

elementary S-type operations discussed in section 3.2. We show that the dual operations for

the Abelian case lead to Lagrangian theories, which can be explicitly represented as quiver

gauge theories. Using these Abelian operations, we construct families of dual pairs involving

Abelian quiver gauge theories with the features outlined above, in section 4.2. Families

of dual quiver pairs with non-Abelian gauge groups are discussed next in section 4.3. As

outlined in section 3.2, our strategy will be to construct these quiver pairs from a pair of

linear quivers by a sequence of several Abelian S-type operations.
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4.1 Abelian S-type operations: general discussion

From the general definition (3.15), an elementary Abelian S-type operation Oα
P on a generic

quiver X is defined as a combination of flavoring, identification and defect operations at a

flavor node α, followed by a single Abelian gauging operation, i.e.

Oα
P(X) := GAb

P ◦ (Fα
P)n3 ◦ (Iα

P)n2 ◦ (Dα
P)n1(X), (ni = 0, 1, ∀i), (4.1)

where GAb
P is an Abelian gauging operation. The partition function of the theory Oα

P(X)

can be obtained from the general formula (3.16), while the partition function of the

dual theory Õα
P(Y ) (assuming that X has a Lagrangian mirror Y ) can be obtained

from (3.59)–(3.60).

In this section, we will write down explicit formulae for the dual partition functions,

for the Abelian version of each distinct type of elementary S-type operations11 (without

defects) studied in sections 3.2–3.3. In each case, we will first discuss the action of Oα
P on

a generic quiver X, followed by the special case where X is a linear quiver. Using these

explicit formulae, we will show that, for any dual pair of quiver gauge theories (X,Y ),

the theory X ′ (obtained via an elementary Abelian S-type operation on X) always has a

Lagrangian dual Y ′. This naturally leads to the following general result. For any dual pair

of quiver gauge theories (X,Y ), and an Abelian S-type operation acting on X, i.e.

O(α1,...,αl)
(P1,...,Pl)

(X) := Oαl
Pl

◦ Oαl−1

Pl−1
◦ . . . ◦ Oα2

P2
◦ Oα1

P1
(X), (4.2)

where Oαi
Pi

are elementary Abelian operations, the theory O(α1,...,αl)
(P1,...,Pl)

(X) is guaranteed to

have a Lagrangian dual. In addition, our construction will allow one to write down the

dual Lagrangian explicitly as a quiver gauge theory.

4.1.1 Gauging

For an Abelian gauging operation Gα
P , the functions ZGα

P (X) and Z
G̃α

P (Y )
, as defined in (3.4)

and (3.60) respectively, are given as

ZGα
P (X)(u

α, ηα) = ZFI(u
α, ηα) = e2πiηαuα

, (4.3)

Z
G̃α

P (Y )
= δ

(
ηα + bl

αηl + gα

(
{σγ′},P

))
, (4.4)

where the function gα

(
{σγ′},P

)
can be read off from the mirror map between masses of

X and FI parameters of Y . The dual partition function, following (3.59), is then given as

ZG̃α
P (Y )(m′(η, ηα); η′(vα, . . .)) =

∫ ∏

γ′

[
dσγ′

]
δ
(
ηα + bl

αηl + gα

(
{σγ′},P

))

× Z
(Y,P)
int ({σγ′},mY (η),ηY (uα = 0, vα, . . .)). (4.5)

11We will restrict ourselves to flavoring by hypermultiplets with gauge charge 1.
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Linear quivers. If X is a linear quiver, the function ZGα
P (X) is still given by the above

formula. The formula for Z
G̃α

P (Y )
is modified by taking ηl → tl, and writing the function

gα

(
{σγ′},P

)
explicitly (following (3.53)):

gL
α

(
{σγ′},P

)
=

Mα∑

iα=1

Piα1(−TrσM1+...+Mα−1+iα−1 + TrσM1+...+Mα−1+iα)

= (−TrσM1+...+Mα−1+j−1 + TrσM1+...+Mα−1+j), 1 ≤ j ≤ Mα,

= −Trσα′−1 + Trσα′
, α′ = M1 + . . .+Mα−1 + j, (4.6)

where Piα1 = 1 for a fixed iα = j, and vanishes otherwise. The relation is subject to the

boundary conditions TrσM0 = TrσM1+...+Mα = 0. From the expression (3.55) for a linear

quiver (or the general prescription (3.59)), the partition function of the theory G̃α
P(Y ) is

given as:

ZG̃α
P (Y )(m′(t, ηα); η′(vα, {mγ}γ 6=α)) =

∫ L∨∏

γ′=1

[
dσγ′

]
δ
(
ηα + bl

αtl − Trσα′−1 + Trσα′
)

× Z
(Y,P)
int ({σγ′},−t, uα = 0,vα, {mγ}γ 6=α). (4.7)

There are a couple of observations from the form of the dual partition function G̃α
P(Y )

in (4.5) and (4.7):

1. The equations give a very clear prescription for the dual of a U(1) gauging operation.

The action of the dual operation G̃α
P on the quiver Y amounts to introducing a delta

function in the integrand for the partition function of Y , which removes a single U(1)

factor (the function gα specifies which one) from the gauge group. The theory G̃α
P(Y )

is therefore manifestly Lagrangian, and the rank of the gauge group of the theory is

less than that of the theory Y by ∆rank = 1. This is a way of seeing that the dual of

the gauging operation amounts to ungauging, i.e. reduction in the rank of the gauge

group of Y .

2. The delta function and therefore the integrand of the partition function of the dual

theory G̃α
P(Y ) in principle depends on the permutation matrix P. In other words, the

Lagrangian description of the theory G̃α
P(Y ) depends on P, even though the partition

function itself is independent of it. In certain cases, the Lagrangians obtained for

different choices of P may be related by field redefinitions. The distinct Lagrangians

obtained for different choices of P are expected to be IR dual among themselves.12

We will present explicit examples of this phenomenon in section A, where we study

mirror duals of D4 quiver gauge theories and their affine cousins.

4.1.2 Flavoring-gauging

Consider an elementary S-type operation Oα
P = Gα

P ◦ Fα
P on a generic quiver X, where

the global symmetry group U(Mα) associated with the flavor node α is split into U(1) ×
12There might be additional subtleties associated with discrete symmetries in establishing these IR du-

alities which are not captured by the partition function analysis.
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U(Mα − 1), and the resulting U(1) node is flavored by Nα
F hypermultiplets of charge 1,

followed by a gauging operation. The case for hypermultiplets with a generic charge Q 6= 1,

or with different charges, can be worked out in an analogous fashion.

The flavor symmetry introduced by the operation Oα
P is Gα

F = U(Nα
F ), and the masses

in the Cartan of U(Nα
F ) are labelled as {mα

k F }, where k = 1, . . . , Nα
F . The function

ZGα
P ◦F α

P (X), which can be read off from (3.4), (3.6) and (3.17), is given as

ZGα
P ◦F α

P (X)(u
α,mα

F , ηα) = ZFI(u
α, ηα)Zhyper

1−loop(uα,mα
F ) =

e2πiηαuα

∏
k cosh π(uα −mα

k F )
. (4.8)

In addition, the function Zhyper
1−loop(uα,mα

F ) satisfies a useful integral identity:

Zhyper
1−loop(uα,mα

F ) =
1

∏Nα
F

k=1 cosh π(uα −mα
k F )

=

∫ Nα
F∏

k=1

dτα
k

e2πi(uα−mα
1 F )τα

1
∏Nα

F
k=2 e

2πiτα
k (mα

k−1 F −mα
k F )

∏Nα
F −1

k=1 cosh π(τα
k − τα

k+1) cosh πτα
Nα

F

=

∫ Nα
F∏

k=1

dτα
k ZFI(τ

α
1 , (u

α −mα
1 F ))

×
Nα

F∏

k=2

ZFI(τ
α
k , (m

α
k−1 F −mα

k F ))Z fund(τα
Nα

F
, 0)

Nα
F −1∏

k=1

Zbifund(τα
k , τ

α
k+1, 0)

=:

∫ Nα
F∏

k=1

dτα
k Z

(T [Nα
F ])

int (τ α, t′
α, 0), (4.9)

where T [Nα
F ] is an Abelian linear quiver gauge theory with Nα

F gauge nodes and a single

flavor attached to the Nα
F -th gauge node. The FI parameters are parametrized by t′α, with

t′α 1 = uα, t′α k = mα
k−1 F for k = 2, . . . , Nα

F , and the single mass parameter mα = 0.

T [Nα
F ]: 1

1

111

Nα
FNα

F − 121

Using the general formula given in (3.60), the function Z ˜(Gα
P ◦F α

P )(Y )
can be written as

Z ˜(Gα
P ◦F α

P )(Y )
({σγ′}, ηα,m

α
F ,η) =

∫
duα ZGα

P ◦F α
P (X)(u

α,mα
F , ηα) e2πi (gα({σγ′

},P)+bl
αηl) uα

=

∫ Nα
F∏

k=1

dτα
k Z

(T [Nα
F ])

int (τ α, {t′α 1 = 0, t′α k 6=1}, 0) δ
(
τα

1 + ηα + bl
αηl + gα

(
{σγ′},P

))
. (4.10)
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Implementing the delta function and relabelling the integration variables τα
k → τα

k−1, t′α k →
t′α k−1, we can rewrite the above function as

Z ˜(Gα
P ◦F α

P )(Y )
=

∫ Nα
F −1∏

k=1

dτα
k e

2πimα
1 F gα({σγ′

},P) Zhyper

˜(Gα
P ◦F α

P )(Y )

×
(
{σγ′}, τα

1 , ηα,η
)
Z

(T [Nα
F −1])

int (τ α,mα
F , 0), (4.11)

Zhyper

˜(Gα
P ◦F α

P )(Y )

(
{σγ′}, τα

1 , ηα,η
)

=
1

cosh π(gα({σγ′},P) + τα
1 + ηα + bl

αηl)
. (4.12)

Note that Zhyper

˜(Gα
P ◦F α

P )(Y )
can be interpreted as the 1-loop contribution of a single hypermul-

tiplet charged under U(1)1 of T [Nα
F − 1] and the various U(1) factors in the gauge group

of quiver Y — the precise gauge nodes and the charges can be read off from the function

gα({σγ′},P). Using the prescription (3.59), and the simplified expression for Z ˜(Gα
P ◦F α

P )(Y )

in (4.11)–(4.12), the dual partition function can be written as (up to some phase factor)

Z
˜(Gα
P ◦F α

P )(Y )(m′(η, ηα); η′(vα, . . . ,mα
F )) =

∫ ∏

γ′

[
dσγ′

] Nα
F −1∏

k=1

dτα
k Z

(T [Nα
F −1])

int (τ α,mα
F , 0)

× Zhyper

˜(Gα
P ◦F α

P )(Y )

(
{σγ′}, τα

1 , ηα,η
)

· Z(Y,P)
int ({σγ′},mY (η),ηY (uα = mα

1 F ,v
α, . . .)). (4.13)

The dual theory is manifestly Lagrangian, which can be read off from the integrand in

the r.h.s. of the above equation. The theory consists of a T [Nα
F − 1] tail attached to

the quiver Y by a single hypermultiplet, which is also charged under some of the U(1)

factors in the gauge group of Y . As a quiver diagram, the theory can be represented as

˜(Gα
P ◦ Fα

P )(Y ): Y 1

1

11

Nα
F − 1Nα

F − 21
(QP , 1)

In the above quiver gauge theory, (QP , 1) collectively denotes the charges of the hy-

permultiplet connecting Y and T [Nα
F − 1], under various U(1) factors of Y and U(1)1

respectively. There are a couple of observations about the dual theory:

1. The charge vector QP , and therefore the precise shape of the quiver, depends on the

choice of the permutation matrix P.

2. In the special case, where Nα
F = 1, the function Z ˜(Gα

P ◦F α
P )(Y )

is given as

Z ˜(Gα
P ◦F α

P )(Y )
= e2πimα

F gα({σγ′
},P) Zhyper

˜(Gα
P ◦F α

P )(Y )

(
{σγ′}, ηα,η

)
,

Zhyper

˜(Gα
P ◦F α

P )(Y )

(
{σγ′}, ηα,η

)
=

1

cosh π(gα({σγ′},P) + ηα + bl
αηl)

. (4.14)
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The dual paritition function is then given as

Z
˜(Gα
P ◦F α

P )(Y )(m′(η,ηα);η′(vα,...,mα
F )) (4.15)

=

∫ ∏

γ′

[
dσγ′

]
Zhyper

˜(Gα
P ◦F α

P )(Y )

(
{σγ′},ηα,η

)
·Z(Y,P)

int ({σγ′},mY (η),ηY (uα =mα
F ,v

α,...)).

The dual theory ˜(Gα
P ◦ Fα

P )(Y ) then is even simpler. It merely involves introducing an

extra hypermultiplet in the quiver gauge theory (Y ), such that the hypermultiplet is

charged under a certain U(1)r subgroup (r is an integer) of the gauge group. Note that

the mass parameter mα
F enters the r.h.s. of the above equation as an FI parameter.

Linear quivers. For a linear quiver pair (X,Y ), the function gα = gL
α has the sim-

ple form (4.6), while Z ˜(Gα
P ◦F α

P )(Y )
is given by the formulae (4.11)–(4.12). The function

Z ˜(Gα
P ◦F α

P )(Y )
can be further simplified after a change of variables, τα

k → τα
k − Trσα′

, and

can be written as follows:

Z ˜(Gα
P ◦F α

P )(Y )
=

∫ Nα
F −1∏

k=1

dτα
k e

−2πimα
1 F Trσα′−1

e
2πimα

Nα
F

F
Trσα′

Zhyper
(N∨

α′−1
,1)

(
σα′−1, τα

1 , ηα + bl
αtl
)

× Z
(T [Nα

F −1])
int (τ α,mα

F ,Trσα′
), (4.16)

where the function Zhyper
(N∨

α′−1
,1) has the explicit form:

Zhyper
(N∨

α′−1
,1)

(
σα′−1, τα

1 , ηα + bl
αtl
)

=
1

cosh π(−Trσα′−1 + τα
1 + ηα + bl

αtl)
. (4.17)

The subscript in Zhyper
(N∨

α′−1
,1) denotes the charges of the hypermultiplet under the U(1)

subgroup of U(N∨
α′−1) and U(1)1 of T [Nα

F − 1] respectively. Using the general prescription

in (3.59)), the dual partition function can be written as

Z
˜(Gα
P

◦F α
P

)(Y )(m′(t,ηα);η′(vα,mα
F ,{m

γ}γ 6=α))=

∫ L∨∏

γ′=1

[
dσγ′

]Nα
F

−1∏

k=1

dτα
k Z

(T [Nα
F

−1])

int (τ α,mα
F ,Trσα′

)

×Zhyper

(N∨

α′−1
,1)

(
σ

α′−1,τα
1 ,ηα+bl

αtl

)
ZFI(σ

α′

,mα
Nα

F
F −mα

1F )Z
(Y,P)
int ({σ

γ′

},−t,uα=mα
1F ,vα,{m

γ}γ 6=α). (4.18)

Graphically, the dual theory ˜(Gα
P ◦ Fα

P )(Y ) for a linear quiver Y is given as:

N∨
1 N∨

2 N∨
3 N∨

α′−1 N∨
α′ N∨

L∨−2 N∨
L∨−1 N∨

L∨

M∨
1 M∨

2 M∨
3 M∨

α′−1
M∨

α′ M∨
L∨−2 M∨

L∨−1
M∨

L∨

1

1 1

11

2 Nα
F − 2

Nα
F − 1

(N∨
α′−1, 1) (N∨

α′ , 1)
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There are a few observations that we can make about this dual theory:

1. The location of the two consecutive nodes at which the Abelian loop is attached

depends on the choice of P.

2. For Nα
F = 1, the dual theory has a single hypermultiplet (as opposed to the loop)

charged under the U(1) subgroups of U(N∨
α′−1)×U(N∨

α′). The dual partition function

can be computed as before:

Z
˜(Gα
P

◦F α
P

)(Y )(m′(t,ηα);η′(vα,mα
F ,{m

γ}γ 6=α))=

∫ L∨∏

γ′=1

[
dσ

γ′
]
Zhyper

(N∨

α′−1
,N∨

α′
)

(
σ

α′−1,σα′

,ηα,t
)

×Z
(Y,P)
int ({σ

γ′

},−t,uα=mα
F ,vα,{m

γ}γ 6=α), (4.19)

Zhyper

(N∨

α′−1
,N∨

α′
)

(
{σ

γ′

},ηα,t
)

=
1

coshπ(−Trσα′−1+Trσα′ +ηα+bl
αtl)

. (4.20)

In the special case N∨
α′−1 = N∨

α′ = 1, (4.20) simply corresponds to a hypermultiplet

in the bifundamental representation of U(1)α′−1 × U(1)α′ .

The special cases of flavoring-gauging operations with Nα = 1, given by (4.14)–(4.15)

and (4.19)–(4.20) for a generic quiver and a linear quiver respectively, will be used fre-

quently for the construction of non-ADE mirror duals later in this section.

4.1.3 Identification-gauging

The Abelian identification-gauging operation on a generic quiver X can be worked out in

a similar fashion. The operator Z(Gα
P

◦Iα
P

)(X) can be read off from (3.4) and (3.11):

Z(Gα
P

◦Iα
P

)(X)(u
α, {uβ}, ηα,µ) = ZFI(u

α, ηα)

∫ p∏

j=1

duγj δ
(
uα − uγj + µγj

)
, (4.21)

where β = γ1, . . . , γp. The function Z ˜(Gα
P

◦Iα
P

)(Y )
, as defined in (3.60), is given as

Z ˜(Gα
P

◦Iα
P

)(Y )
({σγ′},ηα,µ,η)=

∫
duαZ(Gα

P
◦Iα

P
)(X)(u

α,{uβ},ηα,µ)
∏

β

e2πi(gβ({σγ′
},Pβ)+bl

βηl)u
β

.

(4.22)

Note that we have dropped the index i, since the operation is Abelian. Implementing the

p delta function integrals, and integrating over uα, we have the following form:

Z ˜(Gα
P

◦Iα
P

)(Y )
({σγ′},ηα,µ,η)=δ

(
ηα+

∑

β

bl
βηl+

∑

β

gβ

(
{σγ′},Pβ

))∏

β

e2πi(gβ({σγ′
},Pβ)+bl

βηl)µ
β

.

(4.23)

From the general prescription (3.59), the partition function of the theory ˜(Gα
P ◦ Iα

P)(Y ) is

given as

Z
˜(Gα
P

◦Iα
P

)(Y )(m′(η, ηα); η′({vβ}, . . .) =

∫ ∏

γ′

[
dσγ′

]
δ

(
ηα +

∑

β

bl
βηl +

∑

β

gβ

(
{σγ′},Pβ

))

×
∏

β

e2πi(gβ({σγ′
},Pβ)+bl

βηl) µβ · Z(Y,{Pβ})
int ({σγ′},mY (η),ηY ({uβ = 0}, {vβ}, . . .)), (4.24)
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which can be massaged into the following expression:

Z
˜(Gα
P

◦Iα
P

)(Y )(m′(η,ηα);η′({vβ},...)=

∫ ∏

γ′

[
dσγ′

]
δ

(
ηα+

∑

β

bl
βηl+

∑

β

gβ

(
{σγ′},Pβ

))
(4.25)

×Z(Y,{Pβ})
int ({σγ′},mY (η),ηY ({uβ =µβ},{vβ},...)).

Linear quivers. For a linear quiver X, the function Z ˜(Gα
P

◦Iα
P

)(Y )
is obtained from (4.23)

by replacing ηl → tl, and the function gβ → gL
β , where gL

β

(
{σγ′},Pβ

)
is given as

gL
β

(
{σγ′},Pβ

)
=

Mβ∑

iβ=1

Pβ iβ1(−TrσM1+...+Mβ−1+iβ−1 + TrσM1+...+Mβ−1+iβ )

= −TrσM1+...+Mβ−1+jβ−1 + TrσM1+...+Mβ−1+jβ , 1 ≤ jβ ≤ Mβ

= −Trσα′
β−1 + Trσα′

β , α′
β = M1 + . . .+Mβ−1 + jβ. (4.26)

From the expression (3.55) for a linear quiver (or the more general prescription (3.59)),

the partition function of the theory ˜(Gα
P ◦ Iα

P)(Y ) is then given as

Z
˜(Gα
P

◦Iα
P

)(Y )(m′(t,ηα),η′({v
β},{m

γ}γ 6=β ,µ))=

∫ L∨∏

γ′=1

[
dσ

γ′
]
δ

(
ηα+

∑

β

bl
βtl+

∑

β

(−Trσ
α′

β
−1

+Trσ
α′

β )

)

×Z
(Y,{Pβ})

int ({σ
γ′

},−t,{u
β =µβ},{v

β},{m
γ}γ 6=β). (4.27)

The form of the expressions on the r.h.s. of (4.25) and (4.27) imply that the dual of the

Abelian S-type operation Oα
P = (Gα

P ◦Iα
P) is an ungauging operation which removes a single

U(1) factor from the gauge group. The precise U(1) factor to be removed is specified by the

function
∑

β gβ in the delta function. Similar to the simple gauging case, the ungauging op-

eration corresponding to the dual of (Gα
P◦Iα

P) also results in a manifestly Lagrangian theory.

4.1.4 Identification-flavoring-gauging

Consider an Abelian elementary S-type operation Oα
P which involves identifying U(1) flavor

symmetries from p distinct nodes in a generic quiver X, followed by flavoring the identified

node with Nα
F hypers of charge 1, and finally by gauging the identified U(1) flavor node.

Following the notation of section 3.2, we denote this operation as Oα
P = Gα

P ◦ Fα
P ◦ Iα

P .

The flavor symmetry introduced by the operation OP is Gα
F = U(p) × U(Nα

F ), modulo

an overall U(1) factor. The U(p)-valued masses are labelled as µ = (µγ1 , . . . , µγp), and

the U(Nα
F )-valued masses are labelled as {mα

k F }, where k = 1, . . . , Nα
F . The function

ZGα
P

◦F α
P

◦Iα
P

(X), which can be read off from (3.4), (3.6), (3.11), and (3.17), is given as

ZGα
P

◦F α
P

◦Iα
P

(X)(u
α,{uβ},ηα,m

α
F ,µ)=ZFI(u

α,ηα)Zhyper
1−loop(uα,mα

F )

∫ p∏

j=1

duγj

p∏

j=1

δ
(
uα−uγj +µγj

)
.

(4.28)
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Using the general formula (3.60), and the identity (4.9) for Zhyper
1−loop, the function

Z ˜(Gα
P

◦F α
P

◦Iα
P

)(Y )
is given as

Z ˜(Gα
P

◦F α
P

◦Iα
P

)(Y )
=

∫
duα ZGα

P
◦F α

P
◦Iα

P
(X)({uβ}, ηα,m

α
F ,µ)

∏

β

e2πi (gβ({σγ′
},P)+bl

βηl) uβ

=

∫ Nα
F∏

k=1

dτα
k Z

(T [Nα
F ])

int (τ α, {uα = 0,mα
F }, 0)

∏

β

e2πi (gβ({σγ′
},Pβ)+bl

βηl) µβ

× δ

(
τα

1 + ηα +
∑

β

bl
βηl +

∑

β

gβ

(
{σγ′},Pβ

))
, (4.29)

where, in obtaining the second equality, we have used the delta functions in (4.28) and

integrated over uα. Proceeding in the same way as in the flavoring-gauging case and

relabelling the integration variables τα
k → τα

k−1, one can recast Z ˜(Gα
P

◦F α
P

◦Iα
P

)(Y )
in the

following form (up to a σγ′
-independent phase factor):

Z ˜(Gα
P

◦F α
P

◦Iα
P

)(Y )
=

∫ Nα
F −1∏

k=1

dτα
k e

2πi
∑

β
gβ({σ

γ′

},Pβ)(µβ+mα
1 F )

Z
(T [Nα

F −1])
int (τ α,mα

F ,0)

×Zhyper

˜(Gα
P

◦F α
P

◦Iα
P

)(Y )

(
{σγ′}, τα

1 ,ηα,η
)
, (4.30)

Zhyper

˜(Gα
P

◦F α
P

◦Iα
P

)(Y )

(
{σγ′}, τα

1 ,ηα,η
)

=
1

coshπ(
∑

β gβ({σγ′},Pβ)+τα
1 +ηα +

∑
β b

l
βηl)

. (4.31)

The function Z
˜(Gα

P
◦F α

P
◦Iα

P
)(Y ) can be identified as the 1-loop contribution of a single hy-

permultiplet charged under certain U(1) subgroups of the gauge group of Y and the group

U(1)1 of T [Nα
F − 1]. Following the general prescription (3.59), the partition function of the

theory ˜(Gα
P ◦ Fα

P ◦ Iα
P)(Y ) is given as

Z
˜(Gα

P
◦F α

P
◦Iα

P
)(Y )(m′(η,ηα),η′({vβ},...,µ,mα

F ))=

∫ ∏

γ′

[
dσγ′

]∫ Nα
F −1∏

k=1

dτα
k Z

(T [Nα
F −1])

int (τ α,mα
F ,0)

×Zhyper

˜(Gα
P

◦F α
P

◦Iα
P

)(Y )

(
{σγ′},τα

1 ,ηα,η
)

·Z(Y,{Pβ})
int ({σγ′},mY (η),ηY ({uβ =µβ+mα

1F },{vβ},...)). (4.32)

The dual theory ˜(Gα
P ◦ Fα

P ◦ Iα
P)(Y ) is therefore manifestly Lagrangian, and can be repre-

sented by a generic quiver diagram of the following form:

˜(Gα
P ◦ Fα

P ◦ Iα
P)(Y ): Y 1

1

11

Nα
F − 1Nα

F − 21
(Q′

P , 1)

The theory consists of a T [Nα
F −1] tail attached to the quiver Y by a single hypermultiplet,

which is also charged under some of the U(1) factors in the gauge group of Y . (Q′
P , 1)
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collectively denotes the charges of the hypermultiplet connecting Y and T [Nα
F − 1], under

various U(1) factors of Y and U(1)1 of T [Nα
F − 1] respectively. Note that

1. The charge vector Q′
P , and therefore the precise shape of the quiver, depends on the

choice of the permutation matrices {Pβ}.

2. In the special case, where Nα
F = 1, the function Z

(G̃◦F ◦I){Pβ}(Y )
is given as

Z ˜(Gα
P

◦F α
P

◦Iα
P

)(Y )
= e

2πi
∑

β
gβ({σγ′

},Pβ) (µβ+mα
F )
Zhyper

˜(Gα
P

◦F α
P

◦Iα
P

)(Y )

×
(
{σγ′}, ηα,η

)
, (4.33)

Zhyper

˜(Gα
P

◦F α
P

◦Iα
P

)(Y )

(
{σγ′}, ηα,η

)
=

1

cosh π(
∑

β gβ({σγ′},Pβ) + ηα +
∑

β b
l
βηl)

. (4.34)

The dual paritition function is then given as

Z
˜(Gα

P
◦F α

P
◦Iα

P
)(Y )(m′(η,ηα);η′(vα,...,mα

F ))=

∫ ∏

γ′

[
dσ

γ′
]
Zhyper

˜(Gα
P

◦F α
P

◦Iα
P

)(Y )

(
{σ

γ′

},ηα,η
)

(4.35)

×Z
(Y,P)
int ({σ

γ′

},mY (η),ηY ({u
β =µβ+mα

F },{v
β},...)).

The dual theory ˜(G ◦ F ◦ I){Pβ}(Y ) in this case is simpler. It merely involves intro-

ducing an extra hypermultiplet in the quiver gauge theory Y , such that the hyper-

multiplet is charged under a certain U(1)r subgroup (r is an integer) of the gauge

group. The FI parameters {uβ} in Z
(Y,P)
int is also replaced by the mass parameters

{µβ +mα
F }.

Linear quivers. For a linear quiver pair (X,Y ), the above partition function can be

written as

Z
˜(Gα

P
◦F α

P
◦Iα

P
)(Y )(m′(t,ηα), η

′({v
β},µ,mα

F ,{m
γ}γ 6=β)) =

∫ L∨∏

γ′=1

[
dσ

γ′
] ∫ Nα

F
−1∏

k=1

dτk Z
(T [Nα

F
−1])

int (τ α,mα
F ,0)

×Zhyper

˜(Gα
P

◦F α
P

◦Iα
P

)(Y )

(
{σ

γ′

}, τα
1 ,ηα,t

)
·Z

(Y,{Pβ})

int ({σ
γ′

},−t,{u
β = µβ +mα

1 F },{v
β},{m

γ}γ 6=β). (4.36)

In this case, the hypermultiplet contribution can be written explicitly, and the U(1) charges

Q′
P can be read off:

Zhyper

˜(Gα
P

◦F α
P

◦Iα
P

)(Y )

(
{σγ′}, τα

1 , ηα, t
)

=
1

cosh π(
∑

β gβ({σγ′},Pβ) + τα
1 + ηα +

∑
β b

l
βηl)

(4.37)

=
1

cosh π(
∑

β(−Trσα′
β

−1 + Trσα′
β ) + τα

1 + ηα +
∑

β b
l
βtl)

,
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where the functions {gβ} and the gauge node labels {α′
β} are defined in (4.26). For the

special case Nα
F = 1, the dual partition function again assumes a simplified form:

Z
˜(Gα

P
◦F α

P
◦Iα

P
)(Y )(m′(t,ηα),η′({vβ},µ,mα

F ,{mγ}γ 6=β)) (4.38)

=

∫ L∨∏

γ′=1

[
dσγ′

]
Zhyper

˜(Gα
P

◦F α
P

◦Iα
P

)(Y )

(
{σγ′},ηα,t

)
·Z(Y,{Pβ})

int ({σγ′},−t,{uβ =µβ+mα
F },{vβ},{mγ}γ 6=β),

Zhyper

˜(Gα
P

◦F α
P

◦Iα
P

)(Y )

(
{σγ′},ηα,t

)
=

1

coshπ(
∑

β(−Trσα′

β
−1+Trσα′

β )+ηα+
∑

βb
l
βtl)

. (4.39)

The special cases of flavoring-gauging operations with Nα = 1, given by (4.34)–(4.35)

and (4.38)–(4.39) for a generic quiver and a linear quiver respectively, will be used fre-

quently for the construction of non-ADE mirror duals later in this section.

4.1.5 A qualitative description of the dual operations

While we have determined the precise dual operations at the level of the quiver gauge

theories above, their qualitative forms could be guessed from the fact that mirror symmetry

exchanges Higgs branch global symmetry on one side of the duality with the Coulomb

branch global symmetry on the other. The dual of the Abelian gauging operation on X

will therefore involve gauging of a U(1)J topological symmetry of Y , which is equivalent

to ungauging a U(1) subgroup of the gauge group of Y . The precise U(1) being ungauged

can be read off from the matrix model and is realized by the function gα

(
{σγ′},P

)
in (4.5)

set to a constant. The same qualitative reasoning also applies to the case of Abelian

identification-gauging, with the ungauging of the U(1) subgroup being realized by setting

the function
∑

β gβ

(
{σγ′},Pβ

)
in (4.25) to a constant.

A flavoring-gauging operation can be viewed as identifying the U(1) flavor symmetry

of the theory X with a U(1) flavor symmetry subgroup of Nα
F free hypermultiplets, and

then gauging it. If the U(1) flavor symmetry in X were gauged without this identification,

then the dual operation would involve ungauging a certain U(1) subgroup of the gauge

group of Y , as argued above. Let us call this U(1) subgroup U(1)Y . Similarly, if the U(1)

flavor symmetry of the free hypers were gauged separately, one would ungauge the U(1)1

node of the quiver T [Nα
F ] (see the discussion after (4.9)) on the dual side. This would give

a linear chain of Nα
F −1 U(1) nodes with a fundamental hyper at each end, which is indeed

the correct mirror of a U(1) theory with Nα
F flavors.

In contrast, the identification of the two U(1) flavor symmetries, roughly speaking,

leads to an identification of FI parameters associated with the U(1)1 and U(1)Y on the

dual side. The gauging operation then, following the logic presented above, leads to the

dual operation where a linear combination of U(1)1 and U(1)Y is ungauged. While the

precise form of the linear combination can be read off from the matrix model integral,

this generically produces a quiver Y ′ = ˜(Gα
P ◦ Fα

P )(Y ) of the form shown in the para-

graph following (4.13). The same qualitative reasoning also applies to the case of Abelian

identification-flavoring-gauging.
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Figure 17. A three-parameter family of dual quiver gauge theory pairs with U(1) gauge groups

labelled by the integers (n, l, p) with n > l − 1 > 0, and p ≥ 2. Their construction from linear

quivers by identification-gauging operations is shown in figure 19.

Moduli space data Theory X ′ Theory Y ′

dim MH 2 n+p−2

dim MC n+p−2 2

GH U(1)×U(1) SU(p)×SU(n−l+1)×SU(l−1)×U(1)

GC SU(p)×SU(n−l+1)×SU(l−1)×U(1) U(1)×U(1)

Table 5. Summary table for the moduli space dimensions and global symmetries for the mirror

pair in figure 17.

4.2 Examples of Abelian quiver pairs

4.2.1 Family I[n,l,p]: a single closed loop attached to a linear quiver tail

The first example in the class of Abelian mirrors is the infinite family of mirror duals shown

in figure 17, labelled by three positive integers (n, l, p) with the constraints n− l + 1 > 0,

l > 1, and p ≥ 2. The theory X ′ has the shape of a single closed loop attached to a linear

quiver tail, while the theory Y ′ is a quiver with two nodes connected by multiple edges.

The dimensions of the respective Higgs and Coulomb branches, and the associated global

symmetries are shown in table 5.

The quiver pair (X ′, Y ′) in figure 17 can be generated from the linear quiver pair

(X,Y ) in figure 18 by a series of elementary Abelian operations on X and the dual oper-

ations on Y , as shown in figure 19. The Higgs branch global symmetry of X is given by

GX
H = U(1)3/U(1) = U(1) × U(1). Using the notation introduced in section 2.4, the mass

parameters are labelled as m = (m1,m2,m3), and the quotient by the overall U(1) factor

in the flavor symmetry of quiver X can be implemented by the constraint m2 = 0. The

U(1) × U(1) flavor symmetry of X can then be identified with the two terminal U(1) flavor

nodes, parametrized by the independent (m1,m3).

To obtain X ′ from X, we first perform an identification-flavoring-gauging operation13

O1 on the flavor nodes (marked in red) at the two ends of the quiver X, with Nα
F = 1.

13As mentioned earlier in section 3.4, we drop the superscript α from the notation Oα
P when there is no

ambiguities regarding the flavor nodes on which the S-type operation acts. In cases where P is trivial, we

drop the subscript as well.
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Figure 18. Pair of linear quivers with U(1) gauge groups which generate the 3d mirrors in figure 17.

This step is precisely the same as the illustrative example studied in section 3.4. This is

followed by a flavoring-gauging operation O2 on the quiver O1(X) at the new flavor node

(also marked in red), again with Nα
F = 1. The quiver X ′ can be obtained by implementing

a sequence of p − 2 such flavoring-gauging operations, each acting at the new flavor node

obtained in the previous step. Let us adopt the notation:

X(i) = Oi ◦ Oi−1 ◦ . . . ◦ O2 ◦ O1(X), (4.40)

Y (i) = Õi ◦ Õi−1 ◦ . . . ◦ Õ2 ◦ Õ1(Y ), (4.41)

where O1 is an identification-flavoring-gauging operation, and Oi (i > 1) are flavoring-

gauging operations. We will denote the N = 4-preserving deformations of the quivers X(i)

and Y (i) as (m(i),η(i)) and (m′(i),η′(i)) respectively. In this notation, we have

X ′ = X(p−1), Y ′ = Y (p−1). (4.42)

We will denote the deformation parameters of the dual theories X ′ and Y ′ as (m,η) and

(m′,η′) respectively, which obviously implies

(m,η) = (m(p−1),η(p−1)), (m′,η′) = (m′(p−1),η′(p−1)). (4.43)

The masses associated with the identification operation are parametrized as µ, while the

mass associated with flavoring operation at the i-th step is mα
F = m

(i)
F . The FI parameter

associated to the gauging operation at the i-th step is ηα = η̃(i).

Let us begin with the dual operation for O1(X). This was already worked out in

section 3.4. We will now derive that result using the general Abelian formula (4.38)–(4.39)

in section 4.1.4. Following the notation in section 4.1 (originally introduced in section 3.2),
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Figure 19. The quiver (X ′) and its mirror dual (Y ′) in figure 17 (for p = 3) is generated by a

sequence of elementary S-type operations on different nodes. In each step, the flavor node(s) on

which the S-type operation acts is shown in red.

let us define the variables {uβ}, which parametrize the U(1) × U(1) mass parameters of

the quiver X:

u1 = m1, u
2 = m3, (4.44)

and implement the S-type operation O1 on the relevant flavor nodes of X. Note that the

permutation matrices {Pβ} are trivial in this case. The resultant quiver O1(X) = X(1) is

shown in the second line of figure 19.

The dual quiver Õ1(Y ) can then be constructed using the general recipe presented

in section 4.1.4 — the expressions (4.38)–(4.39) give the dual partition function. The

expression (4.38) implies that the dual quiver Õ1(Y ) simply involves adding an extra hy-
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permutiplet to the quiver gauge theory Y , i.e.

ZÕ1(Y )(m′(1),η′(1))=

∫ 2∏

γ′=1

[
dσγ′

]
Zhyper

Õ1(Y )
(σ1,σ2,η̃(1),t)Z

(Y )
int (σ1,σ2,−t,{uβ =µβ+m

(1)
F }) (4.45)

=

∫ 2∏

γ′=1

[
dσγ′

]
Zhyper

Õ1(Y )
(σ1,σ2,η̃(1),t)Z

(Y )
int (σ1,σ2,−t,{m1=µ1+m

(1)
F ,m2=0,m3=µ2+m

(1)
F }),

where m′(1) = m′(1)(t, η̃(1)),η′(1) = η′(1)(m
(1)
F ,µ) are linear functions of their arguments.

The problem then is reduced to writing down the contribution of the hypermultiplet Zhyper

Õ1(Y )
.

From (4.39), this is given as

Zhyper

Õ1(Y )
(σ1,σ2,η̃(1),t)=

1

coshπ(σ1−σ2+η̃(1)+
∑

β b
l
βtl)

=:Zbif
1−loop


σ1,σ2,−η̃(1)−

∑

β

bl
βtl


.

(4.46)

The new hypermultiplet can therefore be identified as a bifundamental hypermultiplet with

a mass mbif = −η̃(1) −∑
β b

l
βtl, and this leads to the quiver Y (1) in the second line of fig-

ure 19.14 Finally, the mirror map between the masses and the FI parameters can be read off

from (4.45)–(4.46), and can be recast in the form (3.74)–(3.75) after appropriately redefin-

ing the integration variables and mass parameters (m
(1)
F → m

(1)
F − µ1 with µ = µ2 − µ1).

Now consider implementing the flavoring-gauging operation O2 on the quiver X(1) =

O1(X). Following the notation of section 4, we label the new flavor node, arising from the

operation O1 in the previous step, as α. We define the associated mass parameter as

uα = m
(1)
F . (4.47)

Note that the permutation matrix P is trivial in this case. The quiver O2(X(1)) = X(2) is

shown in figure 19.

The dual quiver Õ2(Y (1)) can then be constructed using the general recipe presented

in section 4.1.2. The expressions (4.14)–(4.15) show that the dual quiver Õ2(Y (1)) is given

by adding one extra hypermultiplet to the quiver gauge theory Y (1), i.e.

ZÕ2(Y (1))(m′(2),η′(2)) =

∫ 2∏

γ′=1

[
dσγ′

]
Z

(Y (1))
int (σ1, σ2,m′(1)(t, η̃(1)),η′(1)(uα = m

(2)
F ,µ))

× Zhyper

Õ2(Y (1))
(σ1, σ2, η̃(2),η(1)(t, η̃(1))), (4.48)

where the explicit form of the function Z
(Y (1))
int can be read off from (4.45), and the function

Zhyper

Õ2(Y (1))
is given by (4.14). The function gα(σ1, σ2) in (4.14) can be read off from the FI

term appearing in the r.h.s. of (4.45), which gives gα(σ1, σ2) = σ1 − σ2. Therefore, the

14The matrix bl
β can be read off from the precise mirror symmetry relation between Z(X) and Z(Y ), i.e.

Z(X)(u; t) = e2πi(t1u1−tnu2)Z(Y )(−t; u), =⇒ bl
βtlu

β = (t1u1 − tnu2), (l = 1, . . . , n, β = 1, 2).
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hypermultiplet term reads:

Zhyper

Õ2(Y (1))
(σ1, σ2, η̃(2),η(1)(t, η̃(1))) = Zbif

1−loop


σ1, σ2,−η̃(1) − η̃(2) −

∑

β

bl
βtl


 , (4.49)

The new hypermultiplet can therefore be identified as a bifundamental hyper with a mass

parameter mbif = −η̃(1) − η̃(2) − ∑
β b

l
βtl. The resultant quiver then is given by Y (2) in

the third line of figure 19. The mirror map for the dual theories X(2), Y (2) can be read off

from (4.48)–(4.49).

In the next step, we implement the flavoring-gauging operation O3 on the quiver X(2)

at the flavor node arising from the operation O2 on X(1), and so on. At the i-th step, the

dual quiver Y (i) is given by adding a bifundamental hypermultiplet to the quiver Y (i−1).

The dual pair (X ′, Y ′) in figure 17 is therefore generated in this fashion for i = p− 1. The

theory Y ′ can be read off from the partition function:

ZY ′
(m′,η′)=

∫ 2∏

γ′=1

[
dσγ′

]p−1∏

i=1

Zbif
1−loop(σ1,σ2,m′

bif i)Z
(Y )
int (σ1,σ2,−t,{m(p−1)

F ,0,µ+m
(p−1)
F }),

(4.50)

where the parameters m′
bif i are given as m′

bif i = −∑i
k=1 η̃

(k) −∑
β b

l
βtl.

After a change of integration variables, the mirror map for the dual pair (X ′, Y ′)

can be summarized as follows. The mass parameters of theory Y ′, associated with the

bifundamental and fundamental hypermultiplets, can be written as linear functions of the

FI parameters of X ′:

m′
bif j =




δ1 − δ2, if j = 1

−∑j−1
k=1 η̃

(k) + δ1 − δ2, if j = 2, . . . , p,
(4.51)

m′1
fund i1

= −ti1 + δ1, i1 = 1, . . . , n− l + 1, (4.52)

m′2
fund i2

= −ti2+n−l+1 + δ2, i2 = 1, . . . , l − 1, (4.53)

where δ1 =

∑
i1

ti1

n−l+1 and δ2 =

∑
i2

ti2+n−l+1

l−1 . The FI parameters of the theory Y ′ are also

given in terms of the mass parameters of X ′:

η′1 = m
(p−1)
F , η′2 = −(m

(p−1)
F + µ). (4.54)

The mass parameters of Y ′ manifestly live in the Cartan subalgebra of the Higgs branch

global symmetry GY ′

H = U(p) × SU(n− l + 1) × SU(l − 1), while the FI parameters live in

the Cartan subalgebra of the Coulomb branch global symmetry GY ′

C = U(1) × U(1).

Note that the global symmetries on the Coulomb branch of theory X ′ looks counter-

intuitive. The loop in X ′ has two balanced linear subquivers, consisting of l − 2 and n− l

gauge nodes respectively. This leads to the factors of SU(l−1) and SU(n−l+1) respectively

in the global symmetry as expected. The linear subquiver attached to the loop has a set

of p− 2 balanced gauge nodes which naively contribute an SU(p− 1) factor to the global

symmetry. However, it turns out that the naive U(1) × U(1) × SU(p − 1) is enhanced to

U(1) × SU(p) in the IR. We already saw this phenomenon for the example worked out
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Figure 20. An infinite family of mirror duals labelled by the positive integers (n, l, l1, l2, p1, p2)

subject to the constraints n > l2 > l > l1 > 0, and p1 > 2, p2 > 1.

Moduli space data Theory X ′ Theory Y ′

dim MH 3 n+p1+p2−3

dim MC n+p1+p2−3 3

GH U(1)3 SU(l1)·SU(n−l2)·SU(p2)·U(l−l1)·U(l2−l)·U(p1)

GC SU(l1)·SU(n−l2)·SU(p2)·U(l−l1)·U(l2−l)·U(p1) U(1)3

Table 6. Summary table for the moduli space dimensions and global symmetries for the mirror

pair in figure 20.

in section 3.4 (which has an explicit Type IIB Hanany-Witten realization), corresponding

to p = 2 with generic n and l. Similar to that example, the enhancement in the global

symmetry can be explicitly checked by computing the character expansion for the Coulomb

branch Hilbert Series of X ′.

4.2.2 Family II[n,l,l1,l2,p1,p2]: two closed loops attached to a linear quiver tail

The second example in the class of Abelian mirrors is the infinite family of mirror duals

shown in figure 20, labelled by the positive integers (n, l, l1, l2, p1, p2) subject to the con-

straints n > l2 > l > l1 > 0, and p1 > 2, p2 > 1. In contrast to Family I studied earlier,

the quiver X ′ consists of two closed loops attached to a single linear quiver tail. The pro-

posed mirror dual Y ′ is a quiver with three nodes in a loop connected by multiple edges.

The dimensions of the respective Higgs and Coulomb branches, and the associated global

symmetries are shown in table 6.

The quiver pair (X ′, Y ′) in figure 20 can be generated from the linear quiver pair

(X,Y ) in figure 21 by a series of elementary Abelian S-type operations on X and the dual

operations on Y (shown in figure 22), which we shall describe momentarily. The Higgs

branch global symmetry of X is given by GX
H = U(1)5/U(1) = U(1)4. Using the notation

introduced in section 2.4, the mass parameters are labelled as m = (m1,m2,m3,m4,m5),

and the quotient by the overall U(1) factor in the flavor symmetry of quiver X can be

implemented by the constraint m3 = 0. The U(1)4 flavor symmetry of X can then be
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Figure 21. Pair of linear quivers with U(1) gauge groups which generate the 3d mirrors in figure 20.

identified with the U(1)1 × U(1)l1 × U(1)l2 × U(1)n−1 flavor nodes, parametrized by the

independent (m1,m2,m4,m5).

The theory X ′ can be obtained from the quiver X in three distinct set of steps, each

of which involves a sequence of elementary Abelian operations:

1. The first sequence involves an identification-flavoring-gauging operation O1 on the

U(1)1×U(1)n−1 flavor nodes (marked in red) at the two ends of the quiver X, followed

by p1 − 2 flavoring-gauging operations Oi (for i = 2, . . . , p1 − 1), each acting at the

new flavor node generated in the previous step. At each step, the flavoring operation

corresponds to Nα
F = 1. This is very similar to the derivation of the quiver X ′ in

Family I, studied earlier. We adopt the notation:

X(i) = Oi ◦ Oi−1 ◦ . . . ◦ O2 ◦ O1(X), (4.55)

Y (i) = Õi ◦ Õi−1 ◦ . . . ◦ Õ2 ◦ Õ1(Y ), (4.56)

and denote the N = 4-preserving deformations of the quivers X(i) and Y (i) as

(m(i),η(i)) and (m′(i),η′(i)) respectively. The mass associated with the identifica-

tion operation is µ, the mass associated with flavoring at the i-th step is labelled as

m
(i)
F , and the FI parameter associated with gauging operation at the i-th step is η̃(i).

The quivers (X(p1−1), Y (p1−1)) are shown in the second line of figure 22.

2. The second sequence involves p2 − 2 Nα
F = 1 flavoring-gauging operations O′

j (j =

1, . . . , p2 − 2), where O′
1 acts on the U(1)l1 flavor node of the quiver X(p1−1), while
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O′
j for j ≥ 2 acts on the new flavor node generated by the operation O′

j−1 in the

previous step. We will denote these quivers as:

X(p1−1,j) = O′
j ◦ O′

j−1 ◦ . . . ◦ O′
2 ◦ O′

1(X(p1−1)), (4.57)

Y (p1−1,j) = Õ′
i ◦ Õ′

i−1 ◦ . . . ◦ Õ′
2 ◦ Õ′

1(Y (p1−1)), (4.58)

and the associated N = 4-preserving deformations will be denoted as

(m(p1−1,j),η(p1−1,j)) and (m′(p1−1,j),η′(p1−1,j)) respectively. The mass associated

with the flavoring operation at the j-th step is x
(j)
F , and the FI parameter

associated with the gauging operation at the j-th step is ξ(j). The quivers

(X(p1−1,p2−2), Y (p1−1,p2−2)) are shown in the third line of figure 22.

3. In the final step, we implement an identification-gauging operation O′′ on the

X(p1−1,p2−2) involving the U(1)l2 flavor node and the U(1) flavor node generated

by the operation O′
p2−2 in the previous step. This leads to the quivers (X ′, Y ′) in

figure 20, i.e.

X ′ = O′′(X(p1−1,p2−2)), Y ′ = Õ′′(Y (p1−1,p2−2)). (4.59)

We will denote the N = 4-preserving deformations of the dual theories as (m,η)

and (m′,η′) respectively. The mass associated with the identification operation is

labelled as µ̃, and the FI parameter is labelled as ξ(p2−1).

Let us now work out the dual quivers at each step outlined above, using the dual

partition functions for Abelian S-type operations derived in section 4.1.

• Consider the first sequence of operations on the theory X. Let us define the variables

{uβ}, which correspond to the U(1)1 × U(1)n−1 mass parameters of the quiver X as:

u1 = m1, u
2 = m5, (4.60)

and implement the S-type operation O1 on the relevant flavor nodes of X (the per-

mutation matrices {Pβ} are again trivial in this case). The partition function of the

dual quiver Õ1(Y ) = Y (1) is then given by the expressions (4.38)–(4.39) as follows:

ZÕ1(Y )(m′(1),η′(1)) (4.61)

=

∫ 4∏

γ′=1

[
dσγ′

]
Zhyper

Õ1(Y )
({σγ′}, η̃(1), t)Z

(Y )
int ({σγ′},−t, {uβ = µβ +m

(1)
F },m2,m4),

=

∫ 4∏

γ′=1

[
dσγ′

]
Zhyper

Õ1(Y )
({σγ′}, η̃(1), t)Z

(Y )
int ({σγ′},−t, {m(1)

F ,m2, 0,m4,m
(1)
F + µ}),

where for the second equality we have redefined the mass parameter m
(1)
F → m

(1)
F −µ1

with µ = µ2 − µ1. Following (4.39), the hypermultiplet term gives

Zhyper

Õ1(Y )
({σγ′}, η̃(1), t) = Zbif

1−loop


σ1, σ4,−η̃(1) −

∑

β

bl
βtl


 . (4.62)
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∏
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Figure 22. The quiver (X ′) and its mirror dual (Y ′) in figure 20 is generated by a sequence of

elementary S-type operations on different nodes. In each step, the flavor node(s) on which the

S-type operation acts is shown in red.
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The dual operation therefore amounts to adding a bifundamental hypermultiplet

connecting the gauge nodes labelled 1 and 4 in quiver Y , with a mass parameter

m
′(14)
bif 1 = −η̃(1) −∑β b

l
βtl. Next, we implement the flavoring-gauging operation O2 on

the quiver X(1) = O1(X) at the new flavor node α generated by O1, i.e. we set

uα = m
(1)
F , (4.63)

and implement the flavoring-gauging operation at α as before. The expres-

sions (4.14)–(4.15) show that the dual quiver Õ2(Y (1)) = Y (2) is given by adding

to the quiver gauge theory Y (1) one extra bifundamental hypermultiplet connecting

the gauge nodes labelled 1 and 4. Explicitly, (4.15) gives

ZÕ2(Y (1))(m′(2),η′(2))=

∫ 4∏

γ′=1

[
dσγ′

]
Zhyper

Õ2(Y (1))
({σγ′},η̃(2),η(1))Z

(Y (1))
int ({σγ′},m′(1),η′(1)),

(4.64)

where η(1) = η(1)(t, η̃(1)), η′(1) = η′(1)(uα = m
(2)
F , µ,m2,m4). The function Z

(Y (1))
int is

given by the integrand of the matrix integral on the r.h.s. of (4.61). The function gα

in the formula (4.14) for Zhyper

Õ2(Y (1))
can be read off from the FI term appearing in the

r.h.s. of (4.61), i.e. gα(σ1, σ4) = σ1 − σ4. The hypermultiplet term then gives

Zhyper

Õ2(Y (1))
({σγ′}, η̃(2),η(1)) = Zbif

1−loop


σ1, σ4,−η̃(1) − η̃(2) −

∑

β

bl
βtl


 . (4.65)

Proceeding in the same fashion, one can implement the flavoring-gauging operation

successively on the new flavor node generated in the previous step. At the i-th step,

the dual quiver Y (i) is given by adding a bifundamental hypermultiplet connecting

the gauge nodes labelled 1 and 4 in the quiver Y (i−1). The partition function of the

theory Y (p1−1) is given as

ZY (p1−1)

(m′(p1−1),η′(p1−1)) (4.66)

=

∫ 4∏

γ′=1

[
dσγ′

]p1−1∏

i=1

Zbif
1−loop(σ1,σ4,m

′(14)
bif i )Z

(Y )
int ({σγ′},−t,{m(p1−1)

F ,m2,0,m4,m
(p1−1)
F +µ}),

which manifestly is the partition function for the quiver Y (p1−1), as shown in the

second line of the figure 22. The bifundamental masses m′
bif in the above expression

are given as

m
′(14)
bif i = −

i∑

k=1

η̃(k) −
∑

β

bl
βtl. (4.67)

• Next, consider the second sequence of operations on the theory X(p1−1), starting with

the U(1)l1 flavor node shown in red in figure 22. Let us define the mass parameter

uα corresponding to the U(1)l1 flavor node as

uα = m2, (4.68)
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and implement the flavoring-gauging operation O′
1. The partition function of the

dual theory Õ′
1(Y (p1−1)) = Y (p1−1,1) is then given as

ZÕ′
1(Y (p1−1))(m′(p1−1,1),η′(p1−1,1)) (4.69)

=

∫ 4∏

γ′=1

[
dσγ′

]
Zhyper

Õ′
1(Y (p1−1))

({σγ′}, ξ(1),η(p1−1))Z
(Y (p1−1))
int ({σγ′},m′(p1−1),η′(p1−1)),

where η(p1−1) = η(p1−1)(t, η̃(i)), η′(p1−1) = η′(p1−1)(uα = x
(1)
F , µ,m

(p1−1)
F ,m4), and

the function Z
(Y (p1−1))
int is given by the integrand on the r.h.s. of (4.66). The hyper-

multiplet term, computed as before from (4.14), has the form:

Zhyper

Õ′
1(Y (p1−1))

({σγ′}, ξ(1),η(p1−1)) = Zbif
1−loop(σ1, σ2, ξ(1) + bl

2η
(p1−1)
l ), (4.70)

which implies that the dual operation Õ′
1 on theory Y (p1−1) simply amounts to

adding a bifundamental hypermultiplet connecting the gauge nodes labelled 1 and 2

in Y (p1−1). Proceeding as before, one can now perform the flavoring-gauging opera-

tion on the new U(1) flavor node, with mass parameter x
(1)
F , and repeat this operation

p2 −2 times. The resultant dual theory Y (p1−1,p2−2) can be read off from the partition

function:

ZY (p1−1,p2−2)
=

∫ 4∏

γ′=1

[
dσγ′

] p2−2∏

j=1

Zbif
1−loop(σ1, σ2,m

′(12)
bif j )

p1−1∏

i=1

Zbif
1−loop(σ1, σ4,m

′(14)
bif i )

× Z
(Y )
int ({σγ′},−t, {m(p1−1)

F , x
(p2−2)
F , 0,m4,m

(p1−1)
F + µ}), (4.71)

which manifestly reproduces the quiver gauge theory Y (p1−1,p2−2) in the third line of

figure 22. The bifundamental masses m
′(12)
bif in the above expression are given as

m
′(12)
bif j =

j∑

k=1

ξ(k) + bl
2η

(p1−1)
l . (4.72)

• Finally, consider the identification-gauging operation on the theory X(p1−1,p2−2), in-

volving the two U(1) flavor nodes shown in red in figure 22. Let us define the variables

{uβ′} as

u1 = x
(p2−2)
F , u2 = m4, (4.73)

and implement the identification-gauging operation O′′. The dual, given by the

general expression (4.25), is an ungauging operation on Y (p1−1,p2−2). From (4.71)

and (4.25), the partition function of the theory Õ′′(Y (p1−1,p2−2)) is given as

ZÕ′′(Y (p1−1,p2−2)) =

∫ 4∏

γ′=1

[
dσγ′

] p2−2∏

j=1

Zbif
1−loop(σ1,σ2,m

′(12)
bif j )

p1−1∏

i=1

Zbif
1−loop(σ1,σ4,m

′(14)
bif i )

×Z
(Y )
int ({σγ′},−t,{m(p1−1)

F , µ̃1,0, µ̃2,m
(p1−1)
F +µ})

×δ

(
ξ(p2−1) +

∑

β′

bl
β′η

(p1−1,p2−2)
l +σ2 +σ4 −σ1 −σ3

)
. (4.74)
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To read off the precise Lagrangian for Õ′′(Y (p1−1,p2−2)), we eliminate σ2 using the

delta function, and make the following change of variables:

σ̃1 = σ1, σ̃2 = σ4 − σ3, σ̃3 = σ4. (4.75)

The matrix integral (4.74) can then be recast into the following form:

ZÕ′′(Y (p1−1,p2−2)) =

∫ 3∏

γ′=1

[
dσ̃γ′

]
ZFI({σ̃γ′},m(p1−1)

F , µ̃,µ)
l−l1∏

i=1

Zbif
1−loop(σ̃1, σ̃2,m

′(12)
bif i )

×
l2−l∏

j=1

Zbif
1−loop(σ̃2, σ̃3,m

′(23)
bif j )

p1∏

k=1

Zbif
1−loop(σ̃3, σ̃1,m

′(31)
bif k )

l1∏

i1=1

Z fund
1−loop(σ̃1,m

′(1)
fund i1

)

×
p2∏

i2=1

Zfund
1−loop(σ̃2,m

′(2)
fund i2

)
n−l2∏

i3=1

Zfund
1−loop(σ̃3,m

′(3)
fund i3

), (4.76)

ZFI({σ̃γ′},m(p1−1)
F , µ̃,µ) = e2πim

(p1−1)
F σ̃1

e2πiµ̃σ̃2
e−2πi(µ+m

(p1−1)
F )σ̃3

, µ̃= µ̃2 − µ̃1. (4.77)

The matrix integral (4.76) manifestly reproduces the partition function of the quiver

Y ′ in the final line of figure 22. The mirror map for the dual pair (X ′, Y ′) can

be summarized as follows. The mass parameters of theory Y ′, associated with the

bifundamental and fundamental hypermultiplets, can be written as linear functions

of the FI parameters of X ′:

m
′(12)
bif i = −tl1+i + δ + δ2 − δ1, i = 1, . . . , l − l1, (4.78)

m
′(23)
bif j = −tl+j + δ3 − δ2, j = 1, . . . , l2 − l, (4.79)

m
′(31)
bif k =





(
∑k

k1=1 η̃
(k1) +

∑
β=1,5 b

l
βtl) + δ3 − δ1, if k = 1, . . . , p1 − 1

δ + δ3 − δ1, if k = p1,
(4.80)

m
′(1)
fund i1

= −ti1 + δ1, i1 = 1, . . . , l1, (4.81)

m
′(2)
fund i2

=





(
∑i2

j2=1 ξ
(j2) + bl

2tl) − δ − δ2, if i2 = 1, . . . , p2 − 2

−δ − δ2, if i2 = p2 − 1,

−δ2, if i2 = p2,

(4.82)

m
′(3)
fund i3

= −tl2+i3 − δ3, i3 = 1, . . . , n− l2, (4.83)

where δ =
∑p2−1

j ξ(j) +
∑

β=2,4 b
l
βtl, and δ1,2,3 are chosen such that

∑
i1
m

′(1)
fund i1

=
∑

i2
m

′(2)
fund i2

=
∑

i3
m

′(3)
fund i3

= 0. The FI parameters of the theory Y ′ are also given in

terms of the mass parameters of X ′:

η′1 = m
(p−1)
F , η′2 = µ̃, η′3 = −(m

(p−1)
F + µ). (4.84)

Written in this fashion, the fundamental mass parameters of Y ′ manifestly live in the

Cartan subalgebra of SU(l1) × SU(p2) × SU(n− l2), while the bifundamental masses

parametrize the Cartan subalgebra of U(l−l1)×U(l2−l)×U(p1). Combined together,

the masses parametrize the Cartan subalgebra of the Higgs branch global symmetry
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Figure 23. An infinite family of mirror duals labelled by the positive integers (p1, p2, p3) subject

to the constraints p1 ≥ 1, p2 ≥ 1, and p3 > 1.

group of Y ′, i.e. GY ′

H = SU(l1) × SU(p2) × SU(n− l2) × U(l− l1) × U(l2 − l) × U(p1),

while the FI parameters live in the Cartan subalgebra of the Coulomb branch global

symmetry GY ′

C = U(1)3.

4.3 Examples of non-Abelian quiver pairs

4.3.1 Family III[p1,p2,p3]: a single closed loop with bifundamental matter at-

tached to a linear quiver tail

The first example in the class of non-Abelian mirrors is the infinite family of mirror duals

shown in figure 23, labelled by three positive integers (p1, p2, p3) with the constraints p1 ≥ 1,

p2 ≥ 1, and p3 > 1. The theory X ′ has the shape of a single closed loop attached to a

linear quiver tail, where the loop has a single U(2) gauge node and p1 + p2 + 1 U(1) gauge

nodes. The dual theory Y ′ is a quiver with four gauge nodes, two of which are connected

by multiple edges. The dimensions of the respective Higgs and Coulomb branches, and the

associated global symmetries are shown in table 7.

The quiver pair (X ′, Y ′) in figure 23 can be generated from the linear quiver pair

(X,Y ) in figure 24 by a sequence of elementary Abelian operations on X and the dual

operations on Y , as shown in figure 25. The Higgs branch global symmetry of X is given

by GX
H = (U(1) × U(3) × U(1))/U(1). We choose to quotient with the overall U(1) such

that GX
H = U(1) × SU(3) × U(1). Using the notation introduced in section 2.4, the mass

parameters are labelled as m = (m1,m2,m3,m4,m5), and the quotient by the overall U(1)

factor in the flavor symmetry of quiver X can be implemented by the constraint m2 +m3 +

m4 = 0. The U(1) × U(1) subgroup of the flavor symmetry of X can then be identified

with the two terminal U(1) flavor nodes, parametrized by the independent (m1,m5).

To obtain X ′ from X, we first perform an identification-flavoring-gauging operation

O1 on the flavor nodes (marked in red) at the two ends of the quiver X, with Nα
F = 1.

This is followed by a sequence of flavoring-gauging operations {Oi} (i = 2, . . . , p3), with

Nα
F = 1, implemented at the new flavor node obtained in the previous step. The procedure

– 72 –



J
H
E
P
0
7
(
2
0
2
1
)
1
9
9

1 1 1 2 1 1 1

1 3 1

1 1 p1 − 1p2 − 1p2 p1

(X)

1 2 2 1

p2 1 1 p1

1 2 3 4

(Y )

Figure 24. Pair of linear quivers with U(1) gauge groups which generate the 3d mirrors in figure 23.
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i Õi

2

1

1

1

1

1

1

1

3 1 1 1 1

1

2
p1

p2

2

1

1 2 p3 − 1

(X ′)

1

2 2

1

p2

1

p1

1

1

2 3

4

p3

(Y ′)

Figure 25. The quiver (X ′) and its mirror dual (Y ′) in figure 23 is generated by a sequence of

elementary S-type operations on different nodes. In each step, the flavor node(s) on which the

S-type operation acts is shown in red.
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Moduli space data Theory X ′ Theory Y ′

dim MH 6 2+p1 +p2 +p3

dim MC 2+p1 +p2 +p3 6

GH U(3)×U(1) SU(p1)×SU(p2)×SU(p3)×U(1)4

GC SU(p1)×SU(p2)×SU(p3)×U(1)4 U(3)×U(1)

Table 7. Summary table for the moduli space dimensions and global symmetries for the mirror

pair in figure 23.

is precisely the same as the ones described for Family I in section 4.2.1. As before, we

adopt the notation:

X(i) = Oi ◦ Oi−1 ◦ . . . ◦ O2 ◦ O1(X), (4.85)

Y (i) = Õi ◦ Õi−1 ◦ . . . ◦ Õ2 ◦ Õ1(Y ), (4.86)

where O1 is an identification-flavoring-gauging operation, and Oi (i > 1) are flavoring-

gauging operations. In this notation, we have

X ′ = X(p3), Y ′ = Y (p3). (4.87)

The N = 4-preserving deformations of the quivers X(i) and Y (i) are denoted as (m(i),η(i))

and (m′(i),η′(i)) respectively. We will denote the deformation parameters of the dual

theories X ′ and Y ′ as (m,η) and (m′,η′) respectively, which obviously implies

(m,η) = (m(p3),η(p3)), (m′,η′) = (m′(p3),η′(p3)). (4.88)

Finally, the masses associated with the identification operation are parametrized as µ,

while the mass associated with flavoring operation at the i-th step is mα
F = m

(i)
F . The FI

parameter associated to the gauging operation at the i-th step is ηα = η̃(i).

Following the notation in section 4.1, we define the variables {uβ}, which parametrize

the U(1) × U(1) mass parameters of the quiver X:

u1 = m1, u
2 = m5, (4.89)

and implement the operations {Oi}, as shown in figure 25. Since the computation is very

similar to the one discussed in section 4.2.1, we simply present the answer. Following the

general formulae in (4.38)–(4.39) and (4.14)–(4.15), the partition function of the theory

Y (p3) is given as

ZY (p3)
(m′(p3),η′(p3)) (4.90)

=

∫ 4∏

γ′=1

[
dσγ′

] p3∏

i=1

Zbif
1−loop(σ1,σ4,m

′(14)
bif i )Z

(Y )
int ({σγ′},−t,{m(p3)

F ,m2,m3,m4,m
(p3)
F +µ}),

which manifestly is the partition function for the quiver Y ′, as shown in the second line of

the figure 25. The bifundamental masses m′
bif in the above expression are given as

m
′(14)
bif i = −

i∑

k=1

η̃(k) −
∑

β=1,5

bl
βtl. (4.91)
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After a change of integration variables, the mirror map for the dual pair (X ′, Y ′)

can be summarized as follows. The mass parameters of theory Y ′, associated with the

bifundamental and fundamental hypermultiplets, can be written as linear functions of the

FI parameters of X ′:

m
′(14)
bif i = −

i∑

k=1

η̃(k) −
∑

β=1,5

bl
βtl, (4.92)

m
′(12)
bif = 0, m

′(23)
bif = 0, m

′(34)
bif = 0, (4.93)

m′1
fund i1

= −ti1 + δ, i1 = 1, . . . , p2, (4.94)

m′2
fund = −tp2+1 + δ, (4.95)

m′3
fund = −tp2+2 + δ, (4.96)

m′4
fund i2

= −tp2+2+i4 + δ, i4 = 1, . . . , p1, (4.97)

where we choose δ such that δ =

∑
i1

ti1

p2
. The FI parameters of the theory Y ′ are also

given in terms of the mass parameters of X ′:

η′1 = m
(p3)
F −m2, η

′2 = m2 −m3, η
′3 = m3 −m4, η

′4 = m4 − (m
(p−1)
F + µ). (4.98)

The mass parameters of Y ′ manifestly live in the Cartan subalgebra of the Higgs branch

global symmetry GY ′

H = SU(p2) × U(p3) × U(p1) × U(1)2, while the FI parameters live in

the Cartan subalgebra of the Coulomb branch global symmetry GY ′

C = U(3) × U(1). The

Coulomb branch global symmetry can be read off from the observation that Y ′ contains a

balanced sub-quiver with two gauge nodes (labelled 2 and 3) which gives an SU(3) factor,

along with two unbalanced nodes which contribute a U(1) factor each.

4.3.2 Family IV[p1,p2,p3]: a single closed loop with bifundamental and rank-2

antisymmetric matter attached to a linear quiver tail

The second example in the class of non-Abelian mirrors is the infinite family of mirror

duals shown in figure 26, labelled by three positive integers (p1, p2, p3) with the constraints

p1 ≥ 1, p2 ≥ 1, and p3 > 1. The theory X ′ has the shape of a single closed loop attached

to a linear quiver tail, where the loop has a single U(2) gauge node and p1 + p2 + 1 U(1)

gauge nodes. One of the hypermultiplets in the loop transforms in the rank-2 antisym-

metric representation of U(2) (i.e. it is charged +2 under the U(1) subgroup of U(2) and

singlet under the SU(2)) and is charged +1 under an adjacent U(1), while all the other

hypermultiplets in the loop transform in the bifundamental representations as shown. The

dual theory Y ′ is a quiver with four gauge nodes, two of which are connected by multiple

edges. The dimensions of the respective Higgs and Coulomb branches, and the associated

global symmetries are shown in table 8.

The quiver pair (X ′, Y ′) in figure 26 can be generated from the quiver pair (X,Y ) in

figure 27 by a series of elementary Abelian S-type operations on X and the dual operations

on Y (shown in figure 29), which we shall describe momentarily. Note that the quiver pair
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Figure 26. An infinite family of mirror duals labelled by the positive integers (p1, p2, p3) subject

to the constraints p1 ≥ 1, p2 ≥ 1, and p3 > 1. The label A denotes a hypermultiplet transforming

in a rank-2 antisymmetric representation of U(2) and having charge 1 under U(1)1.
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Figure 27. Mirror duals involving a D4 quiver on one side. This dual pair (X,Y ) will be our

starting point for arriving at the duality in figure 26. The dual pair can, in turn, be obtained from

a pair of linear quivers as discussed in section A.1.

(X,Y ) are not linear quivers, but can be easily generated from a pair of linear quivers using

a single Abelian gauging operation, as shown in figure 28 and discussed in section A.1.15

The Higgs branch global symmetry of X is given by GX
H = (U(4)×U(1)A)/U(1), where

U(1)A is the flavor symmetry associated with the antisymmetric hypermultiplet, and the

Coulomb branch global symmetry is GX
C = U(1). The fundamental mass parameters are

labelled as (m1,m2,m3,m4), and the mass parameter for the antisymmetric hypermultiplet

as mA. The quotient by the overall U(1) factor can be implemented either by the constraint∑4
i=1mi = 0, or the constraint mA = 0. The Coulomb branch global symmetry of Y is

clearly given by GY
C = SU(4)×U(1), where the SU(4) factor arises from the balanced linear

subquiver of Y , consisting of the gauge nodes labelled 1, 2 and 3 in figure 27. The Cartan

subalgebra ofGY
C is parametrized by the FI parameters {η′

l}l=1,...,4. The Higgs branch global

symmetry of X is given by GY
H = (U(1)2×U(1)3)/U(1), where the Cartan of U(1)2×U(1)3 is

parametrized by (m′
2,m

′
3). We will implement the U(1) quotient by choosing m′

3 = 0. The

mirror map for the dual pair (X,Y ) relating masses and FI parameters across the duality

is then given as follows (simply inverting the relations (A.14)–(A.16) and interchanging the

15In the notation of section A.1, Xhere = Y ′′
there, and Yhere = X ′

there. One can also think of generating the

dual pair in figure 26 from a pair of linear quivers by first implementing a gauging operation of a Coulomb

branch global symmetry and then implementing a sequence of different Abelian S-type operations which

gauge a subgroup of the Higgs branch global symmetry.
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Moduli space data Theory X ′ Theory Y ′

dim MH 5 1+p1 +p2 +p3

dim MC 1+p1 +p2 +p3 5

GH SU(3)×U(1)2 SU(p1)×SU(p2)×SU(p3)×U(1)3

GC SU(p1)×SU(p2)×SU(p3)×U(1)3 SU(3)×U(1)2

Table 8. Summary table for the moduli space dimensions and global symmetries for the mirror

pair in figure 26.

primed and unprimed parameters):

η′
l = −(ml −ml+1), l = 1, 2, (4.99)

η′
3 = −m3 −m4 +mA, (4.100)

η′
4 = m4 −m3, (4.101)

m′
2 = η, m′

3 = 0, (4.102)

where it is understood that the masses of X satisfy one of the constraints -
∑4

i=1mi = 0,

or mA = 0.

The theory X ′ can be obtained from the quiver X in three distinct set of steps, as

shown in figure 29, each involving a sequence of elementary Abelian operations which we

describe below:

1. We impose the constraint mA = 0, and identify the Higgs branch global symmetry

GX
H = U(4) with the U(4) flavor node corresponding to the fundamental hypermul-

tiplets. Then we perform an Abelian flavoring-gauging operation O1 P at the U(4)

flavor node, with Nα
F = 1, with the following choice of the permutation matrix P:16

P =




0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0



. (4.103)

This is followed by a sequence of flavoring-gauging operations Oi (for i = 2, . . . , p1)

acting at the new U(1) flavor node generated in the previous step. At each step,

the flavoring operation corresponds to Nα
F = 1. Note that only O1 P depends on the

permutation matrix P, while the rest of the operations Oi (i > 1) do not. We adopt

the following notation for the resultant quivers and their respective duals:

X
(i)
P = Oi ◦ Oi−1 ◦ . . . ◦ O2 ◦ O1 P(X), (4.104)

Y
(i)

P = Õi ◦ Õi−1 ◦ . . . ◦ Õ2 ◦ Õ1 P(Y ), (4.105)

16One can explicitly show that, for the other choices of the matrix P, one either obtains the same dual

Lagrangian Y ′ in figure 26, or obtains a Lagrangian which is related to Y ′ by some simple field redefiniton.
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and denote the N = 4-preserving deformations of the quivers X
(i)
P and Y

(i)
P as

(m(i),η(i)) and (m′(i),η′(i)) respectively. The mass associated with flavoring at the

i-th step is labelled as m
(i)
F , and the FI parameter associated with gauging operation

at the i-th step is η̃(i). The quivers (X
(p1)
P and its dual Y

(p1)
P ) are shown in the second

line of figure 29.

2. The Higgs branch global symmetry of the quiver X
(p1)
P is G

X
(p1)

P
H = (U(3) × U(1)A ×

U(1))/U(1). We will choose to implement the U(1) quotient by constraining the

masses of the hypers in the fundamental representation of U(2), while leaving the

U(1)A and U(1) masses unconstrained. Then, we perform a sequence of Nα
F = 1

flavoring-gauging operations O′
j (j = 1, . . . , p2 − 1), starting at the U(1)A node, and

acting on the new U(1) flavor node in the subsequent steps. We will denote these

quivers as:

X
(p1,j)
P = O′

j ◦ O′
j−1 ◦ . . . ◦ O′

2 ◦ O′
1(X

(p1)
P ), (4.106)

Y
(p1,j)

P = Õ′
i ◦ Õ′

i−1 ◦ . . . ◦ Õ′
2 ◦ Õ′

1(Y
(p1)

P ), (4.107)

and the associated N = 4-preserving deformations will be denoted as (m(p1,j),η(p1,j))

and (m′(p1,j),η′(p1,j)) respectively. The mass associated with the flavoring operation

at the j-th step is x
(j)
F , and the FI parameter associated with the gauging operation

at the j-th step is ξ(j). The resultant quiver X
(p1,p2−1)
P and its dual Y

(p1,p2−1)
P are

shown in the third line of figure 29.

3. In the final step, we implement an Nα
F = 1 identification-flavoring-gauging operation

O′′
1 on the two U(1) flavor nodes of X(p1,p2−1), shown in red in the third line of

figure 29. This is again followed by a sequence of Nα
F = 1 flavoring-gauging operations

O′′
k (k = 2, . . . , p3), starting with the new U(1) flavor node generated by O′′

1 . We will

denote these quivers as:

X
(p1,p2−1,k)
P = O′′

k ◦ O′′
k−1 ◦ . . . ◦ O′′

2 ◦ O′′
1(X

(p1,p2−1)
P ), (4.108)

Y
(p1,p2−1,k)

P = Õ′′
k ◦ Õ′′

k−1 ◦ . . . ◦ Õ′′
2 ◦ Õ′′

1(Y
(p1,p2−1)

P ), (4.109)

and the associated N = 4 -preserving deformations will be denoted as

(m(p1,p2−1,k),η(p1,p2−1,k)) and (m′(p1,p2−1,k),η′(p1,p2−1,k)) respectively. The mass as-

sociated with the flavoring operation at the k-th step is y
(k)
F , and the FI parameter

associated with the gauging operation at the k-th step is ζ(k). The mass associated

with the identification operation is µ. The resultant quiver X
(p1,p2−1,p3)
P = X ′ and

its dual Y
(p1,p2−1,p3)

P = Y ′ are shown in the fourth line of figure 29.

Let us now work out the dual quivers at each step outlined above, using the general

prescriptions for the dual partition functions for Abelian S-type operations, derived in

section 4.1.
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P ÕP
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Figure 28. The mirror dual pair (X,Y ) in figure 27 can be derived from a pair of linear quivers

shown in the top line by an Abelian gauging operation. The details of the computation can be

found in section A.1.

• Consider the first sequence of operations on the theory X at the U(4) flavor node α.

Recall that the partition function of the theory Y is given as17

Z(Y )(m′,η′) =

∫ 4∏

γ′=1

[
dσγ′

]
Z

(Y )
int ({σγ′}, η, {m1,m2,m3,m4,mA}) (4.110)

=

∫ 4∏

γ′=1

[
dσγ′

]
Z

(Y )
FI ({σγ′}, {m1,m2,m3,m4,mA})Z

(Y )
1−loop({σγ′}, η),

where Z
(Y )
1−loop can be read off from the quiver Y in figure 27. The explicit form of

the FI term, using the relations (4.99)–(4.101), is as follows:

Z
(Y )
FI ({σγ′}, {m1,m2,m3,m4,mA}) = e−2πiσ1 (m1−m2) e−2πiTrσ2 (m2−m3) (4.111)

× e−2πiσ3 (m3+m4−mA) e−2πiσ4 (m3−m4).

As discussed earlier, we will implement the overall U(1) quotient for the Higgs branch

global symmetry by the constraint mA = 0. Given the choice of the permutation

matrix P in (4.103), we define the variable uα following the definition (3.1), as:

uα = m4, (4.112)

and implement the S-type operation O1P on X first. The partition function of the

dual quiver Õ1 P(Y ) = Y
(1)

P is then given by the expressions (4.15)–(4.14) as follows:

ZÕ1P (Y )(m′(1),η′(1)) (4.113)

=

∫ 4∏

γ′=1

[
dσγ′

]
Zhyper

Õ1P (Y )
({σγ′},η̃(1),η)Z

(Y )
int ({σγ′},η,{m1,m2,m3,m4 =m

(1)
F ,mA =0}),

17Mirror symmetry implies that the partition functions for X and Y are related in the following fashion:

Z(X) = e
2πi(
∑4

i=1
bimi+bAmA) η

Z(Y ), where {mi, mA} and η are the mass parameters and the FI parameter

of the quiver gauge theory Y respectively.
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∏
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∏
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∏
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∏
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Figure 29. The quiver (X ′) and its mirror dual (Y ′) in figure 26 is generated by a sequence of

elementary S-type operations on different nodes. In each step, the flavor node(s) on which the

S-type operation acts is shown in red.

where the hypermultiplet term is given by (4.14). The function gα({σγ′},P) in (4.14)

can be read off from the uα = m4-dependent part of the FI term Z
(Y )
FI in (4.111):

gα({σγ′},P) = σ4 − σ3, (4.114)

which leads to the hypermultiplet term:

Zhyper

Õ1 P (Y )
({σγ′}, η̃(1), η) = Zbif

1−loop(σ3, σ4, η̃(1) + b4η). (4.115)
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The dual operation therefore amounts to adding a bifundamental hypermultiplet

connecting the gauge nodes labelled 3 and 4 in quiver Y , with a mass parameter

m
′(34)
bif 1 = η̃(1) + b4η.

Next, we implement the flavoring-gauging operation O2 on the quiver X
(1)
P = O1 P(X)

at the new flavor node α generated by O1 P , i.e. we set

uα = m
(1)
F , (4.116)

and implement the flavoring-gauging operation with Nα
F = 1. Proceeding as before,

one can show that the dual operation amounts to adding another bifundamental

hypermultiplet connecting the gauge nodes labelled 3 and 4 in quiver Y
(1)

P . Repeating

this operation p1 − 2 times, the partition function of the dual theory Y
(p1)

P is given as

ZY
(p1)

P (m′(p1),η′(p1)) (4.117)

=

∫ 4∏

γ′=1

[
dσγ′

] p1∏

i=1

Zbif
1−loop(σ3,σ4,m

′(34)
bifi )Z

(Y )
int ({σγ′},η,{m1,m2,m3,m4=m

(p1)
F ,mA=0}),

which manifestly is the partition function for the quiver gauge theory Y
(p1)

P in the

second row of the figure 29, with the bifundamental masses m
′(34)
bif in the above

expression given as

m
′(34)
bif i =

i∑

k=1

η̃(k) + b4η. (4.118)

The Higgs branch global symmetry of the quiver X
(p1)
P is G

X
(p1)

P
H = (U(3) × U(1)A ×

U(1))/U(1). We can now choose to implement the U(1) quotient such that G
X

(p1)

P
H =

SU(3) × U(1)A × U(1), where (m1,m2,m3) parametrize the Cartan subalgebra of the

SU(3), while the other masses (mA,m
(p1)
F ) parametrize the Cartan of U(1)A × U(1).

The dual partition function can then be rewritten as

ZY
(p1)

P (m′(p1),η′(p1)) (4.119)

=

∫ 4∏

γ′=1

[
dσγ′

] p1∏

i=1

Zbif
1−loop(σ3, σ4,m

′(34)
bif i )Z

(Y )
int ({σγ′}, η, {m1,m2,m3,m

(p1)
F ,mA}),

where
∑3

i=1mi = 0. The FI term in the partition function of the theory Y
(p1)

P as

well as the mirror map for the dual pair (X
(p1)
P , Y

(p1)
P ) can be read off from (4.119)

and (4.111).

• Now consider the sequence of Nα
F = 1 flavoring-gauging operations O′

j (j = 1, . . . , p2−
1). The operation O′

1 acts on the U(1)A node of the quiver X
(p1)
P , while the subsequent

ones act on the new U(1) flavor node created in the previous step. For implementing

O′
1, we define:

uα = mA. (4.120)
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Following (4.14)–(4.15), the partition function of the dual theory Õ′
1(Y

(p1)
P ) = Y

(p1,1)
P

is then given as

ZÕ′
1(Y

(p1)

P )(m′(p1,1),η′(p1,1))

=

∫ 4∏

γ′=1

[
dσγ′

]
Zhyper

Õ′
1(Y

(p1)

P )
({σγ′}, ξ(1),η(p1))Z

Y
(p1)

P
int ({σγ′},m′(p1),η′(p1)), (4.121)

where η(p1) = η(p1)(η, η̃(i)), η′(p1) = η′(p1)(m1,m2,m3,m
(p1)
F , x

(1)
F ), and the function

Z
(Y

(p1)

P )
int is given by the integrand on the r.h.s. of the (4.119). The hypermultiplet

term can be computed as before from (4.14), where the function gα({σγ′}) can be

read off from the uα = mA-dependent part of the FI term in (4.117):

gα({σγ′}) = σ3. (4.122)

This leads to the hypermultiplet contribution

Zhyper

Õ′
1(Y

(p1)
P )

({σγ′}, ξ(1),η(p1)) = Zfund
1−loop(σ3,−ξ(1) − bAη), (4.123)

which implies that the dual operation Õ′
1 amounts to adding a single fundamental

hyper at the gauge node labelled 3 in the quiver Y
(p1)

P , with a mass m
′(3)
fund 1 = −ξ(1) −

bAη. Proceeding with the subsequent operations O′
j (j = 2, . . . , p2 − 1), the theory

Y (p1,p2−1) can be read off from the partition function:

ZY
(p1,p2−1)

P =

∫ 4∏

γ′=1

[
dσγ′

] p2−1∏

j=1

Zfund
1−loop(σ3,m

′(3)
fund j)

p1∏

i=1

Zbif
1−loop(σ3, σ4,m

′(34)
bif i )

× Z
(Y )
int ({σγ′}, η, {m1,m2,m3,m

(p1)
F , x

(p2−1)
F }), (4.124)

which manifestly reproduces the quiver gauge theory Y (p1,p2−1) in the third line of

figure 29. The fundamental masses m
′(3)
fund in the above expression are given as

m
′(3)
fund j = −

j∑

k=1

ξ(k) − bAη. (4.125)

The Higgs branch global symmetry of the quiver X
(p1,p2−1)
P is G

X
(p1,p2−1)
P

H = SU(3) ×
U(1)p1 × U(1)p2−1, where (m1,m2,m3) parametrize the Cartan subalgebra of the

SU(3), while the other masses (m
(p1)
F , x

(p2−1)
F ) parametrize the Cartan of U(1)p1 ×

U(1)p2−1 respectively.

• Finally, let us implement the sequence of Abelian S-type operations O′′
k (k =

1, 2, . . . , p3), where O′′
1 is an identification-flavoring-gauging operation with Nα

F = 1,

acting on the U(1)p1 × U(1)p2−1 flavor nodes of the quiver X
(p1,p2−1)
P . The nodes

are shown in red in the third line of figure 29. The subsequent operations O′′
k

(k = 2, . . . , p3) are Nα
F = 1 flavoring-gauging operations acting on the new U(1)
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flavor node generated in the previous step. Proceeding in the same way as the rele-

vant parts of the computation for the dual quiver Family I, II and III, one can confirm

that the dual operation Õ′′
k amounts to adding a fundamental hypermultiplet to the

gauge node labelled 4 in the quiver Y
(p1,p2−1,k−1)

P . We therefore simply state the final

answer for the theory Y
(p1,p2−1,p3)

P :

ZY
(p1,p2−1,p3)

P =

∫ 4∏

γ′=1

[
dσγ′

] p3∏

k=1

Zfund
1−loop(σ4,m

′(4)
fundk)

p2−1∏

j=1

Z fund
1−loop(σ3,m

′(3)
fundj)

×
p1∏

i=1

Zbif
1−loop(σ3,σ4,m

′(34)
bifi )Z

(Y )
int ({σγ′},η,{m,y

(p3)
F ,y

(p3)
F +µ}), (4.126)

which manifestly reproduces the quiver gauge theory Y ′ = Y (p1,p2−1,p3) in the last row

of figure 29, with m = (m1,m2,m3) and the fundamental masses m
′(4)
fund are given as

m
′(4)
fund k = −

k∑

l=1

ζ(l) −
p2−1∑

j=1

ξ(j) −
p1∑

i=1

η̃(i) − (bA + b4)η. (4.127)

After a shift in the integration variables, the mirror map can be read off from (4.126)

above.

m
′(34)
bif i =

i∑

k=1

η̃(k) + b4η, (i = 1, . . . , p1) (4.128)

m
′(3)
fund j =





−∑j
k=1 ξ

(k) − (bA + 1)η, if j = 1, . . . , p2 − 1

−η, if j = p2,
(4.129)

m
′(4)
fund k = −

k∑

l=1

ζ(l) −
p2−1∑

j=1

ξ(j) −
p1∑

i=1

η̃(i) − (bA + b4 + 1)η, (k = 1, . . . , p3) (4.130)

η′
l = −(ml −ml+1), (l = 1, 2), (4.131)

η′
3 = −m3 + µ, (4.132)

η′
4 = y

(p3)
F −m3, (4.133)

with the additional constraint m1 + m2 + m3 = 0. The mass parameters of Y ′

manifestly live in the Cartan subalgebra of the Higgs branch global symmetry

GY ′

H = U(p1) × U(p2) × U(p3), while the FI parameters live in the Cartan subalgebra

of the Coulomb branch global symmetry GY ′

C = SU(3)×U(1)2. The Coulomb branch

global symmetry can be read off from the observation that Y ′ contains a balanced

sub-quiver with two gauge nodes (labelled 1 and 2) which gives an SU(3) factor,

along with two unbalanced nodes which contribute a U(1) factor each.

5 3d mirror pairs for class S SCFTs on a circle

In this section, we comment on the fact that special cases of the 3d mirror pairs, constructed

in section 4, are related to certain 4d N = 2 SCFTs of class S, which arise from the twisted
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compactification of a 6d (2,0) AN−1 theory on a Riemann surface with punctures [39, 53,

54]. Putting a 4d class S SCFT on a circle and flowing to the deep IR yields an interacting

3d SCFT which generically may not have a Lagrangian description. For theories with

non-trivial Higgs branches, the class S construction can be used to argue that the 3d

mirror of the aforementioned SCFT has a Lagrangian description [30, 31, 37]. For the

purpose of this paper, we will restrict ourselves to 4d SCFTs that arise from a 6d (2,0)

AN−1 theory compactified on a Riemann sphere with either a single irregular puncture, or a

single irregular puncture and a single regular puncture. The 4d SCFTs that arise from such

compactification were classified in [31, 39, 55, 56]. A subset of these 4d theories were found

to have a Lagrangian 3d mirror. This includes, for example, Argyres-Douglas (AD) theories

of the types (As, A(s+1)p−1) and (As, D(s+1)p+2), for s and p being positive integers.18

Our strategy, will be to show that many of these 3d mirrors, obtained via the class S
construction of [31], have Lagrangian mirrors themselves, using our findings from section 4.

This will allow us to propose explicit 3d N = 4 Lagrangian descriptions for the 3d SCFTs

that are constructed by taking the related 4d SCFTs on a circle and flowing to the deep IR.

This shows that the 3d SCFTs have a pair of Lagrangian descriptions, which, in particular,

implies that the Coulomb branch and the Higgs branch of the SCFT can both be described

as hyperkähler quotients. Our construction, using S-type operations, can be extended to

the 4d SCFTs (with 3d Lagrangian mirrors) arising from more general punctures. Most

of these cases, however, necessitate the use of non-Abelian S-type operations and will be

discussed in a future paper [41].

In section 5.1, we make some general comments about the 4d SCFTs of interest, which

include the AD theories, and their 3d mirrors. In section 5.2, we discuss 3d mirror pairs

associated with 4d SCFTs which arise from the compactification of the AN−1 6d theory on

a Riemann sphere with a single irregular puncture. This includes AD theories of the type

(As, A(s+1)p−1) for positive integers s, p, of which the 3d mirror pair for the s = 1 case was

already known. We will explicitly write down the mirror pairs for s ≤ 3, and generic p,

but the generalization to higher values of s can be obtained in an analogous fashion. In

section 5.3, we discuss 3d mirror pairs associated with 4d SCFTs which arise from the 6d

AN−1 theory compactified on a Riemann sphere with a single irregular puncture and a single

minimal regular puncture. This includes AD theories of the type (As, D(s+1)p+2) positive

integers s, p, of which the 3d mirror pairs for the s = 1 case was previously known. Again,

we explicitly write down the mirror pairs for s ≤ 2 and generic p, but the generalization

to higher values s can be obtained in a similar fashion. We also discuss an SCFT which

arises from a single irregular puncture and a single maximal regular puncture, and present

the associated 3d mirror pair.

5.1 AD theories, (G, G′) theories and Lagrangian 3d mirrors

AD SCFTs were originally discovered [64, 65] as the IR theories that arise at special points

on the Coulomb branch of 4d N = 2 SU(N) SYM, where mutually non-local dyons became

18The reduction of AD theories on a circle has a large literature. For some of the recent work on this

subject, see [57–63] and the references therein.
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Figure 30. 3d mirrors from class S construction for (As, A(s+1)p−1) theories, with s = 1, 2, 3, and

p = 1. For a given s, the 3d mirror for generic p is given by the same quiver diagram with every

pair of gauge nodes being connected by p lines. The gauge group is obtained by factoring out an

overall U(1), which can be implemented by ungauging any one of the U(1) gauge nodes.

massless. These strongly coupled SCFTs are characterized by fractional scaling dimensions

of BPS operators on the Coulomb branch and the presence of relevant operators.

A large class of AD-type SCFTs were discovered in [40] using geometric engineering,

where the authors studied the Type IIB superstring theory on a singular hypersurface of

C4 given by the following locus:

WG(x1, x2) +WG′(y1, y2) = 0, (5.1)

with G and G′ being any pair of simply-laced groups, and WG,WG′ being quasi-

homogeneous polynomials of the respective types. These SCFTs are therefore labelled

by a pair of ADE singularities (G,G′).

It was soon understood that a much larger class of AD-type SCFTs, which includes the

(G,G′) SCFTs, can be realized in the class S setting [53]. The construction, as discussed

in [31, 39], involves compactifying a 6d AN−1 (2,0) theory on a Riemann sphere with

an irregular puncture, i.e. singularity with a higher order pole in the Higgs field of the

associated Hitchin system. The A-type irregular punctures and the associated SCFTs

were classified in [31], and the construction was extended to other (2,0) theories in [55, 56].

Compactifying on a circle and flowing to the IR, an AD theory gives a 3d N = 4 interacting

SCFT, which is generically not expected to have a Lagrangian description. However, similar

to the case for regular punctures [30], the class S construction predicts a Lagrangian mirror

dual for certain families of AD theories [31]. Two sub-families of the (G,G′) SCFTs, namely

the (As, A(s+1)p−1) and (As, D(s+1)p+2) SCFTs (for positive integers s and p), have 3d

Lagrangian mirror duals and will feature prominently in our discussion.

First, consider the case of (As, A(s+1)p−1) SCFTs. Generally speaking, the SCFTs of

the type (AN−1, Ak−1) are realized by compactifying on a Riemann sphere with a single

irregular puncture of a specific type [31]. In the associated Hitchin system, the order

of the pole of the Higgs field at the singular point is a linear function of the integer k.

The 3d SCFT and its mirror generically do not have a known Lagrangian description.

For the sub-family (As, A(s+1)p−1), for which the Coulomb branch has a non-trivial global

symmetry [66], one can expect a Lagrangian 3d mirror, and the precise form of the quivers
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Figure 31. 3d mirrors from class S construction for (As, D(s+1)p+2) theories, with s = 1, 2, and

generic p. The gauge group is obtained by factoring out an overall U(1), which can be implemented

by ungauging any one of the U(1) gauge nodes.

1 1

1

2

1

p

p p

Figure 32. 3d mirror for a class S SCFT which is obtained by compactifying the 6d A2 theory on

a Riemann sphere with an irregular puncture and a regular maximal puncture. The gauge group is

obtained by factoring out an overall U(1), which can be implemented by ungauging any one of the

U(1) gauge nodes.

can be guessed explicitly, as shown in figure 30. Similar to the case of the regular punctures,

one can therefore associate a quiver tail to the associated irregular puncture.

Let us now consider the case of (As, D(s+1)p+2) SCFTs. These are realized by com-

pactifying the 6d As theory on a Riemann sphere with a single irregular puncture (the one

associated with an (As, A(s+1)p−1) theory) and a single minimal regular puncture. The 3d

mirrors for this sub-family of SCFTs are also expected to have Lagrangian descriptions.

The 3d mirrors are obtained by gluing the flavor nodes of the As minimal puncture quiver

tail to the gauge nodes of the irregular puncture quiver tail [31, 67], as shown in figure 31.

In addition to the (G,G′) theories, the class S construction gives a rich class of AD the-

ories, some of which can also have Lagrangian 3d mirrors. A particular class of such SCFTs

can be realized by a compactification involving an irregular puncture of the (As, A(s+1)p−1)

type and a maximal As regular puncture. We will call this 4d SCFT Amaximal
s,p . The 3d

mirror is obtained by gluing the flavor nodes of the As maximal puncture quiver tail to the

gauge nodes of the irregular puncture quiver tail [31]. The 3d mirror for the case s = 2

and generic p is shown in figure 32.
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Moduli space data Theory X Theory Y

dim MH p− 1 1

dim MC 1 p− 1

GH SU(p) U(1)

GC U(1) SU(p)

Table 9. Summary table for the moduli space dimensions and global symmetries for the mirror

pair in figure 33.

1

p

(X)

1 1 1

1

1 1

1

(Y )

1 2 3 4 p− 1

Figure 33. The pair of Lagrangian theories associated with the 3d N = 4 SCFT that arise from

the dimensional reduction of an (A1, A2p−1) AD theory on a circle.

5.2 Mirror pairs: 4d SCFTs from a single irregular puncture

5.2.1 Trivial case: (A1, A2p−1) theories for generic p

The mirror pair corresponding to the (A1, A2p−1) AD theories is well known. The class

S mirror, labelled as quiver X in figure 33, is a linear quiver which has a linear mirror

dual given by quiver Y . The dimensions of the moduli spaces and global symmetries are

summarized in table 9.

5.2.2 (A2, A3p−1) theories for generic p

The mirror pair in this case is given by figure 34. The class S mirror is given by the quiver

X, while the dual theory is given by the quiver Y . The duality can be read off from the

dual pairs of Family I[n,l,p] in figure 17, labelled by the triplet of integers (n, l, p), for the

special case:

n = 2p, l = p+ 1, p ≥ 2. (5.2)

The moduli space dimensions of the dual theories and the global symmetries associated

with the Higgs and Coulomb branches are given in table 10.

5.2.3 (A3, A4p−1) theories with generic p

The dual pair in this case is given by figure 35. The class S mirror is given by the quiver X,

while the dual theory is given by the quiver Y . The duality can be read off from the dual

pairs of Family II[n,l,l1,l2,p1,p2] in figure 20, labelled by the set of integers (n, l, l1, l2, p1, p2),
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Moduli space data Theory X Theory Y

dim MH 3p− 2 2

dim MC 2 3p− 2

GH SU(p) × SU(p) × SU(p) × U(1) U(1) × U(1)

GC U(1) × U(1) SU(p) × SU(p) × SU(p) × U(1)

Table 10. Summary table for the moduli space dimensions and global symmetries for the mirror

pair in figure 34.

1 1

p p

p

(X)

1

1 1

1

11

1 1 1 1 1

1

p

p+ 1 2p− 1

2p

1p− 1

1 2 3 p− 2

(Y )

Figure 34. The pair of Lagrangian theories associated with the 3d N = 4 SCFT that arise from

the dimensional reduction of an (As, A(s+1)p−1) AD theory on a circle, for s = 2 and generic p .

Quiver (X) was obtained using class S construction of AD theories, while quiver (Y ) is the proposed

3d mirror dual of quiver (X).

Moduli space data Theory X Theory Y

dim MH 6p− 3 3

dim MC 3 6p− 3

GH SU(p)3 × SU(p)3 × U(1)3 U(1)3

GC U(1)3 SU(p)3 × SU(p)3 × U(1)3

Table 11. Summary table for the moduli space dimensions and global symmetries for the mirror

pair in figure 35.

for the special case:

n = 4p, l = 2p, l1 = p, l2 = 3p, (5.3)

p1 = p2 = p. (5.4)

The moduli space dimensions of the dual theories and the global symmetries associated

with the Higgs and Coulomb branches are given in table 11.
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2p+ 1
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1
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2p− 1

1 2 p− 2

p− 1
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1

(Y)

Figure 35. The pair of Lagrangian theories associated with the 3d N = 4 SCFT that arise from

the dimensional reduction of an (As, A(s+1)p−1) AD theory on a circle, for s = 3 and generic p.

Quiver (X) was obtained using class S construction of AD theories, while quiver (Y ) is the proposed

3d mirror dual of quiver (X).

Moduli space data Theory X Theory Y

dim MH p 2

dim MC 2 p

GH SU(p) × U(1) SU(2) × U(1)

GC SU(2) × U(1) SU(p) × U(1)

Table 12. Summary table for the moduli space dimensions and global symmetries for the mirror

pair in figure 36.

1 1

1 p

(X)

1

1

1 1

2

(Y )

1 2 p

Figure 36. An example of a Lagrangian realization of the dimensional reduction of an (A1, D2p+2)

theory is given by the quiver (Y ) for generic p.

5.3 Mirror pairs: 4d SCFTs from a single irregular puncture and a regular

puncture

5.3.1 Trivial case: (A1, D2p+2) theories for generic p

The mirror pair corresponding to the (A1, D2p+2) AD theories, like the (A1, A2p−1) case,

is well known. The class S mirror, labelled as quiver X in figure 36, is a linear quiver

which has a linear mirror dual given by quiver Y . The dimensions of the moduli spaces

and global symmetries are summarized in table 12.
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Moduli space data Theory X Theory Y

dim MH 3p 3

dim MC 3 3p

GH SU(p) × SU(p) × SU(p) × U(1)3 U(1)3

GC U(1)3 SU(p) × SU(p) × SU(p) × U(1)3

Table 13. Summary table for the moduli space dimensions and global symmetries for the mirror

pair in figure 37.

1 1

1

p p

1

p

(X)

1

1 1

1

11

1 1 1 1 1

1

p+ 1

p+ 2 2p+ 1

2p+ 2

1p

1 2 3 p− 2

(Y )

Figure 37. The pair of Lagrangian theories associated with the 3d N = 4 SCFT that arise from

the dimensional reduction of an (As, D(s+1)p+2) AD theory on a circle, for s = 2 and generic p.

Quiver (X) was obtained using class S construction of AD theories, while quiver (Y ) is the proposed

3d mirror dual of quiver (X).

5.3.2 (A2, D3p+2) theories for generic p

The dual pair in this case is given by figure 37. The class S mirror is given by the quiver X,

while the dual theory is given by the quiver Y . The duality can be read off from the dual

pairs of Family II[n,l,l1,l2,p1,p2] in figure 20, labelled by the set of integers (n, l, l1, l2, p1, p2),

for the special case:

n = 2p+ 2, l = p+ 1, l1 = p, l2 = p+ 2, (5.5)

p1 = p, p2 = 1. (5.6)

The moduli space dimensions of the dual theories and the global symmetries associated

with the Higgs and Coulomb branches are given in table 13.

5.3.3 4d SCFTs from an irregular puncture and a maximal puncture

We consider the specific case of the 4d SCFTs Amaximal
s,p , for s = 2 and generic p. As

mentioned earlier, these SCFTs are realized from the twisted compactification of a As=2

(2,0) 6d theory on a Riemann sphere with an irregular puncture (corresponding to the

SCFT (A2, A3p−1)) and a maximal regular puncture. The mirror pair in this case is given

by figure 38. The class S mirror is given by the quiver X, while the dual theory is given

by the quiver Y . The duality can be read off from the dual pairs of Family IV[p1,p2,p3] in
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Moduli space data Theory X Theory Y

dim MH 3p+ 1 5

dim MC 5 3p+ 1

GH SU(p) × SU(p) × SU(p) × U(1)3 SU(3) × U(1)2

GC SU(3) × U(1)2 SU(p) × SU(p) × SU(p) × U(1)3

Table 14. Summary table for the moduli space dimensions and global symmetries for the mirror

pair in figure 38.
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(X)
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1
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1
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3 1 1 1 1

1

2
p− 1

p

2

1

1 2 p− 1
A

(Y )

Figure 38. An example of a Lagrangian realization of the dimensional reduction of a 4d SCFT

which is constructed in the class S picture from an irregular puncture and a regular maximal

puncture.

figure 26, labelled by the triplet of integers (p1, p2, p3), for the special case:

p1 = p2 = p3 = p. (5.7)

The moduli space dimensions of the dual theories and the global symmetries associated

with the Higgs and Coulomb branches are given in table 14.
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A Flavored D4 quivers: dependence of the dual Lagrangian on P

In this section, we work out two sets of simple examples of mirror dual theories, involving

D-type quivers (and their affine cousins), which can be obtained from linear quivers using
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Figure 39. A pair of linear quiver theories mirror dual to each other.

Abelian S-type operations. The first set involves gauging operations, while the second

involves flavoring-gauging operations. The resultant dual pairs have appeared in the liter-

ature of 3d mirror symmetry [18, 19, 23], and were studied from a Type IIB point of view

in [25, 27]. We present them here to illustrate how the Abelian S-type operations work in

simple examples involving non-Abelian gauge groups. In addition, we show that the mirror

dual of a given theory can have multiple Lagrangian descriptions labelled by the data P.

As mentioned earlier, we turn off all defects and CS interactions for these examples.

Consider the pair of linear quiver gauge theories, X and Y , in figure 39, which are

mirror dual to each other. The theory X has a Higgs branch global symmetry GX
H =

(U(2) × U(1))/U(1), where the Cartan subalgebras of U(2) and U(1) are parametrized by

the mass parameters (m1,m2) and m3 respectively. We choose to implement the U(1)

quotient by the constraint m3 = 0, and therefore identify GX
H = U(2) and with the U(2)

flavor node of quiver X. We will implement the Abelian S-type operations at this U(2)

flavor node. The S3 partition function of X is given as:

Z(X)(m, t) =

∫ 3∏

γ=1

[
dsγ

]
Z

(X)
int ({sγ′},m, t) (A.1)

=

∫
Z

(X)
FI ({sγ}, t)Zvector

1−loop(s2)
2∏

i=1

Zfund
1−loop(s2,mi)Z

fund
1−loop(s3, 0)

2∏

γ=1

Zbif
1−loop(sγ , sγ+1, 0),

where Z
(X)
FI and the one-loop factors are given in (2.28). Similarly, the partition function

of the quiver Y is given as

Z(Y )(t,m) =

∫ 2∏

γ′=1

[
dσγ′

]
Z

(Y )
int ({σγ}, t,m) (A.2)

=

∫
Z

(Y )
FI ({σγ′},m)Zvector

1−loop(σ1)
3∏

l=1

Zfund
1−loop(σ1, tl)Z

fund
1−loop(σ2, t4)Zbif

1−loop(σ1, σ2, 0),

where Z
(Y )
FI and the one-loop factors are given in (2.30). In particular, Z

(Y )
FI can be explicitly

written as

Z
(Y )
FI ({σγ′},m) = e2πi(m1−m2)Trσ1

e2πim2σ2
. (A.3)
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Mirror symmetry implies that the two partition functions are related in the following

fashion:

Z(X)(m, t) = e2πi(m1(t1+t2)−m2t3) Z(Y )(−t,m). (A.4)

A.1 Abelian gauging operations

Let us implement an Abelian Gauging operation at the U(2) flavor node of theory (X,P),

which we label as α. The theoryX ′ = Gα
P(X) is given by figure 40, and is independent of the

permutation matrix P. The Lagrangian of the dual theory, however, depends on the choice

of the matrix P, and we will derive the dual Lagrangians explicitly for the two possible

choices of P. Consider first the choice P = P1 = I2×2, for which, following (3.1),we define

uα = m1, vα = m2. (A.5)

The mirror symmetry relation (A.4) then implies that

Z(X,P1)(uα, vα, t) = e2πi(uα(t1+t2)−vαt3) Z(Y,P1)(−t, uα, vα), (A.6)

and the FI contribution to the partition function of the theory (Y,P1) in (A.3) can be

written as

Z
(Y,P1)
FI ({σγ′}, uα, vα) = e2πiuαTrσ1

e2πivα(σ2−Trσ1). (A.7)

From the general formula (4.7) for the dual of Abelian gauging, we then have

ZG̃P1
(Y )(m′(t,ηα);η′(vα))=

∫ 2∏

γ′=1

[
dσγ′

]
δ
(
ηα+bltl+Trσ1

)
·Z(Y,P1)

int ({σγ′},−t,uα =0,vα),

(A.8)

where bl = 1, l = 1, 2. Shifting the integration variables, one can recast the above integral

(up to some phase factors) as:

ZG̃P1
(Y )(m′(t,ηα);η′(vα)) =

∫ 2∏

γ′=1

[
dσγ′

]
δ
(
Trσ1

)
ZFI(σ

2,vα)Zvector
1−loop(σ1)

×
3∏

l=1

Zfund
1−loop(σ1,−tl +δ)Zfund

1−loop(σ2,−t4 +δ)Zbif
1−loop(σ1,σ2,0)

=

∫ 2∏

γ′=1

[
dσγ′

]
Z

(Y ′)
int ({σγ′},m′ = −t+δ,η′ = vα)

=Z(Y ′)(m′ = −t+δ,η′ = vα), (A.9)

where δ = ηα+bltl
2 , and the theory (Y ′) is the quiver in figure 41. The map of mass and

FI parameters between the pair of dual theories (X ′, Y ′) can be read off from the final

equality.

Now, consider the other possible choice of P = P2 =


0 1

1 0


, such that (3.1)

vα = m1, uα = m2. (A.10)
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Figure 40. A U(1) gauging operation on the quiver X leading to the theory X ′.
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1

1

(Y )

Abelian

Ungauging I
2

3

1

1

(Y ′)

2

3

1

1

(Y )

Abelian

Ungauging II
2

4

1

A

(Y ′′)

Figure 41. The figure shows the two quiver gauge theories — Y ′ and Y ′′ — that arise from the

Abelian ungauging operation on the theory (Y ) for two different choices of P. The line labelled

as A denotes a hypermultiplet in the rank-2 antisymmetric representation of the gauge group U(2)

and has charge 1 under the flavor symmetry group U(1). It is charge 2 under the U(1) subgroup of

U(2), and uncharged under the SU(2).

The mirror symmetry relation (A.4) then implies that

Z(X,P2)(uα, vα, t) = e2πi(vα(t1+t2)−uαt3) Z(Y,P2)(−t, uα, vα), (A.11)

and the FI contribution to the partition function of the theory (Y,P2) in (A.3) can be

written as

Z
(Y,P2)
FI ({σγ′}, uα, vα) = e2πivαTrσ1

e2πiuα(σ2−Trσ1). (A.12)
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Using (4.7) and following the same steps as above, we can show that (up to some phase

factors)

ZG̃P2
(Y )(m′(t, ηα); η′(vα)) =

∫
dσ1

2!
ZFI(σ

1, vα)Zvector
1−loop(σ1)

×
4∏

l=1

Zfund
1−loop(σ1,m′

l(t, ηα))ZA
1−loop(σ1,−t4)

=

∫
d2σ1

2!
Z

(Y ′′)
int (σ1,m′(t, ηα), η′ = vα)

= Z(Y ′′)(m′(t, ηα), η′ = vα), (A.13)

where ZA
1−loop denotes the 1-loop contribution of a hypermultiplet in a rank-1 antisymmetric

representation of U(2), and Y ′′ is the quiver shown in the second row of figure 41. Note

that ZA
1−loop(σ1,−t4) = Zfund

1−loop(Trσ1,−t4). The mass parameters of Y ′′ are given as

m′
l = −tl − δ0, for l = 1, 2, 3, (A.14)

m′
4 = ηα − t3 − δ0, (A.15)

m′
A = ηα − t3 − t4 − 2δ0, (A.16)

where δ0 should be chosen depending on the constraint one imposes on the masses Y ′′ —∑4
l=1m

′
l = 0, or m′

A = 0. The FI parameter of Y ′′ is

η′ = vα = m1. (A.17)

We conjecture that the two theories Y ′ and Y ′′ are different Lagrangians of the theory

mirror dual to X ′. The global symmetries (Higgs and Coulomb) of Y ′ and Y ′′ match (up

to a discrete group):

GY ′

H = SO(6) × U(1), GY ′

C = U(1),

G
(Y ′′)
H = SU(4) × U(1), G

(Y ′′)
C = U(1). (A.18)

Note that the Higgs branch symmetry associated with n fundamental hypers (i.e. 2n fun-

damental half-hypers) in Y ′ is SO(2n). Also, note that the Coulomb branch symmetry of

(Y ′′) is not enhanced because of the additional antisymmetric hyper.

Finally, consider a sequence of two Abelian gauging operations on the quiver X, such

that the U(1) × U(1) subgroup of the U(2) flavor symmetry of quiver X is gauged. We

will denote these S-type operations as G1 and G2 respectively. The resultant quiver X ′ =

G2 ◦G1(X) is an affine D4 quiver with a single flavor, shown in figure 42. In this case, the

dual theory is independent of the permutation matrix P and therefore one can drop the

explicit P-dependence from the partition functions. Let us define:

u1 = m1, u2 = m2. (A.19)

The mirror symmetry relation (A.4) then implies that

Z(X)(u1, u2, t) = e2πi(u1(t1+t2)−u2t3) Z(Y )(−t, u1, u2), (A.20)
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and the FI contribution to the partition function of the theory (Y,P1) in (A.3) can be

written as

Z
(Y )
FI ({σγ′}, u1, u2) = e2πiu1Trσ1

e2πiu2(σ2−Trσ1). (A.21)

Using the general formula (4.7) for the dual of Abelian gauging twice, we have

ZG̃2◦G̃1(Y )(m′(t,η); η′(v)) =

∫ 2∏

γ′=1

[
dσγ′

]
δ
(
η1 + b1ltl + Trσ1

)
· δ
(
η2 + b2ltl − Trσ1 + σ2

)

× Z
(Y )
int ({σγ′},−t, ui = 0), (A.22)

where b1l = 1, l = 1, 2 and b23 = −1 are the non-vanishing components of the matrix

bil. Shifting the integration variables, one can recast the above integral (up to some phase

factors) as:

ZG̃2◦G̃1(Y )(m′(t,η); η′(v)) =

∫
d2σ1

2!
δ
(
Trσ1

)
Zvector

1−loop(σ1)

×
4∏

l=1

Zfund
1−loop(σ1,ml(t,η))Z free(t4 − 2(δ + δ′))

=

∫
d2σ1

2!
Z

(Y ′)
int (σ1,m′(t,η))

= Z(Y ′)(m′(t,η)), (A.23)

where the theory (Y ′) is the quiver in figure 42, and the mass parameters ml = −tl + δ

for l = 1, 2, 3, m4 = 2δ′, with δ = η1+b1ltl
2 and δ′ = η2+b2ltl

2 . The partition function of a

free hypermultiplet of mass m is Zfree(m) = 1
cosh πm . The map of mass and FI parameters

between the pair of dual theories (X ′, Y ′) can be read off from the final equality.

A.2 Abelian flavoring-gauging operation

Consider an Abelian S-type operation on the quiver X involving an Abelian flavoring-

gauging at the U(2) flavor node, followed by an Abelian gauging operation at the remaining

U(1) flavor node. Splitting the U(2) flavor node as U(2) → U(1)1 × U(1)2, the S-type

operation can be written as OP = G2 ◦ (G1
P ◦ F 1

P). The quiver X ′ = G2 ◦ (G1
P ◦ F 1

P)(X)

is shown in figure 43. The resultant quiver X ′ is an affine D4 quiver with a single flavor.

Choosing the permutation matrix P as P = P1 = I2×2, we define

u1 = m1, u2 = m2, (A.24)

where the operation (G1
P ◦ F 1

P) gauges the U(1)1 flavor node, and G2 gauges U(1)2.

The mirror symmetry relation (A.4) can be written as

Z(X)(u1, u2, t) = e2πi(u1(t1+t2)−u2t3) Z(Y )(−t, u1, u2), (A.25)

and the FI term in the partition function of the theory (Y,P1) in (A.3) can be written as

Z
(Y )
FI ({σγ′}, u1, u2) = e2πiu1Trσ1

e2πiu2(σ2−Trσ1). (A.26)
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1 2 1

2 1

(X)

Abelian

S-Operation

1

1

2

1

1

1

(X ′)

2

3

1

1

(Y )

Dual

Operation
2

4

1

(Y ′)

Figure 42. This figure shows the action of an Abelian S-type operation (involving two elementary

gauging operations) on the quiver X and the dual operation the quiver Y of figure 39 respectively.

The quiver X ′ is mirror dual to the quiver Y ′.

1 2 1

2 1

(X)

Abelian

S-operation

1

1

2

1

1

1

1

(X ′)

Figure 43. This figure shows the action of an Abelian S-type operation (involving an elementary

flavoring-gauging and an elementary gauging operation) on the quiver X on the l.h.s.

The operation OP1(X) gives the quiver on the r.h.s. in figure 43. The partition function

of the dual theory ÕP1(Y ) can be obtained by first using the general formula (4.19)–(4.20)

and then the formula (4.7), which gives:

ZÕP1
(Y )(m′(t,η), η′(mα

F )) =

∫ 2∏

γ′=1

[
dσγ′

] δ
(
η2 + b2ltl − Trσ1 + σ2

)

cosh π(Trσ1 + η1 + b1ltl)

× Z
(Y,P1)
int ({σγ′},−t, u1 = mα

F , u
2 = 0), (A.27)

where b1l = 1, l = 1, 2 and b23 = −1 are the non-vanishing components of the matrix bil.

Imposing the delta function and shifting the integration variables by constants, one can
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2

3

1

1

(Y )

Dual

Operation I
2

4

2

A

(Y ′)

2

3

1

1

(Y )

Dual

Operation II
2

3

1

2

(Y ′′)

Figure 44. This figure shows dual operations for different choices of the permutation matrix P.

The quiver (X ′) in figure 43 is mirror dual to the quivers (Y ′) and (Y ′′). The quiver (Y ′) has a

pair of hypermultiplets in the rank-2 antisymmetric representation of the gauge group U(2). Note

that the theories (Y ′) and (Y ′′) have the same Coulomb and Higgs branch symmetries.

recast the above integral (up to some phase factors) as:

ZÕP1
(Y ) =

∫
d2σ1

2!
ZFI(σ

1,mα
F )Zvector

1−loop(σ1)

×
4∏

l=1

Zfund
1−loop(σ1,m′

l(t,η))
2∏

k=1

ZA
1−loop(σ1,m′k

A(t,η)) (A.28)

= Z(Y ′)(m′(t,η),m′
A(t,η), η′ = mα

F ), (A.29)

where the theory Y ′ is the quiver in figure 44, and m′,m′
A denote the masses for the four

fundamental hypers and the two rank-2 antisymmetric hypers of the U(2) gauge group

respectively. Explicitly, the mirror map is given as

m′
l(t, η) = −tl + t4/4 − (δ′ − δ)/2, for l = 1, 2, 3, (A.30)

m′
4(t, η) = t4/4 − (δ′ − δ)/2 + 2δ′, (A.31)

m′1
A = −m′2

A = −t4/2 + (δ′ + δ), (A.32)

η′ = mα
F . (A.33)

where δ = η1+b1ltl
2 and δ′ = η2+b2ltl

2 . The masses, written above, parametrize the Car-

tan subalegbra of the Higgs branch global symmetry GY ′

H = U(4) × SU(2), while the FI

parameter parametrizes the Cartan of the Coulomb branch global symmetry GY ′

C = U(1).

One can proceed with the choice of the matrix P = P2 =


0 1

1 0


 in an analogous

fashion, and show that the dual theory is given by the quiver (Y ′′) in figure 44, i.e.

ZÕP2
(Y )(m′(t,η), η′(mα

F )) = Z(Y ′′)(m′(t,η), η′ = mα
F ). (A.34)
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Y ′ and Y ′′ are conjectured to be mirror dual to X ′. The global symmetries of Y ′ and

Y ′′ match, up to a discrete group:

GY ′

H = SU(4) × U(2), GY ′

C = U(1),

G
(Y ′′)
H = SO(6) × U(2), G

(Y ′′)
C = U(1). (A.35)

B Superconformal index on S2 × S1

B.1 Definition and localization formula

The 3d N = 4 index on the manifold S2 × S1 [34–36, 68] can be defined as:

IS2×S1 = TrS2

[
(−1)F (q̃)j2+

RH +RC
2 (t̃)RH−RCe−β(E−2j2−2RH−RC)

∏

i

µfi
i

]
, (B.1)

where j2 is an angular momentum operator on S2, RH and RC are Cartan generators

of the su(2)H and su(2)C Lie algebras respectively, and fi collectively denote generators

associated with other global symmetries. The index receives non-zero contributions from

those states which satisfy E− 2j2 − 2RH −RC = 0, Therefore, the 3d conformal dimension

Ẽ = E+RC
2 for the states contributing to the index can be written as

Ẽ = j2 +RH +RC . (B.2)

Let us define the following parameters (x, x̃) in terms of (q̃, t̃) as follows:

x = q̃1/2t̃, x̃ = q̃1/2t̃−1. (B.3)

Then the 3d index can be written as

IS2×S1(x, x̃;µi) = TrS2

[
(−1)F (x)Ẽ−RC (x̃)Ẽ−RHe−β(Ẽ−j2−RH−RC)

∏

i

µfi
i

]
,

= TrS2

[
(−1)F (x)j2+RH (x̃)j2+RCe−β(Ẽ−j2−RH−RC)

∏

i

µfi
i

]
.

(B.4)

Two important limits of the 3d index — the Coulomb branch index IC and the Higgs

branch index IH — are defined as follows:

IC(x̃;µi) = TrHC

[
(−1)F (x̃)Ẽ−RHe−β(Ẽ−j2−RH−RC)

∏

i

µfi
i

]
= lim

x→0
IS2×S1(x, x̃;µi)

IH(x;µi) = TrHH

[
(−1)F (x)Ẽ−RCe−β(Ẽ−j2−RH−RC)

∏

i

µfi
i

]
= lim

x̃→0
IS2×S1(x, x̃;µi).

(B.5)

Note that HC and HH are subspaces of the Hilbert space, where the states satisfy the

constraints Ẽ −RC = 0 and Ẽ −RH = 0 respectively. It is sensible to take these limits of

the original index since unitarity dictates that

Ẽ ≥ RC,H . (B.6)
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Let us now write down the general expression of the index on S2×S1 for an N = 4 gauge

theory with gauge group G and global symmetry group GH , where the hypermultiplets

transforms in some representation R of G×GH . This can be computed using localization

and we refer the reader to the references [34, 35, 69, 70] for details of the computation,

while simply providing the answer here. Let z ∈ TG, where TG is the maximal torus of the

group G, and let a be the flux associated with G. Similarly, (z̃, ã) denote the analogous

pair for the global symmetry group GH . We choose a and ã to take integer values. Also,

let s ∈ g, and m ∈ GH , where g, gH denote the Cartan subalgebra of g and gH respectively,

such that z = e2πis and z̃ = e2πim. In addition, we will turn on fugacities and discrete

fluxes associated with the U(1)J symmetry of the theory. Let β label the unitary factors in

the gauge group G, with (z(β),a
(β)) representing the fugacity and flux of the β-th unitary

factor, and (wβ, nβ) denoting the fugacity and flux of a twisted U(1) vector multiplet that

couples to the U(1)J current of the β-th unitary factor.

Given the above data, the expression for the index can be written as a contour integral

over z summed over the fluxes a, and the answer is a function of the global symmetry

fugacities and fluxes, i.e. (z̃, ã,w,n), in addition to the parameters q̃, t̃.

I(z̃, ã,w,n; q̃, t̃) =
∑

{a}

1

W (a)

∮

|zi|=1

rankG∏

i=1

dzi

2πizi
IFI(w,n,z,a) Ivector(z,a; q̃, t̃)

× IR
half−hyper(z,a, z̃, ã; q̃, t̃), (B.7)

where W (a) is the order of the Weyl symmetry group left unbroken by the fluxes a, and

the contour of integration is C =
∏rankG

i=1 Ci with Ci being a unit circle around the origin on

the i-th complex plane.19 The integrands IFI, Ivector and IR
half−hyper are given as follows.

IFI(w,n,z,a) =

(∏

β

∏

i(β)

w
ai(β)

β · znβ

i(β)

)
, (B.8)

Ivector(z,a; q̃, t̃) =

(
(t̃q̃1/2; q̃)

(t̃−1q̃1/2; q̃)

)rankG ∏

α∈ad(G)

(1 − q̃|α(a)|/2e2πiα(s))

×
(
q̃1/2

t̃

)−|α(a)|/2
(t̃q̃1/2+|α(a)|/2 e2πiα(s); q̃)

(t̃−1q̃1/2+|α(a)|/2e2πiα(s); q̃)
, (B.9)

IR
half−hyper(z,a, z̃, ã; q̃, t̃) =

∏

ρ∈R(G×GH)

(
q̃1/2

t̃

)−|ρ(a,ã)|/4

× (t̃−1/2q̃3/4+|ρ(a,ã)|/2 e2πiρ(s,s̃); q̃)

(t̃1/2q̃1/4+|ρ(a,ã)|/2e2πiρ(s,s̃); q̃)
, (B.10)

where α is a root of the Lie algebra of G, ρ is a weight of the representation R of the Lie

19A 3d N = 4 hypermultiplet consists of a half-hyper in the representation R and another half-hyper in

the complex conjugate representation R∗. For pseudo-real representations, one presents the matter content

in terms of half-hypers.
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algebra of G×GH , (z; q̃) is the Pochhammer symbol defined as

(z; q̃) :=
∞∏

l=0

(1 − zq̃l), |q̃| < 1, (B.11)

and, for future use, the symbol (z±; q) is defined as (z±; q) = (z; q) · (z−1; q).

For a linear quiver gauge theory (X) with unitary gauge groups and (bi)fundamental

matter, the expression for the index can be written as follows. Let the gauge group G =∏L
γ=1 U(Nγ) and the flavor symmetry group GH =

(∏L
γ=1 U(Mγ)

)
/U(1), and let us denote

the fugacities and fluxes associated with the gauge nodes and flavor nodes as {z(γ),a(γ)}
and {z̃(γ), ã(γ)} respectively. We prefer to reorganize the gauge/flavor fugacities and fluxes

as follows:

zβ′ = {z(1)
j1
, z

(2)
j2
, . . . , z

(α)
jα
, . . . , z

(L−1)
jL−1

, z
(L)
jL

}, β′ = 1, . . . ,
∑

γ

Nγ , (B.12)

aβ′ = {a(1)
j1
, a

(2)
j2
, . . . , a

(α)
jα
, . . . , a

(L−1)
jL−1

, a
(L)
jL

}, β′ = 1, . . . ,
∑

γ

Nγ , (B.13)

z̃β = {z̃(1)
i1
, z̃

(2)
i2
, . . . , z̃

(α)
iα
, . . . , z̃

(L−1)
iL−1

, z̃
(L)
iL

}, β = 1, . . . , L∨ + 1, (B.14)

ãβ = {ã(1)
i1
, ã

(2)
i2
, . . . , ã

(α)
iα
, . . . , ã

(L−1)
iL−1

, ã
(L)
iL

}, β = 1, . . . , L∨ + 1, (B.15)

with i1 = 1, . . . ,M1, i2 = 1, . . . ,M2,. . ., iα = 1, . . . ,Mα, iL = 1, . . . ,ML, and L∨ =∑L
γ=1Mγ − 1. In addition, we parametrize the U(1)J fugacities and fluxes (wγ , nγ) as

follows:

wγ =
yγ

yγ+1
, nγ = bγ − bγ+1, γ = 1, . . . , L. (B.16)

The index of (X) can then be written as the following contour integral:

I(X)(z̃, ã,y, b; q̃, t̃) =
∑

{a(γ)}

∮

|z
(γ)
iγ

|=1

L∏

γ=1

[
dz(γ)

z(γ)

]
I(X)

int (z,a, z̃, ã,y, b; q̃, t̃) (B.17)

=
∑

{a(γ)}

∮

|z
(γ)
iγ

|=1

L∏

γ=1

[
dz(γ)

z(γ)

]
I(X)

FI (y, b, {z(γ)}, {a(γ)}) I(X)
1−loop(z,a, z̃, ã; q̃, t̃)

=
∑

{a(γ)}

∮

|z
(γ)
iγ

|=1

[
dz(γ)

z(γ)

]
I(X)

FI (y, b, {z(γ)}, {a(γ)})
L∏

γ=1

I(X)
vector(z

(γ),a(γ); q̃, t̃)

×
L∏

γ=1

I(X) fund.
hyper (z(γ),a(γ), z̃(γ), ã(γ); q̃, t̃)

L−1∏

γ=1

I(X) bifund.
hyper (z(γ),a(γ),z(γ+1),a(γ+1); q̃, t̃),
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where

[
dz(γ)

z(γ)

]
= 1

W (a(γ))

∏Nγ

iγ=1

dz
(γ)
iγ

2πiz
(γ)
iγ

. The constituent functions inside the integrand are

given as

I(X)
FI (y,b,{z

(γ)},{a
(γ)})=

L∏

γ=1

( Nγ∏

jγ =1

(
yγ

yγ+1

)a
(γ)
jγ

·(z(γ)
jγ

)(bγ −bγ+1)

)
, (B.18)

I(X)
vector(z

(γ),a(γ);q̃,t̃)=

(
(t̃q̃1/2;q̃)

(t̃−1q̃1/2;q̃)

)Nγ ∏

kγ 6=jγ

(1−q̃
|a

(γ)

kγ
−a

(γ)
jγ

|/2
z

(γ)
kγ

/z
(γ)
jγ

)

×

(
q̃1/2

t̃

)−|a
(γ)

kγ
−a

(γ)
jγ

|/2 (t̃q̃
1/2+|a

(γ)

kγ
−a

(γ)
jγ

|/2
z

(γ)
kγ

/z
(γ)
jγ

;q̃)

(t̃−1q̃
1/2+|a

(α)

kγ
−a

(α)
jγ

|/2
z

(γ)
kγ

/z
(γ)
jγ

;q̃)

, (B.19)

I(X)fund.
hyper (z(γ),a(γ),z̃(γ),ã(γ);q̃,t̃)=

Mγ∏

iγ =1

Nγ∏

jγ =1

(
q̃1/2

t̃

)|a
(γ)
jγ

−ã
(γ)
iγ

|/2

×
(t̃−1/2q̃

3/4+|a
(γ)
jγ

−ã
(α)
iγ

|/2
(z

(γ)
jγ

/z̃
(γ)
iγ

)±;q̃)

(t̃1/2q̃
1/4+|a

(γ)
jγ

−ã
(γ)
iγ

|/2
(z

(γ)
jγ

/z̃
(γ)
iγ

)±;q̃)

, (B.20)

I(X)bifund.
hyper (z(γ),a(γ),z(γ+1),a(γ+1);q̃,t̃)=

Nγ∏

kγ =1

Nγ+1∏

jγ =1

(
q̃1/2

t̃

)|a
(α)

kγ
−a

(γ+1)
jγ

|/2

×
(t̃−1/2q̃

3/4+|a
(γ)

kγ
−a

(γ+1)
jγ

|/2
(z

(γ)
kγ

/z
(γ+1)
jγ

)±;q̃)

(t̃1/2q̃
1/4+|a

(γ)

kγ
−a

(γ+1)
jγ

|/2
(z

(γ)
kγ

/z
(γ+1)
jγ

)±;q̃)

. (B.21)

The Coulomb and the Higgs limits of the superconformal index admit expansions in

terms of characters of representations of the respective global symmetry groups — GH and

GC . In fact, these limits coincide with the Coulomb branch Hilbert Series and the Higgs

branch Hilbert Series respectively. Schematically, one can write

IC(x̃;µi) =
∞∑

k=0

χ[Rk(GC)](µi) x̃
|k|, (B.22)

IH(x;µi) =
∞∑

k=0

χ[Rk(GH)](µi)x
|k|, (B.23)

where Rk are irreducible representations labelled by the Dynkin labels k, and χ[Rk(G)](µi)

denotes the associated character as a function of the fugacities {µi}. Therefore, a series

expansion of the Coulomb and the Higgs indices in terms of x̃ and x respectively can be

used to read off the global symmetries of the respective branches.

B.2 3d N = 4 mirror symmetry

The basic example of 3d N = 4 mirror symmetry involves an SQED with a single hy-

permultiplet on one side and a twisted hypermultiplet on the other. 3d mirror symmetry

therefore implies the following identity:

ISQED1(w,n; q̃, t̃) = Itwistedhyper(w,n,1,0; q̃, t̃) = Ihyper(w,n,1,0; q̃, t̃−1), (B.24)

=⇒
∑

m∈Z

wm
∮

|z|=1

dz zn

2πiz
Ivector(q̃, t̃)Ihyper(z,m,1,0; q̃, t̃) = Ihyper(w,n,1,0; q̃, t̃−1).
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The index of a “twisted hypermultiplet” is given by substituting t̃ → t̃−1 in the index of a

hypermultiplet. Replacing t̃ → t̃−1, the above identity can be written in the following form:

Ihyper(w, n, 1, 0; q̃, t̃) =
∑

m∈Z

wm
∮

|z|=1

dz zn

2πiz
Ivector(q̃, t̃

−1) Ihyper(z,m, 1, 0; q̃, t̃−1). (B.25)

Parametrizing w = y1/y2 and n = b1 − b2, this identity can be written in a form that will

be useful in our analysis of Abelian S-type operations:

Ihyper(y1, b1,y2, b2; q̃, t̃) =
∑

m∈Z

(
y1

y2

)m ∮

|z|=1

dz zb1−b2

2πiz
Ivector(q̃, t̃

−1)Ihyper(z,m,1,0; q̃, t̃−1).

(B.26)

Now consider a pair of linear quivers (X,Y ), where the index of X is given by (B.17).

In the standard notation, introduced in section 2.4, the statement of 3d mirror symmetry is

I(X)(z̃, ã,y, b; q̃, t̃) = I(Y )(y−1,−b, z̃, ã; q̃, t̃−1), (B.27)

where the index I(Y )(y, b, z̃, ã; q̃, t̃) is given as

I(Y )(y, b, z̃, ã; q̃, t̃) =
∑

{c(γ′)}

L∨∏

γ′=1

∮

|ξ
(γ′)
iγ′

|=1

[
dξ(γ′)

ξ(γ′)

]
I(Y )

int (ξ, c,y, b, z̃, ã; q̃, t̃) (B.28)

=
∑

{c(γ′)}

L∨∏

γ′=1

∮

|ξ
(γ′)
iγ′

|=1

[
dξ(γ′)

ξ(γ′)

]
I(Y )

FI (z̃, ã, {ξ(γ′)}, {c(γ′)}) I(Y )
1−loop(ξ, c,y, b; q̃, t̃)

=
∑

{c(γ′)}

L∨∏

γ′=1

∮

|ξ
(γ′)
iγ′

|=1

[
dξ(γ′)

ξ(γ′)

]
I(Y )

FI (z̃, ã, {ξ(γ′)}, {c(γ′)})
L∨∏

γ′=1

I(Y )
vector(ξ

(γ′), c(γ′); q̃, t̃)

×
L∏

γ=1

I(Y ) fund.
matter (ξ(γ′), c(γ′),y(γ′), b(γ′); q̃, t̃)

L−1∏

γ=1

I(Y ) bifund.
matter (ξ(γ′), c(γ′), ξ(γ′+1), c(γ′+1); q̃, t̃).

The FI term in the integrand is given as

I(Y )
FI (z̃, ã, {ξ(γ′)}, {c(γ′)}) =

L∨∏

γ′=1

( Nγ′∏

jγ′ =1

(
z̃γ′

z̃γ′+1

)c
(γ′)
jγ′

· (ξ
(γ′)
jγ′

)(̃aγ′ −ãγ′+1)
)
, (B.29)

while the one-loop terms are given by expressions analogous to (B.19)–(B.21).

C S-type operations in terms of the superconformal index

In this section, we demonstrate how the elementary S-type operations can be implemented

in terms of the superconformal index on S2 ×S1. For new dualities, the equality of the in-

dices serves as another strong check. In appendix C.1, we first discuss the implementation

of elementary S-type operations on linear quivers, and then extend it to generic quivers in

class U . We then discuss the four elementary Abelian S-type operations in appendix C.2,

explicitly working out the dual operation in each case, as we did in section 4.1 using the S3

partition function. All examples studied in section 4 can be constructed using the expres-

sions for the dual superconformal indices in appendix C.2. As an illustrative example, we

work out the case of a flavored Ân−1 quiver and the Family I[n,l,p] explicitly in appendix C.3.
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C.1 Generic S-type operations and their duals

The S-type operations and their duals can be implemented in terms of the S2 × S1 su-

perconformal index, following steps analogous to those for the partition function on S3.

Consider the linear quiver gauge theory X in figure 3. The index of the theory is given

in (B.17) as function of various global symmetry fugacities and fluxes. The fugacities and

fluxes associated with a flavor node (γ) is denoted as (z̃(γ), ã(γ)), where the fugacities are

related to the masses as follows:

z̃(γ) = e2πimγ
, γ = 1, . . . , L, (C.1)

where mγ are complex parameters. In addition, the U(1)J fugacities and fluxes associated

with the gauge nodes are denoted as ({wγ}, {nγ}). It is convenient to parametrize them in

terms of the pair (y, b) such that

wγ =
yγ

yγ+1
, nγ = bγ − bγ+1, γ = 1, . . . , L. (C.2)

The fugacities y are related to the deformation parameter t as:

y = e2πit, (C.3)

where t are complex parameters. For further details on the convention of the fugacities

and fluxes, the reader is referred to appendix B.

Now, consider picking a flavor node (α) corresponding to a global symmetry group

U(Mα) in X and split it into two, as U(rα) × U(Mα − rα).20 Let us introduce a set of

fugacities {h(α)
i |i = 1, . . . , rα}, and {h′(α)

j |j = 1, . . . ,Mα − rα}, such that h
(α)
i are valued in

the maximal torus of U(rα), and h
′(α)
j are valued in the maximal torus of U(Mα − rα). We

will take these fugacities to be related to the U(rα) × U(Mα − rα) masses (uα,vα) defined

in (3.1) in the following fashion (with complex (uα,vα)):

h(α) = e2πiuα
, h′(α) = e2πivα

. (C.4)

In terms of the fugacities z̃(α), h(α) and h′(α) are therefore given as

z̃
(α)
iα

=
∏

i

(h
(α)
i )Piαi

∏

j

(h
′(α)
j )Piαrα+j , iα = 1, . . . ,Mα, i= 1, . . . , rα, j= 1, . . . ,Mα −rα,

(C.5)

where P is an Mα ×Mα permutation matrix. In addition, we introduce fluxes (κ(α), κ′(α))

for U(rα) × U(Mα − rα), as follows:

ã
(α)
iα

= Piαi κ
(α)
i + Piα rα+j κ

′(α)
j , iα = 1, . . . ,Mα, i = 1, . . . , rα, j = 1, . . . ,Mα − rα.

(C.6)

20As noted earlier, we will assume that the masses associated with the flavor node α are completely

unconstrained. The U(1) quotient for the Higgs branch global symmetry in a linear quiver is implemented

by imposing a constraint on the masses associated to the other flavor node(s).
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The index of the quiver (X,P) can then be written as a function of sX
α = (h(α),κ(α)),

s′X
α = (h′(α),κ′(α)), ΣX = ({z̃(γ)}, {ã(γ)})γ 6=α, and sX

J = (y, b), in addition to the R-

symmetry fugacities, as follows:

I(X,P)(sX
α , s

′X
α ,ΣX , sX

J ; q̃, t̃) =: I(X)(z̃(α)(P,h(α),h′(α)), ã(α)(P,κ(α),κ′(α)),ΣX , sX
J ; q̃, t̃).

(C.7)

Generalization of the above formula where multiple flavor nodes, labelled by β, are split,

is given by:

I(X,{Pβ})({sX
β ,s

′X
β },ΣX ,sX

J ; q̃, t̃) =: I(X)({z̃(β)(Pβ ,h
(β),h′(β)), ã(β)(Pβ ,κ

(β),κ′(β))},ΣX ,sX
J ; q̃, t̃),

(C.8)

where ΣX is now defined as ΣX = ({z̃(γ)}, {ã(γ)})γ 6=β, with sX
β = (h(β),κ(β)) and s′X

β =

(h′(β),κ′(β)). The fluxes/fugacities associated with the node β are defined as before:

z̃
(β)
iβ

=
∏

i

(h
(β)
i )

Pβ iβi
∏

j

(h
′(β)
j )

Pβ iβrα+j , (C.9)

ã
(β)
iβ

= Pβ iβi κ
(β)
i + Pβ iβ rα+j κ

′(β)
j , (C.10)

where iβ = 1, . . . ,Mβ, i = 1, . . . , rα, and j = 1, . . . ,Mβ − rα, with Pβ being an Mβ × Mβ

permutation matrix.

An elementary S-type operation Oα
P on the quiver gauge theory X can then be imple-

mented in terms of the superconformal index as follows:

IOα
P

(X) =
∑

κ(α)

∮

|h
(α)
i

|=1

[
dh(α)

h(α)

]
IOα

P
(X)(s

X
α ,{sX

β },sO
F ,s

O
J ; q̃, t̃) ·I(X,{Pβ})({sX

β ,s
′X
β },ΣX ,sX

J ; q̃, t̃),

(C.11)

where sO
F collectively denotes all the flavor fugacities and fluxes introduced by the operation

Oα
P , while sO

J collectively denotes the new U(1)J fugacity and flux. The integration measure[
dh(α)

h(α)

]
= 1

W (κ(α))

∏
i

dh
(α)
i

2πih
(α)
i

, where |W (κ(α))| is the order of the Weyl group of U(rα) left

unbroken by the fluxes κ(α).

For the elementary S-type operations discussed in section 3.2, the associated oper-

ator IOα
P

(X) can be constructed from the index contributions of the gauging, flavoring,

identification and defect operations (introduced in section 3.1), which are given as follows:

• For a gauging operation Gα
P at a flavor node α of quiver X:

IGα
P

(X)(s
X
α , s

O
J ; q̃, t̃) = IFI(w̃, ñ,h

(α),κ(α)) Ivector(h
(α),κ(α); q̃, t̃), (C.12)

where sO
J = (w̃, ñ) denotes the fugacity and flux for the U(1)J global symmetry

introduced by the gauging operation.

• For a flavoring operation Fα
P at a flavor node α of X:

IF α
P

(X)(s
X
α , s

O
F ; q̃, t̃) = Ihyper(h

(α),κ(α), h̃(α), κ̃(α); q̃, t̃), (C.13)

where sO
F = (h̃(α), κ̃(α)) denotes the fugacities and fluxes for the flavor symmetry

introduced by the flavoring operation.
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• For an identification operation Iα
P , which involves p nodes of the linear quiver X

labelled by β = {γ1, γ2, . . . , γp}:

IIα
P

(X)(s
X
α , {sX

β }β 6=α,λ, δ; q̃, t̃) =
∏

β

rα∏

i=1

∮

Cλ

dh
(β)
i

2πi (h
(β)
i − λβh

(α)
i )

·
∑

{κ(β)}

δκ(β),κ(α)+δβ ,

(C.14)

where λβ = e2πiµβ
, δβ is a set of integers, and the integration is performed over an

infinitesimal closed contours Cλ around the simple poles h
(β)
i = λβh

(α)
i . By redefining

h(α) and κ(α), one can set λβ′ = 1 and δβ′
= 0 for a chosen β′ ∈ {γ1, γ2, . . . , γp}.

• For a defect operation Dα
P at a flavor node α of quiver X:

IDα
P

(X)(s
X
α ,D) = Idefect(s

X
α ,D), (C.15)

where D denotes the additional data associated with the defect introduced, and Idefect

denotes the contribution of the defect to the index.

The explicit operator IOα
P

(X) can be constructed using the expressions for IGα
P

(X), IF α
P

(X),

IIα
P (X) and IDα

P
(X) following the composition rule (3.15):

IOα
P

(X) = IGα
P

(X) ·
(
IF α

P
(X)

)n3 ·
(
IIα

P
(X)

)n2 ·
(
IDα

P
(X)

)n1

. (C.16)

Now, let Y be the linear quiver which is mirror dual to the quiver X. Three-dimensional

mirror symmetry implies:

I(X)(z̃, ã,y,b; q̃, t̃) = I(Y )(y−1,−b, z̃, ã; q̃, t̃−1) (C.17)

=⇒ I(X,{Pβ})({sX
β ,s

′X
β },ΣX ,y,b; q̃, t̃) = I(Y,{Pβ})(y−1,−b,{sX

β ,s
′X
β },ΣX ; q̃, t̃−1). (C.18)

where the expression for I(Y,{Pβ}) can be read off from the index of quiver Y given in (B.28),

using the relations (C.1), (C.5), and (C.6). Proceeding in an analogous fashion as the

round sphere partition function analysis in section 3.3, one can write down the operation

on quiver Y which is dual to the operation Oα
P on the quiver X. Let S and SJ denote

the fugacities/fluxes associated with GH and GC respectively of the dual theory Õα
P(Y ).

Then, the index of the dual theory is

IÕα
P

(Y )(S(sX
J ,s

O
J ),SJ({s′X

β },sO
F ,Σ

X);q̃,t̃−1) (C.19)

=
∑

{c(γ′)}

L∨∏

γ′=1

∮

|ξ
(γ′)
i
γ′

|=1

[
dξ(γ′)

ξ(γ′)

]
I

Õα
P

(Y )
(ξ,c,sO

J ,s
O
F ;q̃,t̃)·I(Y,{Pβ})

int (ξ,c,y−1,−b,{s
(0)X
β ,s′X

β },ΣX ;q̃,t̃−1),

where s
(0) X
β = (1,0)β (i.e. setting the fugacities for U(rα)β to 1 and the fluxes to zero

for all β), and the function I(Y,{Pβ})
int is the integrand for the index of (Y, {Pβ}) as defined

in (B.28). The function I
Õα

P
(Y )

can be written in terms of the function IOα
P

(X) appearing

in (C.11) as follows:

I
Õα

P
(Y )

(ξ, c, sO
J , s

O
F ; q̃, t̃) =

∑

κ(α)

∮

|h
(α)
i |=1

[
dh(α)

h(α)

]
IOα

P
(X)(s

X
α , {sX

β }, sO
F , s

O
J ; q̃, t̃)

× I(0)(Y,{Pβ})

FI (ξ, c, {sX
β }), (C.20)
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where I(0)(Y,{Pβ})
FI is the part of the FI contribution which depends on {sX

β } = {h(β),κ(β)},

i.e.

I(0)(Y,{Pβ})

FI (ξ,c,{sX
β })=

∏

β

rα∏

i=1

[(
f

(β)
i (ξ,Pβ)

)κ
(β)
i ·
(
h

(β)
i

)gi
(β)

(c,Pβ)]
, (C.21)

gi
(β)(c,Pβ)=−

∑

iα′−1

c
(α′−1)
iα′−1

+
∑

iα′

c
(α′)
iα′

, (C.22)

f
(β)
i (ξ,Pβ)=

∏
iα′
ξ

(α′)
iα′

∏
iα′−1

ξ
(α′−1)
iα′−1

, α′=M1+...+Mβ−1+kβ, 1≤kβ ≤Mβ, (C.23)

where for a fixed i, kβ is determined by the condition that Pβ iβi = 1 for some iβ = kβ

and vanishes otherwise. If the dual theory Õα
P(Y ) is Lagrangian, one should be able to

manipulate the r.h.s. of (C.19) to rewrite it in the standard form (B.7) and read off the

gauge group and matter content.

Now let us generalize the above formulae for the case of a Lagrangian dual pair (X,Y ),

where X is in class U and not necessarily a linear quiver. The U(rα) × U(Mα − rα) fugac-

ities/fluxes associated with a node (α) of X (or the U(rα) × U(Mβ − rα) fugacities/fluxes

for multiple nodes labelled by β) are defined as before by (C.5)–(C.6) (or by (C.9)–(C.10)).

The U(1)J fugacities/fluxes are parametrized by sX
J = ({wγ}, {nγ}), where γ labels the

gauge nodes of quiver X (note that the fugacities/fluxes can be trivial for γ corresponding

to a non-unitary gauge node). The S-type operation Oα
P is then implemented on the quiver

X by (C.11), where the operator IOα
P

(X) is constructed from (C.16).

Mirror symmetry of X and Y again relates the indices of the theories in the following

fashion:

I(X,{Pβ})({sX
β , s

′X
β },ΣX , sX

J ; q̃, t̃) = I(Y,{Pβ})(sY (sX
J ), sY

J ({sX
β , s

′X
β },ΣX); q̃, t̃−1), (C.24)

where sY and sY
J denote the fugacities/fluxes for the Higgs branch global symmetry and

the Coulomb branch global symmetry of Y respectively. The dual index is then given as:

IÕα
P

(Y )(S(sX
J ,sO

J ),SJ ({s
′X
β },sO

F ,ΣX);q̃,t̃−1)=
∑

{c(γ′)}

∏

γ′

∮

|ξ
(γ′)
i
γ′

|=1

[
dξ(γ′)

ξ(γ′)

]
I

Õα
P

(Y )
(ξ,c,sO

J ,sO
F ;q̃,t̃) (C.25)

×I
(Y,{Pβ})

int (ξ,c,sY (sX
J ),sY

J ({s
(0)X
β ,s′X

β },ΣX);q̃,t̃−1),

where S and SJ denote the fugacities/fluxes associated with GH and GC respectively of

the dual theory Õα
P(Y ), and γ′ labels the gauge nodes of the quiver Y (which is not a linear

quiver). The function I
Õα

P
(Y )

is given as before

I
Õα

P
(Y )

(ξ, c, sO
J , s

O
F ; q̃, t̃) =

∑

κ(α)

∮

|h
(α)
i |=1

[
dh(α)

h(α)

]
IOα

P
(X)(s

X
α , {sX

β }, sO
F , s

O
J ; q̃, t̃)

× I(0)(Y,{Pβ})

FI (ξ, c, {sX
β }). (C.26)
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The function I(0)(Y,{Pβ})
FI above can be read off from the mirror map of masses and FI

parameters between the dual theories X and Y , and can be parametrized as follows:

I(0)(Y,{Pβ})

FI (ξ, c, {sX
β }) =

∏

β

rα∏

i=1

[(
f

(β)
i (ξ,Pβ)

)κ
(β)
i ·

(
h

(β)
i

)gi
(β)

(c,Pβ)]
, (C.27)

gi
(β)(c,Pβ) =

∑

γ′

eγ′

i (Pβ)
∑

jγ′

c
(γ′)
jγ′

, (C.28)

f
(β)
i (ξ,Pβ) =

∏

γ′

(∏

jγ′

ξ
(γ′)
jγ′

)eγ′

i (Pβ)

, (C.29)

where {eγ′

i (Pβ)} are integers completely determined by the mirror map of (X,Y ) and the

permutation matrices {Pβ}.

C.2 Abelian elementary S-type operations

We now discuss the Abelian versions of the four elementary S-type operations on a dual

pair of quiver gauge theories (X,Y ), with X being in class U . In particular, we explicitly

derive the formulae for the dual superconformal indices, and demonstrate that each such

operation (we only consider flavoring by hypermultiplets with gauge charge 1) leads to a

new pair of Lagrangian dual theories. Similar to the analysis of the round sphere partition

function, this leads us to the following conclusion. If (X,Y ) is a dual pair of quiver gauge

theories, and X ′ is a quiver gauge theory that can be obtained by a series of elementary

S-type operations on X, then the theory Y ′ (i.e. the dual of X ′) is guaranteed to be a

Lagrangian theory. In addition, the Lagrangian for Y ′ can be read off, by implementing

the formulae presented below, for each elementary S-type operation.

For our presentation of the flavoring operations below, we will restrict ourselves to the

case of Nα
F = 1, which is sufficient for constructing all the examples in this paper. The

extension to the case of Nα
F > 1 is straightforward and can be dealt with in a fashion

analogous to the round sphere partition function analysis in section 4.1.

We will need two identities for manipulating some of the expressions that will appear

below:
∮

|z|=1

dz

2πiz
zn = δn,0, (C.30)

∮

|z|=1

dz

2πiz

(∑

κ∈Z

(
z

a

)κ )
F (z) = F (z)| z

a
=1 = F (a). (C.31)

C.2.1 Gauging

The Abelian gauging operation Gα
P at a flavor node α of the quiver gauge theory X is

implemented as:

IGα
P (X) =

∑

κ(α)

∮

|h(α)|=1

[
dh(α)

h(α)

]
IGα

P (X)(s
X
α , s

O
J ; q̃, t̃) · I(X,P)(sX

α , s
′X
α , ,ΣX , sX

J ; q̃, t̃), (C.32)

IGα
P (X)(s

X
α , s

O
J ; q̃, t̃) = IFI(w̃, ñ, h

(α), κ(α)) Ivector(q̃, t̃) = w̃κ(α)
h(α)ñIvector(q̃, t̃), (C.33)
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where Ivector(q̃, t̃) is the index of a U(1) vector multiplet. From (C.26), the function I
G̃α

P (Y )

is then given as

I
G̃α

P (Y )
(ξ, c, sO

J ; q̃, t̃) =
∑

κ(α)

∮

|h(α)|=1

[
dh(α)

h(α)

]
IGα

P (X)(s
X
α , s

O
J ; q̃, t̃) · I(0)(Y,P)

FI (ξ, c, sX
α ),

(C.34)

where I(0)(Y,P)
FI is the (h(α), κ(α)) part of the FI term in the index of quiver Y . Explicitly,

this function can be written as:

I(0)(Y,P)

FI (ξ, c, sX
α ) =

(
f (α)(ξ,P)

)κ(α)

·
(
h(α)

)g(α)(c,P)
, (C.35)

g(α)(c,P) =
∑

γ′

eγ′
(P)

∑

jγ′

c
(γ′)
jγ′

, (C.36)

f (α)(ξ,P) =
∏

γ′

(∏

jγ′

ξ
(γ′)
jγ′

)eγ′
(P)

, (C.37)

where {eγ′
(P)} are integers completely determined by the mirror map between X and Y ,

and the permutation matrix P. Following the general equation (C.25) and implementing

the integration over h(α) and the sum over κα (using the identities (C.30) and (C.31)

respectively), the index of the dual theory G̃α
P(Y ) is given as:

IG̃α
P (Y )(S(sX

J , s
O
J ),SJ(s′X

α ,ΣX); q̃, t̃−1) (C.38)

=
∑

{c(γ′)}

∏

γ′

∮

|ξ
(γ′)
iγ′

|=1

[
dξ(γ′)

ξ(γ′)

]
[
I(Y,P)

int (ξ, c, sY (sX
J ), sY

J (s
(0) X
α , s′X

α ,ΣX); q̃, t̃−1)
]

w̃f (α)=1,
g(α)=−ñ

Ivector(q̃, t̃−1)
.

The factor Ivector(q̃, t̃
−1) cancels with the index of a single U(1) vector multiplet in I(Y,P)

int .

Together with the conditions w̃f (α)(ξ,P) = 1, g(α)(c,P) = −ñ, this removes a single U(1)

factor from the gauge group of Y . The precise U(1) being ungauged is determined by the

functions f (α), g(α), or equivalently the integers {eγ′
(P)}. The theory G̃α

P(Y ) is therefore

a Lagrangian theory.

C.2.2 Flavoring-gauging

The Abelian flavoring-gauging operation Oα
P(X) = Gα

P ◦ Fα
P (X) with Nα

F = 1 can be

implemented following the general expression in (C.11):

IOα
P (X) =

∑

κ(α)

∮

|h(α)|=1

[
dh(α)

h(α)

]
IOα

P (X)(s
X
α , s

O
F , s

O
J ; q̃, t̃) · I(X,P)(sX

α , s
′X
α , ,ΣX , sX

J ; q̃, t̃),

(C.39)

where the function IOα
P (X) can be read off from (3.15),

IOα
P (X)(s

X
α ,s

O
F ,s

O
J ;q̃,t̃)=IFI(w̃,ñ,h

(α),κ(α))Ivector(q̃,t̃)Ihyper(h
(α),κ(α),h̃(α),κ̃(α);q̃,t̃) (C.40)

=
∑

κ

∮

|h|=1

dh

2πih
(h(α))κ+ñ(w̃h)κ(α)

(h̃(α))−κh−κ̃(α)Ihyper(h,κ,1,0;q̃,t̃−1),
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where for the second equality we have used 3d mirror symmetry between a free hyper and a

U(1) gauge theory with a single hypermultiplet of charge 1 (as given in the identity (B.26)).

From (C.26), the function I
Õα

P (Y )
is given as

I
Õα

P (Y )
(ξ,c,sO

F ,s
O
J ; q̃, t̃) =

∑

κ(α)

∮

|h(α)|=1

[
dh(α)

h(α)

]
IOα

P (X)(s
X
α ,s

O
F ,s

O
J ; q̃, t̃) ·I(0)(Y,P)

FI (ξ,c,sX
α ),

(C.41)

where the function I(0)(Y,P)
FI (ξ, c, sX

α ) is given in (C.35), (C.36) and (C.37). To simplify the

above expression, we first substitute the expression for IOα
P (X) from (C.40), and change

the order of integration and sum between the variables (h(α), κ(α)) and (h, κ). Finally,

implementing the integration and sum over (h(α), κ(α)) first and then over (h, κ) (using the

identities (C.30) and (C.31) respectively), we obtain

I
Õα

P (Y )
= (h̃(α))ñ (w̃)κ̃(α)

(h̃(α))g(α) (f (α))κ̃(α) Ihyper(h, κ, 1, 0; q̃, t̃−1)|hw̃f (α)=1
κ+g(α)+ñ=0

, (C.42)

where the function Ihyper(h, κ, 1, 0; q̃, t̃−1)|hw̃f (α)=1
κ+g(α)+ñ=0

denotes the index of a single hyper-

multiplet charged under various U(1) subgroups of the gauge group of Y . The precise U(1)

subgroups and the respective charges are encoded in the functions f (α), g(α), or equiva-

lently in the integers {eγ′
(P)}. Following the general equation (C.25), the index of the

dual theory Õα
P(Y ) is then given as

IÕα
P (Y )(S(sX

J , s
O
J ),SJ(s′X

α ,ΣX , sO
F ); q̃, t̃−1)

=
∑

{c(γ′)}

∏

γ′

∮

|ξ
(γ′)
iγ′

|=1

[
dξ(γ′)

ξ(γ′)

]
(h̃(α))ñ (w̃)κ̃(α) Ihyper(h, κ, 1, 0; q̃, t̃−1)|hw̃f (α)=1,

κ+gα+ñ=0

× I(Y,P)
int (ξ, c, sY (sX

J ), sY
J ({h(α) = h̃(α), κ(α) = κ̃(α)}, . . .); q̃, t̃−1). (C.43)

The factor (h̃(α))ñ (w̃)κ̃(α)
can be absorbed by redefining some of the fugacities and fluxes

(ξ(γ′), c(γ′)), such that g(α) → g(α) − ñ, and f (α) → 1
w̃
f (α) . The Lagrangian for the theory

Õα
P(Y ) can be read off from the index — it involves adding a single hypermultiplet to

the quiver gauge theory Y , where the said hypermultiplet is charged under various U(1)

subgroups of the gauge group of Y , as noted above.

C.2.3 Identification-gauging

The Abelian identification-gauging operation Oα
P(X) = Gα

P ◦ Iα
P(X) can be implemented

following the general expression in (C.11):

IOα
P

(X) =
∑

κ(α)

∮

|h(α)|=1

[
dh(α)

h(α)

]
IOα

P
(X)(s

X
α , {sX

β }, sO
F , s

O
J ; q̃, t̃)

× I(X,{Pβ})({sX
β , s

′X
β },ΣX , sX

J ; q̃, t̃), (C.44)
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where the operator IOα
P

(X) is given as (from (3.15)):

IOα
P

(X) = IFI(w̃, ñ, h
(α), κ(α)) Ivector(q̃, t̃)

∏

β

∮

Cλ

dh(β)

2πi (h(β) − λβh(α))
·
∑

{κ(β)}

δκ(β),κ(α)+δβ .

(C.45)

From (C.26), the function I
Õα

P
(Y )

is given as:

I
Õα

P
(Y )

(ξ, c, sO
F , s

O
J ; q̃, t̃) =

∑

κ(α)

∮

|h(α)|=1

[
dh(α)

h(α)

]
IOα

P (X)(s
X
α , {sX

β }, sO
F , s

O
J ; q̃, t̃)

× I(0)(Y,{Pβ})

FI (ξ, c, {sX
β }), (C.46)

with the {h(β), κ(β)}-dependent part of the FI term of Y can be explicitly written as:

I(0)(Y,{Pβ})

FI (ξ, c, {sX
β }) =

∏

β

[(
f (β)(ξ,Pβ)

)κ(β)

·
(
h(β)

)g(β)(c,Pβ)]
, (C.47)

g(β)(c,Pβ) =
∑

γ′

eγ′
(Pβ)

∑

jγ′

c
(γ′)
jγ′

, (C.48)

f (β)(ξ,Pβ) =
∏

γ′

(∏

jγ′

ξ
(γ′)
jγ′

)eγ′
(Pβ)

. (C.49)

Finally, from the general expression of (C.25), and implementing the integration over h(α)

and the sum over κα (using the identities (C.30) and (C.31) respectively), we obtain the

index for the dual theory Õα
P(Y ):

IÕα
P

(Y )(S(sX
J ,s

O
J ),SJ({s′X

β },sO
F ,Σ

X);q̃,t̃−1) (C.50)

=
∑

{c(γ′)}

∏

γ′

∮

|ξ
(γ′)
i
γ′

|=1

[
dξ(γ′)

ξ(γ′)

]

[
I(Y,{Pβ})

int (ξ,c,sY (sX
J ),sY

J ({h(β)=λβ ,κ
(β)=δβ},...);q̃,t̃−1)

]
w̃
∏

β
f(β)=1,∑

β
gβ=−ñ

Ivector(q̃,t̃−1)
.

Similar to the case of the gauging operation, the factor Ivector(q̃, t̃
−1) cancels with the index

of a single U(1) vector multiplet in I(Y,P)
int . Together with the conditions w̃

∏
β f

(β)(ξ,Pβ) =

1,
∏

β g(β)(c,Pβ) = −ñ, this removes a single U(1) factor from the gauge group of Y . The

precise U(1) being ungauged is determined by the functions
∏

β f
(β),

∑
β g(β), or equiva-

lently the integers {eγ′
(Pβ)}. The theory Õα

P(Y ) is therefore a Lagrangian theory.

C.2.4 Identification-flavoring-gauging

The Abelian identification-flavoring-gauging operation Oα
P(X) = Gα

P ◦ Fα
P ◦ Iα

P(X) can be

implemented following the general expression in (C.11):

IOα
P

(X) =
∑

κ(α)

∮

|h(α)|=1

[
dh(α)

h(α)

]
IOα

P
(X)(s

X
α , {sX

β }, sO
F , s

O
J ; q̃, t̃)

× I(X,{Pβ})({sX
β , s

′X
β },ΣX , sX

J ; q̃, t̃), (C.51)
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where the operator IOα
P

(X) is given as (from (3.15)):

IOα
P

(X) = IFI(w̃, ñ, h
(α), κ(α)) Ivector(q̃, t̃) Ihyper(h

(α), κ(α), h̃(α), κ̃(α); q̃, t̃)

×
∏

β

∮

Cλ

dh(β)

2πi (h(β) − λβh(α))
·
∑

{κ(β)}

δκ(β),κ(α)+δβ (C.52)

=
∑

k

∮

|h|=1

dh

2πih
(h(α))κ+ñ (w̃h)κ(α)

(h̃(α))−κ h−κ̃(α) Ihyper(h, κ, 1, 0; q̃, t̃−1)

×
∏

β

∮

Cλ

dh(β)

2πi (h(β) − λβh(α))
·
∑

{κ(β)}

δκ(β),κ(α)+δβ , (C.53)

where, for the second equality, we have used the basic 3d mirror symmetry, as given

in (B.26). From (C.26), the function I
Õα

P
(Y )

is given as:

I
Õα

P
(Y )

(ξ, c, sO
F , s

O
J ; q̃, t̃) =

∑

κ(α)

∮

|h(α)|=1

[
dh(α)

h(α)

]
IOα

P
(X)(s

X
α , {sX

β }, sO
F , s

O
J ; q̃, t̃)

× I(0)(Y,{Pβ})

FI (ξ, c, {sX
β }), (C.54)

with I(0)(Y,{Pβ})
FI , i.e. the {h(β), κ(β)}-dependent part of the FI term of Y is given

in (C.47), (C.48) and (C.49). The above expression can be simplified by first substi-

tuting the expression for IOα
P (X) from (C.53), and change the order of integration and

sum between the variables (h(α), κ(α)) and (h, κ). Finally, implementing the integration

and sum over (h(α), κ(α)) first and then over (h, κ) (using the identities (C.30) and (C.31)

respectively), we obtain

I
Õα

P
(Y )

=(h̃(α))ñ(w̃)κ̃(α)∏

β

(h̃(α)λβ)g(β)
∏

β

(f (β))δβ+κ̃(α) Ihyper(h,κ,1,0;q̃,t̃−1)|hw̃
∏

β
f (β)=1

κ+
∑

β
g(β)+ñ=0

(C.55)

where the function Ihyper(h, κ, 1, 0; q̃, t̃−1)|hw̃
∏

β
f (β)=1

κ+
∑

β
g(β)+ñ=0

denotes the index of a single hy-

permultiplet charged under various U(1) subgroups of the gauge group of Y . The precise

U(1) subgroups and the respective charges are encoded in the functions
∏

β f
(β),

∑
β g(β),

or equivalently in the integers {eγ′
(Pβ)}. Following the general equation (C.25), the index

of the dual theory Õα
P(Y ) is then given as

IÕα
P

(Y )(S(sX
J , s

O
J ),SJ({s′X

β }, sO
F ,Σ

X); q̃, t̃−1) (C.56)

=
∑

{c(γ′)}

∏

γ′

∮

|ξ
(γ′)
iγ′

|=1

[
dξ(γ′)

ξ(γ′)

]
(h̃(α))ñ (w̃)κ̃(α) Ihyper(h, κ, 1, 0; q̃, t̃−1)|hw̃

∏
β

f (β)=1

κ+
∑

β
g(β)+ñ=0

× I(Y,{Pβ})
int (ξ, c, sY (sX

J ), sY
J ({h(β) = h̃(α)λβ, κ

(β) = δβ + κ̃(α)}, . . .); q̃, t̃−1).

As mentioned in our discussion on (C.14), one has the freedom to choose λβ′ = 1, δβ′ = 0,

for some β′ ∈ {γ1, γ2, . . . , γp}. Redefining some of the fugacities and fluxes (ξ(γ′), c(γ′)),
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such that g(β′) → g(β′) − ñ, and f (β′) → 1
w̃
f (β′), the factor (h̃(α))ñ (w̃)κ̃(α)

can be absorbed

in the integrand. The Lagrangian for the theory Õα
P(Y ) can be read off from the index — it

involves adding a single hypermultiplet to the quiver gauge theory Y , where the said hyper-

multiplet is charged under various U(1) subgroups of the gauge group of Y , as noted above.

C.3 Sample computation: flavored Ân−1 quiver and family I[n,l,p]

In this section, we will demonstrate concrete examples of how an elementary S-type oper-

ation and its dual may be implemented in terms of the superconformal index, to construct

new pairs of dual theories. We first work out the example of a flavored Ân−1 quiver (dis-

cussed in section 3.4 in terms of the S3 partition function), followed by the Family I[n,l,p]

(discussed in section 4.2.1). The quiver operation is shown in figure 45. The indices of the

dual theories can be simply read off from the general expressions (C.56) (identification-

flavoring-gauging) and (C.43) (flavoring-gauging) respectively, but we work out the first

example in details to familiarize the reader with the computation.

Given the dual linear quiver pair (X,Y ), their superconformal indices can be read off

from the general expressions (B.17) and (B.28) respectively. The Higgs branch global sym-

metry for X is GX
H = U(1)3/U(1), where we choose to impose the U(1) quotient such that

GX
H = U(1)1×U(1)n−1. The fugacities and GNO fluxes {hβ, κβ} for GX

H are then defined as:

z̃1 = h1, z̃2 = 1, z̃3 = h2, (C.57)

ã1 = κ1, ã2 = 0, ã3 = κ2, (C.58)

where the fugacities z̃ and the fluxes ã for a linear quiver are defined in (B.14) and

in (B.15) respectively. Using the above choice, the FI term in the SCI of the quiver Y ,

following (B.29), is given as

I(Y )
FI (z̃, ã, {ξ(γ′)}, {c(γ′)}) =

2∏

i=1

(
z̃i

z̃i+1

)ci

· (ξi)(̃ai−ãi+1) = (h1)c1
(ξ1)κ1

(h2)−c2
(ξ2)−κ2

.

(C.59)

Now, let us implement an identification-flavoring-gauging operation O1 at the U(1)1 ×
U(1)n−1 flavor nodes of X. The superconformal index of the resultant theory O1(X) is

given by (C.11), i.e.

IO1(X) =
∑

κ(α)

∮

|h(α)|=1

dh(α)

2πih(α)
IO1(X)(s

X
α , {sX

β }, sO1
F , sO1

J ; q̃, t̃) · I(X)(sX
β , s

X
J ; q̃, t̃), (C.60)

where I(X) is given by (B.17). The operator IO1(X), corresponding to an Abelian

identification-flavoring-gauging operation with Nα
F = 1, can be constructed from (C.12)–

(C.14) and (C.16) as follows:

IO1(X) = IFI(w̃, ñ, h
(α), κ(α)) Ivector(h

(α), κ(α); q̃, t̃) Ihyper(h
(α), κ(α), h̃(α), κ̃(α); q̃, t̃)

×
2∏

β=1

∮

Cλ

dhβ

2πi (hβ − λβh(α))
·
∑

{κβ}

2∏

β=1

δκβ ,κ(α)+δβ . (C.61)
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1 1 1

1

1 1

1 1

n− l + 1 n− l + 2 n− 1n− l1

(X)

1

l − 1

1

n− l + 1

(Y )

O1 Õ1

1

1 1

1

11

1

1

n− l + 1

n− l + 2
n− 1

n

1
n− l

(X(1))

1

l − 1

1

n− l + 1

(Y (1))

O2 Õ2

1

1 1

1

11

1

11

(X(2))

n− l + 1

n− l + 2 n− 1

n

1n− l

1 1

n− l + 1 l − 1

(Y (2))

Figure 45. The quiver (X ′) and its mirror dual (Y ′) in figure 17 (for p = 3) is generated by a

sequence of elementary S-type operations on different nodes. In each step, the flavor node(s) on

which the S-type operation acts is shown in red. The intermediate step involves a flavored Ân−1

quiver and its dual.

We will eventually set λ1 = 1, δ1 = 0, which can be chosen by an appropriate reparametriza-

tion of h(α). The FI term and the vector multiplet contribution for a U(1) gauge group

can be read off from (B.8)–(B.9):

IFI(w̃, ñ, h
(α), κ(α)) = w̃κ(α)

(h(α))ñ, (C.62)

Ivector(h
(α),κ(α); q̃, t̃) = Ivector(q̃, t̃) =

(
(t̃q̃1/2; q̃)

(t̃−1q̃1/2; q̃)

)
. (C.63)
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The contribution of the single free hypermultiplet, given by (B.10), obeys the identity:

Ihyper(h
(α),κ(α),h̃(α),κ̃(α);q̃,t̃)=

(
q̃1/2

t̃

)|(κ(α)−κ̃(α))|/2 (t̃−1/2q̃3/4+|(κ(α)−κ̃(α))|/2( h(α)

h̃(α)
)±1;q̃)

(t̃1/2q̃1/4+|(κ(α)−κ̃(α))|/2( h(α)

h̃(α)
)±1;q̃)

(C.64)

=
∑

κ

∮

|h|=1

dh

2πih

(
h(α)

h̃(α)

)κ

h(κ(α)−κ̃(α))Ivector(h,κ;q̃,t̃−1)Ihyper(h,κ,1,0;q̃,t̃−1) (C.65)

=
∑

κ

∮

|h|=1

dh

2πih

(
h(α)

h̃(α)

)κ

h(κ(α)−κ̃(α))Ivector(q̃,t̃
−1)Ihyper(h,κ,1,0;q̃,t̃−1), (C.66)

where for the second equality we have used the 3d mirror symmetry relation (B.26) between

a single twisted hypermultiplet and a U(1) gauge theory with a single hypermultiplet.

Given the operator IO1(X) in (C.61), the SCI of the dual theory Õ1(Y ) can be com-

puted using (C.19)–(C.20). Let us first compute the function I
Õ1(Y )

(ξ, c, sO1
F , sO1

J ; q̃, t̃)

using (C.20), which gives:

I
Õ1(Y )

=
∑

κ(α)

∮

|h(α)|=1

dh(α)

2πih(α)
IO1(X)(sα, {sβ}, sO1

F , sO1
J ; q̃, t̃) I(0)(Y )

FI (ξ, c, {sβ}), (C.67)

I(0)(Y )

FI (ξ, c, {sβ}) = (h1)c1
(ξ1)κ1

(h2)−c2
(ξ2)−κ2

, (C.68)

where we have read off {hβ, κβ}-dependent I(0)(Y )
FI from (C.59). Using (C.62), (C.63),

and (C.66), and interchanging the order of integration and sum over fluxes, we get

I
Õ1(Y )

=
∑

κ

∮

|h|=1

dh

2πih

(∑

κ(α)

(
w̃hξ1

ξ2

)κ(α) )∮

|h(α)|=1

dh(α)

2πih(α)
(h(α))c1−c2+κ+ñ

× (h−k̃α
(h̃(α))−κ λc1

1 λ−c2

2 (ξ1)δ1 (ξ2)−δ2) Ihyper(h, κ, 1, 0; q̃, t̃−1). (C.69)

Using the identities,

∮

|h(α)|=1

dh(α)

2πih(α)
(h(α))c1−c2+κ+ñ = δc1−c2+κ+ñ,0, (C.70)

∮

|h|=1

dh

2πih

(∑

κ(α)

(
w̃hξ1

ξ2

)κ(α) )
F (h, κ) = F

(
ξ2

ξ1w̃
, κ

)
, (C.71)

we have the following expression

I
Õ1(Y )

=(h̃(α))c1−c2+ñ(λc1

1 λ−c2

2 (ξ1)δ1 (ξ2)−δ2 )

(
ξ2

ξ1w̃

)−k̃α

Ihyper

(
ξ2

ξ1w̃
,−c1+c2−ñ,1,0;q̃,t̃−1

)
(C.72)

=(h̃(α))c1+ñ(h̃(α)λ)−c2

(ξ1w̃)̃kα

(ξ2)−k̃α−δ Ibif
hyper(ξ

2,c2,ξ1w̃,c1+ñ;q̃,t̃−1), (C.73)

where for the second equality, we have set λ1 = 1, δ1 = 0, as mentioned earlier, and

λ2 = λ, δ1 = δ. We also identify the hypermultiplet term as the 1-loop contribution of

a bifundamental hypermultiplet, with fugacities and fluxes as shown in the argument of
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Ibif
hyper. The index of the dual theory is then given by:

IÕ1(Y ) =
∑

c1,c2

∮

|ξi|=1

2∏

i=1

[
dξi

2πiξi

]
Ibif

hyper(ξ
2, c2, ξ1, c1; q̃, t̃−1) · I(Y )

FI (ξ, c, z̃(h̃(α), λ), ã(k̃α, δ))

×
[
I(Y )

1−loop(ξ, c, sX
J ; q̃, t̃−1)

]
ξ1→ξ1/w̃,c1→c1−ñ

, (C.74)

where we have performed the change of variables ξ1 → ξ1/w̃, c1 → c1 − ñ. The fugacities

and fluxes (z̃, ã) are explicitly given as

z̃1 = h̃(α), z̃2 = 1, z̃3 = h̃(α) λ, (C.75)

ã1 = k̃α, ã2 = 0, ã3 = k̃α + δ. (C.76)

The dual theory Õ1(Y ) can now be read off from the r.h.s. of the expression (C.74) for the

index, and manifestly reproduce the quiver Y (1) above. Note that, we could have directly

arrived at the result (C.74) from the general expression for an identification-flavoring-

gauging operation in (C.56), with the input (C.59).

As discussed in section B, the Higgs branch and the Coulomb branch global symmetries

for (X(1), Y (1)) can be read off from the respective limits of the index. In particular, we

would like to point out that the Coulomb branch symmetry for X(1) is GX(1)

C = GY (1)

H =

U(1)×SU(n− l+1)×SU(l−1)×SU(2). The SU(n− l+1)×SU(l−1) subgroup of GX(1)

C is

manifest from the balanced linear subquivers inside of X(1), but the remaining U(1)n−l+1 ×
U(1)n gets enhanced to U(1) × SU(2). This can be directly seen from the Coulomb branch

index/ Hilbert Series of X(1). Let us compute the refined index for the theory labelled by

n = 6, l = 4. The global symmetry in this case is GX(1)

C = U(1)×SU(3)1 ×SU(3)2 ×SU(2).

With x̃ = t2, the character expansion of the Coulomb branch Hilbert Series is given as:

I(X(1))
C = 1+([1, 1]1 +[1, 1]2 +[2]+1)t2 +([1, 0]1 [0, 1]2 [1]+[0, 1]1 [1, 0]2 [1])t3 + . . . , (C.77)

where [m,n]i denotes the character of the representation with Dynkin labels [m,n] for

SU(3)i, and [l] denotes the spin-l/2 representation of SU(2).

Now let us implement the flavoring-gauging operation O2 on the quiver gauge theory

X(1) at the flavor node shown in red in figure 45. The fugacity and flux associated with

this node is (h̃(α), k̃(α)). Following the notation of appendix C.1, we will label this node as

(α), and set

h(α) = h̃(α), k(α) = k̃(α). (C.78)

From (C.74), the FI-term contribution to the index of Y (1) is given as

I(Y (1))
FI (ξ, c, z̃(h̃(α), λ), ã(k̃α, δ)) = (h̃(α))c1

(h̃(α) λ)−c2
(ξ1)k̃(α)

(ξ2)−k̃α−δ

= (h(α))c1−c2
(
ξ1

ξ2

)k(α)

λ−c2
(ξ2)−δ, (C.79)

which implies that the (h(α), κ(α))-dependent part of the FI term for the theory Y (1) is

I(0)(Y (1))

FI = (h(α))c1−c2
(
ξ1

ξ2

)k(α)

. (C.80)
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In addition, we parametrize the U(1) flavor fugacity/flux and the U(1)J topological fugac-

ity/flux associated with the S-type operation O2 as follows:

sO2
F = (h̃′(α), k̃′(α)), sO2

J = (w̃′, ñ′). (C.81)

The index for the dual theory Õ2(Y (1)) can then be read off from the general expres-

sion (C.43) as follows:

IÕ2(Y (1))=
∑

c1,c2

∮

|ξi|=1

2∏

i=1

[
dξi

2πiξi

]
Ibif

hyper(ξ
2,c2,ξ1,c1;q̃,t̃−1)Ibif

hyper

(
ξ2,c2,

ξ1

w̃′
,c1−ñ′;q̃,t̃−1

)
(C.82)

×I(Y )
FI (ξ,c,z̃(h̃′(α),λ),ã(k̃′α,δ))·

[
I(Y )

1−loop(ξ,c,sX
J ;q̃,t̃−1)

]
ξ1→ξ1/(w̃w̃′),c1→c1−ñ−ñ′

.

The Lagrangian for the dual theory Õ2(Y (1)) can be read from the above index — it involves

adding two hypermultiplets in the bifundamental representation of the U(1) × U(1) gauge

group to the quiver Y , and is therefore given by the quiver gauge theory Y (2) in figure 45.

The fugacities and fluxes (z̃, ã) are explicitly given as

z̃1 = h̃′(α), z̃2 = 1, z̃3 = h̃′(α) λ, (C.83)

ã1 = k̃′α, ã2 = 0, ã3 = k̃′α + δ. (C.84)

Implementing a sequence of flavoring-gauging operations at the new flavor node generates

the infinite family of dual theories in I[n,l,p], as discussed in section 4.2.1 in terms of the

sphere partition function.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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