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Abstract

We report the first three-dimensional (3-D) ion particle simulation of mode conversion from a fast

mode compressional wave to kinetic Alfvén waves (KAWs) that occurs when a compressional mode

propagates across a plasma boundary into a region of increasing Alfvén velocity. The magnetic

field is oriented in the ẑ direction perpendicular to the gradients in the background density and

magnetic field (x̂). Following a stage dominated by linear physics in which KAWs with large

wave numbers kxρi ∼ 1 (with ρi being the ion Larmor radius) are generated near the Alfvén

resonance surface, the growth of KAW modes with kyρi ∼ 1 is observed in the nonlinear stage

when the amplitude of KAWs generated by linear mode conversion becomes large enough to drive

a nonlinear parametric decay process. The simulation provides a comprehensive picture of mode

conversion and the fundamental importance of the 3-D nonlinear physics to transfer energy to large

perpendicular ky modes, which can provide large transport across plasma boundaries in space and

laboratory plasmas.

PACS numbers: 52.35.Mw, 94.05.Pt, 94.30.ch, 52.65.-y, 94.30.cq

1



INTRODUCTION

Mass, momentum, and energy transport at plasma boundaries is of fundamental impor-

tance to the dynamics and stability of space and laboratory plasma physics. Wave-particle

interactions provide an effective means to facilitate such transport, and they are most effec-

tive when the fluctuations are on kinetic scales. Moreover, inhomogeneities in the plasma

density and magnetic fields at these boundaries allow for coupling and mode conversion from

global scale MHD modes to kinetic scale waves [1]. The Earth’s magnetopause boundary

provides an example of a region where it is believed that wave-particle diffusive processes are

important [2–7], particularly for periods of northward interplanetary magnetic field when

massive cross-field line plasma entry occurs. It has been suggested theoretically that mode

conversion from incident compressional waves to kinetic Alfvén waves (KAWs) at the mag-

netopause leads to the plasma transport [4]. KAWs are low frequency (ω < Ωi) waves with

kinetic scale k⊥ρi ∼ 1 spatial variation, where Ωi is the ion gyrofrequency, ρi is the ion

Larmor radius, and k⊥ is the perpendicular wave numbers. Recent THEMIS spacecraft ob-

servations [7] show a direct evidence of a turbulent spectrum of KAWs at the magnetopause

with sufficient power to provide massive particle transport, D⊥ ∼ 109−10m2/s. A similar

mode conversion process may also occur on closed field lines in the magnetosphere to drive

field-line resonances that have been associated with auroral precipitation [8]. KAWs gener-

ated in the solar wind and corona through mode conversion [9] or nonlinear cascade may

also play an important role in particle heating [10] and powering the fast solar wind [11].

Additionally, KAWs play crucial roles in magnetic fusion devices [12]. Laboratory plasma

experiments have shown evidence of coupling between toroidal Alfven eigenmodes (TAEs)

and KAWs [13] that may also be externally driven by mode conversion of fast modes [14].

Although important in a variety of space and laboratory contexts, the nonlinear physics of

mode conversion of the KAW remains poorly understood.

In this letter, we report the first ion kinetic simulation of three-dimensional (3-D) non-

linear physics of mode conversion from a fast-mode compressional wave to kinetic Alfvén

waves (KAWs) that occurs when a large amplitude compressional mode propagates across

a plasma boundary into an increasing Alfvén velocity. The parameters that we select for

these simulations are relevant for the Earth’s magnetopause, where fast-mode waves that

originate from either solar wind compressions or from the foreshock [15] propagate against
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the magnetopause. In the simulation, the initial magnetic field points along ẑ, perpendicu-

lar to the boundary nonuniformity (x̂). It is shown that KAWs with a large wave number

kyρi ∼ 1 that is perpendicular to both the background magnetic field B0 and the wave vector

k0 of the incident fast-mode wave are nonlinearly excited in the mode conversion process.

Because transport is proportional to k2

y [2, 4, 5], the nonlinear excitation of these modes re-

sulting from dynamics in the ŷ direction as shown in this paper is critical to understanding

transport.

SIMULATION DETAILS

The magnetopause boundary is modeled with a slab geometry with total pressure balance,

separating uniform regions of the magnetosheath and magnetosphere. For comparison, the

initial setup and parameters are the same as those used in the 2-D (xz only) simulations

of Lin et al. [16]. The magnetosheath ion beta βis = 0.5, corresponding to ρis = 0.5dis,

where ρis and dis are the ion Larmor radius and ion skin depth in the magnetosheath,

respectively. The electron-to-ion temperature ratio is assumed to be Te0/Ti0 = 0.4. The

half-width of the magnetopause boundary layer is assumed as D0 = 7.5dis. The ratio

between the magnetosheath and magnetospheric ion density is Ns/Nm = 10. The Alfvén

speed VA increases by nearly a factor of 4 through the magnetopause boundary. The incident

sinusoidal compressional wave is imposed from the boundary (x = 0) in the magnetosheath

with frequency ω0 = 0.4 and wave number, (kx0, ky0, kz0) = (0.262, 0, 0.196) in the xz plane,

corresponding to ω0/(k‖0VAs) = 2.0, where the subscript ”‖” indicates the direction parallel

to B0. The amplitude in the flow speed of the incident wave is δVi = 0.2VAs.

A hybrid simulation model is used, in which ions are treated as fully kinetic particles

moving in a self-consistent electromagnetic field, and electrons are treated as a corresponding

massless fluid. A 3-D simulation grid with dimensions nx × ny × nz = 200× 65× 65 is used

with uniform grid sizes ∆x = 0.5dis, ∆y = dis, and ∆z = 2dis. Free boundary conditions

are used at x = 100 on the magnetospheric side. Periodic boundary conditions are assumed

at all the other four boundary surfaces. In the presentation below, the time is normalized

to Ω−1

s , where Ωs is the ion gyrofrequency in the magnetosheath. The magnetic field is

expressed in units of the magnetosheath field Bs, and the ion number density in units of the

magnetosheath density Ns. The velocity is normalized to the magnetosheath Alfvén speed
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VAs, and the spatial coordinates are normalized to dis.

SIMULATION RESULTS

Figure 1 shows the simulation results at t = 200 in the xz and xy planes. For reference,

the magnetopause boundary is located at 42.5 < x < 57.5 separating the magnetosheath x <

42.5 and magnetosphere x > 57.5. The Alfvén resonance condition ω2 = k2

‖V
2

A(1−ω2/Ω2

i )
2[1]

is satisfied at x ≃ 53, which is the predicted mode conversion point according to linear kinetic

theory [3, 4, 17–22]. The top row of Figure 1 depicts the resulting contours of ion density

N , magnetic field components Bx and By, electric fields Ex and Ey, and the parallel electric

field E‖ in the xz plane around the magnetopause at y = 32 and t = 200. Larger-amplitude,

short wavelength waves are excited in the transition layer between x ≃ 47-60 around the

Alfvén resonance point, in addition to the incident and reflected compressional waves on the

magnetosheath side dominated by perturbations in Bx, Ey and N . Similar to the 2-D results

for the same case[16], these waves show characteristics of KAWs with large and broadband

wave vectors, kxρi ∼ 1, dominated by perturbations in By, Ex, E‖, and parallel current

density J‖ (not shown). These short wavelength waves radiate back to the magnetosheath.

The bottom row of Figure 1 shows the corresponding results in the yz plane tangential

to the magnetopause, at the resonant point x = 53. Strong wave perturbations with finite

wavelengths along y have clearly formed, while ky = 0 in the incident wave. Spectral analysis

of the power of Bx in the ky-k‖ plane is shown in Figure 2 for the wave structures at x = 53.

Similar to the 2-D results [16], power peaks at discrete k‖0’s are present along ky = 0,

corresponding to multiple harmonics of the driving frequency, ω0. An obvious 3-D effect

is the presence of wave powers at large ky ∼ 1, corresponding to kyρis ∼ 0.5 again with

harmonics of k‖0. Meanwhile, harmonics of the nonlinearly excited ky ∼ 1 are also present.

The left column of Figure 3 shows the time evolution of powers of Bx (black), By (green),

Ey (blue), and E‖ (red) of the modes dominated by kx, with (kx, kz) = (−1.0, 0.196) and

all ky obtained in the plane at y = 32. By and E‖ are seen to grow from t = 40, when the

incident fast wave reaches the magnetopause boundary, while Bx and Ey show no growth

as expected for KAWs dominated by kx. This first-stage growth of KAWs from t = 40-80 is

due to the linear physics of mode conversion from the fast wave to KAWs. The powers are

saturated at t ∼ 80.
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FIG. 1. Contours of various quantities at t = 200 in the xz plane (top row) at y = 32 and the

yz plane (bottom row) at the Alfvén resonant point x = 53 obtained from the simulation of mode

conversion in the inhomogeneous magnetopause.

FIG. 2. ky-k‖ spectra of Bx structures in the bottom row of Figure 1.

The mode coupling to ky takes place in t > 80, in which the nonlinear physics plays a

significant role, as illustrated in the right column of Figure 3 for the dominant ky modes

with (ky, kz) = (−1.0, 0.196) and all kx at the resonance point x = 53. In the second stage,

from t = 80-145, the strong growth in Bx, Ey, and E‖ is consistent with KAWs dominated

by ky, which nonlinearly co-exist with the KAWs dominated by kx. Finally for t > 145, the

wave perturbations grow in all components. The mechanism for this final isotropic growth

is beyond the scope of this paper.
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FIG. 3. Time evolution of Bx (black), By (green), Ey (blue), and E‖ (red) for the KAW modes

dominated by kx (left column) at y = 32 and for those dominated by ky (right) at the resonance

point x = 53 in the inhomogeneous magnetopause.

The time evolution shown in Figure 3 suggests a nonlinear decay of the first-stage KAWs

dominated by kx to secondary KAWs dominated by ky. The generation of the finite ky

spectrum for t > 80 results from nonlinear coupling in the kinetic equations that is ultimately

linked with the VE · ∇ operator acting on perturbed fields, where VE is the E×B velocity

of the pump wave. In the linear stage the growing electric field of the KAW perturbations

is dominated by the δEx component so that VE ≃ VEyŷ ≃ δEx×Bz0 which provides strong

coupling to the ky spectrum in the nonlinear stage.

Early theoretical work for cold ions [23, 24] and a recent extension to finite k⊥ρi [25] found

that a pump KAW can nonlinearly decay into an ion acoustic mode and a lower-sideband

daughter KAW through a parametric instability. For a pump KAW propagating with kp =

(kxp, 0, kzp), the nonlinear coupling coefficient is proportional to Λ = −i(c2s/2Ωi)(ks×kp) · ẑ,

where ks = ksŷ is the wave vector of the ion acoustic mode. Since the pump mode has

kyp = 0, the wave number matching condition results in that the daughter KAW must have

a finite wave number kd = −ksŷ. Nonlinear decay can also lead to ion heating through

nonlinear ion Landau damping as seen in the simulation near the mode conversion region.

In order to examine the nonlinear decay of the first-stage KAWs, we show a supplemental

hybrid simulation where we specify the driver wave and examine its decay in a homogeneous

plasma. The inhomogeneity in the background plasma is not included in order to focus on

the nonlinear stage. As in the inhomogenous simulation, we take Te/Ti = 0.4, and βi = 0.5

is assumed. The pump KAW is loaded at t = 0 with wave number kp = (kxp, 0, kzp) =
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FIG. 4. k‖-ω spectra of Bx and E‖ obtained from the simulation of decay of an initial pump KAW

in a uniform plasma. The solid black line indicates the dispersion relation of the MHD shear Alfvén

mode for reference.

(−1.6, 0, 0.196) and wave amplitude δVi = 0.6. Higher spatial resolution (∆x = 0.25, ∆y =

0.5, and ∆z = 0.5) is used. To specify the single Fourier mode kp of the pump wave, we

filter out other modes from t = 0-10. But for t > 10, all modes in ky and kz are released,

while only kx = 0 and |kx| = kxp are kept in kx. The resulting real-space structures in the

yz plane resemble those shown in the top row of Figure 1, with ky ≫ kz.

These simplified simulations clearly demonstrate that a driven KAW nonlinearly decays

into a daughter KAW and an ion acoustic wave, confirming the parametric decay process[23].

The k‖-ω spectra of Bx and E‖ shown in Figure 4 reveal the coupled modes. The initial

pump KAW appears at (k‖p, ωp) = (0.2, 0.6) in E‖, a daughter mode is present at (k‖d, ωd) =

(−0.2, 0.4) in Bx and E‖, and an ion sound wave is seen in E‖ at (k‖s, ωs) = (0.4, 0.2). In

addition, a low-frequency perturbation is also generated, around (k‖, ω) ≃ (0, 0.05). Strong

Bx perturbations are evident around the pump (k‖p, ωp).

The pump, daughter, and sound waves couple through a three-wave interaction because

ωp = ωd+ωs and kp = kd +ks. Since the system is symmetric in y, two dominant daughter

waves are generated, with one at kyd > 0 and the other at kyd < 0, while their strengths

are oscillating in time. The daughter KAWs have kxd = 0 and kyd = ±1.2, while the sound

waves have kxs = kxp and kys = ∓1.2. The matching conditions are satisfied for each pair

of the sound and daughter waves.

Figure 5 shows the time evolution of the powers of Bx and By in the pump wave

(kxp, kyp, k‖p) = (1.6, 0, 0.2) and the pair of the daughter wave (kxd, kyd, k‖d) = (0, 1.2,−0.2)

and sound wave (kxs, kys, k‖s) = (1.6,−1.2, 0.4). As the pump wave (dominated by By)

decays, the daughter wave (dominated by Bx) is excited and reaches a saturated level at

t ≃ 85. The sound wave is a damped quasi-mode in the high beta plasma with Ti > Te. It

starts with nearly the same exponential growth rate as the daughter mode but then slows
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FIG. 5. Time evolution of Bx and By in the pump (black), daughter (red), and sound (blue) waves.

down and decays. The parametric growth rate can be estimated based on a three-wave

interaction [23] by also including ion kinetic effects [25]. The growth rate of the daughter

wave in the simulation obtained from analysis of the daughter wave spectrum is approxi-

mately γ ∼ 0.11Ωi, very close to the theoretical growth rate of γ ∼ 0.14Ωi estimated from

three-wave interactions including linear damping of the sound wave. The spectral analysis

also exhibits further nonlinear coupling and energy flow to low frequency modes.

The additional low-frequency filamentary mode with k‖ ≃ 0 is found to have the strongest

perturbations at the primary kx = 1.6 and ky ≃ kyd = 1.2. This mode appears to be a zonal

flow mode [26], or the convective cells [27]. The nonlinear excitation of zonal flows by

Alfvénic turbulence or KAWs has been suggested by previous theoretical studies [26–28].

The nonlinear coupling of the zonal flow with the pump KAW leads to the Bx power with

broadened spectral width around the pump frequency, as shown in the left plot of Figure

4. Zonal flows in fusion devices have also been studied with electrostatic simulations [29].

The zonal flows can break up the ion temperature gradient modes, leading to suppression

of turbulent transport [29]. In our simulations the driver and daughter are electromag-

netic; however, because the perpendicular wavelength is short, the modes are somewhat

electrostatic in nature and the decay process may have some similarities.

The nonlinearly generated large ky is important because it is crucial to the large transport

across the boundary. The diffusion coefficient across a density gradient results from incoher-

ent scattering from the perturbed velocity in the direction of the density gradient, including

contributions from the perturbed E × B0 drift, the perturbed ∇δB drift (proportional to

b̂ × ∇δB‖, with b̂ = B0/B0), and the field-aligned drift along the perturbed magnetic field

(v‖δb̂ ∼ v‖δB⊥/B0). The component of these drifts across the magnetopause (x̂) are all

proportional to the azimuthal ky, and the diffusion coefficient is proportional to k2

y [4, 5, 30].

The 3-D nonlinear effects are thus necessary to provide coupling to kinetic scales required
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for efficient transport, and our simulations show clearly how mode conversion would lead to

the development of a wave spectrum with kyρi ∼ 1.Based on the observed wave spectrum

at the magnetopause, massive transport (D⊥ ∼ 109−10m2/s) is expected [7].

SUMMARY

In summary, our simulation of mode conversion from a fast mode compressional wave to

kinetic Alfvén waves in the nonuniform magnetopause boundary exhibits a multiple-stage

process. First, KAWs are excited with large perpendicular kxρi ∼ 1 in the nonuniformity

direction near the Alfvén resonance surface due to the linear physics of mode conversion,

which localizes the enhanced KAW wave energy. Then, KAW modes with large perpendic-

ular and azimuthal wave numbers ky are generated nonlinearly by parametric decay of the

linearly generated primary KAWs. This parametric process is accompanied by the simul-

taneous excitation of zonal flow modes with similar large ky. As such, the combination of

the linear mode conversion and parametric decay leads to efficient transport at the plasma

boundary. The 3-D nonlinear physics is crucial for understanding transport associated with

the mode conversion. Our results show that mode conversion of compressional waves at the

Alfvén velocity gradient quickly cascades to KAWs with large perpendicular and azimuthal

wave number, which may lead to massive transport at the magnetopause and provide a

mechanism of global plasma entry into the plasma sheet [4, 7]. The coupling of KAWs to

the large-scale convective turbulence may play a significant role in the coupling between the

ionosphere and magnetosphere [31], heating in the solar wind and corona [32], as well as the

suppression of turbulent transport in laboratory plasmas [29, 33, 34].
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