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Abstract

Background: Long-range interactions between regulatory DNA elements such as enhancers, insulators and

promoters play an important role in regulating transcription. As chromatin contacts have been found throughout

the human genome and in different cell types, spatial transcriptional control is now viewed as a general

mechanism of gene expression regulation. Chromosome Conformation Capture Carbon Copy (5C) and its variant

Hi-C are techniques used to measure the interaction frequency (IF) between specific regions of the genome. Our

goal is to use the IF data generated by these experiments to computationally model and analyze three-

dimensional chromatin organization.

Results: We formulate a probabilistic model linking 5C/Hi-C data to physical distances and describe a Markov chain

Monte Carlo (MCMC) approach called MCMC5C to generate a representative sample from the posterior distribution

over structures from IF data. Structures produced from parallel MCMC runs on the same dataset demonstrate that

our MCMC method mixes quickly and is able to sample from the posterior distribution of structures and find

subclasses of structures. Structural properties (base looping, condensation, and local density) were defined and

their distribution measured across the ensembles of structures generated. We applied these methods to a

biological model of human myelomonocyte cellular differentiation and identified distinct chromatin conformation

signatures (CCSs) corresponding to each of the cellular states. We also demonstrate the ability of our method to

run on Hi-C data and produce a model of human chromosome 14 at 1Mb resolution that is consistent with

previously observed structural properties as measured by 3D-FISH.

Conclusions: We believe that tools like MCMC5C are essential for the reliable analysis of data from the 3C-derived

techniques such as 5C and Hi-C. By integrating complex, high-dimensional and noisy datasets into an easy to

interpret ensemble of three-dimensional conformations, MCMC5C allows researchers to reliably interpret the result

of their assay and contrast conformations under different conditions.

Availability: http://Dostielab.biochem.mcgill.ca

Background

In the nucleus, genomic DNA exists in the form of

chromatin, which is tightly packaged and organized into

higher-level structures required for proper genome func-

tion [1,2]. Chromatin conformation is highly dynamic

and modified by several biological processes such as

DNA replication, repair and transcription. The three-

dimensional chromatin organization itself was recently

found to play an important role in transcription regula-

tion [3-5] and can be used to define chromatin signa-

tures [6-9]. For example, it was shown that elements

that lie far apart in the one-dimensional genomic

sequence or on different chromosomes could function-

ally interact through physical contacts [10-12]. One such

example is the 100-kb imprinted Igf2/H19 locus on

human chromosome 11 where there exists an imprint-

ing control region (ICR) located between the Igf2 gene

and its enhancer sequence. On the maternal allele,

CTCF (a known insulator protein) is able to bind the

unmethylated ICR and subsequently forms multiple
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long-range looping contacts along the locus that block

gene-enhancer interaction. However, the paternal ICR is

methylated and cannot be bound by CTCF, thus allow-

ing the Igf2 gene and its enhancer sequence to interact

through a long-range loop, thereby regulating expression

to only the paternal allele [13-16]. Such long-range

interactions have been found throughout metazoan gen-

omes where thus far many of them appear to correlate

well with the transcriptional state of target genes

[6,17-20].

Although we still do not know how many types of

contacts exist or how the majority of them are regu-

lated, it is now clear that spatial transcriptional control

is an important mechanism of gene regulation. Thus,

mapping of physical contacts within (cis) and between

(trans) chromosomes will be essential to fully under-

stand gene regulation.

Several techniques are now available to examine chro-

matin structure at high-resolution, such as DamID [21],

and more recent approaches including Chromosome

Conformation Capture (3C) [22], Circular Chromosome

Conformation Capture (4C) [23,24], Chromosome Con-

formation Capture Carbon Copy (5C) [25], Chromatin

interaction analysis with paired-end tag sequencing

(ChIA-PET) [26], the technology developed by Duan et

al. [27], and Hi-C [18]. These techniques combine var-

ious high-throughput approaches, such as microarrays

and next-generation sequencing, and produce large

datasets. In the case of 5C and Hi-C, the measurements

obtained consist of pairwise interaction frequency values

that are proportional to the proximity of the chromatin

fragments in the nuclear space in vivo. These data

broadly define the three-dimensional conformation of

chromatin. It is important to note that these assays are

not performed on a single cell, but rather a population

of cells, and these data thereby represent population-

average measurements of the degree of interaction

between chromatin fragments that require tailored

bioinformatics tools for interpretation. In this paper, we

propose a computational approach to robustly infer

ensembles of chromatin conformations that are sup-

ported by a given 5C or Hi-C dataset. These three-

dimensional models of chromatin conformation can be

analyzed to determine robust structural properties.

Recently, several approaches have been proposed to

model chromatin 3D conformation from interaction fre-

quency (IF) data. In previous work [19], we developed a

program called 5C3D that first translates IF values into

physical distance estimates and then uses a gradient des-

cent approach to find the 3D conformation with the

best fit to the observed data based on a simple misfit

objective function. Bau et al. [17,18] proposed 3D mod-

els of the a-globin locus based on 5C data. They formu-

late an optimization problem where pairwise

interactions are modeled with springs whose equilibrium

length depends on the observed IF values, subject to

certain constraints based on the structure of the 30-nm

fiber. They then use the Integrative Modeling Platform

(IMP; http://salilab.org/imp/) to produce a set of possi-

ble conformations that satisfy the constraints while max-

imizing the fit to the IF data. Duan et al. [27] proceed

similarly to obtain a model of the budding yeast chro-

matin conformation based on data obtained using a

modification of the 4C technology coupled with high-

throughput sequencing. They first convert observed

interaction frequencies to Euclidean distances and then

seek the chromatin conformation that minimizes the

same measure of misfit as 5C3D, with the addition of a

set of clash avoidance constraints, and a few biologi-

cally-motivated constraints based on prior knowledge

about the yeast genome organization. The constrained

optimization problem is solved using an optimization

package to produce the best fitting structure. A very

similar approach is used by Tanizawa et al. [29] to

model the genome of fission yeast. Of all these

approaches, 5C3D is the only one we are aware of that

comes with stand-alone software.

Although these approaches differ slightly in the man-

ner in which IF data is translated into distance con-

straints, the set of additional constraints included in

the model, and the way the resulting system of equa-

tions is solved, they all have the merit of turning a set

of noisy IF measurements into a more interpretable

read out. By integrating O(n2) noisy IF measurements

into O(n) predictions about the 3D location of each

fragment, they also potentially produce an output that

is more reliable than any of the individual IF measure-

ments it is based on. However, these approaches suffer

from two significant drawbacks. First, the objective

function (always some form of sum-of-squared differ-

ences between predicted and IF-derived distance) is

debatable, as, among other things, it assumes that each

IF measurement is equally reliable. Second, the struc-

tures obtained come with no guarantee of representa-

tivity or reliable measure of uncertainty.

Acknowledging this limitation, Baú et al. [17,28] pro-

posed a heuristic approach to generate sets of candi-

date structures. However, because none of these

approaches are based on a probabilistic model integrat-

ing an IF noise model, the set of sampled structures

may not be representative of the true (probabilistically

weighted) set of possible structures. Even though the

approach used by Baú et al. produces an ensemble of

solutions, the absence of an underlying probabilistic

model prevents the calculation of confidence intervals

on specific structural properties (e.g. the distance

between two sites along the genome) and do not iden-

tify statistically significant conformational features.
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In this paper, we introduce MCMC5C, a computa-

tional probabilistic modeling approach for inferring

chromatin three-dimensional structure from 5C or Hi-C

experiments. Our approach is based on a formal prob-

abilistic model of interaction frequencies and their link

with physical distance and uses a Markov chain Monte

Carlo sampling procedure to produce an ensemble of

candidate conformations for a given 5C dataset. Unlike

gradient descent approaches, MCMC5C allows (at least

in theory) a proper sampling of the structure state

space. This set of structures can be used to obtain pos-

terior distributions over specific structural properties,

contrast structural properties of chromatin under differ-

ent conditions, or determine the existence of multiple

model subclasses that fit the experimental data.

Markov chain Monte Carlo approaches have been

widely applied to numerous computational and biologi-

cal problems, such as the prediction of RNA structure

[30,31] or protein structure [32,33], phylogenetic infer-

ence [34,35], and sequence alignment [36,37]. Our parti-

cular application shares some resemblance with the

problem of inferring protein structure from nuclear

magnetic resonance (NMR) data, which measures dis-

tances between hydrogen atoms in a molecule [38,39].

Although existing software for NMR-based protein

structure prediction are not applicable to our problem

because they are tightly based on specifics of NMR data

and amino acid structures, MCMC approaches are com-

monly used to produce robust ensembles of candidate

structures based on noisy distance data.

The rest of this paper is structured as follows. After a

brief introduction to the 5C and Hi-C technologies, we

introduce a probabilistic model of the link between 5C

or Hi-C data and 3D chromatin conformation. We then

describe a MCMC-based algorithm that quickly pro-

duces an ensemble of structures, and then show how

key features of the chromatin structure can be robustly

estimated. Our approach is used for the analysis of three

5C datasets generated for the region of human chromo-

some 7 containing the HoxA gene cluster in both undif-

ferentiated myelomonocytes and differentiated

macrophages, revealing key changes in chromatin con-

formation. We also show that the MCMC5C program

can be applied to Hi-C data by generating a three-

dimensional model of human chromosome 14 at a 1

Mb resolution from previously published data [18].

Summary of Chromosome Conformation Capture Carbon

Copy (5C) and Hi-C technologies

To perform a 5C experiment, a 3C library is first gener-

ated. 3C library preparation has been described in detail

elsewhere [22]. Briefly, 3C libraries are produced by che-

mically fixing cells with formaldehyde to lock protein-

protein and protein-DNA interactions in vivo (see Fig-

ure 1). A restriction enzyme is then used to digest the

chromatin at specific sites across the genome. Samples

are next diluted before the ligation step, such that liga-

tion products are more likely to occur between DNA

molecules bound together by protein complexes. The

libraries are finally purified by proteinase K digestion
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Figure 1 5C Technology. Schematic description of Chromosome Conformation Capture Carbon Copy (5C) technology. Illustrated are two

strands of DNA in vivo (blue and red double helix), which are bound together by a protein complex (trio of colored spheres). Cells are first

crosslinked, which covalently links the protein complex and DNA together. Next, a restriction enzyme is used to cut the DNA at very specific

locations throughout the genome. DNA ends are then ligated under dilute conditions in order to promote the formation of DNA junctions

between the different strands of DNA linked through a protein complex. The crosslinks are then removed, and the DNA purified, before the

annealing of custom 5C primers to individual junctions. A pool of 5C primers is used, represented by the bent lines. Forward primers possess a

T7 adaptor (dark green segment), while reverse primers possess a T3c adaptor (purple segment) and a 5’ phosphate. All primers have another

segment that will bind complementary DNA immediately next to junction sites. Pictured annealing to the single stranded DNA are the red

(forward) and blue (reverse) 5C primers. Only primers that are annealed to DNA, are immediately adjacent to one another, and possess a 5’

phosphate on the reverse primer will then be ligated by Taq ligase. PCR amplification and labeling is done using the T7 and T3c adaptor

sequences, and the resulting library of amplified 5C contacts is hybridized to a custom microarray for detection.
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and phenol-chloroform extraction. Resulting 3C libraries

thus contain the entire genome’s worth of unique liga-

tion products whose relative levels are inversely corre-

lated to the three-dimensional distance in vivo between

restriction fragments in vivo.

5C quantifies 3C ligation products using a modified

Ligation-Mediated Amplification (LMA) approach,

which has also been described in detail elsewhere [25].

Briefly, 3C ligation products are detected with specially

designed 5C primers that are complementary to the

region(s) of interest and lie immediately upstream of the

predicted 3C ligation junctions. Taq DNA ligase is then

added to specifically ligate 5C primers at the junction of

3C products. LMA reactions can be performed at high

level of multiplexing such that hundreds of primers

could potentially be used in a single experiment to mea-

sure thousands of predicted chromatin contacts simulta-

neously. Universal tail sequences, located at the end of

5C primers, are then used to amplify and fluorescently

label the library of synthetic 5C ligation products in a

single PCR step. The labeled products are finally hybri-

dized to custom microarrays for quantification. Conver-

sion of microarray fluorescence intensities data obtained

from a 5C experiment to interaction frequencies (IF)

data can be performed using the IFCalculator program

as described in [19,40]. Briefly, IFCalculator starts by

excluding probes with intensity signals close to back-

ground and then combines the background-subtracted

intensities of the remaining probes for the same frag-

ment pair to obtain IF values and their standard

deviations.

Hi-C data is generated in a similar manner to 5C data

and was first described in Lieberman-Aiden et al. [18].

The technique includes additional steps of biotin fill-in

and shearing before pull-down and paired-end sequen-

cing. Hi-C can thereby be performed on a genome-wide

scale and obviates the need for designing specific probes

for each predicted pairwise junction. Its main drawback

is the depth of sequencing required to obtain a good

resolution at the IF level.

Although these assays are typically performed on

diploid cells, the intra-chromosomal contacts found by

both the 5C and Hi-C technologies can be treated as

occurring within one homolog, as it has been previously

shown that homologous copies of each chromosome

occupy distinct nuclear positioning [41,42].

Methods

In this section, we describe a probabilistic model of 5C/

Hi-C interaction frequency data and the link between

that data and the underlying chromatin 3D conforma-

tion. We then describe a Markov chain Monte Carlo

(MCMC) approach to generate a representative sample

of structures based on the experimental 5C IF data.

Modeling chromatin conformations and 5C/Hi-C data

We model a chromosome (or a region of a chromo-

some) as a continuous piece-wise linear curve in 3D,

where restriction site i is located at position S(i) = (Sx(i),

Sy(i), Sz(i)). The set of fragment end positions S = S(1),

S(2),...,S(n), where n is the number of restriction sites

considered, constitutes the conformation of the genomic

region. In order to remain as general as possible and

avoid introducing biases, we place no constraint on S.

However, we discuss below how various types of priors

or constraints could be used.

Pairs of fragments that are spatially close to each

other generate large IF values while pairs of fragments

that are spatially far from each other generate small IF

values. We assume that the theoretical interaction fre-

quency between fragment i and j, denoted IF(i, j), is

inversely correlated with the distance between the two

fragments in the 3D conformation: IF(i, j) = f (Ds (i, j)),

where Ds (i, j) is the euclidean distance between restric-

tion sites i and j in S, and f(·)is an appropriately chosen

function of the form

f (DS(i, j)) ∝ 1/DS(i, j)α , (1)

for some value of a. The choice of the value of a is

discussed in Results.

Our experimental data consists of a set of observed

pairwise interaction frequencies ÎF(i, j), measured by

hybridization to a microarray or by sequencing. Because

of noise in the measurements, ÎF(i, j) may not equal IF(i,

j). Instead, we assume that ÎF(i, j) is a random variable

whose distribution depends on IF(i, j). In the case of 5C

data, we assume that the noise is independently and

normally distributed, with a fragment pair specific stan-

dard deviation s(i, j) obtained from the data using

IFCalculator, as described in [40]. Then,

Pr[ÎF(i, j)|IF(i, j), σ (i, j)] =

N(ÎF(i, j); IF(i, j), σ (i, j)2),

where N (x; μ, s2) is the normal density function.

Hi-C data is generated in a similar manner as 5C data,

with the main difference being that ligation products are

quantified by sequencing rather than hybridization. The

observed read count r(i, j) for fragment pair (i, j), which

is the quantity analogous to IF(i, j) in 5C experiments, is

assumed to be dependent on the physical distance DS(i,

j) in the same manner as in 5C experiments. Although

Hi-C read counts are not accompanied by noise esti-

mates, they can be modeled by a binomial probability

distribution, as suggested by Duan et al. [27], with p(i, j)

~ r(i, j)/∑a,b r(a, b), which we approximate, for compu-

tational efficiency reasons, using a normal distribution

with variance equal to the mean plus a small constant:
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Pr[r̂(i, j) |r(i, j)] = N(r̂(i, j); r(i, j), r(i, j) + κ). (2)

The role of �, which we set to 10, is to avoid having

small read counts being assigned too low a variance.

The observed data ÎF defines a posterior distribution

over the set of possible conformations of the chromatin:

Pr[S|ÎF] = Pr[ÎF|S] · Pr[S]/ Pr[ÎF]. Since there are no con-

straints imposed on the structure space and the prob-

ability of the observed data (ÎF) is constant with respect

to S, we get Pr[S|ÎF] = ζ · Pr[ÎF|S], for some constant ζ,

and thus

Pr[S|ÎF] =

ζ ·
∏

i,j

Pr[ÎF(i, j)|IF(i, j) = f (DS(i, j), σ (i, j))].

This defines the posterior probability distribution over

the space of structures, conditional on the observed IF

data. A gradient descent approach, similar to that pre-

sented in 5C3D by [19], could be used to identify locally

optimal structures. However, there are often several dif-

ferent structures that fit the data almost equally well, so

a probabilistic sampling approach that produces an

ensemble of possible structures is advantageous.

Sampling conformations from the posterior distribution

The Markov chain Monte Carlo (MCMC) algorithm is a

method used to sample from a complex distribution (in

this instance, from the posterior distribution of S given

ÎF), resulting in an ensemble of solutions X1, X2,..., XN

[43]. Sampling from the posterior distribution consists

of selecting an ensemble of conformations, where each

conformation is selected with probability equal to its

posterior probability. This is in contrast with maximum

likelihood approaches, that seek to identify the (usually

unique) structure S* with the highest likelihood given

the observed data. Usually the structure with the highest

likelihood in our ensemble is a good approximation to

S*, but the ensemble allows a much deeper understand-

ing of the structure of the solution space. This sampling

is performed using the Metropolis-Hastings algorithm

[44]. A random structure R0 is initially chosen to seed

the process (t = 0), where each point is placed randomly

in a cube of side length 10 · avg(f (ÎF)). We then iterate

the following procedure. The current structure Rt is ran-

domly perturbed (see below) to obtain a new structure
R′

t. The posterior probability of the two structures are

then compared. If Pr[R′
t|ÎF] > Pr[Rt|ÎF], the perturbation

is retained and we set Rt+1 = R′
t. Otherwise, we retain

Rt+1 = R′
t with probability Pr[R′

t|ÎF]/ Pr[Rt|ÎF], but set Rt

+1 = Rt otherwise. Torrie and Valleau [43] showed that

for values of t sufficiently large, Pr[Rt = S] = Pr[S|ÎF] and

thus that the structures sampled are representative of

the true posterior distribution. The period required for

the Markov process to mix, known as the burn-in per-

iod, depends on the problem size and the type of per-

turbation performed.

The choice of the type of random perturbation to be

performed can have a major impact on the length of the

burn-in period. Perturbations must allow a quick and

complete exploration of the conformation space, while

only modifying the current conformation in a local

manner. In addition, it is beneficial if the likelihoods of

the new and old structures can be computed and com-

pared quickly. In the context of protein structure pre-

diction, the most commonly used approach is to

randomly modify one of the bond angles between conse-

cutive amino acids. Although this approach is in princi-

ple applicable to our type of data, it would yield poor

results, as a large number of pairwise distances would

be significantly modified by any angular change. Instead,

we elected to perturb structures by randomly choosing

one point S(i) along the structure and moving it by a

vector �v randomly chosen within a sphere of radius r

(manual investigation showed that r = 0.25 nm yields

good results for both 5C and Hi-C data). Clearly this

type of perturbation allows the exploration of the full

structure space from any starting configuration. The

likelihood of the resulting structure is then quickly

obtained from that of the old by updating the terms cor-

responding to the pairs of points involving i.

Assessing Mixing

During the first iterations of the MCMC sampling pro-

cess, called the burn-in phase, structures R1,...,Rk are

highly dependent on R0, the initial structure, and do not

represent a proper sample in our conditional probability

distribution. It is critical to be able to determine at what

point m the Markov process has mixed, i.e. for what

value of m is Rm essentially independent of R0. After

mixing, i.e. for k ≥ m, any sample Rk is representative of

the target distribution. Furthermore, for δ sufficiently

large, samples Rk and Rk + δ are independent.

Several approaches exist to determine when a Markov

chain has mixed, and what value of δ is suitable. The

standard approach is to compare the probability distri-

butions over the state space obtained from parallel runs

started from different initial conformations, and keep

sampling until the two become indistinguishable.

Because our state space is continuous and high-dimen-

sional (3 n parameters), no structure is actually ever

sampled more than once, making this approach unusa-

ble. A literature search did not yield a ready-made solu-

tion for assessing the convergence of MCMC for

structural inference, so we generalize the standard

approach as follows. We run two independent chains R

and R’ in parallel, from independently chosen initial

conformations R0 and R′
0. After k iterations, we say that
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mixing is achieved if the samples

Rk = {Rk/2, R11k/20, ..., Rk} and R′
k = {R′

k/2, R′
11k/20, ..., R′

k}

cannot be distinguished from each other. Specifically,

the average pairwise structural distances (see below)

among structures in Rk is compared to the average pair-

wise distances between pairs of conformations from
Rk × R′

k. If the two means are within 10% of each other,

we conclude that mixing is achieved and start collecting

samples every δ = k/20 iterations: X1 = Rk, X2 = Rk + δ,

X3 = Rk + 2·δ,...,XN = Rk + (N - 1)·δ. This not only ensures

that mixing has occurred, but also that subsequent sam-

ples, taken every δ iterations, are essentially

independent.

Clustering of structure ensemble

The set of structures X1, X2,..., XN sampled by the

MCMC5C program is representative of the distribution

of structures that fit the observed interaction frequency

data. In several cases, it can be useful to cluster struc-

tures from this ensemble based on their similarity, for

example to identify subfamilies of structures whose

properties can be assessed and contrasted. In addition,

when ensembles from parallel runs are obtained, mixing

can be assessed by verifying whether structures from

each run cluster together (in which case mixing is not

achieved) or not. Finally, ensembles from MCMC runs

executed on different datasets can reveal similarly/dis-

similarity between chromatin conformations under dif-

ferent conditions.

We first define a measure of distance between two

structures and then use hierarchical clustering (Ward’s

method) [45] to identify groups of similar structures. A

measure of similarity between structures that is com-

monly used in the area of protein and RNA structure

prediction is the root-mean squared deviation (RMSD),

which requires first aligning (through rotations and

translations) the two structures being compared, and

then summing the square of the distances between cor-

responding points along the structure [46,47]. Although

applicable to our structures, we prefer a simpler

approach that has the advantage of not requiring an

alignment of the structures (it is rotationally, transla-

tionally, and reflectionally invariant) while being more

flexible in the type of geometric similarities it can cap-

ture. We first define the N × N intra-structure distance

matrix DS as the matrix of geometric Euclidean dis-

tances between each pair of points i, j in structure S:

The distance dist(S, T) between structures S and T is

then:

dist(S, T) =

√∑

i.j

(DS(i, j) − DT(i, j))2.

Note that two structures that are mirror images of

each other will have distance zero. Indeed, such struc-

tures cannot be distinguished based on 5C/Hi-C data.

The structures from an ensemble X0, X1,..., XN are clus-

tered by first computing dist(Xi, Xj) for all 1 ≤ i ≤ j ≤ N

and then using Ward hierarchical clustering [45]. This

clustering is used to determine the existence and num-

ber of structure subfamilies and the members of each

subfamily. Visualization is accomplished with both a

hierarchical tree dendrogram and a heatmap representa-

tion. Visual inspection is performed to determine the

tree height cutoff and number of subfamilies and for

each subfamily the member structure with the highest

posterior probability is chosen as the representative

structure for that cluster. Choosing the maximum likeli-

hood structure from each cluster as representative and

assigning it a weight proportional to the number of the

structures in its cluster allows focusing on a small num-

ber of representative structures.

Identification of reliable substructures

The ensemble of structures generated by the MCMC5C

program will typically contain substructures that are

highly constrained by the ÎF data and are thus present

in the vast majority of structures, and others that are

highly variable. Knowing what aspects of the reported

structure are reliable is critical to guide downstream

experimental validation. While this can sometimes be

done by visual inspection of the superimposition of the

structures from the sample, a more automated approach

is usually desirable. This can be achieved by identifying

a subset of k fragments whose pairwise distances are

best conserved across the structures in the ensemble.

To this end, we first compute the standard deviation s(i,

j) of the intra-structure pairwise distance for each pair

of points i and j, across all samples from the ensemble.

We then identify the set of k fragments with the smal-

lest total pairwise standard deviation using a greedy

algorithm.

Measuring structural properties

One of the key advantages of a sampling approach,

compared to non-probabilistic or maximum likelihood

approaches, is its ability to estimate the distribution of

various structural properties, and thus to report both

averages and confidence intervals for the selected prop-

erties. This is particularly useful when aspects of the

conformation of chromatin remain poorly determined

by the data; a researcher needs to know to what extent

a particular structural property of interest is observed in

just a single solution (e.g. the maximum likelihood solu-

tion) or present in all (or most) possible structures. To

this end, MCMC5C allows the easy estimation of the
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distribution of various structural properties. Here, we

focus on three properties of interest (local base density,

condensation, and looping), that are evaluated for every

position i along the region of interest (see Figure 2).

Local density at position i along the sequence is the

number of DNA bases located within a sphere of radius

r centered at position i. The local base density can be

decomposed into two terms: compaction and looping.

Compaction measures the number of DNA bases

located within the sphere and consecutive to position i,

whereas looping counts the number of bases inside the

sphere but outside the portion containing i.

Results and Discussion

5C datasets

Our modeling approaches were applied to three sets of

5C data studying the chromatin structure of the HoxA

cluster (see Dostie et al. [25] and Figure 1 for a sum-

mary of the 5C procedure). The first pair of experiments

(previously published in [19]) studies the conformation

of the HoxA cluster during THP-1 cell differentiation

from myelomonocyte to macrophage. 5C libraries were

produced in both the undifferentiated myelomonocyte

state and in the differentiated macrophage state (96

hours after treatment with phorbol myristate acetate

(PMA)). For the third set of experiments (unpublished

data), 5C data was generated for the same genomic

region in a MLL-ENL fusion cell line (HB-1119) that

expresses a different MLL-fusion protein than the THP-

1 cell line and induces aberrant over-expression of the

5’ HoxA genes [48,49]. In both datasets, the genomic

region analyzed spans 142 kb and contains 11 protein

coding genes. The region contains 42 restriction sites

for the BglII restriction enzyme, which was used for the

experiment. Each 5C library was hybridized onto a cus-

tom array with a set of probes corresponding to every

potential pair of fragments (due to the forward and

reverse primer design used, only interaction frequencies

between an even numbered and an odd numbered frag-

ment are measured). The set of probe intensities were

normalized using corresponding gene desert regions as

previously described in Fraser et al. [19] and analyzed

using the IFCalculator program [19,40] to perform out-

lier detection and obtain interaction frequency and stan-

dard deviation estimates for every fragment pair

considered. Although nearby sites along the sequence

have elevated interaction frequencies, IFs between pairs

of fragments located more than 10 kb are generally

close to background levels, with several notable excep-

tions likely resulting from chromatin looping (see Addi-

tional File 1).

Choice of distance-to-IF transformation

Although it is clear that pairwise interaction frequencies

are inversely correlated with the physical distance

between any pair of fragments in the chromatin confor-

mation [18,22], there is no consensus on how IF

depends on physical distance. Duan et al. [27] perform

distance-to-IF conversions by first considering only

short-range interactions (involving pairs of points that

are close together along the sequence) and obtaining

physical distances for these pairs based on polymer

models. A given long-range IF value is then mapped to

the polymer-based distance that is the most likely to

have resulted in that value. The resulting conversion

approximately follows d ∝ 1/IF. Mateos-Langerak et al.

[50] also suggest a relationship of the form d ∝ IFa. Bau

et al. [28] convert their IF via a linear transformation of

the IF’s z-score. Tanizawa et al. [29] relate IF to physical

distance by using a loess regression on a set of physical

distances measured by 3D-FISH, but do not report the

parameters of this regression. The extent to which the

function mapping IF values to physical distance depends

on the specific experimental protocol remains unclear.

In the absence of independent structural measure-

ments for the HoxA cluster, we argue that the most

accurate model is the one that is best able to predict

unseen pairwise interaction frequencies. For each of a

set of possible values of a in d = C/IFa, a leave-one-out

cross-validation (LOOCV) experiment was performed,

i
1

2

Figure 2 Structural Properties. Schematic diagram of Structural

Properties. The shaded sphere with radius r is centered at base i.

The nucleotides that lie within the sphere and delineate

compartment 1 (nucleotides consecutive to base i before leaving

sphere, indicated with a red arc) are counted as the base

condensation measure and the nucleotides that lie within the

sphere and delineate compartment 2 (nucleotides on sequence that

has exited and re-entered sphere, indicated with a blue arc) are

counted as the base looping measure. The total number of

nucleotides contained within the sphere is counted as the base

density measure.
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excluding in turn the interaction frequency measure-

ment of each pair of points, n, inferring a maximum-

likelihood structure from the remaining data points, and

comparing the left-out IF value to the theoretical IF

value given the distance between fragments i and j in

the obtained structure. Specifically, let S
∗
(i,j);α be the

maximum likelihood structure found by MCMC5C on a

data sets consisting of the IF values for all fragments

pairs except (i, j), when using value a to transform phy-

sical distance to interaction frequencies. We then define

MSE(α) =
1

n

∑

(i,j)

(DS∗
(i,j);α

(i, j)−α − IF̂(i,j))2.

Figure 3 shows the value of the MSE for different

values of a, for the HB1119 dataset. A minimum is

reached at a = 2.0, which is the value we retain for the

rest of this study, but values of a between 1 and 3 can-

not be rejected. Similar results are obtained on the

THP-1 5C data sets, although with a larger overlap

between confidence intervals. We add that an alternate

approach, which posits that the ideal choice of a is that

which maximizes the likelihood of the maximum likeli-

hood structure found, suggests similar values for a (data

not shown). Without physical measurement of the dis-

tance between pairs of points along the sequence, it is

difficult to accurately estimate the value of C. However,

based on the average IF value of pairs of fragments

located less than 5kb apart along the sequence and fol-

lowing Bystricky et al. [51] that packed chromatin has a

physical length of 1 nm for every 110-150bp, C was esti-

mated as approximately 50 nm.

Mixing and convergence

The convergence of the MCMC sampling procedure was

tested on all datasets, but for simplicity we focus on

those obtained on the HB-1119 5C data set. We first

studied how long a burn-in phase is required before par-

allel runs converge to a similar conformation distribu-

tion (see Methods). Figure 4 shows that mixing is

achieved after approximately 350 × 105 iterations, which

requires less than 250 seconds of running time. Passed

this point, structures sampled every 106 steps from the

two parallel runs are undistinguishable from each other

and sample structures from the same distribution. 250

structures were sampled after burn-in from each of the

two runs. The two ensembles of structures were then

combined and the 500 structures were clustered based

on their structural similarity (see Figure 5 and Meth-

ods). We observe that structures from the two runs are

interleaved in the clustering, confirming that both runs

are correctly sampling from the same posterior distribu-

tion. Analysis of the two THP-1 5C datasets produced

similar results, and runs of a larger number of parallel

MCMC chains confirm that they all sample similar

structures.
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Figure 4 Mixing of parallel MCMC5C runs (HB-1119 dataset).

Distance between consecutive structures (sampled every 106

iterations) from within one of two parallel MCMC5C runs (blue and

red curves) or across the two runs (green curve), on the HB-1119 5C

dataset. The runs converge to the same distribution very rapidly (in

less than 250 seconds) and the cross-run distance (green) drops to

within the same range as the within-run distances (blue and red

curves) after 350 × 105 iterations.
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Additional File 2 compares the likelihood of the struc-

tures sampled by MCMC5C to those found by several

runs of the gradient descent program 5C3D, started

from different initial structures. Although both

approaches succeed at identifying credible structures, we

observe that the structures found by 5C3D generally

have lower likelihoods than those sampled by MCMC5C

- indeed, the misfit function optimized by 5C3D is not

equivalent to the likelihood function, which explains the

slight decrease in likelihoods observed for many 5C3D

runs past a certain number of iterations. Importantly,

the five 5C3D runs converge to three different solutions,

hinting that this type of approach is subject to getting

stuck in local optima.

Accuracy of structure predictions on simulated data

Having shown proper mixing of the sampling process,

we then asked whether the structures produced faith-

fully correspond to the true structure. In the absence of

external experimental data at the appropriate resolution,

we used simulated data. Starting from a known “true”

structure, we generated the corresponding simulated IF

data (with noise), and assess our ability to recover the

initial structure. Using the HB-1119 5C dataset, we

sampled the structure with the highest posterior prob-

ability using MCMC5C. This structure was then used as

a ‘’gold standard’’ from which simulated noisy IF data

was generated, based on the noise model described

above. Four parallel runs of MCMC5C were then per-

formed (from different random initial structures) on the

simulated dataset and the structures with the highest

posterior probability structure from each run were

aligned to the original gold standard structure (Figure 6

and Additional Files 3 and 4). Clearly, MCMC5C was

able to sample structures from the posterior distribution

defined by the interaction frequency data by recovering

structures that closely match the gold standard from

which the simulated interaction frequency dataset was

generated.These results suggest that the sampling

approach succeeds at finding the correct structure, at

least under the assumption that the IF data is generated

from the pairwise distances using our model.

Figure 5 Mixing and subclustering of HB-1119 structures.

Mixing and hierarchical clustering (Ward’s method) of structure

similarity. The five-hundred structures come from two parallel

MCMC5C runs on the HB-1119 dataset (pools of 250 structures from

each run were used). The colors along the top indicate which run

each structure originated from (run one = blue, run two = red) and

demonstrates that the sampling process has successfully mixed. The

blocks in the heatmap and the dendrogram indicate the presence

of sub-clusters of structures (numbered in the dendrogram). The

two clusters (numbered 1 and 2) both contain structures from the

two parallel runs (blue and red vertical bars), indicating that the

structures are conserved across runs and are not an artifact of the

burn-in process.

Figure 6 HB-1119 Structures from simulated data aligned to

gold standard structure. The ‘’gold standard’’ structure is used as

a reference structure to which structures from four different parallel

MCMC5C runs on simulated data generated from the gold standard

structure are aligned. The gold standard structure is shown

highlighted with a white glow and the transcription start sites for

the HoxA genes are annotated. The structures found from the

simulated data are shown in superimposition to the gold standard

structure and show a high degree of alignment.

Rousseau et al. BMC Bioinformatics 2011, 12:414
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Interestingly, the set of four maximum likelihood

structures found by the four parallel MCMC5C runs

actually contained topological mirror-images of other-

wise nearly identical structures. These ‘’enantiomer’’

structures have equal probability given our model of IF

data and the structures were mirrored as required

before the superimposition shown in Figure 6 was

performed.

Clustering of conformational ensemble

Upon analysis of the mixing between two parallel

MCMC5C runs on the HB-1119 5C dataset, we

observed two distinct clusters in the heatmap (see Fig-

ure 5) that correspond to two subclasses of structures,

each of which is sampled from both of the two parallel

runs (seen by the mixing of the blue (run one) and red

(run two) labels at the top of the heatmap). The clusters

obtained are robust to changes in the clustering algo-

rithm: the cluster membership determined by the hier-

archical Ward clustering algorithm agrees at 85% with

that obtained by the k-means algorithm, which operates

in structure space rather than based on a distance

matrix, suggesting that the two main clusters are indeed

distinct and well separated. We note that we do not

necessarily expect these two clusters to reflect two dif-

ferent chromatin conformations present in the popula-

tion of cells used to generate the 3C library. Instead,

they represent two possible conformations for the popu-

lation-wide average conformation.

The posterior probability of each class can be esti-

mated as the fraction of the samples belonging to it.

The two largest clusters, whose structures mainly differ

in the position of the loop in the region lying between

the HoxA11 and HoxA13 genes, account for 42% and

58% of the structures sampled (these two main classes

are not the two enantiomers discussed above - indeed,

because of our structure similarity measure, enantiomers

are considered as identical). This finding illustrates one

of the benefits of MCMC5C over 5C3D by demonstrat-

ing the ability to discover different subclasses of struc-

tures that fit the experimental data almost equally well.

Analysis of HoxA conformational ensembles

Figure 7 A and B shows structures obtained by

MCMC5C on the undifferentiated and differentiated

THP-1 5C datasets (ensembles of 500 structures were

sampled from runs consisting of 5 × 109 iterations).

Visual inspection reveals regions looping out of the core

structure in the undifferentiated state, such as the

regions shown in green and in yellow, corresponding to

the genomic region that includes the HoxA9 and

HoxA10 gene transcription start sites (see Additional

Files 5, 6, 7, and 8 for movies showing the rotating 3D

structures and PDB files for each state). Contrasting the

ensembles obtained in undifferentiated and differen-

tiated conditions, it is readily apparent that upon differ-

entiation the structure adopts a more compact form

that occupies a smaller volume. The regions that are

seen to be extruded in the undifferentiated state are col-

lapsed into the core of the structure in the differentiated

state. These results agree with those previously shown

by Fraser et al. [19] whereby the tight packing of the

chromatin in the differentiated state correlates with an

experimentally measured decrease in HoxA gene expres-

sion (HoxA9, A10, A11, and A13) upon differentiation.

Figure 8 shows a clustering of the pooled ensembles

obtained from the THP-1 undifferentiated and differen-

tiated states. The samples from each of the two datasets

form two very distinct clusters, although there is clearly

variability within each group. This supports previous

observations that the HoxA cluster undergoes a major

conformational change upon differentiation of THP-1

cells [52] but confirms for the first time that the

observed differences are not simply due to uncertainty

in the exact conformation under each condition. The

two clusters exactly capture all of the structures corre-

sponding to each of the states in two distinct clusters,

supporting our findings from the visual inspection of

the structures and suggesting a different Chromatin

Conformation Signature (CCS) for each of the states.

However, biological replicates of each 5C experiment

will be required to determine whether the observed dif-

ferences stand out above inter-experiment variability.

While visualization is a powerful analysis approach,

chromatin regions whose structure is well supported by

the 5C data are better identified by our reliable subset

identification algorithm, which identifies, from a given

ensemble of structures, the subset of fragments whose

spatial relationship varies the least within the ensemble.

The subset of fragments that are the most conserved

across the ensemble of structures (see Additional File 9)

are found to lie within the central core region of the

structures. These fragments are spatially close to each
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Figure 7 Models of HoxA cluster before and after

differentiation. Maximum likelihood structures found by MCMC5C

from the undifferentiated and differentiated THP-1 datasets (A and

B, respectively). The HoxA gene transcription start sites are

annotated on each of the structures.
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other and may be involved in looping contacts that are

important for the maintenance of the chromatin struc-

ture and are therefore highly conserved. These results

are observed in the ensembles of structures for both of

the cellular states, whereby the most conserved sub-

structures are found to lie within the regions corre-

sponding to the strongest contact points.

Estimation of structural properties

A powerful use of MCMC5C is in the discovery of

structural properties that are strongly supported by the

5C data. This allows researchers to formulate solid

hypotheses while avoiding relying on properties that

may only be present in a handful of possible structures.

It is straightforward for researchers to implement new

modules in MCMC5C that will evaluate the structural

properties of their choice. Here, we utilize this function-

ality to assess and contrast the degree of looping (long-

range chromatin contacts) and base density (see

Methods and Figure 2) along the HoxA cluster, in

undifferentiated and differentiated THP-1 cells. The

mean base density value and its standard deviation

across the ensemble of structures are reported in Figure

9. We previously showed that expression of Hox genes

located at the 5’ end of the HoxA cluster undergo

repression upon terminal differentiation in Fraser et al.

[19]. This region includes the HoxA9 and HoxA10

genes that have been shown to be oncogenic and are

induced by the aberrant expression of the MLL-AF9

translocation protein present in the THP-1 cell line [52].

Analysis of the local base density reveals a significant

increase in base density corresponding to the region of

the HoxA cluster containing the genes that are

repressed upon differentiation. Further analysis of the

base looping measure (see Additional File 10) reveals

the creation of a looping contact in this same region

upon differentiation and repression of gene expression.

These observations fit with previous findings that

repressed genes reside in condensed heterochromatin

and suggest a model of gene repression during differen-

tiation that involves the formation of a looping contact

that serves to close the chromatin structure of the

HoxA cluster to aid in repressing (or maintaining a

repressed state) of the genes located in that region, and

warrants further investigation. Finally, we note that

without the help of the base density confidence intervals

obtained from our structure ensemble, it would have

been tempting to interpret many of the apparently large

differences between mean base densities as potentially

biologically meaningful. However, those differences are

not statistically significant, as the corresponding confi-

dence intervals, whose size are quite variable along the

sequence, overlap in these regions.

Analysis of a Hi-C dataset

To demonstrate the applicability of our method to other

datasets, we chose to model the long arm of human

chromosome 14 (88.4 Mb region) from Hi-C data pub-

lished by Lieberman-Aiden et al. [18] at a 1Mb resolu-

tion (89 fragments in total). We generated an ensemble

of 250 structures sampled over 5 × 1010 iterations. Fig-

ure 10 (left) shows the maximum-likelihood structure

found (see Additional File 11 for a better 3D view). Lie-

berman-Aiden et al. [18] proposed the existence of two

physically disjoint compartments, whereby compartment

A was found to correlate with open and actively tran-

scribed chromatin, while compartment B was found to

be more densely packed and repressed. The authors

designed four 3D-FISH probes (termed L1, L2, L3, and

L4) that lie consecutively along chromosome 14 but

alternate between compartments (A: L1 and L3; B: L2

and L4) and showed that the non-consecutive regions of

the chromosome that belong to the same compartment

Figure 8 THP-1 clustering of undifferentiated and

differentiated structures. Hierarchical clustering (Ward’s method)

of one-thousand structures from four parallel MCMC5C runs, two on

the undifferentiated THP-1 dataset and two on the differentiated

THP-1 dataset (250 structures each). The colors along the top

indicate which state each structure originated from (undifferentiated

run one = blue, run two = red; differentiated run one = pink, run

two = orange) and demonstrate a clear distinction between the

two states, indicating that the undifferentiated and differentiated

cell states specify different structure signatures.
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appear to be physically closer than those that do not

[18]. Our results using MCMC5C weakly supports this

hypothesis, with the 3D-FISH probes L2 and L4 indeed

being in close proximity. Importantly, we used an

ensemble of 250 structures to estimate the distribution

of predicted Euclidean distances between each pair of

probes and found an excellent linear correlation with

the physical distances measured by Lieberman-Aiden et

al. [18] using 3D-FISH (see Figure 10 (right). This sug-

gests not only that our model may be physically realistic,

at least at a broad level, but also that the IF-to-distance

transformation used is appropriate.

Implementation and running time

The MCMC5C program is implemented in Java and is

available at http://Dostielab.biochem.mcgill.ca. The pro-

gram takes the experimental interaction frequency data

(with standard deviations) and the restriction enzyme

genomic cut sites as input and produces an ensemble of

structures as PDB files as output. Individual runs were

performed on a 2.26 Ghz Intel Core 2 duo machine

with 4 GB of RAM, while simultaneous parallel runs
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Figure 10 Modeling of human chromosome 14. (Left) MCMC5C

model of human chromosome 14 from the Hi-C dataset. The

midpoints of the 3D-FISH probes used by Lieberman-Aiden et al.

[18] are annotated as L1, L2, L3, L4 and were designed such that in

consecutive order the probes alternate between compartments. The

structure adopts a loosely defined spiral form which brings the

probes from within either compartment (A: L1 and L3, B: L2 and L4)

in closer physical proximity than between pairs of probes across

compartments. (Right) Distances inferred by MCMC5C correspond to

physically-measured distances. X-axis: average Euclidean distance in

the ensemble of 250 structures sampled by MCMC5C. Y-axis: median

3D-FISH physical distance measured by Lieberman-Aiden et al. [18].

Even though probe L3 is located between probes L2 and L4 in the

linear sequence, probes L2-L4 are closer together in the model than

L3-L2, indicating preferential organization of probes belonging to

the same compartment (B) than across compartments (A-B) as

initially reported in Lieberman-Aiden et al. [18].
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were performed on a cluster comprised of 20 Apple

dual-processor 2.3-GHz compute-node G5s (2 GB of

RAM each). Execution time increases with the number

n of fragments in the structure. Each MCMC iteration

runs in time O(n), as only the fragment pairs involving

the fragment that was moved need updating. However

execution time is mostly driven by the time to mixing,

which not only depends on the size of the structure but

also on how “unique” the solution is; a situation where

the pool of likely structures is very small will lead to fas-

ter mixing than one where the set of possible solutions

is much larger and involves many very different struc-

tures. Each of our 5C data sets consisted of 41 frag-

ments, yielding between 335 and 398 interaction

frequency measurements (the IFCalculator excluded

some measurements because of their excessive variance

between microarray probe replicates). Mixing was

achieved in approximately 3.5 × 107 iterations for each

data set, which took ~250 seconds. Ensembles of 1000

structures were then obtained by running the chain for

approximately two hours. For the analysis of the Hi-C

data from human chromosome 14, which consists of 89

fragments and 3916 IF pairs, mixing was achieved after

4 × 107 iterations (~800 seconds) and 250 structures

were obtained in approximately 2.5 hours. However, our

attempts to use MCMC5C on the full Hi-C dataset from

Lieberman-Aiden et al. [18], consisting of data from all

23 human chromosomes, failed to achieve mixing after

24 hours of execution.

Conclusions

The role of high-level chromatin conformation in regu-

lating gene expression is now well accepted, although

only a few loci have been studied in detail [17,20,53-55].

Chromosome conformation capture-based technologies

(3C [22], 5C [56], Hi-C [18], and their variants

[23,24,26,27,57]) offer the ability to measure properties

of the high-level chromatin organization by measuring

the interaction frequency between genomic fragments.

The resolution and accuracy of these techniques is

rapidly improving, and, with the use of next generation

sequencing, their throughput is increasing while their

cost is decreasing. For these reasons, these technologies

are increasingly popular.

Whereas the technological advances allow increasingly

complex assays to be performed, few computational and

statistical tools exist to analyze the data resulting from

such experiments, although good approaches exist to

help design the experiments [18,19] or handle and

visualize their output [17-19,26,27]. We previously

developed the 5C3D program, which aims at producing

the best-fitting conformation for a given dataset. Similar

optimization-based approaches have also been used to

model the structure of the yeast genome [27,29], and

the a-globin locus [17,28]. However, the absence of sta-

tistical or Bayesian approaches make it impossible to

assess the reliability of the predicted conformation.

Downstream analyses are thus limited to qualitative

observations that may or may not be reliable. In this

paper, we introduce a probabilistic framework to

address this problem. By sampling from the posterior

probability distribution over conformations, MCMC5C

produces an ensemble of different structures that are

possible given the data and can find subclasses of struc-

tures that fit the data equally well. Overlaying these con-

formations in a visualization tool such as PyMOL [58]

readily allows the identification of reliable and less reli-

able aspects of the conformation. Using ensembles

allows the discovery of subclasses of structures and the

estimation of structural properties, together with their

distribution, which allows the user to focus on statisti-

cally sound properties or differences between datasets.

Although we acknowledge that more refined probabilis-

tic models of 5C and Hi-C data will eventually be

required to improve the accuracy of the structure pre-

dictions, those will be easily accommodated with

MCMC5C.

None of the existing computational approaches to

model 3D chromatin structures make use of advanced

physical models of DNA and chromatin, although the

approach of Duan et al. [27] uses a simple polymer phy-

sics model to transform interaction frequency, while

Tanizawa et al.[29] include simple sets of constraints

derived from polymer physics. The methodology

described in this paper attempts to model chromatin

without specifying any type of hard constraints on the

predicted structure, although such constraints could

easily be included if desired. Our probabilistic frame-

work also allows for the easy integration of structure

priors based on free energy. Although excellent models

of polymers exist (e.g. Langowski and Heermann [59]),

it is unclear to what extent these models are informative

at the scale we are considering (average fragment size of

4 kb in the case of our 5C data and 1Mb in the case of

the Hi-C data).

A number of interesting directions should be investi-

gated in the future. Time to mixing remains the main

obstacle to running MCMC5C on very large datasets

such as the whole-genome Hi-C dataset of Lieberman-

Aiden et al. [18]. We are currently working on consider-

ing other types of structural perturbations for the

MCMC sampling, such as modifying the torsion of a

given fragment or the angle between two fragments, or

a combination of several types of perturbation. These

advances should allow for more rapid sampling from the

structure space, thereby aiding in the discovery of alter-

native conformations belonging to small subclusters of

structures.

Rousseau et al. BMC Bioinformatics 2011, 12:414
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To conclude, we believe that probabilistic tools like

MCMC5C are essential for the reliable analysis of data

from the 3C-derived techniques such as 5C and Hi-C.

By integrating complex, high-dimensional and noisy

datasets into an easy to interpret ensemble of three-

dimensional conformations, MCMC5C allows research-

ers to reliably interpret the result of their assay and con-

trast conformations under different conditions.

URIs

MCMC5C is available at http://Dostielab.biochem.mcgill.

ca. Detailed protocols, 3C and 5C support information

(design and analysis) can also be found at this location.

Additional material

Additional file 1: Compaction profile of the HoxA region for THP-1

undifferentiated and differentiated cell states. Compaction profile of

the HoxA cluster for both the undifferentiated (blue squares) and

differentiated (red diamonds) THP-1 cell states. The average interaction

frequency value diminishes with increasing linear genomic distance

between the fragment pair, but strong contacts can be seen to exist

between fragments at distances over 10-kb apart.

Additional file 2: HB-1119 Likelihoods of MCMC5C and 5C3D

structures. Likelihood of the structures produced by MCMC5C and by

several runs of 5C3D, as a function of the number of iterations (note the

different scales of the x-axis for the two approaches). 5C3D very quickly

converges to locally optimal structures that are slightly sub-optimal, and

different runs converge to different solutions.

Additional file 3: HB-1119 Structure alignment movie. A QuickTime

movie of the HB-1119 ‘’gold-standard’’ structure aligned with the best

structures from the four parallel MCMC5C runs on the simulated data.

The reference structure is annotated with the transcription start sites for

the HoxA genes.

Additional file 4: HB-1119 Ensemble. A zip file containing the

ensemble of PDB structures generated by MCMC5C from the HB-1119 5C

dataset.

Additional file 5: 5C HoxA cluster undifferentiated movie. A

QuickTime movie of the human HoxA cluster in the undifferentiated

state as determined by MCMC5C from 5C data.

Additional file 6: 5C HoxA cluster differentiated movie. A QuickTime

movie of the human HoxA cluster in the differentiated state as

determined by MCMC5C from 5C data.

Additional file 7: THP-1 Undifferentiated ensemble. A zip file

containing the ensemble of PDB structures generated by MCMC5C from

the THP-1 undifferentiated 5C dataset.

Additional file 8: THP-1 Differentiated ensemble. A zip file containing

the ensemble of PDB structures generated by MCMC5C from the THP-1

differentiated 5C dataset.

Additional file 9: Most reliable subset of fragments. Maximum

likelihood structures found by MCMC5C from the undifferentiated and

differentiated THP-1 datasets (A and B, respectively). The HoxA gene

transcription start sites are annotated on each of the structures. The

most reliable fragment subset of size ten for each of the structures is

indicated by shaded white circles. For both undifferentiated (fragments 2,

4, 19, 23, 30, 33, 37, 38, 40, and 41) and differentiated (fragments 2, 7, 15,

17, 21, 23, 24, 28, 33, and 38) states, the most reliable subset of

fragments is concentrated at the center of the structure.

Additional file 10: Base Looping analysis of undifferentiated and

differentiated THP-1 cells. Analysis of base looping comparing the

undifferentiated (red curve) and differentiated (blue curve) cell states. An

ensemble of one hundred structures generated by MCMC5C was used

for each state. The base looping measure was calculated with a sphere

of radius one (1.0) every tenth base. The error bars report the standard

deviation.

Additional file 11: Hi-C Human chromosome 14 movie. A QuickTime

movie of the Hi-C human chromosome 14 structure as determined by

MCMC5C from previously published data [18].
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