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Organic pores play an important role in shale reservoirs. Organic pores occur where shale gas was produced and accumulated.
However, there is little scientific understanding of the distribution and connectivity of organic pores. Organic pore types and
their structural characteristics were studied using a total organic carbon (TOC), thin section, focused ion beam scanning
electron microscope (FIB-SEM), and nano-CT. The samples were from the Wufeng Formation in the Upper Ordovician and
Longmaxi Formations from the lower Silurian. The results show that organic matter is mainly concentrated in the Wufeng
Formation and the bottom of the Longmaxi Formation and that the middle and upper parts of the Longmaxi Formation contain
a low amount of organic matter. The shale of the Wufeng-Longmaxi Formation has high maturity, and its organic pores are
well developed. There are three types of organic pores: algae, graptolite, and pyrobitumen pores. The pore connectivity of shale
with a high organic content is better than that of shale with a low organic content. The volume of the organic pores accounts for
more than 50% of the volume of the organic matter. Majority of the organic pores have an aperture smaller than 100 nm and
are round, nearly circular, and elliptical in morphology. Most of the organic pores in a shale formation are developed in
pyrobitumen, and most of the larger organic pores are concentrated at the center of solid pyrobitumen. The organic pores in
pyrobitumen have the best connectivity and are the most favorable reservoir spaces and migration channels for shale gas, which
is a crucial point of reference for future research of shale gas.

1. Introduction

In recent years, shale gas has undergone significant develop-
ment as an unconventional resource [1]. With the success of
industrial shale gas development in the United States, the
research and development of shale gas have become impor-
tant for increasing global oil and gas resources [2]. With
rising energy demand, increasing pressure on energy, and
growing environmental awareness, it is urgently necessary
to explore and develop shale gas resources. China is the third

country after the United States and Canada to develop and
utilize shale gas resources. To date, China has made signifi-
cant progress in the research and development of shale gas
[3–7]. In Jiaoshiba Chongqing, the first large-scale shale gas
field in China was built and has reached 100 billion cubic
meters [8].

Organic pores are widely developed in shale that is rich in
organic material and are an important part of the shale reser-
voir space [9]. Shale gas can be stored in a free phase in
organic pores and can be adsorbed onto the surface of
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organic matter in an adsorbed phase [10]. The porosity of the
organic matter directly determines the distribution of the gas
[7]. The type and maturity of organic matter are the geolog-
ical conditions used to judge the commercial developmental
value of shale gas [11]. Therefore, the study of organic pores
is important for shale gas research and the evaluation of shale
gas as a resource.

There are many types of pores in shale. There are primary
pores, such as matrix cracks and intergranular pores, and
there are secondary pores, such as organic pores, dissolved
pores, and organic microfractures [12]. Organic pores are
important because they are one of the largest reservoir
spaces. Organic pores have various shapes, and they can be
elliptical, circular, or irregular polygons, but are primarily
in the form of ellipses, with pore sizes between 5 and
200nm [13–15]. Well-developed organic pores have good
connectivity, forming interconnected pore networks that
can contain large shale gas reservoirs. Pores in two adjacent
organic materials or in different parts of the same organic
material can be different [16, 17]. In addition, there are many
forms of organic matter in shale, mainly occurring in the
presence of clay and brittle minerals. Pores can comprise
up to 50% of the volume of the organic matter. The forma-
tion of organic pores is a product of the maceral content of
organic matter and the degree of host shale maturity. Some
maceral generates hydrocarbons and a large number of pores
as its maturity increases [18, 19]. When the maturity of the
organic matter (Ro) is less than 0.90%, organic pores are
not well developed. In the gas window, liquid hydrocarbons
begin to crack, and organic pores begin to develop [20].
Loucks et al. [19] and Slatt et al. [12] indicated that organic
pores formed when Ro = 0:60%. The maturation of organic
pores can be divided into three stages: the formation period
(0:60% < Ro ≤ 2:00%), the development period (2:00% < Ro

≤ 3:50%), and the destruction period (Ro > 3:50%). The
density of organic pores is a function of the TOC content,
maturity, and the type of organic matter such as maceral or
pyrobitumen [21–23].

Currently, there is no detailed description or classifica-
tion scheme for organic pores in shale. What characteristic
differences may exist between different types of shale
remains unclear. It is necessary to know the connectivity of
organic pores in shale formations. In particular, the current
understanding of the three-dimensional morphology and
connectivity of pores in different types of organic matter is
insufficient. Therefore, various organic pores in shale were
analyzed to classify the types of organic matter present and
the morphology and connectivity characteristics. The pres-
ent study augments our understanding of shale gas storage
space and will assist in the research and development of
shale gas.

2. Geological Background

The Sichuan Basin is located at the northwestern edge of
the Yangtze Platform [24]. The basin has experienced two
stages: the Craton stage (from the Early Paleozoic to Mid-
dle Triassic) and the foreland basin stage (from the Late
Triassic to Cenozoic) [25]. The Sichuan Basin began to

form during the early Indosinian Movement and, eventu-
ally, formed a diamond-shaped sedimentary basin after
the Himalayan movement (Figure 1). The Sichuan Basin
is surrounded by a contiguous range of mountains. The
Sichuan Basin is a complex, superimposed basin with ter-
restrial and marine sediments [26]. The shale deposits in
the central Sichuan Basin are thin, and the shale deposits
in the eastern, southeastern, and southwestern Sichuan
Basin are relatively thick.

The southeast Sichuan Basin is composed mainly of ejec-
tive folds that consist of high-steep anticlines, loose synclines,
and fault zones [26]. The basement of the southeast Sichuan
Basin is composed of Presinian metamorphic rocks. The
Devonian, Carboniferous, Cretaceous, and Paleogene rock
strata were absent from the entire area. During the Early-
Middle Ordovician, the area transformed from an open sea
to a restricted sea surrounded by uplifts, resulting in a low-
energy and anoxic sedimentary environment [27, 28]. Dur-
ing the Early Silurian, the southeastern Sichuan Basin was a
semioccluded stagnant basin with a deep shelf environment.
A black, organic-material-rich shale was deposited, forming
the best layer for shale gas investigation in the region [29, 30].

The lower section of the Wufeng-Longmaxi Formation is
primarily composed of a black graptolite shale, and the upper
section is primarily a gray argillaceous siltstone [31]. During
the Longmaxi’s Formation period, the Sichuan Basin was
shallow and has graptolite shale deposits and a short deposit
range compared with that of the Wufeng’s Formation period
[32]. The Wufeng-Longmaxi Formation in the southeast
Sichuan Basin is relatively thick, and the terrigenous detrital
content increases from the lower to the upper section. At
present, the Wufeng Formation and the lower Longmaxi
Formation are the main shale gas reservoirs [33].
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Figure 1: Tectonic setting and location of the southeast Sichuan
Basin. (a) Location of the Sichuan Basin in China. (b) Tectonic
setting of the southeast Sichuan Basin.
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3. Sampling and Experimental Methods

The total organic carbon (TOC) content was tested with a
Leco analyzer. The inorganic carbon in the sample was
removed with diluted hydrochloric acid and then burned in
a high-temperature oxygen oven to convert all the organic
carbon to carbon dioxide. The TOC content was then mea-
sured by an infrared detector. The type and maturity of
organic matter were observed under a LABORLUX 12 POL
fluorescence microscope. Samples larger than 4mm were
cemented with a nonfluorescent cement to a microscope slide
and observed using the microscopes oil immersion lens. A
high-pressure mercury vapor or xenon lamp was used as
the excitation source, and then, a blue or ultraviolet light
was used to excite the filter. Organic matter with fluorescence
was isolated and tested. The reflectance of the graptolite was
determined. Then, the type andmaturity of the organic mate-
rial were obtained.

The two-dimensional micromorphology, structural
characteristics, and three-dimensional connectivity of the
samples were studied using an FEI Quanta 200F focused

ion beam scanning electron microscope (FIB-SEM) in the
high-vacuum scanning mode. The electron image was
obtained from the secondary electron signal of the sample
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Figure 3: TOC distribution of the shale in the Wufeng-Longmaxi
Formation at the southeast Sichuan Basin.
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Figure 2: Comparison sections of the TOC content of the Wufeng-Longmaxi Formation shale in the southeast Sichuan Basin. (a) Section of
the TOC content from northeast to southwest. (b) Section of the TOC content from east to west.
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surface through an ion beam generated by a liquid metal (Ga)
ion source. The sample was observed to have dimensions of
4:5 μm× 8 μm× 8 μm. The surface of the sample was
polished with a JEOL IB-09010 argon ion sample polishing
machine. Pores with apertures larger than 5nm could be
observed by the FIB-SEM, and ImageJ was used to calculate
the face rate based on gray recognition.

A Zeiss Metrotom nano-CT was used to study the three-
dimensional characteristics of the samples. Sixty-five
micrometer diameter cylinder samples were selected. The

resolution of the nano-CT in the present study was 65nm.
Therefore, pores lager than 65nm could be imaged. The
working principle is that the X-ray source and the detection
receiver scan the samples synchronously. When each scan
was completed, the scanning rack rotated to the next angle
and then performed the next scan. Through digital image
processing and three-dimensional reconstruction of the CT
single-image and CT image sequences, the porosity of the
samples was calculated, and an image was obtained of the
three-dimensional distribution and connectivity of pores.
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Figure 4: Graptolite photographs and energy spectrum of the Wufeng-Longmaxi Formation shale in the southeast Sichuan Basin. The
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Figure 5: Pyrobitumen morphology photograph and energy spectrum of the Wufeng-Longmaxi Formation shale in the southeast Sichuan
Basin. (a) Fluorescence microscope photo. (b) Polarized light microscope photo. (c) SEM photo and energy spectrum characteristics.
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4. Results

4.1. Organic Matter Characteristics

4.1.1. Organic Matter Content. The organic matter in the
southeast Sichuan Basin has many different characteristics
in both the horizontal and vertical space [34]. The thick-
ness of the TOC > 2% shale varies significantly from north-
east to southwest (Figure 2(a)). From the northeast to the
southwest, the thickness gradually declines. The thickest
area is around the JY-1 well in the northeast, approxi-
mately 40m thick, while the shale with TOC > 2% in the
southwestern area is less than 20m thick. The JY-1 well
area and LY-1 well area have the thickest shale from east
to west (Figure 2(b)). In the vertical direction, the TOC
> 4% shale is mainly concentrated at the Wufeng Forma-
tion and at the bottom of the Longmaxi Formation, and
the TOC content gradually decreases from the bottom to
the top in the Longmaxi Formation. The average TOC con-
tent of the Wufeng Formation is 4.3%, while the average
TOC content of the bottom of the Longmaxi Formation
is 3.2% (Figure 3).

4.1.2. Organic Matter Type. Based on light microscopy and
FIB-SEM observations, the majority of organic matter in
the southeast Sichuan Basin is algae, pyrobitumen, and grap-

tolite. A small amount of biodetritus was also observed, such
as acritarchs, chitinozoans, and sponge spicules (Figures 4–6).
Most of the graptolite has a thin, dense carbonaceous structure
(Figure 4), and its pores are poorly developed. There are con-
traction fractures between the graptolite and surrounding
minerals. Energy spectrum analysis showed that the graptolite
is mainly carbonaceous.

Pyrobitumen generally fills the space between mineral
particles and has no fixed form (Figure 5). Compared with
the dense structure of graptolite, pyrobitumen has a loose
structure and more well-developed pores (Figure 5(c)).
Energy spectrum analysis showed that the main elemental
composition of pyrobitumen is also carbonaceous
(Figure 5(d)).

Algae are generally secondary components that postdate
hydrocarbon generation and are covered with lamellate clay
minerals. The clay minerals do not have a fixed orientation
and look like petals (Figure 6). The algae are also relatively
loose, and energy spectrum analysis showed that the elemen-
tal composition of the algae is mainly carbonaceous
(Figure 6(c)).

Energy spectrum analysis showed that the biodetritus
contains mostly phosphorus and calcium, with a relatively
complete structure and morphology (Figure 7; [35]). The
biodetritus is relatively dense, and its pores are either not
developed or only a few nanoscale micropores are developed.
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Figure 6: Algae morphological photograph and energy spectrum of the Wufeng-Longmaxi Formation shale in the southeast Sichuan Basin.
(a) The dark part is algae. (b) Amplification of (a). (c) Amplification of (b). The algae are mainly carbonaceous and energy spectrum
characteristics.
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4.1.3. Organic Matter Maturity. The microscopic organic
components that indicate the maturity of the black shale in
the Wufeng-Longmaxi Formation in the southeast Sichuan
Basin are mainly three types: pyrobitumen, biodetritus (pre-
dominantly graptolite), and vitrinite-like maceral (VLM).
The black shale of theWufeng-Longmaxi Formation is abun-
dant in graptolite, with obvious morphological features. In
the present study, the reflectance of the graptolite was mea-
sured. Based on 18 samples from 12 wells, the Ro is between
2.22% and 3.13%, with an average of 2.71% [36, 37], indicat-
ing that the shale has a high degree of maturity (Figure 8).

4.2. Organic Pore Characteristics

4.2.1. Algae Pores. The pores in the organic matter of the
Wufeng-Longmaxi Formation shale are generally well devel-
oped, but the pores in different types of organic matter show
significant variability. The cell structure of the algae is
poorly preserved, and most of it have been degraded and
heavily micronized. This type of organic matter has a dis-
tinct shape, and the inorganic minerals produced by the
internal metasomatism have an obvious biological structure.
The organic matter pores inside the algae mostly have a
local concentration, and the surface porosity is approxi-
mately 15% (Figure 9).

4.2.2. Graptolite Pores. Generally, graptolite is poorly pre-
served and displays a fixed, rigid shape. Fractures can form

between the graptolite and inorganic minerals. Small quanti-
ties of inorganic minerals are observed inside the graptolite,
and the pores are poorly developed, with 5% surface porosity
(Figure 10).

4.2.3. Pyrobitumen Pores. Pyrobitumen does not have a fixed
shape and fills the spaces in the inorganic mineral particles of
the clay layers. The pores are well developed in the pyrobitu-
men, with a 30% surface porosity (Figure 11). The pore shape
within the pyrobitumen is controlled by the morphology of
the pyrobitumen. The pores are mainly concentrated in the
center of the pyrobitumen. The pore morphology is mostly
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Figure 7: Biodetritus morphology photograph and energy spectrum of the Wufeng-Longmaxi Formation shale in the southeast Sichuan
Basin. (a) Sponge spicule. (b) Sponge spicule (cross section). (c) Biodetritus with calcium and phosphorus.
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Figure 9: Pore characteristics of the algae in the Wufeng-Longmaxi Formation shale at the southeast Sichuan Basin.
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Figure 10: The pore characteristics of graptolite in the Wufeng-Longmaxi Formation shale at the southeast Sichuan Basin.
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ellipsoidal or semiround, with a 10-300 nm long axis and a 2-
100nm short axis. The pores are less developed at the edges
of the pyrobitumen, especially at the throat area adjacent to
the inorganic minerals. The morphology of the pyrobitumen
is mainly long strips or flat, with an aspect ratio greater than
5 : 1. The long axis direction of the pores agrees with the long
axis direction of the pyrobitumen (Figure 11). The pyrobitu-
men portion contained pores ranging in size from 5 to 50nm
(Figure 12; [38]). These pyrobitumen pores are the main body
of organic pores in the Wufeng-Longmaxi Formation shale.

5. Discussion

5.1. Morphology and Connectivity of Organic Pores. The pores
in the shale exist in three dimensions. Nano-CT scans can

display the internal mineral composition and pore structure
in 3D [39]. The connectivity of the organic-material-rich
shale at the bottom of the Wufeng-Longmaxi Formation is
medium-poor, and the pore size is small (Figure 13). The
continuity of organic matter in three-dimensional space is
good, and a large number of pores have developed in these
well-connected organic materials. Figure 13(b) shows the
organic pores in different regions using multiple colors.
Areas with the same color indicate that the nanopores in
the organic matter of this part are connected. These
different-sized pores form a complex spatial network struc-
ture. The pores in the sample are mainly circular, and the
shape of the pores is sill-like, sheet-like, and tubular, with
moderate connectivity. The throat is needle-shaped and par-
tially sill-like (Figure 13(c)). The sample had a total of more
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Figure 11: The pore characteristics of pyrobitumen in the Wufeng-Longmaxi Formation shale at the southeast Sichuan Basin.
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than 7400 organic pores, with a total volume of 4:6 × 1011 nm3

, which accounted for 5.7% of the total sample volume of 8
× 1012 nm3. The sample had 5120 organic pores (larger than
65nm), and the total volume of the organic pores was 2:6 ×
1011 nm3, which accounted for 3% of the total volume of the
sample and 56.6% of the total organic matter volume.

The organic-material-poor shale in the middle and upper
parts of the Wufeng-Longmaxi Formation has poor connec-
tivity (Figure 14). The continuity of the organic matter in
three-dimensional space is poor, and the connected organic
pore range is obviously reduced (Figure 14(b)). The same
characteristics are also visible in the organic throat distribu-
tion. The pores of the sample were mainly elongated (similar
to intergranular pores) and flake-shaped with poor connec-
tivity. The throat was needle-shaped (Figure 14(c)). The sam-
ple had a total of 2698 organic pores with an overall volume
of 1:2 × 1011 nm3, which accounted for approximately 1.6%
of the total sample volume of 8 × 1012 nm3. The sample had
1067 organic pores, which accounted for 0.9% of the total
volume of the sample.

According to the 3D FIB-SEM data, the organic pores in
the Wufeng-Longmaxi Formation shale with long axes <
100 nm accounted for approximately 89% of the total organic
pores, while the organic pores with long axes > 200 nm
accounted for less than 4% of the total organic pores

(Figure 15). Organic pores have a relatively high proportion
of small pores [40]. It was determined that the majority of
the organic pores in the sample were less than 50nm, and a
large number of the small pores had developed inside the
organic matter.

The organic pores with aspect ðlong − to −minor axisÞ
ratios > 4 only comprise approximately 15% of the total
organic pores, and more than 50% of the pores have aspect
ratios < 2 (Figure 16). The morphological characteristics of
the organic pores obtained by three-dimensional FIB-SEM
are similar to those obtained by two-dimensional FIB-SEM:
the shapes of the organic pores are primarily rounded, nearly
circular, or elliptical.

5.2. Role of Pyrobitumen Pores. The majority of organic mat-
ter in the Wufeng-Longmaxi shale are migrated organic mat-
ter of amorphous form, uniform color, and nanometer-scale
internal pores [41]. The migrated organic matter was
injected into the mineral pores (mainly intergranular) in
the form of liquid hydrocarbon during the shale oil gener-
ation stage [42]. If the TOC content in the shale is 5% by
weight, the organic matter density is approximately 50%
of the shale density. The organic matter then accounts for
nearly 10% of the pore volume of the shale, while the
organic matter contains approximately 20%-40% of the

(a) (b)

(c)

Figure 13: Organic pore characteristics of the organic-material-rich shale based on nano-CT. The TOC is 5.7%. (a) The blue part is organic
matter. (b) Interconnected pores in the organic matter. (c) Throat distribution in the organic matter.
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volume occupied by organic pores. Therefore, the organic
matter has an organic matter porosity of 2%-4% of the total
volume of the shale. Due to its low porosity and poor per-
meability, it was difficult for liquid hydrocarbon to migrate
out of the shale [43]. The remaining hydrocarbon separated
into light hydrocarbon (primarily methane) and heavy
hydrocarbon (primarily solid pyrobitumen) [44]. The pyro-
bitumen pores were formed during the process of gas and
liquid separation.

Based on the analysis of 832 pyrobitumen enclaves in 16
samples, it was determined that the pyrobitumen pores are
primarily ellipsoidal or near-circular. The long-to-minor axis
ratios of the pyrobitumen pores are similar. The aspect ratios
are concentrated at <3, and less than 10% of the long-to-
minor axis ratios are >3 (Figure 17).

The pores in the center of the pyrobitumen are mostly
rounded, and the aspect ratios are concentrate close to 1.
The pores close to the throat between inorganic minerals

(a) (b)

(c)

Figure 14: Organic pore characteristics of the shale based on the nano-CT. TOC is 1.6%. (a) The blue part is organic matter. (b)
Interconnected pores in the organic matter. (c) Throat distribution in the organic matter.
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are flat shaped or in long strips for the most part, with long-
to-minor axis ratios higher than 3. The larger the volume of a
single pyrobitumen enclave, the more developed the pyrobi-
tumen pores and the larger the pore size. Additionally, the

large pores are concentrated at the center of the pyrobitumen
(Figure 18).

For example, Figure 18(a) shows that one 9μm long pyr-
obitumen portion has abundant nanopores, and its surface

<1 1-2 2-4 4-5 5-10 >10

28.36

100

Pore long-to-minor axis ratio

98.40
91.1885.02

55.55

P
o

re
 n

u
m

b
er

 (
N

o
.)

C
u

m
u

la
ti

ve
 p

er
ce

n
t 

(%
)

0

20

40

60

80

100

0

5000

10000

15000

20000

25000

Figure 16: Characteristics of the aspect ratio of the organic pores based on 3D FIB-SEM data.
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porosity is approximately 30% (Figure 18(a)). From the edge
of the pyrobitumen to the center, the size of the pores has a
pronounced increasing trend, from a majority of less than
100nm near the edge, increasing to 500 nm further in, and
increasing to greater than 500nm at the center of the pyrobitu-
men. This trend may indicate that most of the gas are gener-
ated at the center of the organic matter concentrations
(Figure 18(b)). The long axis direction of the pores is generally
coordinated with the extension direction of the pyrobitumen.
Especially in narrow pyrobitumen enclaves, the long axis
direction of the pores is consistent with the extension direction
of the pyrobitumen, indicating that pyrobitumen deformation
has occurred on the internal pyrobitumen pores.

The pyrobitumen pores are not completely isolated from
each other and have good connectivity. The large pores are
generally interconnected by small pores (Figure 19(a)). In the
No.1 pore, there are 2 secondary nanopores, and their aspect
ratios are all lower than 1.5 (Figures 19(b)–19(d)). In the
No.2 pore, there are 3 secondary nanopores, and their aspect
ratios are all greater than 1.5 (Figures 19(b)–19(d)). The rela-
tionship between the large pyrobitumen pores and the second-
ary pyrobitumen pores indicates that they were generated by
similar processes. During the formation and accumulation of
shale gas, small secondary pores may accumulate within large
pores, increasing the size of the larger pores.

6. Conclusion

The distribution of organic matter in the southeast Sichuan
Basin has distinct variations both horizontally and vertically.
The TOC > 4% shale is mainly concentrated at the Wufeng
Formation and at the bottom of the Longmaxi Formation.
The organic materials are primarily algae (secondary compo-
nents), pyrobitumen, and graptolite, with a small amount of
biodetritus, such as acritarch, chitinozoa, and sponge spicule.
The Wufeng-Longmaxi Formation shale has a high degree of
thermal evolution, and its Ro is between 2.22% and 3.13%,
with an average of 2.71%.

There are three main types of organic pores: algae pores,
graptolite pores, and pyrobitumen pores. The cell structure of
algae pores is poorly preserved but displays an apparent bio-
logical structure. Algae pores are locally concentrated. Grap-
tolite is generally poorly preserved and has a fixed, rigid
shape. Small quantities of inorganic minerals can be found
inside the graptolite. The pyrobitumen does not have a fixed
shape and fills the spaces between inorganic mineral particles
and clay layers. The pyrobitumen pores are well developed, as
determined by the overall morphology of the pyrobitumen
enclaves.

The pores in the organic-material-rich shale are primar-
ily circular, nanoscale pores. The majority of throats are
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Figure 19: Pores in the pyrobitumen based on 2D FIB-SEM data. (a) Magnification of Figure 18(a) showing good pore connectivity. (b)
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needle shaped, and the organic pores may account for more
than 50% of the total organic matter volume. The organic
matter in the organic-material-poor shale has poor continu-
ity in three-dimensional space. The pores are mostly long
and narrow, and the majority of throats are needle shaped.
The organic pores may account for less than 1% of the total
sample volume.

The majority of the pyrobitumen pores are ellipsoidal or
near-circular, with aspect ratios concentrated at <3. The
pores in the center of the pyrobitumen are mostly rounded,
and the aspect ratios are predominantly close to 1. The pores
close to the throat between the inorganic minerals are largely
flat or in the shape of long strips, and their aspect ratios are
mostly greater than 3. The large pores are concentrated in
the center of the pyrobitumen, and the pyrobitumen pores
are generally well connected.
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