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Quantitative 3D blastoderm: gene expression and morphology<p>A suite of methods that provide the first quantitative three-dimensional description of gene expression and morphology with cellular resolution in whole <it>Drosophila </it>embryos is described.</p>

Abstract

Background: To model and thoroughly understand animal transcription networks, it is essential

to derive accurate spatial and temporal descriptions of developing gene expression patterns with

cellular resolution.

Results: Here we describe a suite of methods that provide the first quantitative three-dimensional

description of gene expression and morphology at cellular resolution in whole embryos. A database

containing information derived from 1,282 embryos is released that describes the mRNA

expression of 22 genes at multiple time points in the Drosophila blastoderm. We demonstrate that

our methods are sufficiently accurate to detect previously undescribed features of morphology and

gene expression. The cellular blastoderm is shown to have an intricate morphology of nuclear

density patterns and apical/basal displacements that correlate with later well-known morphological

features. Pair rule gene expression stripes, generally considered to specify patterning only along the

anterior/posterior body axis, are shown to have complex changes in stripe location, stripe

curvature, and expression level along the dorsal/ventral axis. Pair rule genes are also found to not

always maintain the same register to each other.

Conclusion: The application of these quantitative methods to other developmental systems will

likely reveal many other previously unknown features and provide a more rigorous understanding

of developmental regulatory networks.
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Background
Animal embryos can be thought of as dynamic three-dimen-

sional arrays of cells expressing gene products in intricate

spatial and temporal patterns that determine cellular differ-

entiation and morphogenesis. Although developmental biolo-

gists most commonly analyze gene expression and

morphology by visual inspection of photographic images, it

has been increasingly recognized that a rigorous understand-

ing of developmental processes requires automated methods

that quantitatively record and analyze these phenomenally

complex spatio-temporal patterns at cellular resolution. Dif-

ferent imaging and image analysis methods have been used to

provide one-, two-, or three-dimensional descriptions of parts

or all of a developing animal at various levels of detail (for

example, [1-9]). Yet, none of these experiments have

described the morphology and gene expression of a complete

embryo at cellular resolution.

The Berkeley Drosophila Transcription Network Project

(BDTNP) [10] has initiated an interdisciplinary analysis of

the transcription network in the early Drosophila embryo

[11,12]. The project's goals are to develop techniques for deci-

phering the transcriptional regulatory information encoded

in the genome and quantitatively model how regulatory inter-

actions within the network generate spatial and temporal pat-

terns of gene expression. Multiple system-wide datasets are

being generated, including information on the in vivo and in

vitro DNA binding specificities of the trans-acting factors that

control the network. In this paper, we introduce a comple-

mentary dataset that describes the expression patterns of key

transcription factors and a subset of their target genes in

three dimensions for the whole embryo at cellular resolution,

together with the methods we have developed to generate and

analyze these data. By comparing the patterns of expression

of the trans-regulators to those of their presumptive targets,

we hope to provide evidence for the regulatory relationships

within the network and allow modeling of how gene expres-

sion patterns develop.

The Drosophila blastoderm was chosen as the model to study

as it is one of the best characterized animal regulatory net-

works [13-16]. Two and a half hours after fertilization, the

embryo is a syncytium of around 6,000 nuclei, which then

become cellularized by an enveloping membrane during

developmental stage 5 [17]. By the end of cellularization, the

basic body plan is determined and the complex cell move-

ments of gastrulation begin. A handful of maternal gene prod-

ucts are spatially patterned in the unfertilized egg in broad

gradients along the dorsal/ventral (d/v) and the anterior/

posterior (a/p) axes. Zygotic transcription begins at around

two hours after fertilization, with the maternal products initi-

ating a hierarchical cascade of transcription factors that drive

expression of increasing numbers of genes in more and more

intricate patterns. The relatively small number of primary

transcriptional regulators that initiate pattern formation

(around 40) and the morphological simplicity of the early

embryo make the blastoderm a particularly tractable system

for modeling animal transcription networks, while capturing

the complexities present in all animals.

In this paper, we describe an integrated pipeline of methods

for studying gene expression in the Drosophila melanogaster

blastoderm and release our first set of spatial gene expression

patterns digitized from 1,282 embryos. We show that our

methods can detect many previously uncharacterized fea-

tures of morphology and gene expression at a high level of

accuracy. An accompanying paper describes further strate-

gies necessary to study temporal changes in gene expression

in the presence of dynamic morphology.

Results and discussion
A three-dimensional analysis pipeline

To be able to analyze morphology and gene expression in

three dimensions we developed an integrated suite of meth-

ods as follows (Figure 1; see Materials and methods). First,

embryos were fixed and fluorescently stained to label the

mRNA expression patterns of two genes and nuclear DNA,

mounted on microscope slides, and visually examined to

determine their developmental age. Second, labeled and

staged embryos were imaged in whatever orientation they lay

on the microscope slide using a two photon laser-scanning

microscope to produce three-dimensional images. Third, raw

three-dimensional images were converted by image analysis

methods into text files, which we call 'PointClouds'. Each

PointCloud describes the center of mass coordinates of all

nuclei on the embryo surface and the mRNA or protein

expression levels of two genes in and around each nucleus.

These methods run unattended on large batches of images,

processing three to four images per hour, per processor.

Fourth, PointClouds were analyzed in three dimensions using

a number of automatic and semi-automatic feature extraction

methods to determine the orientation of the a/p and d/v axes,

record morphological features, measure the locations of gene

expression domains, and quantify relative levels of expres-

sion. Fifth, a BioImaging database (BID) was employed to

track and manage the raw images and PointCloud data files

and extensive metadata for each step of the pipeline. Sixth,

two visualization tools were used to validate the image analy-

sis methods (Segmentation Volume Renderer) [18], and to

analyze the resulting PointClouds (PointCloudXplore)

[10,19].

A critical feature of our strategy is that the large 0.3 to 0.5 Gb

raw three-dimensional images for each embryo, such as that

shown in Figure 2a-c, are reduced via image analysis to 1 Mb

PointCloud files. The resulting PointClouds provide a com-

pact representation of the image data and are readily amena-

ble to computational analysis while maintaining the richness

of the blastoderm's morphology and gene expression pat-

terns. Figure 2 provides a qualitative illustration of this, com-

paring renderings of a part of a three-dimesnional raw image
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(Figure 2d,e) with two different PointCloudXplore views that

represent the same portion of the same embryo (Figure 2f,g).

The two mRNA gene expression patterns are well captured on

a cell by cell basis in the PointCloud.

An extensive dataset

To provide an initial dataset for analyses, we used our pipe-

line to generate 1,282 PointClouds, each derived from a dif-

ferent embryo (Tables 1 and 2). These PointCloud files and

their descriptions are publicly available from our searchable

BID [10] and cover the expression of 22 genes in embryos

from developmental stages 4d (nuclear cleavage cycle 13) and

5. A variety of pair-wise gene combinations are included, but

most PointClouds include data for either of the pair rule genes

even-skipped (eve) or fushi tarazu (ftz), which serve as refer-

ence patterns. Data for both wild-type embryos and embryos

mutant for three maternal regulators of the early network

(bicoid, gastrulation defective, and Toll) are available. We

have released more data than used in this and the accompa-

nying paper [20] in the belief that these PointClouds will be

generally useful to many researchers and that analysis and

modeling of this network will require the combined efforts of

a broader community. Data for further genes' mRNA expres-

sion, protein expression patterns, mutant embryos, and other

Drosophila species will be released periodically in the future.

The challenge of generating three-dimensional 

PointClouds

Capturing information for the whole embryo in a single Point-

Cloud file posed a number of technical challenges that had to

be overcome. We briefly discuss those that are most relevant

for understanding of our subsequent analyses. Further details

are provided in Materials and methods.

The stage 5 D. melanogaster blastoderm is approximately

500 µm along the a/p axis and 150 µm thick at its center.

Approximately 6,000 blastoderm nuclei are closely packed

around the embryo surface while the interior is filled with

opaque yolk granules. The thickness of the embryo and the

light scatter caused by the yolk made imaging the complete

embryo difficult with standard methods. The close packing of

the nuclei required high quality images so that individual

nuclei could be resolved. Consequently, fixation, staining,

and mounting methods were optimized to maximize stain

intensity, preserve embryo morphology, and optically disrupt

the yolk granules. Embryos were imaged by laser scanning

microscopy using two-photon excitation, which provided

superior optical penetration, reduced signal attenuation and

higher resolving power along the optical axis compared to

single-photon excitation using confocal microscopy [21,22].

The resulting three-dimensional images, however, still suf-

fered from the inherent problems of anisotropic resolution,

signal attenuation, and channel cross-talk. To overcome these

problems, automated image analysis methods were devel-

oped to unmix the fluorescence signals from different chan-

nels (Luengo et al., manuscript in preparation), correct for

signal attenuation and produce an accurate segmentation

that defines the position and extent of nuclei detected in the

image. (Segmentation is an image analysis term that means to

group together pixels that are associated with a particular

object in the image.)

An initial segmentation analysis was performed on the image

of the DNA stain using a watershed-based method that was

constrained using known morphological characteristics of the

embryo, such as the fact that nuclei have a polarity perpendic-

ular to the surface of the blastoderm and form a single layer.

This strategy identified, on average, 87% of nuclei in an

embryo. Most errors occurred in a narrow strip around the

embryo where the blastoderm surface is tangential to the

microscope's optical axis (that is, on the sides of the image).

Visual inspection using our three-dimensional Segmentation

Volume Renderer [18] suggests that, outside of these regions,

where all nuclei are clearly resolved in the image (Figure 3a),

our initial segmentation masks accurately identify the loca-

tions of greater than 99% of nuclei (compare Figure 3a and

Figure 3c). However, the poorer resolution along the optical

axis (compare Figure 3a and Figure 3b) resulted in

The BDTNP's three-dimensional gene expression analysis pipelineFigure 1

The BDTNP's three-dimensional gene expression analysis pipeline. The 
major steps of the pipeline are shown. Blue arrows show the path of the 
major workflow as materials or data files are passed between each step. 
Black arrows indicate metadata describing experimental details of each 
step being captured in BID or being retrieved from BID during image 
analysis, feature extraction, and visualization.
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Comparing three-dimensional raw images to PointCloud representationsFigure 2

Comparing three-dimensional raw images to PointCloud representations. (a-c) Maximum projections of the three channels of a three-dimensional 
embryo image; (a) the nuclear stain (white); (b) a snail mRNA stain (red); and (c) an eve mRNA stain (green). Note the small bright speckles visible in all 
three channels at the same locations. These are outside the cytoplasm and are detected and removed by our image analysis algorithms. The small white 
rectangles show a region of interest that is displayed in (d-g). (d,e) The raw image of the nuclear stain (d) and the mRNA stains for eve and sna (e). (f,g) 

Two different renderings of the PointCloud derived from this image made using our visualization tool PointCloudXplore: (f) uses small spheres whose 
volumes are proportional to the measured volumes of the corresponding nuclei; (g) uses a Voronoi tessellation of the coordinates in the PointCloud. The 
arrows indicate the locations of the same three cells in each of the panels (d-g).

(a)

(b)

(c)

(d) (e)

(f) (g)(f) (g)
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segmentation errors on the sides of images where two or three

nuclei along the optical axis were grouped together. A model

based on nuclear size derived from accurate segmentation

results in the top and bottom of the image was then used to

correct the segmentation errors in these side regions. While

the accuracy of this model-based correction was difficult to

quantify from the images (compare Figure 3b and Figure 3d),

it nevertheless produced segmentation masks that more

closely approximated the number and position of nuclei on

the sides of images.

To estimate the location of the cytoplasm associated with

each nucleus, the nuclear segmentation masks were extended

by tessellation laterally until they touched and apically and

basally by a fixed distance determined empirically. The

nuclear segmentation and the cytoplasmic tessellation masks

were then used to record the mRNA expression levels in three

regions of each cell: the nucleus, the apical part of the cyto-

plasm, and the basal part of the cytoplasm. The average fluo-

rescence intensity in one of these three sub-volumes or in the

whole cell was selected as the measure of relative gene

expression depending on where the mRNA of a particular

gene was typically localized within the cell. The recorded

mRNA expression levels and the coordinates and volumes of

the nuclei and cells were then written in table format as a

PointCloud file together with additional metadata describing

the embryo's orientation, stage, phenotype, genotype, and

staining.

The landscape of nuclear density patterns

Having established methods to derive PointClouds from

image data, we developed a variety of strategies to measure

key aspects of morphology and gene expression in three

dimensions. Our three-dimensional feature extraction meth-

ods not only provided a new quantitative description of the

blastoderm, but also yielded a better understanding of the

accuracy of our PointCloud representations.

First, we examined the local packing density of nuclei on the

surface. Nuclei have long been treated as if they were

arranged uniformly around the surface of stage 5 embryos

[17,23,24]. Blankenship and Wieschaus [25], however, iden-

Table 1

Number of genes' mRNA expression patterns from individual PointClouds in Release 1 for the series of developmental stage cohorts 

used in [20]

Wild type Stage cohort Total

4d 5:0-3% 5:4-8% 5:9-25% 5:26-50% 5:51-75% 5:76-100%

bcd 0 0 2 0 2 0 0 4

croc 1 2 2 3 7 4 7 26

D 0 0 1 3 0 0 0 4

Dfd 0 0 0 4 5 4 1 14

eve 22 83 89 89 116 103 82 584

fkh 0 4 6 8 7 2 6 33

ftz 22 65 72 60 42 73 58 392

gt 1 24 27 28 22 16 10 128

h 0 2 2 3 3 1 0 11

hb 9 20 18 9 8 7 14 85

hkb 0 15 11 7 14 12 3 62

kni 9 8 10 10 9 16 11 73

Kr 1 11 23 9 14 15 4 77

prd 6 17 13 9 10 10 7 72

rho 0 2 8 16 3 13 10 52

slp1 1 2 6 6 13 29 12 69

sna 11 13 4 10 6 17 21 82

tll 0 0 0 0 0 4 2 6

trn 0 4 0 0 2 3 0 9

tsh 0 0 0 3 0 1 4 8

twi 2 4 7 11 11 7 4 46

zen 3 12 5 4 8 3 4 39

Total 88 288 306 292 302 340 260 1,876

Since each embryo was stained for two genes, the total given in each column is double the number of embryos in the release. The release contains 
some additional embryos for which the staging was ambiguous.



R123.6 Genome Biology 2006,     Volume 7, Issue 12, Article R123       Luengo Hendriks et al. http://genomebiology.com/2006/7/12/R123

Genome Biology 2006, 7:R123

tified three distinct regions along the a/p axis that had differ-

ent nuclear densities. Densities were lowest in the anterior of

the embryo, higher where the cephalic furrow will later form,

and intermediate posterior of this point.

Based on this observation, we calculated local densities as the

number of nuclear centers per µm2, measured on the surface

of the embryo within the neighborhood of each nucleus. Aver-

age values from 294 embryos at late stage 5 were plotted on

two-dimensional cylindrical projections to show the densities

around the entire blastoderm surface (Figure 4). The embryos

were imaged at different, random orientations relative to the

microscope objective, each embryo being imaged in one ori-

entation (see Materials and methods). Because the segmenta-

tion of nuclei on the tops and bottoms of the images was more

accurate, we averaged density measurements from only these

higher quality regions (Figure 4b) and, for comparison, meas-

urements taken from only the sides of images (Figure 4c).

Since the embryos used for generating the density maps were

in many different orientations, using data only from the high-

est quality regions provided the most accurate assessment of

mean densities for all parts of typical embryos.

Our data are in line with the one-dimensional analysis of

Blankenship and Wieschaus, but revealed a much more com-

plex, fine-grained pattern of densities that varied continu-

ously around the entire blastoderm surface (Figure 4b). The

densities changed by up to two-fold, being highest dorsally

and lowest at the anterior and posterior poles, with additional

local patches of high or low density also apparent. Some fea-

tures of the density patterns correlated with the expression of

transcription factors that regulate the blastoderm network

and with morphological features that form later during gas-

trulation. For example, the valley of lower density along the

ventral midline aligns with the borders of snail expression,

which also defines the cells that will fold inward to form the

ventral mesoderm at gastrulation (Figure 4d). The previously

noted ridge of high density that follows the most anterior

stripe of eve expression (eve stripe 1) was also visible (Figure

4d). This region will fold in to form the cephalic furrow just

after stage 5 [26]. These density patterns may, therefore,

reflect unknown or largely uncharacterized mechanisms that

drive later gastrulation movements. Alternatively, they may

be merely a non-functional early consequence of gene activi-

ties that later cause the larger movements of gastrulation.

Whether the nuclear density patterns we observe play a role

in morphogenesis or not, they will likely affect the rate at

which transcription factors are transported between neigh-

boring nuclei. Thus, they will need to be incorporated into any

computational model of this system.

These density measurements also provided an estimate of the

accuracy of the segmentation in defining nuclei. The standard

deviations of measured density values between PointClouds

were between 9% and 18% of the mean. Because the variation

between individual PointClouds included all natural variation

between embryos and all errors and artifacts introduced at

different steps of our pipeline, the standard deviation set an

upper limit on the errors our methods introduced. The high

reproducibility between independent measurements on the

left and right halves of embryos also provided a measure of

the accuracy of our analysis (Figure 4b). Finally, to analyze

the errors in segmentation on the sides, we computed a den-

sity map with data taken from the sides of images (Figure 4c)

and compared it to the density map computed with data taken

from the tops and bottoms of images. The two maps gener-

ated were broadly similar to each other (Figure 4b), and

yielded an estimate of the bias in nuclear numbers on the

sides compared to the tops and bottoms of images. The maps

showed that nuclear numbers were overestimated by up to

11% in the ventral region, and underestimated by up to 7% in

the dorsal region when these regions were on the sides of the

image.

Table 2

The number of mutant PointClouds for bcd12, gd7 and Tl10B in Release 1 divided into the same developmental stages as in Table 1

Gene Stage cohort Total

4d 5:0-3% 5:4-8% 5:9-25% 5:26-50% 5:51-75% 5:76-100%

bcd12

Mutant 1 0 2 5 10 10 11 39

WT-like 0 7 6 15 26 13 5 72

gd7

Mutant 0 3 2 2 11 8 6 32

WT-like 0 3 1 5 13 4 0 26

Tl10B

Mutant 0 4 5 4 9 1 2 25

WT-like 0 7 4 5 21 8 0 45

All embryos in bcd12 and Tl10B have been stained for ftz and sna mRNA expression. The embryos in gd7 have been stained for ftz and either sna or zen 
expression. The number of PointClouds judged to be derived from homozygous mutant females (mutant) and heterozygous wild-type-like females 
(WT-like) are given. The release contains some additional embryos for which the staging was ambiguous.
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Apical/basal nuclear displacement

While exploring the structure of our PointClouds, we discov-

ered that, during stage 5, the PointCloud surface becomes

increasingly rough due to small apical or basal displacements

of nuclei. To quantify this, we measured the displacement of

each nucleus with respect to a smooth surface fitted through

its neighbors (Figure 5). This showed a complex morphologi-

cal pattern that, like the nuclear density plots, correlated to

the expression patterns of transcriptional regulators and later

morphological features such as the ventral furrow. The most

extreme of these features was an approximate 0.5 µm apical

shift above the mean fitted surface, which is equivalent to a

single pixel distance in the imaging plane, or about a third of

a pixel in the axial direction. Our methods achieved such

accuracy because the location of a nucleus in the PointCloud

is given by its center of mass, which achieves sub-pixel accu-

racy. Given the small scale of these movements and the fact

that the averages were of a similar order to the standard devi-

ation between individuals (0.7 µm), it is unclear if they have a

biological function. However, the ability to measure such

small variations demonstrates the sensitivity of our methods,

compared to previous analyses that looked by eye for such

irregularities prior to gastrulation and failed to detect them,

presumably because of their small size [23,27].

The location of pair rule gene stripes

In addition to morphology, our PointCloud data provided the

first opportunity to characterize spatial gene expression pat-

terns in three dimensions. Previous analyses of gene

expression in the blastoderm have generally relied on either

visual inspection of photomicrographs or quantification of

expression stain intensities in narrow one-dimensional strips

running along either the a/p or d/v body axes (for example,

[6,28]). For our initial three-dimensional analysis, we

mapped the locations of the expression stripe borders of three

pair rule genes, eve, ftz and paired (prd), that are a key part

of the cascade that determine cell fates along the a/p axis.

First, we divided the embryo surface into 16 strips running

along the a/p axis that were evenly spaced around the embryo

circumference. For each strip, inflection points were then

Comparing segmentation results on the top and the sideFigure 3

Comparing segmentation results on the top and the side. Using a maximum projection, we show two portions of a three-dimensional image of an embryo 
fluorescently stained to label nuclei. (a) A projection along the optical axis, yielding a x-y image (the top of the embryo); (b) a projection perpendicular to 
that, yielding a x-z image (the side of the embryo). The nuclei on the top of the embryo appear well separated and distinct (a). Seen from the side, 
however, individual nuclei appear elongated along the z-axis due to limited axial resolution, which makes them more difficult to identify (b). The 
segmentation algorithm provided an accurate segmentation of nuclei (c) on the tops of embryo images, but (d) on the sides, a model was used to fine-tune 
the segmentation, resulting in a less accurate result.

(a) (b)

(c) (d)
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Stage 5 blastoderm embryos show a complex pattern of nuclear densitiesFigure 4

Stage 5 blastoderm embryos show a complex pattern of nuclear densities. (a) A schematic representation of how information calculated on the three-
dimensional surface constructed from a PointCloud was projected onto a surrounding cylinder and the cylinder was then unrolled to produce a planar 
map. In these cylindrical projections, anterior is to the left, posterior to the right, the dorsal midline is at the top and bottom, and the ventral midline is in 
the middle. The distance along the a/p axis is given as a percent egg length (EL). (b-d) Average local nuclear density maps were computed from 294 
embryos. The maps in (b,d) were computed from the 'top' and 'bottom' portions of each embryo image only, where the segmentation is most accurate. 
The map (c) was computed from the 'sides' only. The two maps broadly agree, but on the sides of the embryo images the segmentation algorithm has 
underestimated the number of nuclei dorsally and overestimated the number ventrally. Isodensity curves were plotted over a color map representing local 
average densities from 0.025 nuclei/µm2 (dark blue) to 0.05 nuclei/µm2 (dark red) (b,c). The average expression patterns of eve (green) and snail (red) are 
shown with the isodensity contour (d). The most anterior stripe of eve follows a ridge of locally high density, and the boundaries of snail expression follow 
contour lines along about half the length of the embryo.
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used to estimate the location of stripe borders along the a/p

axis. The inflection point of a slope is defined as its steepest

point (that is, a local maximum in the derivative).

Figure 6 plots the stripe border locations in two-dimensional

orthographic projections. The data show that at approxi-

mately 57% egg-length the pair rule stripes maintained a rel-

atively constant a/p position around the embryo

circumference as measured in each of the 16 strips. This was

not the case, however, for the stripes more anterior and pos-

terior of this point. Between the dorsal and ventral midlines,

stripes were displaced by up to 9.3% egg length (for example,

eve stripe 7), or approximately 7 cell diameters. Furthermore,

our data show that the stripes are curved, not straight.

The fact that a/p positions of pair rule stripes vary along the

d/v axis has long been apparent from visual inspection of low

resolution two-dimensional data (for example, [29]). The

nomenclature commonly used to describe the blastoderm

system, however, does not easily accommodate this displace-

ment. Pair rule genes are often said to specify position only

along the a/p axis. Yet, using the traditional definition that

the d/v and a/p axes are straight and perpendicular to each

other, the relative locations of pair rule stripes clearly change

along both axes and thus have the potential to specify infor-

mation along the d/v axis also. For example, a line orthogonal

to the a/p axis at 80% egg length passes from ftz stripe 7 at the

dorsal midline, across eve stripe 7, to the center of ftz stripe 6

at the ventral midline (Figure 6). For pair rule genes to be said

to only specify the a/p position, the principal body axes would

have to be redefined in such a way that they curve to follow

stripe expression. While we do not necessarily advocate such

a coordinate system, as we show later, it is at times

convenient to derive measures by following gene expression

features around the circumference of the embryo, rather than

along a straight body axes.

We also found that pair rule genes do not always maintain the

same register along the a/p axis. When eve and ftz stripes

were compared, they had largely non-overlapping comple-

mentary patterns that do maintain the same registration rel-

ative to each other, both along the a/p axis and around the

circumference of the embryo, consistent with previous

reports [30] (Figure 6a). In contrast, the registration between

eve and prd stripes changed. For example, prd stripe 1 has a

much larger overlap with eve stripe 1 than prd stripe 7 has

with eve stripe 7. In models of pair rule regulation, gene

expression patterns are typically said to maintain spatial reg-

istration (for example, [31-35]). Clearly this is not always the

case, implying that the rules that govern regulatory networks

are more subtle and complex than current models suggest.

As was the case with measurements of morphology, these

stripe feature extraction measurements also provided an

indication of the accuracy of our methods. The 95% confi-

dence limits along the a/p axis (Figure 6) are small compared

to the stripe displacements noted, indicating that the changes

observed are significant in our assays.

Measuring relative intensities of gene expression 

stripes

One of the strongest motivations for developing our gene

expression analysis pipeline was the desire to obtain quanti-

tative descriptions of gene expression levels. It is well known

that the expression of transcription factors changes quantita-

tively from cell to cell and that this results in quantitative

responses in the rate of transcription of their targets (for

examples in the Drosophila blastoderm, see [6,36,37]). Our

methods cannot precisely capture absolute levels of gene

expression, largely due to variations in labeling efficiency

between embryos and microscope performance. At a mini-

mum, however, we ought to capture relative levels of expres-

sion, which should be adequate for determining regulatory

relationships between transcription factors and their targets.

We addressed three questions to help establish how well our

methods provide a quantification of relative expression. First,

did our attenuation correction correctly overcome the prob-

lem of signal attenuation through the depth of the embryo to

provide reliable quantification in three dimensions? Second,

did our enzyme-based mRNA labeling methods give

quantitatively similar results to antibody-based labeling of

protein, which is generally viewed as giving fluorescence

Patterns of nuclear displacement from the PointCloud surfaceFigure 5

Patterns of nuclear displacement from the PointCloud surface. The 
location of each nucleus with respect to a smooth PointCloud surface was 
mapped and averaged over the same cohort of embryos used in Figure 3 
and displayed as a cylindrical projection. The map shows that the average 
apical (positive) or basal (negative) shift of nuclei forms a pattern that 
appears to correlate with cell fate and the expression patterns of 
blastoderm transcriptional regulators. Egg length (EL).
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intensities proportional to expression levels? Third, was our

quantification of expression patterns sufficiently consistent

between embryos that relative expression patterns for each

gene could be determined?

The accuracy of our attenuation correction was simple to test

because the corrected gene expression levels we derived must

be independent of the orientation of the embryo when it was

imaged. Therefore, we compared expression intensities at the

same location on the same stripe for multiple embryos

imaged in different orientations. We compared the average

Locations of stripes of the pair rule genes ftz, eve and prdFigure 6

Locations of stripes of the pair rule genes ftz, eve and prd. The locations of stripe borders along the a/p axis were computed at 16 locations around each 
embryo; the measurements for all embryos were averaged. The results are displayed as orthographic projections in which the anterior of the embryo is to 
the left and the dorsal midline to the top. Pair-wise comparisons of the expression of (a) eve and ftz and (b) eve and prd are shown. The error bars give 
the 95% confidence intervals for the means. The relationship between eve and ftz stripes was constant, but prd stripes shifted their registration relative to 
eve's along both the a/p and d/v axes. The data for eve expression were derived from n = 215 embryos at stage 5:50-100%, ftz from n = 155, and prd from 
n = 17. Egg length (EL).
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levels of expression at the left and right lateral midlines of a

single eve expression stripe. Expression was averaged from a

group of 52 embryos where the lateral portions of the embryo

were at the top and bottom of the embryo relative to the

microscope objective, and 31 embryos where these regions

were on the side. The average expression level was plotted

along the a/p axis, giving a profile of the rising and falling

level of expression across the width of a stripe. Figure 7a

shows that mean expression profiles for the top and bottom

groups were indistinguishable, indicating that the attenua-

tion correction was accurate. But the side group had a peak of

expression at the center of the stripe about 10% higher, indi-

cating a modest error in quantifying expression at the sides of

the image. We suspect that this error was caused by blurring

along the optical axis. This distributes expression fluores-

cence signal from one cell to its neighbors on the sides of the

image, and from one cell to the background on the top and

bottom of the image. Since this error is small and known,

more accurate estimations of expression could be achieved by

averaging data from embryos in a variety of orientations or, if

desired, by weighting against data derived from the sides of

three-dimensional images or building an explicit model to

correct for this error.

The method we used to fluorescently label mRNA expression

patterns included a signal amplification step with horseradish

peroxidase enzyme that, to our knowledge, has not been

shown to yield fluorescent product in proportion to the

amount of mRNA. In contrast, protein stains with fluoro-

phore-conjugated antibodies are generally considered to be a

proportional measure of protein expression levels, and a

recent analysis by Thomas Gregor et al. has confirmed this

assumption (T Gregor, E Wieschaus, A McGregor, W Bialek,

and D Tank, personal communication). As an indirect test of

whether our mRNA detection method provides a linear meas-

ure of RNA concentration, we compared the relative levels of

mRNA and protein for one gene, knirps (kni). Because pro-

tein expression patterns lag mRNA expression patterns in

time, we compared expression of mRNA in early stage 5

embryos to protein expression at mid stage 5. As Figure 8

shows, the relative levels of expression of kni protein and

mRNA closely match. Thus, our mRNA detection methods

and antibody-based protein detection methods appear to be

similarly quantitative.

To examine the consistency of our quantification methods

across embryos, we examined the variation in expression lev-

els between measurements from individual PointClouds (Fig-

ure 7b). Multiple factors contributed to this variation,

including natural variation between individual embryos and a

range of inaccuracies that could have been introduced by our

pipeline, such as differences in scaling, background staining,

imaging noise, and segmentation errors. Given this, the simi-

larity of the data was reassuring and suggested that our data

were a useful guide to relative gene expression.

Pair rule expression within stripes varies around the

d/v axis and is different for adjacent stripes

To further explore the consistency of our quantification, we

compared expression levels for each stripe for several pair

rule genes. We first measured the local maximum intensity in

different regions around the circumference of the embryo

within each stripe. In other words, expression was compared

along the stripe in the direction of the d/v axis, but not along

the straight line of the d/v axis so as to avoid the complication

Expression intensity profiles taken from embryos imaged in different orientationsFigure 7

Expression intensity profiles taken from embryos imaged in different 
orientations. (a) The average intensity profile measured on the image 
bottom (blue), side (green) or top (red) with respect to the orientation of 
the embryo in the microscope. Intensities for eve stripe 1 were measured 
within two strips 1/16th of the width of the embryo circumference located 
on the left and right lateral midlines, after normalizing the expression 
values by setting the 1st percentile of the values in the whole embryo to 0 
and the 99th percentile to 1. The plot shows the average intensity along 
the a/p axis for these strips. The difference in height between the three 
graphs gives an indication of the orientation-specific error. The measured 
intensity differs by less than 10% when the embryo surface is 
perpendicular or parallel to the optical axis. (b) An indication of the 
variation between individual PointClouds; the 52 profiles used to obtain 
the top average profile in (a).
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caused by the three-dimensional shape of the stripes. As Fig-

ure 9 indicates, our methods showed clear quantitative

differences in expression both between stripes and within

individual stripes in the direction of (but not along) the d/v

axis. The fact that these differences are less than the 95% con-

fidence limits for the mean intensity shows that our methods

are sufficiently consistent to detect these variations.

In the case of ftz, the expression profiles of stripes 1 and 2

were similar to one another; those of stripes 3 to 6 were also

similar, but the profiles of both of these groups of stripes dif-

fered from one another and from stripe 7 (compare Figure 9a-

c). Stripes for eve, prd and sloppy paired (slp1) also showed

different relative levels of expression, and there was no appar-

ent relationship between equivalent stripes for each of these

genes. The magnitudes of many of these differences in expres-

sion were up to and, in some cases, greater than two-fold.

There are many precedents for changes in transcription factor

concentrations of this magnitude affecting the control of

downstream target genes, such as the effect of eve concentra-

tion on ftz [37] or the number of bcd copies on its target genes

[36,38]. Thus, it is quite possible that these changes in pair

rule expression will have a functional impact on the network.

Figure 10 provides another view of this d/v modulation,

showing that the spatial pattern proscribed by expression of

ftz above a given threshold does not specify a constant width

segment of cells. The highest levels of ftz expression do not

even specify the full stripe around the circumference of the

embryo; see, for example, the group of cells expressing ftz

above 75% of the maximum level.

Implications for the specification of positional 

information by pair rule genes and the interplay of the 

a/p and d/v regulatory systems

The principal biological function of each pair rule gene is pre-

sumed to be to specify repeated locations within the embryo,

each stripe specifying (at least to a first order approximation)

the same information. Although qualitative differences in

expression levels around the embryo circumference for

individual stripes of pair rule genes have been noted in a few

cases previously (for example, [39,40]), in general, little con-

sideration has been given to changes in expression either

between equivalent positions on different stripes or between

different locations within stripes in the direction of the d/v

axis. The variation in stripe position and expression levels

suggests that genes whose principal function is to specify

expression along the a/p axis have the potential to also convey

some modest patterning information along the d/v axis.

Conversely, the fact that pair rule gene expression changes

quantitatively in the direction of the d/v axis also implies that,

directly or indirectly, d/v axis regulators, such as twist, snail

and dorsal, are responsible for generating these changes. As

we show in the accompanying paper [20], this is the case. The

regulatory systems controlling the two principal body axes

appear to mutually interact early during zygotic

transcription.

Conclusion
The Drosophila blastoderm embryo is one of the most

intensely studied systems in developmental biology, both in

the areas of transcriptional regulation and morphological

development. The fact that our three-dimensional methods

have quickly uncovered new features of this system suggests

there is still much to learn about many developmental proc-

esses. The detailed complexity of morphology and gene

expression revealed by these methods, much of which cannot

be readily judged by eye, suggest that quantitative three-

dimensional measurements and computational analyses will

be essential if we are to truly describe and understand animal

regulatory networks.

The methods we have presented here and in the accompany-

ing paper are by no means sufficient, however. Further work

will be required to establish how well our data capture levels

of gene expression. The dataset we have released provides

information for individual embryos, each showing the expres-

sion of only a pair of genes. To examine regulatory

relationships between transcription factors and their targets,

it will be important to compare the expression of many genes

within a common framework [41,42]. To this end, we have

developed methods for aligning information from multiple

Methods for quantifying relative protein and mRNA levels give similar resultsFigure 8

Methods for quantifying relative protein and mRNA levels give similar 
results. Average expression of kni mRNA at the beginning of stage 5 (7 
embryos) is compared to kni protein expression at mid-stage 5 (17 
embryos). The two graphs show the expression along the a/p axis (x-axis) 
at the ventral (top graph) and dorsal (bottom graph) midlines. The levels 
of fluorescence for mRNA labeling and protein labeling have remarkably 
similar shapes. Egg length (EL).
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PointClouds to allow such cell-by-cell comparisons of the

expression of hundreds of genes and are using these to

explore the relationships between regulator and target gene

expression patterns (CC Fowlkes and J Malik, unpublished

data). In addition, our methods will require further develop-

ment before they can be applied to the analysis of gene

expression in later stages of Drosophila development and to

other animal systems. The broader application of quantitative

three-dimensional analyses will likely require the efforts of a

large multidisciplinary community of researchers.

Materials and methods
Fly stocks and nucleic acid probes

Wild-type embryos were cultured in cages for many years,

starting with a nominally CantonS strain.

The relative levels of pair rule stripe expression vary between and along stripesFigure 9

The relative levels of pair rule stripe expression vary between and along stripes. Plotted are averaged expression intensities of gene stripes for (a-c) ftz, 
(d) eve, (e) prd and (f) slp1. The various stripes of each gene show marked differences in expression profiles and each gene has a unique mode of variation 
in the direction of the d/v axis. The error bars give the 95% confidence intervals for the means. The data for eve expression were derived from n = 215 
embryos at stage 5:50-100%, ftz from n = 155, prd from n = 17, and slp1 from n = 23.
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Full length eve, ftz, gt, hb, kni, Kr, prd and slp1 cDNAs were

inserted in Gateway pDEST-vectors (M Stapleton, B Gron-

dona, unpublished data). A 1.7 kb Sna cDNA fragment in

pBSK(+) was a gift from E Bier (UC Santa Cruz, CA, USA). To

create linear DNA templates, pDEST full length cDNAs were

amplified using extended vector primers such that the T3

primer sequence was 3' of the cDNA and the T7 primer lay 5'

(T7: 5'-GTA ATA CGA CTC ACT ATA GGG ACA TCA CCT CGA

ATC AAC A; T3: 5'-AAT TAA CCC TCA CTA AAG GGC GGG

CTT TGT TAG CAG C). The pBSK+ cDNA was PCR-amplified

using M13 ± primers. Antisense biotin (BIO), digoxigenin

(DIG) or dinitrophenyl (DNP)-labeled RNA probes were

prepared by in vitro transcription from PCR generated DNA

templates for each gene using T3 RNA polymerase. To

increase signal, the probes were not hydrolyzed [43].

Fluorescent triple-staining

Wild-type embryos were collected for 1 h and matured for 3 h

at 25°C, then dechorionated with 50% household bleach for 3

minutes and fixed for 20 minutes with 1:4 (v/v) solution of

10% formaldehyde (Polysciences, Warrington, PA, USA) and

heptane (Sigma, St. Louis, MO, USA). Fixed embryos were

devitellinized by shaking vigorously in 1:1 methanol/heptane,

after which they were washed three times with methanol and

once with 100% ethanol, and stored in ethanol at -20°C.

Embryos were rehydrated in phosphate buffered saline pH

7.2, 0.05% Tween20, 0.2% TritonX-100 (PBT+Tx), post-fixed

for 20 minutes in 5% formaldehyde/PBT+Tx, and, after sev-

eral washes in hybridization buffer (50% formamide, 5 × SSC

pH 5.2 to 5.4, 0.2% TritonX-100, 50 µg/ml heparin) at 55 to

59°C, prehybridized for 1 to 5 h in hybridization buffer. There

was no proteinase K treatment. To improve the staining

quality, the prehybridized eggs were stored in -20°C hybridi-

zation buffer for at least 16 h.

For each in situ hybridization, 50 to 100 µl of embryos were

incubated in 300 µl of hybridization buffer with an RNA

probe for one gene labeled with DIG and an RNA probe to a

second gene labeled with either DNP or BIO. After 12 to 48 h

co-hybridization at 55 to 59°C and several high-stringency

and low stringency washes, the two probes were detected

sequentially. The DIG-labeled probe was detected using

1:500 horseradish peroxidase conjugated anti-DIG-antibody

(anti-DIG-POD; Roche, Basil, Switzerland) and either a Cy3

or coumarin-tyramide reagent (Perkin-Elmer TSA-kit,

Wellesley, MA, USA). Before the second probe was detected,

the anti-DIG-POD antibody was first removed with several 15

minute washes with 50% formamide, 5 × SSC, 0.2% TritonX-

100 at 55°C, followed by inactivation of the remnants with 5%

formaldehyde/PBT+Tx. Then the second probe was detected

using 1:100 anti-DNP-HRP (Perkin-Elmer) and either the

complementary coumarin or Cy3-TSA-tyramide reaction. To

allow detection of nuclei with a nucleic acid binding stain, all

RNA in the embryo was first removed by digestion with 0.18

µg/ml RNAseA in 500 µl overnight at 37°C, and then the DNA

The boundaries of relative levels of ftz expressionFigure 10

The boundaries of relative levels of ftz expression. Plotted are the averaged locations of various threshold levels of ftz expression derived from 155 
embryos, computed and displayed similarly as in Figure 6. For example, those cells expressing ftz above 75% of the maximum level of expression are 
shown in red. Note the shape of the stripes above the 50% threshold is similar to that given by the inflection points (Figure 6), but not equal. For example, 
the dorsal-most point of stripe 7 is less than 50% of the maximum expression level for more than half the embryos (that is, the stripe at that point is not 
shown in this graph). Egg length (EL).
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was stained overnight by incubation in 500 to 1,000 µl of a

1:5,000 dilution of Sytox Green dye (Molecular Probes,

Carlsbad, CA, USA).

The kni protein expression was detected with guinea pig-anti-

kni (a gift from J Reinitz, Stony Brook University, Stony

Brook, NY, USA) and Alexa488-anti-guinea pig (Molecular

Probes) in embryos hybridized against ftz DIG-mRNA that

was detected with coumarin tyramides. For these embryos

only, the nuclei were detected using mouse-anti-histoneH1

and Alexa555-anti-mouse.

The stained embryos were dehydrated with an ethanol-series

and mounted in xylene-based DePex (Electron Microscopy

Sciences, Hatfield, PA, USA). A #1 coverslip was placed on a

bridge formed by two #1 coverslips to prevent embryo

flattening. This mountant has the advantages of creating per-

manent slides that protect the fluorophore from oxygen,

which makes the samples highly resistant to photobleaching.

To estimate the refractive index of the mountant (which

determines the scaling of the z-axis), we used the assumption

that embryo morphology was independent of the orientation

of the embryo when it was imaged. A d/v cross-section of

multiple embryos was taken at 50% egg length. Within these

cross-sections, the ratio of the d/v length to the left/right

length was plotted against orientation angle (data not

shown). The refractive index was then computed so that this

ratio was independent of the orientation. The average refrac-

tive index calculated using this method was 1.62 ± 0.06.

Temporal staging

Each of the imaged embryos was individually staged from a

phase contrast view and the stages were recorded into BID.

Embryos of stage 5 [17] were subdivided into cohorts based

on the degree to which membranes had invaginated during

cellularization. For example, an embryo in which the cellular

membranes had invaginated 50% of the distance across the

cortical cytoplasm would be staged as stage 5:50%. Because

the rate of cellular invagination varies along the d/v axis,

being most rapid ventrally, the percentage of membrane

invagination was visually estimated where possible at the

ventral surface of the embryo. If the embryo was lying in an

orientation where the ventral surface was not visible in cross-

section, however, we estimated the degree of membrane

invagination at that side of the embryo where invagination

was most advanced. Later, the stage of these embryos was

corrected based on our observation that membrane invagina-

tion is about 70% laterally when it is at 100% ventrally, yet at

40% invagination it is approximately even all around the

embryo. The degree to which membranes had invaginated

ventrally was estimated using a linear mapping for cases

where membranes had invaginated laterally at least 50%

using the function 50 + (5/2)(v - 50) (where v is the lateral

invagination percentage). The d/v orientation of all embryos

was determined from their respective PointClouds based on

gene expression features (see below). For the analyses pre-

sented in this paper, we used embryos in the range stage 5:50-

100% invagination, which is a time window of 10 to 15 min-

utes [44].

Imaging

Three-dimensional images of the whole embryos were

obtained on a Zeiss LSM 510 META/NLO laser scanning

microscope (Carl Zeiss MicroImaging, Inc., Thornwood, NY,

USA) with a plan-apochromat 20×, 0.75 numerical aperture

objective. This objective allowed imaging of entire embryos in

a single field-of-view while providing sufficient resolution

and sensitivity for the subsequent analyses. The fluorophores

were excited simultaneously by dual 750 nm photons sup-

plied by a Chameleon laser (Coherent, Inc., Santa Clara, CA,

USA). The resulting emission spectrum was split by dichroic

mirrors and collected by three independent photomultiplier

tubes (PMTs). The signals were digitized into 12 bits and

recorded as three-channel images, each of a size up to 1,024

by 1,024 by 150 pixels, which varied depending on the embryo

size. Each pixel had a transverse dimension of 0.45 µm and an

axial dimension of approximately 1.6 µm, which varied

slightly with the refractive index of the mounting medium.

The gain and offset of the PMTs were set so that all the pixels

of interest fell within the 12 bit dynamic range.

Segmentation

The position and extent of the nuclei on the surface of the

embryo were defined by a model-based three-dimensional

segmentation analysis. Here we discuss some of the main

aspects of the algorithm. All image processing and analysis

algorithms were implemented in MATLAB (The MathWorks

Inc, Natick, MA, USA) with the DIPimage toolbox [45,46].

The segmentation routines used as input the image of the

Sytox DNA stain channel, labeled 'DNA image' in Figure 11.

To restrict the analysis to the nuclei on the embryo surface, a

three-dimensional binary mask, the 'shell mask' (Figure 11),

was defined around the embryo surface by taking an adaptive

threshold of the 'DNA image' that varied on a per-slice basis

to account for signal attenuation (Figure 12). This shell mask

was used to direct spectral unmixing of the Cy3, Sytox and

Coumarin channels. It also allowed the initial attenuation

correction of the Sytox channel required for the segmenta-

tion. This was accomplished using a local contrast stretch

within the shell mask. A global threshold was then applied to

the unmixed, attenuation-corrected Sytox channel, which

was then masked by the shell image. The resulting 'DNA

mask' (Figure 11) identified the regions in the image that

belong to the blastoderm nuclei.

To locate individual nuclei, the DNA image was convolved

with a narrow Gaussian to reduce noise. Local maxima in the

resulting image, termed 'seeds' (Figure 11), were then used to

determine nuclear position. Multiple seeds were often

observed in a single nucleus along its apical-basal axis on the

sides of images, due to anisotropic resolution and nuclear
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geometry. Multiple seeds were also occasionally detected on

the bottom of the embryo, where the signal to noise ratio was

low due to signal attenuation. To eliminate multiple seeds,

the embryo 'surface normal' for each seed was computed by

applying the structure tensor [47,48] to the three-dimen-

sional skeleton [49-51] of the shell mask(Figure 11). Neigh-

boring seeds that lay along this normal were assumed to

belong to the same nucleus and simply removed, leaving only

a set of 'pruned seeds' (Figure 11).

Once a single seed was determined per nucleus, the pruned

seeds were grown to fill the nuclei, using a region-growing

algorithm that combined a watershed algorithm [51,52] and a

gray-weighted distance transform [51,53,54] of the DNA

image (Figure 11). The combination of these two algorithms

created nuclear boundaries that matched actual boundaries

when visible, yet divided distances between seeds equally

when boundaries where not distinguishable.

In some cases nuclei, predominantly on the sides of images,

did not posses a seed and were joined to one of its neighbors.

These regions were detected by comparing their sizes to aver-

age sizes taken from the top and bottom of the image where

segmentation was most accurate (Figure 3). The original

seeds for these regions were then replaced by an appropriate

number of seeds using a cluster analysis algorithm [55] that

placed seeds on the brightest possible locations that created

regions of similar total intensity. The region growing algo-

rithm described above was executed again on this refined set

of seeds. Finally, regions that were still too large were just

split into an appropriate number of equal volumes without

regard for the pixel intensities. Our Segmentation Volume

Renderer [18] was used extensively during the development

of the segmentation algorithm.

Finally, the segmentation algorithm includes additional fea-

tures that make it more robust to images with specific arti-

facts that would have otherwise resulted in failure to generate

a PointCloud. One example is the occasional presence of

impurities on the embryo surface that caused a bright artifac-

tual fluorescence signal across all channels. These regions

were detected in the image and ignored during subsequent

analysis. A second example is the occasional presence of a

yolk nucleus proximal to the blastoderm nuclei. Such a yolk

nucleus results in a shell mask with a local basal bulge. This

condition was simply detected and removed. For full details

Overview of the segmentation algorithmFigure 11

Overview of the segmentation algorithm. The main steps of the algorithm are illustrated here on a small portion of a slice through the middle of an 
embryo. Note that the actual images are three-dimensional and comprise a whole embryo. The DNA image is the input Sytox channel. A shell mask 
defines the region that contains all the information of interest for the segmentation algorithm: the blastoderm nuclei with a small part of the cytoplasm. 
The DNA mask distinguishes the nuclei from the background (cytoplasm, yolk, and so on). The seeds image contains the local maxima of the smoothed 
DNA, a Gaussian filtered version of DNA image. Surface normals are computed for each seed from the shell, and used to prune the seeds. The image 
nuclei is the nuclear segmentation mask, dividing the DNA mask into individual nuclei. The dotted arrow going back to the pruned seeds represents the 
addition of seeds according to the results obtained in nuclei. The apical cytoplasm and basal cytoplasm mark the cytoplasmic regions for each nucleus 
estimated using a tessellation.

DNA image Shell mask DNA mask

Smoothed DNA

Nuclei

Apical cytoplasm

Basal cytoplasmSeeds Pruned seeds

Surface normals
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on the segmentation algorithm refer to the source code, avail-

able online [10].

Measuring expression levels associated with each 

nucleus

To capture the labeled mRNA expression levels, we first had

to estimate the cellular extent surrounding each nucleus. This

was achieved by growing the nuclear segmentation mask, in

the apical and basal directions, into the cytoplasm by tessella-

tion. The distances grown were established by examining

cytoplasmic auto-fluorescence in several sample images. This

was then used in combination with the nuclear mask to divide

each cell into three regions: apical, nuclear and basal (Figure

11). The expression level was estimated in each of these

regions and in the whole cell by taking the average values

within them for both the Cy3 and Coumarin channels. These

expression values, together with the average value of the

Sytox channel within each nucleus, the center of mass of the

nuclei, the volumes of the various cellular regions, and the

neighborhood relationshps between cells were written to a

PointCloud file.

For subsequent analysis, expression values from the Point-

Clouds were corrected for attenuation by dividing these val-

ues with the average Sytox intensity within the corresponding

nucleus. This approach assumes that the average Sytox

intensity is constant from nucleus to nucleus, and it is repre-

sentative of the attenuation of the other channels.

Cylindrical and orthographic projection of the 

blastoderm

We use two methods to display data on the embryo surface:

the cylindrical projection and the orthographic projection.

The cylindrical projection provides an 'unrolled' view of the

full surface, which we use to display data mapped onto the

blastoderm surface. The orthographic projection shows only

half the surface, but produces less distortion and, therefore, is

useful to show the location of borders of the a/p patterning

system. The center of mass of the embryo was computed from

the three-dimensional nuclear coordinates in the PointCloud

as the mean coordinate of all points. The principal a/p axis of

the embryo was estimated as the eigenvector associated with

the smallest eigenvalue of the inertia tensor [47]. The location

of the dorsal-most point was determined manually for each

PointCloud from the ftz or eve expression pattern. The

embryo was then translated so that the center of mass was at

the origin, and rotated so that the estimated a/p axis lay on

the x-axis and the d/v axis lay on the z-axis, anterior to the left

(negative x), dorsal up (positive z). The cylindrical projection

then used the x-coordinate on the horizontal and ϕ on the ver-

tical, where y = r sin(ϕ) and z = r cos(ϕ). This resulted in a rec-

tangular plot with the embryo's anterior to the left, the dorsal

midline split to the top and bottom, and the ventral midline in

the middle. Orthographic projections simply used the x-coor-

dinate on the horizontal and the z-coordinate on the vertical,

discarding y. As a further aid in managing the complexity of

this three-dimensional dataset, we developed a flexible visual

analysis tool, PointCloudXplore [19], which can be used to

interactively visualize and analyze the embryo PointClouds in

three dimensions.

Computing packing density of nuclei

Nuclear packing densities were calculated as the number of

nuclei per unit surface area. The surface of the embryo was

first identified from the PointCloud using the Eigencrust

algorithm [56]. Briefly, a region was defined by sweeping a 15

µm arc on the embryo surface about each nucleus. The den-

sity was then estimated as the number of nuclei inside this

region divided by its area. Average density maps were com-

puted by resampling the per-nucleus density estimates for a

given embryo onto a regular grid in cylindrical coordinates,

and averaging these resampled projections over the embryos

in a temporal cohort. Only the top and bottom parts of the z-

stacks were used for density analyses, except for method eval-

uation comparison in Figure 4c, where the laterals of the z-

stacks were used.

Computing apical/basal shift of nuclei

Apical/basal shift was measured by fitting, using least

squares, a quadratic surface to the 200 nearest neighbors of a

nucleus, and determining the distance of the nucleus to this

surface. Average shift maps were computed using resampled

cylindrical projections, in the same manner as the average

density maps. To eliminate the possibility that bleed-through

from mRNA stain channels might influence the segmentation

Sytox attenuation with depthFigure 12

Sytox attenuation with depth. Relative intensity of the Sytox stain within 
each nucleus, plotted against the depth of the nucleus along the optical 
axis. Sytox levels were normalized by scaling the 99th percentile of 
intensity to 100.
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BID schemaFigure 13

BID schema. Each table corresponds to a step in the experimental process. The tables have been grouped into four blocks corresponding to a coarser 
subdivision of the pipeline.
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and localization of nuclei in the Sytox channel, we also exam-

ined average shift maps produced from subsets of embryos

excluding those embryos stained for particular genes (data

not shown). All of these maps showed qualitatively similar

patterns of nuclear displacement.

Measuring expression boundary location

To determine an initial estimate of the boundary location, two

algorithms were created to find the approximate location of

the pair rule and gap gene stripe boundaries from PointCloud

data. The first algorithm was fully automatic, once the

number of stripes was specified. It used a local threshold to

detect regions that contain the highest expression values. The

edges of these regions provided approximate locations for

stripe boundaries. A second semi-automatic algorithm was

developed for immature patterns (such as the early ftz pat-

tern), and those that did not segment properly because of

imaging artifacts. In these cases, a user clicked on a nucleus

close to the stripe border of interest. The shortest geodesic

path [57] that circumnavigated the embryo through this point

was determined. This was done using a gray-weighted dis-

tance transform [51,53,54] of the gradient of the stripe

expression pattern, taken along the a/p direction, and

resulted in a path that followed the stripe edge. When this

failed, the stripe boundary was determined manually by plac-

ing eight points on each edge.

To compute the location of the stripe boundaries, the embryo

was first divided into 16 equal strips running along the a/p

axis. Nuclei that fell within each strip were projected onto the

a/p axis and their expression values were sampled at 400 reg-

ular intervals, using normalized convolution [58] with a

Gaussian of σ = 1 interval (this yields 16 one-dimensional

graphs). Accurate boundaries of expression stripes were then

determined by finding the center of mass of peaks in the gra-

dient of expression along the strip. The center of mass was

used because it is more robust against noise than the expres-

sion gradient maximum, which marks the expression inflec-

tion point, a feature commonly used to mark edges.

For Figure 10 where the boundaries were computed using a

threshold, we thresholded the one-dimensional projections of

the 16 strips as defined above, then determined the location of

the boundary closest to the expected boundary location, as

given by the inflection points. Due to variation between indi-

viduals, some embryos did not posses all points used in this

graph. The measurements at each point were averaged for all

embryos that possessed a threshold at that point. Where more

than 50% of embryos lacked a point, that point was not

shown.

Measuring stripe intensity

The intensity of pair rule gene stripes was determined using

the 95th percentile of the expression level values (as a more

robust substitute for the maximum), within a region deter-

mined by the 1/16th strip and the stripe borders as deter-

mined above.

Data management and storage

A BID was built to manage and store of all the data and meta-

data produced by this project [10]. BID tracks the entire

experimental process from the embryo preparation (geno-

type, phenotype, collection conditions, maturation condi-

tions, and so on) and hybridization (nucleic acid probes,

secondary antibodies, fluorophores, and so on, including

detailed information such as the vector DNA sequence), all

the way to the PointCloud data files (with associated meta-

data such as a quality score, thumbnails and links to the raw

image data). For each step in the experimental process, a cor-

responding table or set of tables describes the fine-grained

details of that process (Figure 13).

Sophisticated search functions and overviews of the experi-

ments are provided to aid project management. For example,

it is possible to quickly find the slide and embryo location for

a given PointCloud, should it need to be re-imaged or re-

staged. This is accomplished by identifying each slide with a

unique bar code and each embryo that was imaged by its coor-

dinates on the slide. For a full schema see Figure 13.

The raw three-dimensional images are stored in a dedicated

repository, and indexed with BID. Because of their large size

(approximately 400 Mb each), the raw images require a

different backup solution as well as a high-speed network

between the storage and the computers used for processing

them. The independent repository makes this possible.
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