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Abstract 

Over the past few years, energy storage devices have received tremendous interest due to 

the increasing demand for sustainable and renewable energy in modern society. Supercapacitors 

are considered as one of the most promising energy storage devices because of their high power 

density and long cycle life. However, low energy density remains as the main shortcoming for 

supercapacitors. The overall performance of supercapacitors is predominantly determined by the 

characteristics of the electrodes. Specifically, constructing nanostructured electrode material has 

been proven as an efficient way to improve the performance by providing large surface area and 

short ionic and electronic diffusion paths. Another approach to improve the performance of 

supercapacitors is the rational design of the asymmetric supercapacitor (ASC), which can extend 

the operation voltage. In this regard, we have focused on the synthesis and utilization of several 

nanomaterials, in particular, pseudocapacitance materials such as metal oxides and metal 

phosphides, on both positive and negative electrodes, as well as the ASC design and fabrication. 

First, three-dimensional TiO2 nanorod arrays have been synthesized on Ti substrate by a facile 

one-step hydrothermal method and demonstrated as an ideal supercapacitor positive electrode, 

which exhibited good areal capacitance and excellent cycling stability. Owing to the novel 

“dissolve and grow” mechanism, this method provides a simple and low-cost technique for flexible 

supercapacitor application. Second, using cobalt phosphide and iron phosphide as examples, we 

have demonstrated metal phosphides as high-performance supercapacitor negative electrodes for 

the first time. Cobalt phosphide nanowire arrays have been synthesized and presented a high 

capacitance of 571.3 mF/cm2. To improve the cycling stability, gel electrolyte was used to suppress 

the irreversible electrochemical reaction. The flexible solid-state asymmetric MnO2//CoP 

supercapacitor exhibited good electrochemical performance, such as a high energy density of 0.69 



xv 

 

mWh/cm3 and a high power density of 114.2 mW/cm3. Furthermore, a PEDOT coating has been 

adapted to further enhance the cycling stability as well as capacitance performance of FeP nanorod 

arrays. The FeP/PEDOT electrode represents an outstanding capacitance of 790.59 mF/cm2 and a 

good stability of 82.12% retention after 5000 cycles. In addition, a MnO2//FeP/PEDOT ASC was 

fabricated with an excellent volumetric capacitance of 4.53 F/cm3 and an energy density of 1.61 

mWh/cm3. 

Keywords: Supercapacitors, Three-dimensional, Nanostructures, Metal Oxides, Metal 

Phosphides 
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 Introduction 

1.1. Energy Storage Systems 

The energy issue has become one of the most important problems facing the world. In 2015, 

13147.3 million tonnes oil equivalent (Mtoe) of energy have been consumed in the entail world, 

which means approximately 17.45 terawatt (TW) power is needed to run the world and is predicted 

to double by the middle of the century and triple by the end of the century.1,2 The fossil fuels, such 

as oil, natural gas, and coal are and would remain the largest energy source in the foreseeable 

future.3 In consequent, production, transport, and combustion of fossil fuels lead to the emission 

of greenhouse gas, which is the primary reason for the global environmental change.4 According 

to NASA’s Goddard Institute for Space Studies (GISS), the average global temperature has 

increased by about 0.8 ̊ C since 1880, in which two-thirds of the warming was occurred after 1975.5 

At the same time, as finite and rapidly depleting resources, fossil fuels were forecast to be depleted 

in the near future. Even the optimistic estimations predict the oil production decline will happen 

before 2030.6,7 Therefore, increasing concerns about climate change and the depletion of fossil 

fuels lead to the expanded use of renewable energy, such as solar, wind, and hydropower. However, 

a new challenge arises with the remarkable increase in renewable energy usage. Due to the 

intermittence and geographic distribution nature of renewable energy, more reliable energy storage 

systems are highly desired.8 In addition, the ever-increasing demand for energy storage in portable 

electronic devices and clean transportation also requires the progress of energy storage system.9  

Energy exists in many different forms and, therefore, an enormous variety of energy 

storage systems is available. In general, energy storage systems can be divided into different 

classes by the form of storage: electrical (such as Superconducting Magnetic Energy Storage), 
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mechanical (Compressed Air Energy Storage, Pumped Hydroelectric Storage, and Flywheel 

Energy Storage), electrochemical (supercapacitor, battery, and fuel cell), and thermal (such as 

phase change materials).10,11 Electrochemical energy storage systems are considered as the most 

promising technology to meet the pressing need for energy storage because of their numerous 

advantages, such as pollution-free operation, high round-trip efficiency, flexible power and energy 

characteristics, long cycle life, and low maintenance.12–14 

Electrochemical energy storage systems can be distinguished by the energy storage and 

conversion mechanisms. Batteries, fuel cells, and supercapacitors are the most studied 

electrochemical energy storage systems. Fuel cells are different from batteries and supercapacitors 

based on the locations of energy storage and conversion. In batteries and supercapacitors, the 

charge transfer occurs within the electrode, which makes it a closed system. Fuel cells are open 

systems which the active materials undergoing the redox reaction are delivered externally. 

Supercapacitors have the similar configuration, yet different energy storage mechanism to batteries. 

Supercapacitors store energy via a capacitive process arising from an electrochemical double layer 

or pseudocapacitance at the electrode-electrolyte interface.15 

The terms specific energy (in Wh/kg) and energy density (Wh/L) are used to compare the 

energy contents of a system, whereas the capability is expressed as specific power (in W/kg) and 

power density (in W/L). A Ragone plot which contrasts the specific energy and specific power of 

various electrochemical energy storage systems is shown in Figure 1.1.13 Unlike batteries and fuel 

cells, which can store a large amount of energy but offer low power, supercapacitors give much 

higher power density. Owing to other characteristics besides high power, such as short 

charge/discharge time, and excellent cycle stability, supercapacitors have attracted great interest 

in the last decades and emerged as one of the prime important energy storage systems.16–18 
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Figure 1.1. Ragone plot comparison of various electrochemical energy storage systems. (© 2011 

Materials Research Society, reprinted with permission.)13 

1.2. Working Mechanisms 

The difference between batteries and supercapacitors in terms of the energy and power 

density relies on the different charging mechanism, even though they are both based on 

electrochemical process. Li-ion batteries are one of the most important batteries, in which the 

charge is stored by the slow diffusion-controlled insertion of Li+ in the bulk electrode material. On 

the other hand, supercapacitors store charge by adsorption of electrolyte ions or fast redox 

reactions onto the surface of electrode materials (Figure 1.2a-d).19 Since the charging process is 

confined to the surface, supercapacitors can respond to changes faster than batteries, which leads 

to higher power and fast charge/discharge. However, the surface confinement of energy charge 

also results in a lower energy of supercapacitor. 
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The different charge mechanisms of supercapacitors and batteries can be well distinguished 

by the electrochemical measurements (Figure 1.2e-h).19 Supercapacitors exhibit classic 

rectangular cyclic voltammograms (Figure 1.2e) and a linear time-dependent discharge curve 

(Figure 1.2g). In contrast, redox peaks corresponding to oxidation and reduction indicative the 

phase transitions of batteries (Figure 1.2f). The presence of two phases in batteries is also indicated 

by the voltage plateau in the galvanostatic measurement (Figure 1.2h). Interestingly, some battery-

type materials exhibit capacitor-like properties when reaching to the nanometer scale. For example, 

as shown in Figure 1.2h, bulk LiCoO2 shows typical battery behavior with a voltage plateau. 

However, the discharge curve transfer into linear once it reaches smaller scale (6 nm).20 This type 

of materials is nominated as extrinsic pseudocapacitance materials, in contrast to intrinsic 

pseudocapacitance materials, such as MnO2, which display the characteristics of capacitive charge 

storage despite the sizes and morphologies, as shown in Figure 1.2g.21,22 
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Figure 1.2. The charge mechanisms of (a) carbon particles, (b) porous carbon, (c) redox 

pseudocapacitance, and (d) intercalation pseudocapacitance in capacitive energy storage.  Cyclic 

voltammograms of (e) supercapacitor and (f) battery. Galvanostatic discharge behavior of (g) 

supercapacitor and (h) battery. (© 2014 American Association for the Advancement of Science, 

reprinted with permission.)19 

Based on the charging mechanism, supercapacitors can be classified into two categories in 

general: electrical double layer capacitors (EDLCs) and pseudocapacitors. 

1.2.1. Electrical Double Layer Capacitors 

EDLCs use carbon-based active materials as electrodes. As the name implies, for EDLCs, 

the charge is stored in the electric double layer at the electrode/electrolyte interfaces (Figure 1.3). 

As described in 1895 by Hermann von Helmholtz, the ions with electric charges in the electrolyte 

accumulate on the surface of the electrode with opposite charge.23 The layers of the charged ions 

in the electrolyte and counter electronic charge at the electrode surface thus form the so-called 



6 

 

double layer (Figure 1.3a). The double layer structure is analogous to that of conventional 

dielectric planar capacitors separated by a small distance d, approximated as the radius of an ion. 

Thus, the capacitance of EDLC can be written as24 

 r 0 A
C

d

 
   (1.1) 

where r  is the electrolyte relative permittivity, 0  is the vacuum permittivity, A is the electrode 

surface area, d is the distance between the double layer. As a result, the EDLCs present much 

higher capacitance than conventional capacitors due to the extremely thin double layer distance 

(nanometer size) and large surface area. 

The Helmholtz model was later modified by Gouy and Chapman25 with the consideration 

of a continuous Boltzmann distribution of ions in the electrolyte solution. As shown in Figure 1.3b, 

a so-called “diffuse layer” form near the interface of electrode and electrolyte giving by the fact 

that the ions are mobile in the electrolyte solution under the combined effects of thermal diffusion 

and electromigration. However, the Gouy-Chapman model treats ions as point-charges which 

results in an impractical large ion concentration at the electrode surfaces, thus leads to an 

overestimation of the double layer capacitance. To solve this problem, Stern combined the 

Helmholtz model and the Gouy-Chapman model, which the finite size of ions was considered. 

Two regions of ion distribution were explicitly distinguished in Stern model: the inner Stern layer 

and the outer diffuse layer, as shown in Figure 1.3c. In the diffuse layer, ions are distributed as 

Gouy-Chapman model described. Inside the Stern layer, specifically (covalent) adsorbed ions and 

non-specifically adsorbed counterions accumulate at the different distance from the charged 

surface, thus forming the inner Helmholtz plane (IHP) and the outer Helmholtz plane (OHP), 

respectively.26 Another important aspect in EDLC is the potential distribution in the 
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electrode/electrolyte interface. Because of the close packing of ions, for the positive electrode, the 

potential distributions decrease linearly in the Stern layer and reach a plateau in the diffuse layer. 

For ideal binary and symmetric electrolytes consist of two ion species, the electric potential is 

governed by the Bikerman’s model,23 
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  (1.2) 

where 0  and r  are the free and relative permittivity, respectively, Bk  is the Boltzmann constant, 

e  is the elementary charge, AN  is the Avogadro number and T  is the temperature. The local ion 

concentration is expressed as, 
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Figure 1.3. The electrical double layer models and potential distributions at a positively charged 

surface: (a) the Helmholtz model, (b) the Gouy–Chapman model, and (c) the Stern model. (© 2009 

Royal Society of Chemistry, reprinted with permission.)27 

Based on the Stern model, in fact, there are two series double layers near the interface of 

electrode and electrolyte, one is formed in the Stern layer ( STC ) and the other is in the diffuse layer 

( DC ). Therefore, the overall double layer capacitance DLC can be written as23 

 
DL ST D

1 1 1
C C C

    (1.4) 

which CST is given by Eqn. 1.1. and CD can be calculated by28 

 A D D
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where z is the valency of the electrolyte, e is the elemental charge, AN  is the Avogadro’s number, 

c  is the molar concentration of the electrolyte in the bulk, D  is the electric potential, T is the 

absolute temperature, Bk  is the Boltzmann constant, and D  is the Debye length, 

 0r B

D 2 2
A2

k T

z e N c




   (1.6) 

An EDLC device with electrodes A and B, as shown in Figure 1.4, can be treated as two 

capacitors in series with integral capacitances CA and CB. The total integral capacitance CA of the 

device is given by23 

 
1 1 1

T A BC C C
    (1.7) 

 

 

 



10 

 

Figure 1.4. Schematic of an EDLC consisting of Stern and diffuse layers between two planar 

electrodes. (© 2015 Laurent Pilon et al., reprinted under the terms of the Creative Commons 

Attribution Non-Commercial No Derivatives 4.0 License, CC BY-NC-ND.)23 

However, those planar capacitor models are insufficient for justifying the electrochemical 

properties of porous materials, especially when the pore size reaches to micropore range (smaller 

than 2 nm), which was previously presumed that do not contribute to energy storage since its size 

are smaller than that of electrolyte ions. To solve this, Huang et al.29 have established a general 

model which takes pore size into account. For mesopores (2-50 nm), counterions enter the pores 

and accumulate on the pore wall to form an electric double-cylinder capacitor (EDCC, Figure 1.5b) 

and the capacitance is given by29 

 
 

r 02

ln

L
C

b a

 
   (1.8) 

 
  
r 0

ln
C A

b b b d

 



  (1.9) 

where L, a, b and d are the pore length, inner radii, outer radii of cylinders, and the distance of 

approach of the ion to the pore wall, respectively. For micropores (<1 nm), the pore size is too 

small for a double cylinder model, thus an electric wire in cylinder model of a capacitor is formed 

(EWCC, Figure 1.5a), and Eqn. 1.5 becomes29 

 
 
r 0

0ln
C A

b b a

 
   (1.10) 

where a0 is the effective size of the desolvated ion. In this case, the solvation shell was partial or 
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complete removed therefore the ions can enter the cylindrical pore. For macropores (>50 nm), the 

model is reduced to the traditional parallel-plate capacitor model in Eqn. 1.1 (Figure 1.5c). 

 

Figure 1.5. Schematic diagrams of (a) EWCC, (b) EDCC and (c) EDLC models, respectively. (© 

2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, reprinted with permission.)29 

Nevertheless, the “real” charge process is still more complicated than those classic models. 

Because nanoporous carbons generally consist of defective nanoscale graphitic units, they lack 

any long-range order. Such disordered natural leaves all the quantities ill-defined for the interface. 

Therefore, more works have been devoted to the fundamental understanding of the charge 

mechanism at the nano- and subnanoscale, both experimentally and theoretically. In order to fully 

understand the charging process, several aspects must be taken into account.30 First, more accurate 

and realistic structure models of the porous electrode materials are the key to reveal the charge 

mechanism. Secondly, it is essential to disclose the electro-electrolyte interface in the absence of 

an applied potential. As shown in Figure 1.6a, it is long believed that the ions can only fill the 

pores under potential applied, however, recent researches show that the pores are filled with both 

ions and counter-ions even under zero potential. Upon applying potential, the overall excess of 
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counter-ions inside the pores can be described by several processes (Figure 1.6b): counter-ions 

adsorption, only the counter-ions are adsorbed into the pores; ion exchange, the adsorption of 

counter-ions and the desorption of co-ions happens simultaneously; co-ion desorption, only the 

co-ions originally in the pores are being desorbed.31  

 

 

 

 

Figure 1.6. Schematic illustrating (a) the concept of filled and empty carbon pores at 0 V, and (b) 

counter-ion adsorption, ion exchange, and co-ion desorption charging mechanisms. (© 2016 

American Chemical Society, reprinted under the terms of the Creative Commons Attribution Non-

Commercial No Derivatives 4.0 License, CC BY-NC-ND;32 © 2014 The Royal Society of 

Chemistry, reprinted with permission.31) 
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1.2.2. Pseudocapacitors 

In contrast with EDLCs, for pseudocapacitors, the charge is stored by the fast and 

reversible redox process at the surface of electrode material.33 Therefore, they exhibit superior 

capacitance than EDLC. The most commonly used electrode materials for pseudocapacitors are 

transition metal oxides and conducting polymers. As shown in Figure 1.7,34 the pseudocapacitance 

results from three different faradaic mechanisms: (1) underpotential deposition, (2) redox 

pseudocapacitance, and (3) intercalation pseudocapacitance, During underpotential deposition, 

metal cations in the electrolyte are reduced and deposited on a monolayer metal at the electrode 

surface (usually a noble metal) at a potential less negative than the equilibrium potential. The 

origin of underpotential deposition lies in the enhanced interaction of depositing metals (M) with 

foreign substrates (S)35 

 zzM S e SM      (1.11) 

The underpotential deposition process is highly reversible, however, the potential window is too 

small for applications. The redox pseudocapacitance realized by the faradaic charge-transfer 

between electrode and the ions in the electrolyte which are electrochemically adsorbed on or near 

the interface of electrode and electrolyte35 

 zOx e Red    (1.12) 

The last type of pseudocapacitance, intercalation pseudocapacitance, is given rise by the 

intercalation of ions in the electrolyte into the layer or tunnels of electrode materials without 

obvious crystallographic phase change. The general reaction of intercalation can be written as36 
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 xMO xA xe A MO      (1.13) 

where MO is a layered transition metal oxide and A+ is a cation. 

 

Figure 1.7. Schematics of pseudocapacitance mechanisms: (a) underpotential deposition, (b) redox 

pseudocapacitance, and (c) intercalation pseudocapacitance. (© 2014 Royal Society of Chemistry, 

reprinted with permission.)34  

Those three types of pseudocapacitance are based on different physics process and with 

different types of materials, in the thermodynamic point of view, however, they all follow the 

Langmuir-type isotherm:37 

 exp
1

y EF
K

y RT

     
  (1.14) 

where the quantity y can be fractional coverage θ of an electrode surface (underpotential 

deposition); conversion R of an oxidized species to a reduced species (or vice versa) in a redox 

system in solution (redox pseudocapacitance); or fractional absorption X into some intercalation 
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host (intercalation pseudocapacitance). E is the potential, F is the Faraday constant, R is the ideal 

gas constant, T is the temperature. 

Therefore, the capacitance can be derived from Eqn. 1.12 as37 
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1 exp
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K

dy qF RT
C q

EFdE RT
K

RT

 
            
 

  (1.15) 

where q is the faradic charge required for adsorption/desorption of ions. The value of capacitance 

C is not entirely linear, so it is termed pseudocapacitance. 

In an electrothermal point of view, the current response is different depending on whether 

the redox reaction is diffusion-controlled or surface-controlled. In the cyclic voltammetry (CV) 

measurement, the current response at a given potential to an applied voltage scan rate (mV/s) can 

be written as38 

 1 2
1 2i k v k v    (1.16) 

where v is the scan rate. The current response varies with 𝑣1 2⁄  or v for the diffusion-controlled and 

surface-controlled process, respectively. As a result, the capacity follows the equation39 

 1 2constant(v )vQ Q 
    (1.17) 

which means that the capacity contribution from the surface-controlled process (𝑄𝑣=∞) is constant, 

while the capacity contribution from diffusion-controlled process varies with 𝑣−1 2⁄ . 

Careful attention must be paid in distinguishing pseudocapacitors and batteries since they 

both perform redox reaction during charge/discharge process. The term pseudocapacitance was 

originally used to describe the electrochemical behaviors of certain metal oxides (RuO2, MnO2, et 
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al.). Such metal oxide materials exhibit similar characteristics as capacitors, namely rectangle-

shaped CV curves and triangular-shaped charge-discharge curves. However, some literatures 

presented other types of material, mostly nickel oxide/hydroxide and cobalt oxide/hydroxide, as 

pseudocapacitive materials. As shown in Figure 1.8a,40 the CV curve of Co3O4 show a strong redox 

pair around 0.5 V vs. Hg/HgO, which is similar to that of batteries. As a result, the capacitance 

calculated in the different potential range is not constant. Therefore, such materials should be 

considered as battery-type rather than pseudocapacitance electrode, and the term capacity is more 

appropriate in describing their performance. On the contrast, MnO2 show a CV curve of quasi-

rectangular shape (Figure 1.8b). Yet, the reason why redox reactions in pseudocapacitors and 

batteries display such diverse signatures is still unclear. A commonly accepted explanation is that 

the overlapping of a serious redox peaks forms the overall quasi-rectangular shape, as shown in 

Figure 1.8b.18,41 However, a detailed theoretical study based on Nernst law reveals that redox 

process should always shows peak-shaped responses, despite broadening in varying extent.42  

 

Figure 1.8. A typical CV curve of (a) an electroplated Co3O4 thin film, using different upper 

potential limits, in 1 M KOH electrolyte; (b) a MnO2 electrode in 0.1 M K2SO4, showing the 

successive multiple surface redox reactions leading to the pseudocapacitive behavior. (© 2015 
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Thierry Brousse et al., reprinted under the terms of the Creative Commons Attribution Non-

Commercial No Derivatives 4.0 License, CC BY-NC-ND;40 © 2008 Macmillan Publishers 

Limited, reprinted with permission.18)  

Though double layer capacitance and pseudocapacitance are two different physics 

processes, they always coexist in a supercapacitor system. For example, depending on different 

preparation or pretreatment methods of carbon material, the surface or edge functional groups 

usually give rise to the pseudocapacitance contribution.43 On the other hand, pseudocapacitors 

usually exhibit a small portion of their capacitance as electrostatic double-layer capacitance due to 

the ion adsorption/desorption in electrode/electrolyte interface.33 Therefore, in practice, the 

capacitance behavior of pseudocapacitance can be considered as the sum of EDLC and the redox 

peaks, that is, the broadened peaks on top of a quasi-rectangular CV.42 

Another proposed explanation for the pseudocapacitance nature is based on the band 

structure of materials.44,45 In this model, charge/discharge process corresponds to electron 

transferring between different energy levels. As shown in Figure 1.9, for insulators, different redox 

sites are well separated and non-interactive, thus the energy levels are singular. Therefore, all the 

electrons will be the same energy level, resulting in a redox peak in CV curve of batteries. On the 

other hand, for semiconductors, the energy levels of these are no longer a single value but an 

energy band. In turn, the transfer of electrons occurs in a continuous range of potentials, instead 

of a fixed single potential. This model qualitatively explains why there is no redox peaks exist in 

CV curves of pseudocapacitors. 
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Figure 1.9. Schematic illustrations of the band model for chemical bonding (a) between metal 

atoms and (b) the corresponding energy levels of the valence electrons as a function of the degree 

of delocalization of valence electrons in the cluster of metal atoms. (© 2016 George Z. Chen, 

reprinted under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 

4.0 License, CC BY-NC-ND.)45 

1.3. Supercapacitor Configuration 

In general, supercapacitors consistent of a positive and a negative electrode, an electrolyte, 

and a separator, as shown in Figure 1.10. It is worth mention that in many papers, the anode is 

used for the negative electrode, while the cathode is used for the positive electrode. However, the 

usage of anode and cathode are based on the electrochemical redox reaction, i.e. the anode 
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materials are being oxidized and the cathode materials are being reduced. This terminology is 

appropriate in primary non-rechargeable batteries since only one type of redox reaction (oxidation 

or reduction) is allowed in either electrode. Yet in a supercapacitor, the reactions are reversed 

during charge and discharge.45 Moreover, in EDLC, energy are storage by physics process instead 

of redox reactions. Therefore, positive and negative electrodes should be the appropriate usage for 

supercapacitors. 

 

Figure 1.10. The basic configuration of an ideal supercapacitor. 

For an ideal capacitor, the capacitance C is defined as the ratio of a charge Q to the potential 

V: 

 
Q

C
V

   (1.18) 

As shown in Figure 1.11, the relationship between charge and potential is constant through the 

entire charge and discharge process, therefore the capacitance of a supercapacitor is a constant 

value. On the other hand, the potential of the battery is independent of the extent charge added. 
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Figure 1.11. Comparison of the charge-discharge curves between supercapacitor and battery. (© 

2008 American Institute of Physics, reprinted with permission.)46  

The energy storage in a supercapacitor can be calculated as 

  
2

2

0 0

1 1 1
2 2 2

Q Q q Q
E V q dq dq QV CV

C C
        (1.19) 

which is only half of that of the battery (E=QV). 

The maximal power of a supercapacitor is given by 

 max
ES4

V
P

R
   (1.20) 

where RES is equivalent series resistance. 

In practice, the average power 

 avg

E
P

t
   (1.21) 

is often used. 
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Based on Eqn. 1.17 and 1.18, to archive best performance, a supercapacitor should meet 

certain requirements, such as high capacitance, high voltage window, and low equivalent series 

resistance. 

The electrode is the most important component of the supercapacitor. Based on the charge 

mechanism, electrode materials for supercapacitor can be classified into two categories: carbon-

based materials for EDLCs; redox-active materials, such as metal oxides (nitrides, sulfides, and 

phosphides) and conducting polymers, for pseudocapacitors. Despite the fundamental difference, 

the proper material design is required to maximize the electrode performance for both types. From 

the material’s perspective, several aspects need to be taking account:47,48 1) surface area and pore 

size distribution; 2) electronic/ionic conductivity; 3) electrochemical and mechanical stability. The 

details for each electrode material will be discussed in the next section. 

Besides improving the properties of each component, the rational design of device 

configuration is also important to maximize the supercapacitor performance. As shown in Eqn. 

1.17, the energy of a supercapacitor can be improved more effectively by increasing the 

capacitance or operation voltage because the energy density increases in proportion to squared 

voltage. However, the practical operational window is limited by several factors. For the aqueous 

electrolyte, the operation window is typically below 1 V, which is mainly due to the 

thermodynamic limit of water electrolysis.49 Using organic or ionic liquid electrolytes can increase 

the operation window up to 3 V.50 However, lower ion conductivity compared to that of aqueous 

electrolytes remains a major challenge of organic and ionic electrolytes, resulting in inferior device 

performance. Moreover, high cost, high toxicity, inflammability and other safety issues of organic 

and ionic electrolytes severely hinder their applications.51 On the other hand, electrodes, especially 

pseudocapacitance electrodes, have their own working potential windows, i.e. the irreversible 
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redox reaction potential. As shown in Figure 1.12,52 for most of the pseudocapacitance materials, 

the working potential windows are around 1 V. 

 

Figure 1.12. Typical working potential windows of various pseudocapacitance electrode materials 

in aqueous electrolytes. (© 2017 Royal Society of Chemistry, reprinted with permission.)52 

Fabrication asymmetric supercapacitors (ASC) is one of the efficient ways to bypass the 

limits of working potential limits. Using two different electrodes with separated working potential 

windows, the cell working potential window of ASC can be well extended as the sum of that of 

both electrodes. Based on the types of the electrode, there are three configurations of ASCs: 

EDLC//EDLC, EDLC//pseudocapacitance, and pseudocapacitance//pseudocapacitance.53 The key 

factor of designing ACS is to balance the capacitance of positive and negative electrodes. The 

charge storage in each electrode is determined by Eqn. 1.16 and can be rewritten as, 

 mQ C Vm  or AQ C VA  (1.22) 

where Cm and CA are the specific and areal capacitance, m and A are the mass and area and each 

electrode, respectively. In general, to archive optimize performance requires the equivalence 
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charge storage in each electrode, that is Q Q  . Therefore, the mass or areal ratio can be given 

by:54 

 m

m

C Vm

m C V
 

  

  or A

A

A C V

A C V
  

  

   (1.23) 

For symmetrical supercapacitors, because the positive and negative electrodes have the 

same working potential range, the capacitance of them must be equal. However, this is more 

complicated in the case of ASC. According to Eqn. 1.21, the electrode voltages are crucial in 

determining the ASC performance. Figure 1.13 illustrated the concept of supercapacitor maximum 

charging voltage (MCV), potential of zero voltage (PZV), and electrode capacitive potential range 

(CPR).55 CPRs are determined by the lower and upper potential limits of positive and negative 

electrodes, EN1, EN2, EP1, and EP2, respectively. PZV is the equal potential of both electrodes when 

an ASC is fully discharged. In most cases, the CPRs of negative and positive electrodes are 

overlapped, therefore, PZV should be in-between EP1 and EN2. If N1 P2PZV E E PZV   , and the 

capacitances of two electrodes are equal, we have  P2MCV E PZV 2   . In this case, MCV is 

determined by the upper potential limit of the positive electrode. On the other hand, since the CPRs 

of both electrodes are usually different, it is unnecessary to have equal capacitance. In this case, 

the relationships of charge storage, capacitance, potential ranges and specific energy of each 

electrode and the cell are:56 

 P P N NQ C U C U   or P
N P
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U U
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    (1.24) 
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where PZVP PU E   and PZVN NU E  .  

Clearly, raising the CP/CN ratio would increase the cell voltage U and cell energy E, even 

though decrease the cell capacitance Ccell. In addition, unequalisation of electrode capacitances can 

avoid the wasted potential, i.e. the difference between MCV of equal and unequal conditions as 

shown in Figure 1.13. However, in practice, UP and UN and often unknown as PZV is difficult to 

predict. Not to mention that varying the CP/CN ratio may lead to degradation of cycle stability 

resulting from the increasing potential beyond the CPR.53 Therefore, careful attention must be paid 

in determining the electrode balance. 

 

Figure 1.13. Schematic illustration of supercapacitor maximum charging voltage (MCV), potential 

of zero voltage (PZV), and electrode capacitive potential range (CPR). (© 2015 Nature Publishing 
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Group, reprinted under the terms of the Creative Commons Attribution Non-Commercial No 

Derivatives 4.0 License, CC BY-NC-ND.)55 

Another strategy in improving the energy is to fabricate a hybrid supercapacitor. In contrast 

to ASC, a hybrid supercapacitor consists one capacitance electrode and one battery-like electrode. 

In such hybrid systems, we can combine the high power of supercapacitors and high energy of 

batteries. Many hybrid supercapacitors have been developed, such as Li-ion capacitor, Na-ion 

capacitor, acidic battery-supercapacitor hybrid device, and alkaline battery-supercapacitor hybrid 

device.57 Figure 1.14 shows the comparison of a symmetric EDLC using AC as both electrodes, 

and a Li-ion capacitor using Li4Ti5O12 as negative electrode and AC as positive electrodes.58 In 

the typical symmetric configuration, the voltage profiles of both electrodes are linear (blue lines). 

By replacing the positive electrode using the battery-type material, the potential remains constant 

associated with the phase change (red lines). It is well known that the area between the voltage 

profiles of positive and negative electrodes represents the energy storage. Therefore, the Li-ion 

capacitor can store more energy than symmetric EDLC. The energy can be calculated by:59 

   2 1
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where k1 and k2 are the ratio of mass and working potential range between the battery-type 

electrode and the cell, q1 and m1 are the energy storage and mass of the EDLC electrode. Compared 

to that of symmetric configuration: 
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to get a higher energy in the hybrid system, the mass of a battery-type electrode should be lower 

than half of the total mass of the system and the working potential range of the battery-type 

electrode cannot exceed 1/20.5 of the total working potential range. 

 

Figure 1.14. Typical voltage profiles and schematic device configurations of symmetric and hybrid 

supercapacitors. (© 2012 American Chemical Society, reprinted with permission.)58 

Recently, another novel concept called flow capacitor which is benefit from both flow 

battery and supercapacitor electrode has been developed. As shown in Figure 1.15a, the reverse 

flow of charged and discharged electrode materials creates a dynamic energy storage system. The 

charge is stored in the slurry of carbon particles by the means of EDLC mechanism (Figure 1.15b). 

Figure 1.15c shows the system architecture of a flow capacitor. The charged and discharged 

electrode materials are being stored in external reservoirs separately. During charge/discharge 

process, the discharged/charged slurry is pumped through the flow cell, respectively. Consequently, 

the decoupling of energy and power enables the flow capacitor to overcome the energy limitation 

of conventional supercapacitors, thus, making flow capacitor a promising candidate for grid-scale 

energy storage.60,61 
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Figure 1.15. (a) The concept, (b) charge mechanism, and (c) system architecture of the flow 

capacitor. (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, reprinted with 

permission.)60 

The past decades have witnessed the rapid developing of the integrated circuit and portable 

electronic devices, consequently, new demands are emerging for supercapacitors and other energy 

storage systems. Integration of energy storage system with electronic circuits is challenging as 

conventional supercapacitors with sandwich or rolling structures are incompatible with planar 

geometries of most integrated fabrication processes.62 In addition, various advanced electronic 

devices hold specific requirements for energy storage systems. Thus, tremendous efforts have been 

made in developing supercapacitors with unconventional structure, including flexible, micro-, 

stretchable, compressible, transparent and fiber supercapacitors.63 For example, micro-

supercapacitors which utilize arrays of in-plane microelectrode fingers are highly promising for 

integration into integrated electronics.64 On the other hand, flexible and fiber supercapacitors have 

attracted much attention due to the increasing demand of power system for flexible electronics and 

wearable system.65,66 Another recent advancement of supercapacitors is to integrate them with 
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various energy sources, such as solar cells, nanogenerators, and thermoelectric generators. The 

combination of energy conversion and energy storage in a single device provides a solution to 

simultaneously capture and store energy from the environment.67 

1.4. Electrode Materials 

Regardless the configuration of supercapacitors, electrode materials play a crucial role in 

determining the overall performance of a supercapacitor device. Based on the charge mechanism, 

electrode materials can be classed into two categories, carbon-based materials for EDLCs, metal 

oxides (nitrides, sulfides, et al.) and conducting polymers for pseudocapacitors. Among them, 

carbon is the most widely used in commercial supercapacitors owing to its abundance, lower cost, 

easy processing, non-toxicity, higher specific surface area, good electronic conductivity, high 

chemical stability, and wide operating temperature range.68 But extensive research has been 

conducted into pseudocapacitive materials due to their high specific capacitance. In addition, 

performance beyond the limitations of each material has been realized by implementing composite 

materials which combine the advantages of both EDLCs and pseudocapacitors.69  

1.4.1. Carbon Materials 

A large variety of carbon materials, such as activated carbon, carbon nanotube (CNT) and 

graphene, have been investigated as supercapacitor electrodes.70 Activated carbon is the most 

widely used electrode material for commercial EDLCs, but with the limited specific capacitance 

of about 100 F/g. CNTs and Graphene, on the other hand, could offer additional advantages as 

more effective electrode materials in supercapacitors owing to their large surface area, and good 

electrical properties.71 However, it is still challenging to further improve the performance of 
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supercapacitors based on carbon materials. Taking graphene as an example, the restacking of 

graphene sheets leads to the unsatisfied specific capacitance between 100 to 300 F/g compared to 

the theoretical value of 550 F/g.72 In addition, the high cost of CNTs and graphene limits their 

widespread applications. 

For all carbon materials, the electrochemical performance is influenced by several 

important factors, such as specific surface area, pore-size distribution, pore shape and structure, 

electrical conductivity, and surface functionality.27 In general, carbon material with larger specific 

surface area presents higher capacitance as more charges accumulate in the electrode/electrolyte 

interface.73 However, as we discussed in section 1.2.1, the capacitance of carbon materials is not 

always propagation to the surface area. The pore distribution is another major factor which affects 

the electrochemical performance. It is believed that macropores and mesopores facilitate ion 

diffusion kinetic and thus improve the rate capacity, while the role of micropores is to increase the 

ion-accessible surface area and capacitance.74 Therefore, rational design of porosity of carbon 

materials is of great importance to maxima the electrochemical performance. Different methods 

have been adopted to carbon materials to create multiscale pores, ranging from micropores to 

macropores. The templet method is most commonly used to control the pore structure of the carbon 

materials. The general procedure of templet method is to synthesize or deposit carbon or carbon 

precursors on a well-defined templet, followed by carbonization if carbon precursors are used, and 

finally, remove of the templets, leave behind the porous carbon structure.27 Various materials have 

been studied as templets to produce porous carbons, including silica, metal oxides, inorganic salts 

and sublimable organic compounds.75 

In addition to high surface area and pore size distribution, heteroatom doping is another 

efficient method to improve the performance of carbon materials. The idea of doping is to 
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introduce various functional groups on the surface of carbon materials or improve their electric 

conductivity and charge transport capability. Three methods are generally used in doping process 

for carbon materials: i) the carbonization of a heteroatom rich precursor, ii) post-treatment in 

heteroatom containing atmosphere, and iii) grafting of molecules containing suitable functional 

groups.76 Different heteroatom dopants have been extensively studied, such as oxygen, boron, 

nitrogen, sulfur, and phosphorous. 

1.4.2. Transition Metal Oxides 

Although carbon materials exhibit numerous advantages for supercapacitor electrode, their 

capacitance is relatively small. Pseudocapacitance materials can provide much higher capacitance 

owing to the different charge mechanism. Particularly, transition metal oxides are of great interest 

because of their variety of oxidation states available for redox charge transfer.77 In 1971, RuO2 

was discovered to exhibit the pseudocapacitance profile for the first time.78 Since then, various 

metal oxides (MnO2,79–81 Co3O4,82–84 Fe2O3,85–87 V2O5,88,89 NiO,90,91 CuO,92,93 MoO3,94–96 Nb2O5,97 

SnO2,98 TiO2,99–101 WO3,102,103 et al.) have been widely investigated. In general, the charge storage 

in transition metal oxides are based on two mechanisms, redox pseudocapacitance and 

intercalation pseudocapacitance.104 

After the first demonstration of pseudocapacitance, RuO2 has been extensively studied for 

more than four decades. Owing to its wide potential window, highly reversible redox reactions, 

three distinct oxidation states, high proton conductivity, remarkably high specific capacitance, 

good thermal stability, long cycle life, metallic-type conductivity, and high rate capability, RuO2 

has been considered as one of the most promising candidates for supercapacitor application.47 The 
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charge/discharge of RuO2 is based on the rapid reversible electron transfer of protons when the 

oxidation states of Ru changes between +2 and +4:33 

  2 2RuO H e RuO OHx x
x x 

     (1.30) 

where 0 2x  . It has been noted that combined water plays an important role in the 

electrochemical performance of RuO2. In fact, the existing of hydrated water would benefit the 

cation diffusion via hopping of alkaline ions and H+ ions between H2O and OH- sites, thus enhance 

the proton transport.105 Specific capacitance of 1340 F/g has been reported by utilizing RuO2 

nanoparticles dispersed onto activated carbon,106 which is close to the theoretical value of 1450 

F/g. 

However, the high cost and toxicity of Ru limit its practical applications. Therefore, other 

inexpensive and environmentally friendly metal oxides have been investigated as alternatives. 

MnO2, characterized by its high specific capacitance, low-cost, abundance and environmentally 

friendly nature, is another well studied pseudocapacitance metal oxide.107 In general, charge 

storage of MnO2 occurs through the redox reaction of Mn between the +4 and +3 oxidation 

states:108 

  2MnO C H e MnOOC Hx yx y x y         (1.31) 

where C+ denotes the protons and alkali metal cations (Li+, Na+, K+, et al) in the electrolyte. The 

main challenge for MnO2 is its low electrical conductivity. Thus, charge storage in MnO2 mainly 

occurs within a thin layer of the surface, leading to the significantly lower capacitance (ranging 

between 200 and 250 F/g) than the theoretical value (1233 F/g). One method to compensate for 
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the poor electrical conductivity of MnO2 is to process into ultrathin film, which can achieve 

specific capacitances of more than 1000 F/g.109  

Recently, spinel metal oxide, with a general formulation AB2O4, have received increasing 

attention owing to its robust crystalline architecture with three-dimensional diffusion pathways. 

Many metal oxides with spinel structure have been investigated for supercapacitors, including 

Co3O4, Fe3O4, Mn3O4 and mixed transition metal oxides such as NiCo2O4 and MnFe2O4. For 

example, Co3O4 has an ultrahigh theoretical specific capacitance as 3560 F/g originates from the 

following redox reactions:110 

 3 4 2Co O H O OH 3CoOOH e      (1.32) 

However, a second redox reaction of the electrochemically formed cobalt oxyhydroxide may occur 

during the charge/discharge process,34  

 2 2CoOOH OH CoO H O e       (1.33) 

In turn, the electrochemical signature of Co3O4 combines pseudocapacitive and battery 

contributions. Such confusion exists in most Co and Ni based materials, such as Co3O4, NiO, 

Co(OH)2, Ni(OH)2, and NiCo2O4 as discussed in section 1.2.2. 

Another important metal oxide electrode material is Fe2O3, due to its high theoretical 

specific capacitances, natural abundance, low cost, and non-toxicity.111 The pseudocapacitive 

performance of Fe2O3 originates from the reversible electrochemical oxidation/reduction reaction 

between Fe3+ and Fe2+.112 One merit making Fe2O3 stand out is that it serves as the negative 

electrode, while most of other metal oxides can only be used as positive electrodes. However, the 

same challenge remains in developing high-performance Fe2O3 supercapacitor as for MnO2, that 
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is, the poor electric conductivity.113 In addition, iron-based materials usually suffer from the 

inferior cycling stability resulting from the physiochemical change/structural deformation during 

the long-time redox reaction.114,115 

Above mentioned metal oxides are all based on redox process. Another important group of 

metal oxides exhibit pseudocapacitance behavior yet due to a different mechanism, that is, ion 

intercalation. The key advantage of such material is to balance the intrinsic differences of 

charge/discharge rate of the electrodes in hybrid supercapacitors. In general, intercalation 

pseudocapacitive material exhibits an open, layered structure that enables fast ion transport.17 

Several metal oxides have been studied as intercalation pseudocapacitive material, including TiO2, 

V2O5, Nb2O5, and MoO3. In contrast to redox pseudocapacitive oxides, the crystal structure is 

crucial in intercalation pseudocapacitive oxides. For example, monoclinic phase TiO2, usually 

denoted as TiO2(B), has more open structures than anatase or rutile phases, therefore the lithium 

storage is controlled by the capacitive intercalation. Whereas in anatase and rutile, the solid-state 

diffusion of Li+ dominates the overall capacity.116,117 Compared to battery-type intercalation 

materials, one unique feature of pseudocapacitive intercalation materials is that there is no 

significant crystallographic phase change in the charge storage.118,119 

Although metal oxides show great promising in supercapacitor electrode, the poor 

electrical conductivity has severely limited their application. Several methods have been 

developed aiming to address this issue. For instance, the electrical conductivity can be improved 

by controlling the oxygen vacancies in metal oxide materials. Hydrogen treatment has been proved 

as an efficient way to enhance the electrochemical performance on TiO2,120 MnO2,121 and MoO3.122 

Other oxygen deficient annealing atmosphere can also be used, such as nitrogen or argon, to avoid 

the unwanted reduction of certain metal oxides.85 In addition to thermal annealing, the oxygen 
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vacancies can be also introduced using chemical or electrochemical methods, in which the degree 

of reduction can be better controlled.101,123 

Besides introducing the oxygen vacancies, the electrical conductivity can also be improved 

by doping. Not only modulate the electrical properties, the introduction of extrinsic impurities also 

improve ion diffusion and create new valence states of metal oxides.124 Both metal (such as Au125 

and Ti126) and non-metal (such as S127 and B128) have been investigated as efficient dopants to 

boost the electrochemical performance of metal oxides. 

1.4.3. Transition Metal Sulfides, Nitrides and Phosphides 

Metal sulfides, such as CuS,129 CoS,130 and NiS,131 are recently receiving more and more 

interest as electrode materials for supercapacitors due to their high electrical conductivity.132 

Among the various metal sulfides evaluated, NiCo2S4 is considered as one of the most promising 

electrode material for supercapacitor by providing much higher electrochemical activity and 

specific capacitances than those of monometal sulfides, as well as more than 100 times higher 

conductivity than the corresponding oxide, NiCo2O4.133 To date, specific capacitance in the range 

of  1000 – 2000 F/g has been reported in various structures of NiCo2S4 based materials.134 Another 

group of interesting metal sulfide is transition metal dichalcogenides (TMDCs), such as VS2, MoS2 

and WS2.135,136 With the similar 2D structure as graphene, TMDCs provide facial ion intercalation 

channels between nanosheets, thus are favorable for fast charge storage.137 Moreover, transition 

metal dichalcogenides with metallic 1T phase are of special interest for supercapacitor, as they 

present much higher conductivity.138 However, the charge mechanism of most metal sulfides are 

unclear, therefore more fundamental studies are still needed.104 
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Similar to metal sulfides, metal nitrides are considered as promising electrode materials for 

supercapacitors owing to their high conductivity. Numerous studies have demonstrated the 

utilization of a variety of metal nitrides, such as nitrides of Ti, V, Mo, and W, in supercapacitor 

electrodes.141 Interestingly, most of the metal nitrides are used as the negative electrode in 

supercapacitors. It is reported that the pseudocapacitance of metal nitrides are origin from the 

surface-modified oxides or oxynitrides.141 Yet, the poor stability remains a major challenge for 

metal nitrides.142  

As an interesting class of multifunctional materials, metal phosphides exhibit superior 

electrical conductivity and redox activity, together with other advantages, such as earth abundance 

and environment-friendly.142 Therefore, they are considered as promising materials for 

supercapacitor electrodes. However, they haven’t been studied as supercapacitor electrode 

materials until very recently. There have been a few reports on metal phosphide-based electrode 

materials, mainly focused on nickel phosphide,143–150 cobalt phosphide,151–153 and copper 

phosphide,154 as well as bimetallic phosphide, in practical nickel cobalt phosphide.155–157 As 

inspired by metal nitrides, one should expect certain metal phosphides to be good negative 

electrode material. However, to the best of our knowledge, the use of metal phosphides as a 

negative electrode material for supercapacitors remains unexplored.  

1.4.4. Conducting Polymers 

Conducting polymer (CP) were first discovered in 1977 by Shirakawa, MacDiarmid and 

Heeger,158 who were awarded the 2000 Nobel Prize in Chemistry. CP was exploited as 

supercapacitor electrode material in the mid-1990s, and have drawn increasing attention 

thereafter.159 The most commonly used CPs for supercapacitor electrode are polyaniline (PANi), 
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polypyrrole (PPy), polythiophene (PTh) and its corresponding derivatives. CPs have a low band 

gap (1-3 eV) and high conductivity (from a few S cm−1 to 500 S cm−1) compared with conventional 

polymers. The conductivity of such polymers arises from a so-called “doping” process by chemical 

or electrochemical oxidation/reduction process, which a large number of delocalized π electrons 

formed on the conjugated bond system along the polymer backbone. Analogous to silicon 

semiconductors, the terms “p-doped” and “n-doped” were used to describe the results of oxidation 

and reduction. From the band structure point of view, when oxidized (p-doping), electrons were 

removed from the valence band, creating intermediate band structures which facilitate electronic 

transport.160 When reduced (n-doping), electrons insert into the conduction band. In practice, most 

CPs are p-doped. 

The redox reaction in CP associated with the intercalation and deintercalation of ions. The 

ions from the electrolyte are transferred into the polymer backbone during charging and then 

release into electrolyte through discharging. In differ from other pseudocapacitance materials, the 

charge storage of CP can also be described as the doping process. When positive charged, CPs are 

p-doped with anions, while negative charged CPs are n-doped with cations. The simplified 

equations for these two charging processes are as follows:159 

  Cp Cp An

n
ne      (1.34) 

  Cp C Cpn

n
ne      (1.35) 

Similarly, the discharging can be treated as “un-doping” process. Since the redox process 

happens in the bulk of the material, rather than only on the surface, CP-based supercapacitor can 

provide high energy density. Another benefit of CPs is their inherent flexible polymeric nature, 

which makes them apposite for flexible supercapacitor applications.161  
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One unique characteristic of CP electrode is that the electrochemical properties can be well 

controlled by doping type and doping rate. Four types of CP-based supercapacitor can be 

constructed.160 A type I device uses two identical p-doped CP for both electrodes. When fully 

charged, the positive electrode is fully doped and the negative electrode reminds un-doped state. 

When fully discharged, both electrodes are half-doped (Figure 1.16a). For type I device, the overall 

operation window V is the same as the potential windows of each electrode. A type II device uses 

two different p-doped CP with distinct potential windows. The one with a higher potential window 

serves as the positive electrode whereas the other with a lower potential window is the negative 

electrode. When fully charged, two electrodes behave the same as type I device (Figure 1.16b). 

After fully discharged, both electrodes are partially doped due to the difference in the potential 

window. Compared to type I device, type II device has a higher operation window, resulting in a 

higher energy density. Type III and IV devices are different from type I and II devices in the fact 

that both p-doped and n-doped CPs are used, making them operated as asymmetric supercapacitors. 

In type III device, the same CP which can be p-doped and n-doped is used as both electrodes with 

the p-doped form used as the positive electrode and the n-doped form used as the negative electrode. 

In fully charged condition, both electrodes can be fully doped (Figure 1.16c). Owing to the higher 

operation window, type III device has higher energy density than type I and II devices. However, 

the p-doping and n-doping capability are usually different in CP, given by the fact that p-doped 

CPs are usually more stable than n-doped CPs. Therefore, both electrodes remain slightly p-doped 

even when the device has been fully discharged. To solve this problem, a type IV device was 

developed. Similar to type III, type IV device consists a p-doped positive electrode and a n-doped 

negative electrode. The difference between type III and IV device is that the potential windows of 

two electrodes in type IV are well separated. In this way, both electrodes return to the neutral state 
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(Figure 1.16d). The type IV device has the highest cell operation window, resulting in the highest 

energy density among these four types of devices. 

 

Figure 1.16. Potential diagrams of fully charged and discharged states of (a) Type I, (b) Type II, 

(c) Type III and (d) Type IV CP-based supercapacitor. (© 2016 American Chemical Society, 

reprinted with permission.)160 

Unfortunately, poor stability remains the major issue for most CP-based electrodes. The 

primary reason causes such problem is the repeated swelling and shrinking, and eventually 

structural the pulverization of CPs during charge/discharge.162 Several approaches have been 

investigated to improve the stability: (1) Improving structures and morphologies of CP materials. 

By reducing the diffusion length, nanostructured CP could reduce cycling degradation problems 



39 

 

caused by volumetric changes. (2) Hybridizing supercapacitor device. Since n-doped CPs are less 

stable than p-doped ones, one strategy is to replace the negative electrode with other more stable 

materials, especially carbon-based materials. (3) Fabricating composite electrode materials. 

CP/carbon composite has been demonstrated as one of the most promising candidates for 

supercapacitor electrode since it combines the large pseudocapacitance of CP and the good 

mechanical and chemical stability of carbon, as well as good conductivity of both materials.47 

1.4.5. The Role of Nanomaterials in Supercapacitor Electrodes 

Despite different materials used in supercapacitor electrodes, the charge of supercapacitors 

are mainly located on or near the very surface of electrode materials, engineering the 

nanostructured materials has been proved as an efficient approach improve the performance.163 It 

has been widely accepted that the progress in supercapacitor can benefit by nanostructured 

materials include:77 

1. Nanostructured electrodes enlarge the surface area noticeably compared to bulk 

electrodes, therefore provide more ion adsorption sites for EDLCs or more charge transfer active 

sites for pseudocapacitors. 

2. Both electronic and ionic conductivity can be enhanced by precisely tailoring the pore 

structure, resulting in the improved specific capacitance and rate capability.  

3. Nanostructured engineering of electrode materials can also modify the phase change 

during charge/discharge, avoid undesirable side reactions, and improve the mechanical stability, 

therefore leading to higher cycling stability. 
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4. Nanostructured materials offer additional properties for advanced device configuration 

otherwise difficult to achieve for bulk or thin film materials, such as lightweight, flexibility, 

transparency. 

1.5. Overview of this Dissertation 

The work presented in this thesis is forced on the synthesis of three-dimensional 

nanomaterials and their application in supercapacitor electrodes. Two groups of pseudocapacitance 

material have been studied: metal oxides (Chapter 2) and metal phosphides (Chapters 3 and 4). 

Chapter 2 will report the one-step hydrothermal synthesis method of TiO2 nanorod arrays 

on Ti subtract and their applications on supercapacitor. A possible “dissolve and grow” mechanism 

of the TiO2 nanorods growth will be discussed in detail based on systematically structural 

characterization. As the supercapacitor electrode, the TiO2 nanorod arrays exhibit good areal 

capacitance and excellent cyclic stability by retaining more than 98% of the initial specific 

capacitance after 1000 cycles. In addition, a good flexibility of the Ti foil with TiO2 nanorod arrays 

was demonstrated by the stable electrochemical performance under different bending angles. 

In Chapter 3, three-dimensional CoP nanowire and nanosheet arrays were synthesized on 

carbon cloth by a two-step method and were utilized as the binder-free supercapacitor negative 

electrodes. The as-synthesized CoP nanowire arrays presented a high capacitance of 571.3 

mF/cm2 at a current density of 1 mA/cm2. By using CoP nanowire arrays as the negative electrode 

and MnO2 nanowire arrays as the positive electrode, a flexible solid-state asymmetric 

supercapacitor has been fabricated and has exhibited excellent electrochemical performance, such 

as a high energy density of 0.69 mWh/cm3 and a high power density of 114.2 mW/cm3. In addition, 

the solid-state asymmetric supercapacitor shows high cycle stability with 82% capacitance 
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retention after 5000 charge/discharge cycles. In addition, the areal capacitance can be further 

improved by successive sulfidation. 

Chapter 4 focus on the further enhancement of the supercapacitance performance of metal 

phosphide materials with conducting polymer coating. FeP/PEDOT core/shell nanorod arrays have 

been demonstrated as a high-performance negative electrode with an excellent areal capacitance 

of 790.59 mF/cm2 and significantly improved cycling stability of 82.12% retention after 5000 

cycles. Compared to bare FeP nanorod arrays, not only the areal capacitance, but also the stability 

has been improved significantly. Moreover, an aqueous ASC device was fabricated using MnO2 

positive and FeP/PEDOT negative electrodes with excellent capacitance and energy density. 

 



Part of this chapter was published in Zhi Zheng et al. One-step synthesis of TiO2 nanorod arrays on Ti foil 
for supercapacitor application, Nanotechnology, 2014, 25 (43), 435406. 

 TiO2 Nanorod Arrays on Ti Substrate for 

Supercapacitor Application 

2.1. Introduction 

Titanium dioxide (TiO2) has the long history of the usage in numerous commercial 

productions, such as pigment and in sunscreens, paints, ointments, toothpaste, etc.164 Since the 

discovery of the photocatalytic water splitting,165 TiO2 has drawn tremendous attention in 

extensive promising applications of solar cells, photocatalysts, Li-ion batteries, smart coatings, 

etc.166  

TiO2 shows many advantages such as low cost, natural abundance and environmentally 

friendly, making it a very promising electrode material for supercapacitors. However, it suffers 

from poor electrical conductivity and low specific surface area, leading to a relatively low specific 

capacitance.167 To overcome such limitations, nanostructures have been demonstrated to be unique 

in facilitating the fast ion diffusion and electron transfer, thus dramatically boosting the 

electrochemical performance. Among different nanoarchitectures, three-dimensional 

nanostructures, such as nanorod, nanowire and nanotube arrays, exhibit additional advantages such 

as providing direct pathways for ion/electron transport and large surface area for charge storage 

enhancement.168 Different methods have been reported to synthesize 3D TiO2 nanostructures 

including template sol-gel,169 anodic oxidation,170 and chemical vapor deposition (CVD) 

methods,171 although instrumental complexity poses high investment costs as well as limits of 

scalability. In this respect, low-cost solution-based methods are of immense interest for 

inexpensive mass production. Hydrothermal growth is one of simplest and most cost-effective 

solution-based synthesis methods, which can achieve not only high-purity nanostructures with



43 

high-crystallinity but also can be easily scaled up for large area nanostructures fabrication for 

various device applications.172,173 

In this chapter, we demonstrate a facile one-step hydrothermal method to grow TiO2 

nanorod arrays directly on Ti foil and Ti wire for supercapacitor application. Owing to the unique 

3D configuration of TiO2 nanorod arrays, a decent electrochemical property with high specific 

capacitance and excellent cycling stability was achieved. In addition, the flexible supercapacitor 

electrode using Ti foil with TiO2 nanorod arrays was also demonstrated. 

2.2. Experiments 

2.2.1. Synthesis of TiO2 nanorod arrays 

TiO2 nanorod arrays on Ti foil or Ti wire was synthesized via a hydrothermal method. 

Titanium foil (0.5 mm thickness) or wire (0.81 mm diameter) was first cleaned with acetone, and 

then etched in 18 wt% HCl solution at 85 °C for 10 min to remove the native oxide layer. In a 

typical hydrothermal procedure, titanium substrate was placed in a Teflon-lined stainless steel 

autoclave filled with a 2.5 wt% HCl aqueous solution and kept at 180 °C for 12 h. After the 

synthesis, the autoclave was cooled down naturally to room temperature. After being dried in air, 

the samples were annealed at 600 °C under argon atmosphere for 1 h. 

2.2.2. Material Characterizations 

Field-emission scanning electron microscopy (FESEM) images were taken on a Carl Zeiss 

1530 VP microscope. Transmission electron microscopy (TEM) experiments were conducted on 

a JEOL 2010 transmission electron microscope equipped with X-ray energy dispersive 

spectroscopy (EDS). Cross-section TEM analysis and EDS mapping were conducted on a JEM-
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2100 F-field emission TEM equipped with Oxford EDS spectroscopy. X-ray photoelectron 

spectroscopy (XPS) spectrum was recorded with an XPS system (Perkin-Elmer Phi 560) and the 

binding energy was calibrated using the C 1s photoelectron peak at 284.6 eV as the reference. X-

ray diffraction (XRD) patterns were recorded on Philips X’Pert-MPD X-ray diffractometer with 

Ni-filtered Cu Kα radiation (40 kV, 40 mA). 

2.2.3. Electrochemical Measurements 

The electrochemical properties were investigated by a Gamry Reference 600 

electrochemical workstation. A typical three-electrode experimental cell equipped with a prepared 

Ti foil served as the working electrode, a platinum foil as the counter electrode, and an Ag/AgCl 

as the reference electrode was used for measuring the electrochemical properties of the working 

electrode. Cyclic voltammetry (CV) of the electrode was obtained at different scan rates of 1, 2, 5, 

10, 20, 50, 100, 500 and 1000 mV/s in the potential range of -0.2 to 0.6 V. Galvanostatic 

charge/discharge curves were measured in the potential range of 0 to 0.6 V at different current 

densities of 10, 20, 50 and 100 μA/cm2. The stability of the electrode was tested by galvanostatic 

charge/discharge measurement during 1000 cycles at a current density of 100 μA/cm2. 

Electrochemical impedance spectroscopy (EIS) measurements were carried out at a direct current 

bias of 0.1 V, with a signal of 5 mV, over the frequency range of 0.1 to 100 kHz. Mott-Schottky 

plots were measured at a frequency of 10000 Hz. All the electrochemical measurements were 

performed in 1 M Na2SO4 solution at room temperature. 

2.3. Results and Discussion 

2.3.1. Growth Mechanism 



45 

Figure 2.1a and b show typical FESEM images of the as-grown TiO2 nanorod arrays on Ti 

foil after the hydrothermal reaction. As seen in Figure 2.1a, TiO2 nanorods with clear tetragonal 

shape were grown from the entire surface of the Ti foil. The inset, enlarged from one nanowire tip, 

shows pyramid shape with the tetragonal edge arranging from 50-200 nm. A cross-sectional view 

of the TiO2 nanorod arrays is shown in Figure 2.1b, revealing the nanorods grew out randomly 

from the Ti foil with length about 1 μm long. The crystal structure of the nanorods was determined 

by XRD as shown in Figure 2.1c and all diffraction peaks are in good agreement with the tetragonal 

rutile phase (JCPDS No. 88-1175) except the peaks from the Ti foil, as denoted by asterisks. XPS 

(Figure 2.1d) was further employed to confirm the chemical composition and oxide state of the 

nanorods through photoelectron peaks of Ti and O. The binding energies of Ti 2p3/2 and Ti 2p1/2 

peaks observed at 458.8 eV and 463.4 eV, respectively, with a spin orbit splitting of 4.6 eV (shown 

in Figure 2.1e), match with the values for bare TiO2 very well,174 suggesting that the oxidation 

state of the Ti in the nanorods is 4. 
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Figure 2.1. (a) Top view and (b) cross-sectional FESEM images of TiO2 nanorod arrays on Ti foil. 

The inset in (a) is enlarged images of TiO2 nanorod tip. (c) XRD pattern, (d) XPS survey spectra 

and (e) Ti 2p XPS spectra of TiO2 nanorod arrays. 

Traditional electronic devices have typically been fabricated from rigid plates, which 

restrict the flexibility, shape, weight, and integration of the cells, and result in some complexities 

in transport and installation. Fiber-shaped electronic devices show an impressive potential to 



47 

overcome those disadvantages. Herein, we have confirmed that this simple hydrothermal method 

can be applied to the synthesis of TiO2 nanorod arrays on Ti wire. As can be seen from Figure 2.2, 

the entire surfaces of the Ti wire are covered uniformly by TiO2 nanorods. The morphology of 

TiO2 nanorods on Ti foil and Ti wire are the same, indicating the same growth process. 

 

Figure 2.2. FESEM images of TiO2 nanorod arrays on Ti wire. (a) low-magnification, (b, c) high 

magnification from squares b and c in panel a. 

The morphology and structures of the TiO2 nanorods were further characterized by using 

TEM. Figure 2.3a is the low-magnification TEM image of a single TiO2 nanorod. The 

corresponding selected-area electron diffraction patterns (SADP) taken from [110] (Figure 2.3b) 

and [111] (Figure 2.3c) zone axis reveal the single-crystalline feature of the nanorod, which can 

be indexed to the pure rutile TiO2 phase. From the SADPs, the growth direction of the TiO2 

nanorod can be easily determined along the [001] direction, which agrees with the tetragonal 

crystal shape and pyramid tip observed under FESEM. The EDS spectrum shown in Figure 2.3d 

further confirms the successful synthesis of TiO2 nanorods. The phase and crystal structure of the 

TiO2 nanorod were confirmed with high-resolution TEM (HRTEM) image shown in Figure 2.3e 

and f. The distance between lattice fringes, 0.23 and 0.22 nm, are consistent with (200) and (111) 

of the rutile TiO2 phase, respectively. 
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Figure 2.3. (a) TEM image of an individual TiO2 nanorod. (b) and (c) are SADPs taken from [110] 

and [111] zone axis, respectively. (d) EDS spectra of an individual TiO2 nanorod. The Cu peak 

originates from the copper grid for TEM observation. (e) and (f) HRTEM image of a single TiO2 

nanorod. 

To better understand the growth mechanism of TiO2 nanorods, a cross-sectional TEM 

specimen of the TiO2 nanorod arrays was prepared by focused ion beam (FIB). As shown in Figure 

2.4a, a buffer layer between TiO2 nanorod and Ti substrate can be observed. Note the nanorod is 

much shorter than average length because it has been broken during the FIB process. The detail 

EDS spectra from each area can be found in Figure 2.4b. The corresponding EDS mapping images 

of Ti and O distribution are displayed in Figure 2.4c and d, respectively, clearly indicating the 

formed buffer layer between TiO2 nanorods and Ti substrate is composed of Ti and O, whose 

structure will be further characterized below. 
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Figure 2.4. (a) STEM dark field image of Ti/TiO2 interface. (b) EDS spectra of each area in panel 

a. (c) and (d) are EDS elemental mappings corresponding to titanium (Ti) and oxygen (O), 

respectively. 

Figure 2.5a is a low magnification bright-field TEM image, showing a rough Ti/TiO2 

interface. SAEDs, performed on different regions of areas b, c and d of the interface, are shown in 

Figure 2.5b-d, respectively. The diffraction pattern from the substrate (Figure 2.5b) can be indexed 

as pure Ti hexagonal close-packed structure. Besides the diffraction spots from single crystal TiO2 

nanorod, denoted in the small rings in Figure 2.5c, there is also the presence of diffraction rings in 

the diffraction pattern from the interface. Such diffraction rings can be indexed as rutile TiO2 

(simulated with the PCED2.0 program),175 which further confirms the formation of polycrystalline 
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TiO2 in the buffer layer. Figure 2.5d shows the SADP taken from the area with several small TiO2 

nanorods, in which the diffraction rings can be indexed to the rutile TiO2 phase, matching EDS 

mapping results above. Furthermore, no special growth orientation between the nanorod and the 

substrate was observed. Based on the above experimental results, the possible growth mechanism 

of the TiO2 nanorod is detailed as follows. 

 

Figure 2.5. (a) Cross-sectional TEM image of Ti/TiO2 interface. (b)–(d) Diffraction patterns taken 

from the circled areas b, c, and d in figure (a), respectively. 
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On the basis of the above experimental results, the possible “dissolve and grow” 

mechanism of the TiO2 nanorod is proposed. The schematic diagram of the formation process is 

shown in Figure 2.6.  

 

Figure 2.6. The schematic formation process of TiO2 nanorod arrays on Ti foil. 

At first, Ti substrate reacts with H+ in HCl solution at high temperature and pressure and 

gradually dissolves, releasing the Ti3+ precursors into the reaction solution continually. Ti3+ is easy 

to hydrolyze in aqueous solution, resulting in the production of TiOH2+. TiOH2+ is then reacted 

with dissolved oxygen forming Ti4+ precursors. The Ti4+ complex ions are thus used as the growth 

units for TiO2. The overall reaction can be summarized as:176,177 

  3 22Ti 6HCl 2TiCl 3H g     (2.1) 

 3 2
2Ti H O TiOH H       (2.2) 

  2
2 2 2TiOH O Ti IV oxo species O TiO         (2.3) 

Apparently, due to the big polycrystalline grains of Ti substrate (Figure 2.5a) and different 

crystal structures between the TiO2 (tetragonal) nanorods and the Ti (hexagonal) substrate, it is 

unlikely for TiO2 nanorods to directly grow out from the Ti surface. Instead, TiO2 polycrystalline 

buffer layer was observed to form on the surface of the Ti substrate (Figure 2.4). It is well known 

that the growth on the existing seeds is more favorable compared to the formation of new nuclei 
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because the heterogeneous nucleation in solution has a lower activation energy barrier than 

homogeneous nucleation.178 Hence, the TiO2 buffer layer can provide initial nucleation sites by 

reducing the nucleation energy. Since the buffer layer was composed of small randomly oriented 

TiO2 crystallites, each nanorod tended to grow randomly, which is consistent with the cross-

sectional SEM observation shown in Figure 2.1b. However, the growth rate of rutile TiO2 nanorod 

follows the sequence of (110) < (100) < (101) < (001).179 Therefore, TiO2 nanorods growing along 

the [001] direction was eventually dominated 

It should be noted that there are several reports claim that using the same method would 

grow Ti nanorod or Ti/TiO2 core/shell nanorod arrays.180–184 Nevertheless, our comprehensive 

study clearly indicates the synthesis of TiO2 nanorod arrays. 

2.3.2. Electrochemical Performance 

The electrochemical performance of TiO2 nanorod arrays was investigated by cyclic 

voltammetry and galvanostatic charge/discharge measurements in a conventional three-electrode 

configuration. Figure 2.7a shows the CV curves of as-synthesized TiO2 nanorod arrays on Ti foil 

at different scan rates. All the CV curves exhibit almost rectangular shapes without obvious redox 

peaks, indicating ideal supercapacitance behavior and fast charging-discharging process based on 

good charge propagation. The calculated areal capacitances as a function of scan rate are shown 

in Figure 2.7b. The capacitance values of the TiO2 nanorod arrays are in the range of 81.2 to 174 

μF/cm2, as the applied scan rate is varied from 1000 mV/s to 1 mV/s.  
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Figure 2.7. (a) Cyclic voltammetry curves of the as-synthesized TiO2 nanorod arrays on Ti foil at 

different scan rates, (b) areal capacitance of the as-synthesized TiO2 nanorod arrays on Ti foil as a 

function of scan rate. 

The CV curves of TiO2 nanorod arrays on Ti wire at the scan rate of 20-1000 mV/s were 

shown in Figure 2.8. Similar to TiO2 nanorod arrays on Ti foil, the shapes of these curves are 

quasi-rectangular, indicating the ideal electrical double-layer capacitance behavior and fast 

charging/discharging process characteristic. The calculated specific capacitance is 64.8 μF/cm2 at 

the scan rate of 1000 mV/s. As expected, the specific capacitance is similar as the value of TiO2 

nanorod arrays on Ti foil. 
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Figure 2.8. CV curves of TiO2 nanorod arrays on Ti wire. 

To further improve the performance, as-synthesized TiO2 nanorod arrays were annealed in 

N2 atmosphere. Figure 2.9a shows the CV curves of heat treated TiO2 nanorod arrays at different 

scan rates. After heat treatment, the areal capacitance increases significantly and reaches 83.7 to 

856.2 μF/cm2 (Figure 2.9b), which is substantially higher than the values recently reported for 

TiO2 nanoparticles (33 μF/cm2 at scan rate of 100 mV/s)167 and TiO2 nanorod arrays on FTO glass 

(85 μF/cm2 at scan rate of 100 mV/s).185 The enhancement was due to the introduction of oxygen 

vacancies during heat treatment.186 The electrochemical performance of TiO2 nanorod arrays were 

further studied by galvanostatic charge/discharge method. Figure 2.9c illustrates the 

charge/discharge curves at different current densities of 10, 20, 50 and 100 μA/cm2. The 

charge/discharge curves of the TiO2 electrode show good symmetry and a small IR drop (0.07 V), 

indicating the TiO2 nanorod arrays have ideal electrochemical capacitance behavior and good 

redox reaction reversibility. 
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Figure 2.9. (a) Cyclic voltammetry curves of the TiO2 nanorod arrays at different scan rates. (b) 

Areal capacitance of TiO2 nanorod arrays as a function of scan rates. (c) Galvanostatic 

charge/discharge curves of TiO2 nanorod arrays at different current densities. (d) Cycle 

performance of TiO2 nanorod arrays measured by galvanostatic charge/discharge at a scan rate of 

100 μA/cm2 for 1000 cycles. Insert is the typical charge-discharge curves within ten cycles. 

The long-term cycling stability is one of the most important characteristics for 

supercapacitor. The stability of TiO2 nanorod arrays was tested by galvanostatic charge/discharge 

at 100 μA/cm2 for 1000 cycles, and the results are shown in Figure 2.9d. The decrease of 

capacitance after 1000 cycles is less than 1.6%, revealing the TiO2 nanorod arrays have a superior 

long-term cyclic performance. Meanwhile, as shown in the insert, the typical charge-discharge 
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curves within 10 cycles exhibit almost identical sharp triangular curve shapes, indicating a stable 

redox reaction, which further confirms the outstanding long-term stability. 

EIS analysis was also measured to further understand the fundamental electrochemical 

behavior of TiO2 nanorod arrays. The corresponding Nyquist plots are shown in Figure 2.10a. The 

impedance plot, as inserted, is composed of a semicircle arc in the high-frequency region followed 

by a linear response in the low frequency. The high-frequency region corresponds to the combined 

resistances of ionic resistance of the electrolyte, intrinsic resistance of the substrate, and contact 

resistance at the active material/current collector interface.187 The linear part in the low-frequency 

region is related to the frequency dependence diffusive resistance of the ion diffusion at 

electrolyte/electrode interface. It is noticeable that the Nyquist plot shows a large slope at lower 

frequencies, indicating the high capacitive behavior of the TiO2 nanorod arrays.188 Figure 2.10b 

represents the Mott-Schottky plot observed in the range of positive dc potentials. The correlation 

between 1/C2 and the applied potential exhibits a positive linear dependence, indicating the n-type 

semiconductor nature. The carrier density calculated from the slope of this Mott-Schottky plot is 

2.1×1021 cm-3, which is accordant with the expected values for TiO2.189 

 

Figure 2.10. (a) The Nyquist plot and (b) Mott–Schottky plot of TiO2 nanorod arrays. The inset in 

(a) shows the high-frequency part of the Nyquist plot. 
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To evaluate the feasibility of this TiO2 nanorod arrays directly grown on Ti foil for flexible 

supercapacitor application, the cyclic voltammetry test under different bending conditions were 

performed. The foil with as-synthesized TiO2 nanorod arrays shows high flexibility upon repeated 

bending (Figure 2.11a) and, more importantly, the CV curves collected did not significantly 

change under different bending angles (Figure 2.11b, c, and d), demonstrating that the TiO2 

nanorod arrays on Ti foil have high mechanical flexibility, which can be potentially applied for 

flexible supercapacitor fabrication. 

 

Figure 2.11. (a) Optical micrograph of bended Ti foil with TiO2 nanorod arrays. (b) CV curves 

collected at 100 mV s−1 under different bending conditions. CV curves of the TiO2 nanorod arrays 

on Ti foil at different scan rates under (c) 45° and (d) 90° bending angles. 



59 

2.4. Conclusion 

In summary, a facile one-step hydrothermal method is developed to directly grow TiO2 

nanorod arrays on Ti substrate. The TiO2 nanorods are single rutile crystalline with [001] growth 

involving dissolving of the Ti substrate and growing of the nanorods. The electrochemical 

performance of the nanorod arrays, used as supercapacitor electrodes, was systematically 

investigated. The results demonstrate that TiO2 nanorod arrays exhibit an ideal capacitive behavior, 

such as high specific capacitance and excellent cyclic stability. The TiO2 nanorod arrays were 

further used as a flexible electrode and showed good stability under different bending conditions, 

which suggests that TiO2 nanorod arrays grown directly on Ti foil can be employed for flexible 

energy storage applications as well.



Part of this chapter was published in:  Zhi Zheng et al. Three-Dimensional Cobalt Phosphide Nanowire 

Arrays as Negative Electrode Material for Flexible Solid-State Asymmetric Supercapacitors, ACS Appl. 

Mater. Interfaces, 2017, 9 (20), 16986–16994. 

 Nanostructured Cobalt Phosphide as Negative 

Electrode for Flexible Solid-State Asymmetric Supercapacitors 

3.1. Introduction 

In spite of the great improvement that has been achieved in developing positive electrode 

materials, the advancement of negative electrode materials has been relatively slow.190,191 Various 

materials have been studied as promising candidates for supercapacitor negative electrodes, such 

as carbon, transition metal oxides, and nitrides.27,89,114,127,192–196 Among them, metal oxides exhibit 

superior specific capacitance through fast and reversible surface Faradaic reactions during the 

charging/discharging process17 and, therefore, show great promise as negative electrode materials 

for supercapacitors. However, metal oxides often present a compromise of specific capacitance 

due to their poor intrinsic electrical conductivity.197 Thus, it is still crucial to explore new classes 

of materials to further improve the negative electrode performance. As a class of interesting 

multifunctional semiconductors, metal phosphides have attracted much attention owing to their 

remarkable properties and various electrochemical applications, such as Li-ion batteries,198 water 

splitting,199–202 and sensing.203 Compared with metal oxides, metal phosphides exhibit metallic 

properties and superior electrical conductivity, rendering them to be suitable supercapacitor 

electrode materials. Several research groups have reported that metal phosphides, such as 

Ni2P,143,144,147–149,204 Ni12P5,145 Co2P,205 and NiCoP,156 present excellent performance as positive 

electrode materials for supercapacitors. To the best of our knowledge, however, the use of metal 

phosphides as a negative electrode material for supercapacitors remains unexplored. In addition, 

using nanomaterials, especially three-dimensional nanowire arrays, which provide a large surface 



61 

area and short ionic and electronic diffusion paths, is one of the most promising strategies to 

improve the supercapacitance performance.163,206,207 

In this chapter, two different three-dimensional CoP nanostructures composed of nanowire 

and nanosheet arrays were synthesized on carbon cloth by a hydrothermal method followed by 

low-temperature phosphidation. Both nanostructures show excellent performance as 

supercapacitor negative electrodes, such as high capacitance and good rate capacity. In addition, 

high energy and power density, as well as good stability, have been achieved by designing a solid-

state ASC based on a CoP nanowire array negative electrode, an MnO2 nanowire array positive 

electrode, and a poly(vinyl alcohol) (PVA)/LiCl gel electrolyte, which demonstrates that the as-

synthesized CoP nanowire arrays provide great potential for supercapacitor negative electrode 

material applications. 

3.2. CoP Nanowire Arrays 

3.2.1. Experiments 

Materials 

All reagents used in the experiments were of analytical grade and were used without further 

purification. Co(NO3)2·6H2O was purchased from Alfa Aesar. NH4F, NaH2PO2, KMnO4, and urea 

were purchased from Sigma-Aldrich. Carbon cloth (AvCarb 1071 HCB) was purchased from Fuel 

Cell Store. A cellulosic separator (TF4030, NKK) was used to make the solid-state symmetric and 

asymmetric supercapacitors. 

Synthesis of CoP Nanowire Arrays 

CoP nanowire arrays on carbon cloth were synthesized by a two-step method.208 The 

carbon cloth (2 × 3 cm2) was first sonicated in acetone, ethanol, and deionized (DI) water for 30 
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min. Co(NO3)2·6H2O (0.22 g), NH4F (0.225 g), and urea (0.07 g) were dissolved in 15 mL of water 

and transferred to a 20 mL Teflon-lined stainless steel autoclave. The autoclave with a piece of 

carbon cloth was kept at 120 °C for 12 h. The sample was taken out and washed with DI water and 

ethanol thoroughly after the autoclave was cooled to room temperature. Once dried, the sample 

and NaH2PO2 were placed in a tube furnace with NaH2PO2 at the upstream side. The furnace was 

heated to 300 °C at 1 °C/min and kept for 2 h under 50 sccm Ar flow. The loading amount of CoP 

nanowire arrays was determined as 3.66 mg/cm2 by a high precision microbalance. For comparison, 

cobalt oxide nanowire arrays were synthesized by annealing the sample in air. 

Synthesis of MnO2 Nanowire Arrays 

MnO2 nanowire arrays were synthesized by a hydrothermal approach.193 KMnO4 (2.5 

mmol) and 1 mL of concentrated HCl were dissolved in 45 mL of water. The solution was then 

transferred into a 100 mL Teflon-lined stainless steel autoclave with a piece of carbon cloth and 

kept for 12 h at 140 °C. The sample was then annealed in air at 400 °C for 2 h. The loading mass 

of MnO2 was about 2.47 mg/cm2. 

Material Characterizations 

Field-emission scanning electron microscopy (FESEM) and transmission electron 

microscopy (TEM) images were obtained on a Hitachi S-4800 FESEM and a JEOL 2010 TEM, 

respectively. The elemental mapping and electron energy loss spectroscopy (EELS) mapping were 

obtained using scanning transmission electron microscopy (JEM-2400FCS, JEOL) equipped with 

a spherical aberration corrector, double Wien filter monochromator, Xray energy-dispersive 

spectrometer (EDS) systems, and Gatan image filter system, which is operated at 60 kV. For the 

EELS analysis, the utilized energy dispersion is 0.1 eV per channel. The energy resolution for the 

EELS is 0.3 eV determined by the full width at half-maximum of the zero loss peak. The high-
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resolution TEM (HRTEM) data were captured using the E-Titan equipped with an image corrector 

and operated at 300 kV. The X-ray photoelectron spectroscopy (XPS) spectrum was recorded on 

PerkinElmer Phi 560. A Philips X’PertMPD X-ray diffractometer was used for X-ray diffraction 

(XRD) measurements. 

Fabrication of Solid-State Symmetric and Asymmetric Supercapacitor 

The PVA/LiCl gel electrolyte was prepared by adding 12.6 g of LiCl and 6 g of PVA to 60 

mL of water under vigorous stirring at 80 °C for 2 h. The electrode and separator were immersed 

in the prepared gel electrolyte for 10 min. To assemble symmetric supercapacitor (SSC), two 

identical CoP electrodes and a separator were sandwiched together and kept overnight in a drying 

oven. The ASC was assembled similarly to SSC except MnO2 was used as the positive electrode 

and CoP was used as the negative electrode. The thickness of both SSC and ASC was measured 

to be 0.8 mm.  

Electrochemical Measurements 

A Gamry Reference 600 potentiostat was used for the electrochemical measurements. The 

electrochemical performance of the single electrode was measured in a three-electrode 

configuration in a 1 M LiCl aqueous electrolyte. A Pt foil and Ag/AgCl were used as counter and 

reference electrodes, respectively. Electrochemical impedance spectroscopy (EIS) measurements 

were conducted with a potential amplitude of 5 mV in the frequency range of 0.01 Hz to 100 kHz. 

For single electrode, the areal capacitance (Ca) of the single electrode is calculated from 

galvanostatic charge/discharge curves by the following equation: 

 a

I t
C

A V





  (3.1) 
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where I is the discharge current, Δt is the discharge time, ΔV is the potential window during the 

discharge process removed by the IR drop, and A is the active area of the electrode.  

The volumetric capacitance (Cv) of SSC and ASC are calculated from galvanostatic 

charge/discharge curves according to the following equation: 

 v

I t
C

V V





  (3.2) 

where I is the discharge current, Δt is the discharge time, ΔV is the potential window during the 

discharge process removed by the IR drop, and V is the volume of the total device. 

The average energy density (E) and power density (P) of SSC and ASC are calculated by 

the following equation: 

 21
2 vE C V   (3.3) 
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3.2.2. Results and Discussion 

CoP nanowire arrays on carbon cloth were synthesized by a two-step process (Figure 3.1a). 

The Co(CO3)0.5(OH)·0.11H2O precursor was first synthesized by a hydrothermal method, 

followed by low-temperature phosphidation (Figure 3.1b). The reactions could be described as:209  

  22Co F CoF x

xx
      (3.5) 

 2 2 2 3 2H NCONH H O 2NH CO     (3.6) 

 2
2 2 3CO H O CO 2H      (3.7) 
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 3 2 4NH H O NH OH      (3.8) 

      2 2
3 2 3 20.5

CoF 0.5CO OH H O CO CO OH H O Fx

x n n x            (3.9) 

During the phosphorization reaction, the NaH2PO2 was thermally decomposed to PH3, and serves 

as both the phosphorus source as well as the reducing agent.210 

 

Figure 3.1. (a) Schematics of the synthesis procedure of CoP nanowire arrays on carbon cloth, (b) 

photograph showing (from left to right) blank carbon cloth, Co(CO3)0.5(OH)∙0.11H2O and CoP 

nanowire arrays on carbon cloth. 

The crystal structures of the Co(CO3)0.5(OH)·0.11H2O precursor and the CoP final product 

were determined by XRD, as shown in Figure 2a. All of the diffraction peaks of the precursor are 

in good agreement with orthorhombic Co(CO3)0.5(OH)·0.11H2O (JCPDS No. 48-0083), except the 

carbon peaks, as denoted by asterisks. After phosphidation, all of the diffraction peaks can be 

indexed as an orthorhombic CoP structure (JCPDS No. 29-0497) with no significant impurity 

peaks, suggesting successful synthesis with high purity of the CoP phase.208 
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Figure 3.2. XRD patterns of Co(CO3)0.5(OH)·0.11H2O and CoP nanowire arrays. 

The typical FESEM images of Figure 3.3a show the uniform growth of 

Co(CO3)0.5(OH)·0.11H2O on the carbon cloth in the form of nanowire arrays. As shown in the 

TEM image of Figure 3.3b, the solid Co(CO3)0.5(OH)·0.11H2O nanowire presents a smooth 

surface. The corresponding selected-area electron diffraction patterns of Co(CO3)0.5(OH)∙0.11H2O 

(Figure 3.3c) shows single crystalline feature, and can be indexed as orthorhombic phase (a = 

8.792 Å, b = 10.15 Å, c = 4.433 Å). The growth direction can be determined as the [010] direction, 

which agrees well with the previous reports.211,212 The EDS spectrum (Figure 3.3d) shows only the 

perks of Co, O and C, along with Cu from the TEM grid. 



67 

 

Figure 3.3. (a) Low- and (inset) high-magnification SEM images, (b) TEM image, (c) SAED 

pattern and (d) EDS spectrum of Co(CO3)0.5(OH)·0.11H2O nanowire. 

After phosphidation, the nanowire array structure kept intact, as shown in Figure 3.4a. The 

inset, enlarged from nanowire tips, shows sharp tips of CoP nanowires with the width of 50 to 100 

nm. In contrast to Co(CO3)0.5(OH)·0.11H2O nanowire, CoP nanowire shows a rough surface 

(Figure 3.4b). Correspondingly, the diffraction rings in Figure 3.4c reveals that CoP nanowire 

presents a polycrystalline feature with indexed diffraction rings of (011), (111), (112), (211), (202), 

and (301) planes of the orthorhombic CoP phase (a = 5.077 Å, b = 3.281 Å, c = 5.587 Å), which 

could be caused by the dehydration and gas release of the Co(CO3)0.5(OH)·0.11H2O nanowire in 

the phosphidation process.213 The inset HRTEM lattice image in Figure 3.4b shows the lattice 

fringes with an interplane spacing of 0.247 nm, repressing the (111) planes of CoP. In addition, 

the EDS spectrum shown in Figure 3.4d confirm the successful introduction of P element after 

phosphidation. Figure 3.4e shows the high-angle annular dark field scanning TEM (HAADF 
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STEM) image and the corresponding EDS elemental mappings (P, O, Co, and P + O) of a single 

CoP nanowire, further confirming the homogeneous distribution of P and Co elements along the 

nanowire. The combined mapping image of P and O elements (Figure 3.4e(v)) reveals a thin layer 

of oxygen on the surface of the CoP nanowire, indicating a formation of a thin oxidation surface 

layer. Furthermore, a low-loss electron energy loss spectrum (EELS) mapping (Figure 3.4f,g) 

using an energy range of 6.0-7.0 eV (Figure 3.4h) indicates the occurrence of Co2+ on the surface. 

The Co2+ can be assigned to the interband transition of the extended O 2p states to the conduction 

band (O 2p to Co 3d (eg)) in cobalt oxide,214 which confirmed that the cobalt oxide layer with a 

thickness of about 8 nm was formed and concentrated on the surface of the CoP nanowire. The 

formation of the surface oxidation layer is caused by the reaction of CoP and O2 in ambient air due 

to the metallic nature of CoP.215,216 
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Figure 3.4. (a) FESEM images of CoP nanowire arrays. (b) TEM image of a single CoP nanowire 

and the inset showing the HRTEM lattice image of the (111) plane. (c) Indexed SAED pattern of 
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the CoP nanowire. (d) EDS spectrum of CoP nanowire. (e) HAADF-STEM and corresponding 

EDS elemental maps imaged by P, O, Co, and P + O. (f, g) HAADF-STEM image and 

corresponding EELS maps using the energy range of 6.0-7.0 eV for CoP nanowire, respectively. 

(h) EELS spectra from the CoP nanowire. 

In the controlled experiment, the Co(CO3)0.5(OH)·0.11H2O precursor was annealed in the 

air to order to get cobalt oxide nanowire arrays. The SEM image and XRD patterns are shown in 

Figure 3.5. 

 

Figure 3.5. (a) SEM image and (b) XRD patterns of cobalt oxide (Co3O4) nanowire arrays. 

On the basis of the discussion by Gogotsi and Simon,217 the best practice performance 

metric for a supercapacitor should include all device components, hence arealmetric and 

volumetric were used instead of gravimetric to describe the performance of the present electrodes 

and full devices. The electrochemical properties of the CoP nanowire arrays were investigated by 

cyclic voltammetry (CV) and galvanostatic charge/discharge measurements in a conventional 

three-electrode configuration using a 1 M LiCl aqueous solution as the electrolyte. It is important 

to rule out the possibility of significant capacitive contribution from the carbon cloth or the cobalt 

oxide surface layer. We have, therefore, measured the CV curves of the CoP nanowire arrays, 
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cobalt oxide nanowire arrays, and blank carbon cloth after phosphidation, as shown in Figure 3.6a. 

Clearly, the carbon cloth shows an insignificantly small capacitance compared to that of the CoP 

electrode. In addition, the capacitance of the cobalt oxide electrode was more than 1 order lower 

than that of the CoP electrode with the same loading amount. It was reported that the ions from 

the electrolyte can be easily transported through the electronically insulating layers with a 

thickness of a few nanometers. Hence, given the fact that the cobalt oxide layer on the CoP 

nanowire surface is negligibly thin, about 8 nm, it is reasonable to conclude that the capacitance 

is primarily contributed from the CoP itself. Figure 3.6b shows the CV curves of the CoP nanowire 

array electrode at different scan rates from 10 to 100 mV/s. A potential of −0.8 V was applied on 

the CoP nanowire array electrode to match the operation window of the positive electrode in ASC, 

to be discussed in further detail. The symmetrical quasi-rectangular shape of the CV curves reveals 

the typical supercapacitor characteristic of the CoP nanowire array electrode. However, at high 

scan rates, the CV curves show larger polarization, which may be caused by the incomplete 

desolvation process of the Li+ ions.218 Figure 3.6c illustrates the charge/discharge curves at 

different current densities of 1, 2, 5, and 10 A/cm2. The good symmetricity of the charge/discharge 

curves demonstrated the ideal capacitive behavior of the CoP nanowire array electrode. As shown 

in Figure 3.6d, the areal capacitance of the CoP nanowire array electrode was calculated as 571.3, 

482.3, 402.2, and 333.5 mF/cm2 at current densities of 1, 2, 5, and 10 mA/cm2, respectively, which 

are higher than most of the recently reported as-synthesized negative electrode materials, such as 

CoSe2 (332 mF/cm2 at 1 mA/cm2),219 Fe2O3 (180.4 mF/cm2 at 1 mA/cm2),193 and Mn3O4 (372.5 

mF/cm2 at 1 mA/cm2).220 The rate capacity was 58.3% when the current density increased from 1 

mA/cm2 to 10 mA/cm2. The excellent electrochemical performance of the CoP nanowire arrays 

can be attributed to three main aspects. First, the superior electrical conductivity of CoP facilitated 
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electron transfer within the electrode. Second, the 3D configuration of the CoP nanowire arrays 

offered a large surface area and short ionic and electronic paths. Third, direct growth of the CoP 

nanowire arrays on the carbon cloth provided robust mechanical adhesion and good electrical 

contact.13,50 

 

Figure 3.6. (a) CV curves of CoP, cobalt oxide, and blank carbon cloth after phosphidation at a 

scan rate of 100 mV/s. (b) CV curves of the CoP nanowire array electrode at different scan rates. 

(c) Galvanostatic charge/discharge curves of the CoP nanowire array electrode at different current 

densities. (d) Areal and specific capacitance of the CoP nanowire array electrode as a function of 

current density. 

It should be noted that the CoP nanowire array electrode suffered poor stability in the 

aqueous electrolyte (Figure 3.7a). The EIS was performed to study the electrical conductivity 

before and after the cycling test. Two typical Nyquist plots of the CoP nanowire array electrode 
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before and after the cycling test are shown in Figure 3.7b. The measured impedance spectra are 

fitted by an equivalent circuit (Figure 3.7c), which consists of an equivalent series resistance RS, 

a charge transfer resistance RCT, a pseudocapacitive CL from the redox process of CoP, a constant 

phase element (CPE) of the double layer capacitance and a leakage resistance RL.96 The impedance 

plots are composed of a semicircle arc in the high-frequency region followed by a linear response 

in the low frequency. The high-frequency region corresponds to the equivalent series resistance, 

which combines resistances of ionic resistance of the electrolyte, intrinsic resistance of the 

substrate, and contact resistance at the active material/current collector interface. The linear part 

in the low-frequency region is related to the frequency dependence charge transfer resistance. As 

shown in Figure 3.7d, the equivalent series resistance, RS, was 2.337 Ω and remained constant 

during the cycling process, suggesting the high conductivity of the CoP nanowire arrays, as well 

as the good electric contact between the CoP nanowire arrays and the carbon cloth substrate. 

Contrastingly, the charge transfer resistance, RCT, increased significantly from 5.163 to 30.9 Ω 

after 5000 cycles, which cause the stability reduction. 
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Figure 3.7. (a) Cycle performance of the CoP nanowire array electrode in 1 M LiCl aqueous 

electrolyte at a scan rate of 5 mA/cm2 for 5000 cycles. (b) Nyquist plots of the CoP electrode 

collected before and after the cycling test. The inset is the high-frequency part of the Nyquist plot. 

(c) The equivalent circuit of CoP nanowire arrays electrode. (d) Plots of the equivalent series 

resistance RS and the charge transfer resistance RCT as a function of cycle number. 

One possible reason causes the instability is the structure deformation. However, from 

Figure 3.8a, the SEM image of CoP nanowire arrays after cycling test, it is clear the nanostructure 

was well maintained. Another possible mechanism is the irreversible electrochemical oxidation 

reaction during the cycling process. XPS was used to investigate the chemical composition before 

and after the cycling test in an aqueous electrolyte to examine the conductivity change of the CoP 
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nanowire arrays. The XPS survey of the CoP nanowire arrays (Figure 3.8b) confirms the presence 

of Co and P elements. The high-resolution core level of Co 2p (Figure 3.8c) before the cycling test 

showed peaks at 779.05 (2p3/2) and 794 (2p1/2) eV corresponding to the binding energies of Co 

2p in CoP. All of the other peaks, including 782.2 and 798.4 eV and the two satellite peaks at 786.4 

and 803.6 eV, are associated with cobalt oxide,221 which further confirm the formation of the 

surface oxidation layer on the as-synthesized CoP nanowire. Two peaks appearing in the P(2p) 

region (Figure 3.8d) were assigned to phosphide at 130 eV and orthophosphate (Co3(PO4)2) at 

134.2 eV, respectively.222 After 5000 cycles, the Co 2p peaks in CoP fully disappeared (Figure 

3.8c), and the phosphide peak also decreased significantly (Figure 3.8d). Those results indicated 

that the surface oxidation layer on the CoP nanowire increased during the cycling process by the 

possible irreversible electrochemical oxidation reaction82,223,224 as follows: 

 2
2CoP 2H Co PH      (3.10) 

 2
2Co 2OH Co(OH)     (3.11) 

 2 2Co(OH) OH CoOOH H O e       (3.12) 

 3 4 2CoOOH e Co O H O OH       (3.13) 
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Figure 3.8. (a) SEM image of CoP nanowire arrays electrode after 5000 charge/discharge cycles 

at a scan rate of 5 mA/cm2. Insert shows the tips of nanowires. (b) XPS survey of CoP nanowire 

arrays. High-resolution core level of (c) Co 2p and (d) P 2p XPS spectra of the CoP nanowire 

arrays before and after the cycling test. 

The increment of the surface cobalt oxide may prevent ions from penetrating into the CoP 

core in the nanowire,225 thus causing the reduction of capacitance. A similar diminishment of 

capacitance was observed in Ni2P ascribed to the formation of Ni(OH)2.148 On the basis of those 

results, it is believed that the irreversible electrochemical oxidation reaction of the CoP nanowire 

played a crucial role in the instability of the CoP nanowire array electrode. Nevertheless, the 
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irreversible oxidation reaction can be well suppressed by replacing the aqueous electrolyte with 

the solid-state gel electrolyte.226–228 In addition, solid-state supercapacitors offer numerous 

advantages, such as flexibility, lightweight, and environmental friendliness, in comparison to 

liquid-based supercapacitors and, hence, are appropriate to meet the urgent energy demand.13,229 

To examine the practical application of CoP nanowire arrays as flexible solid-state 

supercapacitor electrodes, a SSC was fabricated using the PVA/LiCl gel electrolyte (Figure 3.9a). 

The CV curves in the voltage range from −0.8 to 0.8 V at different scan rates are shown in Figure 

3.9b. As shown in Figure 3.9c, the charge/discharge curves of the SSC showed good symmetry 

with a small IR drop of less than 0.05 V, revealing the good redox reaction reversibility. The 

calculated specific capacitances as a function of current density are plotted in Figure 3.9d. The 

capacitance value of the SSC was calculated as 35.4 and 22.65 mF/cm2 at a current density of 1 

and 10 mA/cm2, respectively, showing a good rate capability of 63.4%. Most importantly, as 

shown in Figure 3.9e, the SSC presented great stability with 87.05% capacitance retention after 

5000 charge/discharge cycles, which demonstrated that the CoP nanowire arrays have great 

potential as highly stable negative electrodes for solid-state supercapacitors. 
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Figure 3.9. (a) Schematics the designed symmetric and asymmetric supercapacitors. (b) CV curves 

of the SSC at different scan rates. (c) Galvanostatic charge/discharge curves of the SSC at different 

current densities. (d) Areal and volumetric capacitance of the SSC as a function of current density. 

(e) Cycle performance of the SSC at a scan rate of 5 mA/cm2 for 5000 cycles. 

To further improve the energy density, an ASC was fabricated consisting of CoP nanowire 

arrays as the negative electrode and the MnO2 nanowire array positive electrode (Figure 3.9a). 

The MnO2 nanowire arrays were grown on the carbon cloth by a hydrothermal approach193 and 
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characterized by XRD, FESEM, and TEM. The details can be found in Figure 3.10. As shown in 

SEM images (Figure 3.10a, b), MnO2 nanowires were grown uniformly in carbon cloth. TEM 

image (Figure 3.10c) shows that the diameter of MnO2 nanowire is around 50 nm. The lattice 

spacing was measured to be ∼0.69 nm in HRTEM image (Figure 3.10d), corresponding to d-

spacing of (110) planes of MnO2. The energy dispersive X-ray spectrometry (EDS) spectrum in 

Figure 3.10e shows the existence of elements Mn, O, K, C, and Cu. Signals of C and Cu come 

from the TEM copper grid, and the signal of K is due to the possible K+ doping effect during 

synthesis.230 The XRD pattern are shown in Figure 3.10f, all the diffraction peaks are in good 

agreement with the tetragonal rutile phase (JCPDS No. 44-0141) except the peaks from the carbon 

cloth.  
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Figure 3.10. (a) Low and (b) high magnification SEM image of MnO2 nanowire arrays. (c) TEM 

image of MnO2 nanowire. (d) High-resolution TEM image of MnO2 nanowire. (e) EDS spectra of 

MnO2 nanowire. (f) XRD spectrum of MnO2 nanowire arrays. 

The electrochemical performance of the MnO2 nanowires was also evaluated by CV and 

charge/discharge measurements using a three-electrode configuration with 1 M LiCl aqueous 

solution as the electrolyte (Figure 3.11). To maximize the performance of the ASC device, the 
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charge of different electrodes should be balanced according to the equation q C E A   . In 

order to get  q q  , the areal balance was calculated by the equation 
A C E

A C E
  

  





.187 The area 

ratio between CoP and MnO2 electrodes was calculated based on the charge/discharge curves to 

be 0.882. 

 

Figure 3.11. (a) CV curves of the MnO2 electrode at different scan rates. (b) Galvanostatic 

charge/discharge curves of MnO2 electrode at different current densities. (c) Areal capacitance of 

CoP and MnO2 electrode as a function of current density. (d) CV curves of CoP and MnO2 

electrodes at 100 mV/s. 
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On the basis of the CV studies for the single electrodes, the total cell voltage can be 

expressed as the sum of the potential range of CoP and MnO2 nanowire array electrodes, therefore 

a series of operating cell voltages from 0.8 to 1.6 V was applied to the ASC. Figure 3.12a shows 

the CV curves of the asymmetric device collected at 100 mV/s in different voltage windows. The 

ASC device demonstrated a typical supercapacitor behavior, evident by the nearly rectangular 

shape of all CV curves. In addition, the CV measurements were performed under different bending 

conditions to evaluate the feasibility of the ASC. As shown in the insert photographs of Figure 

3.12b, the ASC presented high flexibility under bent and twisted conditions, and more importantly, 

no significant change of the CV curves was observed (Figure 3.12b), demonstrating the good 

flexibility and durability of the solid-state ASC. The galvanostatic charge/discharge tests at 

different current densities were also performed as shown in Figure 3.12c. The symmetrical 

charge/discharge characteristics represented good capacitive characteristics for the ASC. On the 

basis of the discharge curves, a volumetric capacitance of 1.94 F/cm3 at 1 mA/cm2 was achieved 

for the ASC device, as shown in Figure 3.12d. Furthermore, the long-term stability of ASC has 

been investigated up to 5000 cycles, as shown in Figure 3.12e. The ASC exhibited good stability 

with 82% capacitance retention after 5000 charge/discharge cycles, as well as excellent Coulombic 

efficiency (>90%). 
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Figure 3.12. (a) CV curves of the ASC device collected in different scan voltage windows. (b) CV 

curves obtained at a scan rate of 100 mV/s under normal, bent, and twisted conditions. Insert are 

the photographs of the ASC device. (c) Galvanostatic charge/discharge curves of the ASC at 

different current densities. (d) Areal and volumetric capacitance of the ASC as a function of current 



84 

density. (e) Cycle performance of the ASC at a scan rate of 5 mA/cm2 for 5000 cycles. (f) Ragone 

plots of the ASC and SSC devices. 

The Ragone plots are also presented in Figure 3.12f to evaluate the average power density 

and energy density of both SSC and ASC. Compared to that of SSC, the ASC device showed a 

high energy density of 0.69 mWh/cm3 at a power density of 10.15 mW/cm3, which is higher than 

the recently reported values of flexible ASCs, as shown in Table 3.1.85,86,121,193,219,220,231,232 

Moreover, the energy density can be well maintained at 0.21 mWh/cm3 at a high power density of 

114.20 mW/cm3. 
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Table 3.1. Comparison of capacitive performances of reported negative electrode materials and 

their corresponding ASCs. 

Negative 

electrode 

material 

Areal 
capacitance 

ASC device Volumetric 

capacitance 

(mF/cm3) 

Energy 

density 

(mWh/ 
cm3) 

Power 

density 

(mW/ 
cm3) 

Cycling 

performance 

CoP  

(Present work) 
571.3 
mF/cm2  
at 1 
mA/cm2 

MnO2//CoP 1.94 F/cm3 
at 1 mA/cm2 

0.69 114.20 82.15% after 
5000 cycles 

Fe2O3
193 180.4 

mF/cm2  
at 1 
mA/cm2 

MnO2//Fe2O3 1.5 F/cm3  
at 2 mA/cm2 

0.55 139.1 84% after 
5000 cycles 

Oxygen-

deficient 

Fe2O3
85 

382.7 
mF/cm2  
at 0.5 
mA/cm2 

MnO2//Fe2O3 1.21 F/cm3 
at 0.5 
mA/cm2 

0.41 100 81.6% after 
6000 cycles 

α-

Fe2O3@PANI86 
103 mF/cm2  
at 0.86 
mA/cm2 

PANI//α-
Fe2O3@PANI 

2.02 F/cm3 
at 5 mV/s 

0.35 120.51 95.77% after 
10000 cycles 

CoSe2
219 332 mF/cm2  

at 1 
mA/cm2 

MnO2//CoSe2 1.77 F/cm3 
at 1 mA/cm2 

0.588 282 94.8% after 
2000 cycles 

Mn3O4
220 372.5 

mF/cm2  
at 1 
mA/cm2 

Ni(OH)2// Mn3O4 2.07 F/cm3 
at 1 mA/cm2 

0.35 32.5 83.3% after 
12000 cycles 

RGO121 ̶ H-MnO2//RGO 0.72 F/cm3 
at 10 mV/s 

0.25 1430 95.5% after 
5000 cycles 

RGO231 250 mF/cm2  
at 10 mV/s 

MnO2/ZnO//RGO 0.52 F/cm3 
at 10 mV/s 

0.234 133 98.4% after 
5000 cycles 

H-TiO2@C232 ̶ H-
TiO2@MnO2//H-
TiO2@C 

0.71 F/cm3 
at 10 mV/s 

0.3 230 91.2% after 
5000 cycles 

3.3. CoP Nanosheet Arrays 

3.3.1. Experiments 

To synthesize CoP nanosheet arrays, 0.44 g Co(NO3)2·6H2O and 0.11 g 

hexamethylenetetramine (HMTA) were dissolved in 15 mL water and kept in autoclave with 
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carbon cloth at 100°C for 6 h.233 The phosphidation process was the same as CoP nanowire arrays 

The samples were further sulfidated by heating the sample and sulfur powder under Ar atmosphere. 

The loading amount of CoP nanosheet arrays was determined as 1.33 mg/cm2. The material 

characterization and electrochemical measurement methods are the same as described in section 

3.2.1. 

3.3.2. Results and Discussion 

By changing the additives to HMTA during the synthesis, nanosheet arrays precursor can 

be grown on carbon cloth (Figure 3.13a). The reactions involved in the hydrothermal synthesis of 

Co(OH)2 can be illustrated as follows.234 

 6 12 4 2 3C H N 6H O 6HCHO 4NH     (3.14) 

 3 2 4NH H O NH OH     (3.15) 

  2

2
Co 2OH Co OH     (3.16) 

Figure 3.13b shows the XRD patterns of the nanosheet arrays sample before and after 

phosphidation. Besides the peaks from the carbon cloth substrate, all the diffraction peaks before 

phosphidation correspond to α-Co(OH)2 phase (JCPDS No. 74-1057), the diffraction peaks after 

phosphidation can be indexed as orthorhombic CoP phase. Figure 3.13c presents the FESEM 

image of Co(OH)2 nanosheet arrays, indicating a large area of vertically aligned nanosheets, 

uniformly distributed over the carbon cloth. As shown in Figure 3.13d, the nanosheet arrays format 

was kept intact after phosphidation. 
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Figure 3.13. (a) Photograph (from left to right) of blank carbon cloth, Co(OH)2 and CoP nanosheet 

arrays on carbon cloth. (b) XRD patterns of Co(OH)2 and CoP nanosheet arrays on carbon cloth. 

Low- and (inset) high-magnification SEM images of (c) Co(OH)2 nanosheet arrays and (d) CoP 

nanosheet arrays on carbon cloth. 

The TEM images of Co(OH)2 (Figure 3.14a) further confirmed the nanosheet morphology. 

The selected area electron diffraction pattern of Figure 3.14b reveals the single crystal feature of 

Co(OH)2 nanosheet, and can be indexed as α-Co(OH)2 phase from [001] zone axis. The EDS 

spectrum confirms the Co(OH)2 nanosheet consists of Co and O elements (Figure 3.14c). 
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Figure 3.14. (a) TEM images, (b) Selected area electron diffraction patterns and (c) EDS spectra 

of and Co(OH)2 nanosheet. 

After phosphidation, the nanosheet is being reconstructed with much finer and pores 

(Figure 3.15a). Similar to CoP nanowire, the single crystalline Co(OH)2 precursor transferred to 

the polycrystalline CoP (Figure 3.15b) after the phosphidation process. The EDS spectra as shown 

in Figure 3.15c further confirmed the P element in CoP nanosheet. A high-resolution electron 

microscopy image (Figure 3.15d) of the nanosheet also shows the features of polycrystalline 

nanocrystals, where the (111) and (200) lattice fringes can be clearly observed. EDS and EELS 

mappings were performed in the nanosheet, revealing the coexistence of cobalt, phosphorus, and 

oxygen in the nanosheet, as shown in Figure 3.15e and Figure 3.15g, which also confirmed the 

partial oxidation of CoP nanosheet. 
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Figure 3.15. (a) TEM image, (b) selected area electron diffraction patterns, (c) EDS spectra, (d) 

HRTEM image, (e) HAADF-STEM and corresponding EDS elemental mapping images of P, O, 

Co and P+O, (f) dark field image and (g) EELS mapping on energy range 6.0-7.0 eV of CoP 

nanosheet. 

The CV and galvanostatic curves of CoP nanosheet arrays electrode were similar to that of 

CoP nanowire arrays electrode, as shown in Figure 3.16a and b, showing good supercapacitance 

behavior as well. The areal capacitance of nanosheet arrays (Figure 3.16c) is relatively lower than 

that of nanowire arrays probably due to the lower loading mass (1.33 mg/cm2 compared to 3.66 

mg/cm2). Nevertheless, the equivalent series resistance of CoP nanosheet arrays electrodes 

calculated from the Nyquist plots (Figure 3.16d) was only 3.412 Ω, suggesting the good 

conductivity. The improvement of capacitance may be raised from the enhancement of increment 

of  the active sites for redox reactions 
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Figure 3.16. (a) CV curves of the CoP nanosheet arrays electrode at different scan rates. (b) 

Galvanostatic charge/discharge curves of CoP nanosheet arrays electrode at different current 

densities. (c) Areal capacitance of CoP nanosheet arrays electrodes as a function of current density. 

(f) Nyquist plots of CoP nanosheet arrays electrodes. 

The supercapacitance performance of CoP nanosheet arrays can be further improved by 

successive sulfidation. Figure 3.17a shows the CV curves of sulfidated CoP (denoted as CoPS) 

and as-synthesized CoP. Clearly, the CoPS electrode exhibits higher current density, thus better 

capacitive behavior in comparison with those of the CoP electrodes. Figure 3.17b shows the 

calculated areal capacitances of the CoPS and CoP electrodes as a function of scan rate. Notably, 

the CoPS electrode yields an areal capacitance of 156 F/cm2 at 10 mV/s, which is much larger than 

29 F/cm2 for the CoP electrode at the same scan rate. 
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Figure 3.17. (a) CV curves of the CoPS and CoP electrodes at 100 mV/s. b) Areal capacitances of 

the CoPS and CoP electrodes as-as a function of scan rate. 

Additionally, the annealing temperature is crucial in sulfidation process. Figure 3.18 

compares the CV curve of CoP nanosheet electrode under different sulfidation temperature from 

200 to 350°C. Significantly, it was found that 300°C sulfidation temperature can result in largest 

areal capacitance for the CoPS electrode. Further increase of the temperature results in the decrease 

of capacitance. 
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Figure 3.18. CV curves of CoP nanosheet electrode under different sulfidation temperature. (a) 

200°C, (b) 250°C, (c) 300°C, and (d) 350°C. 

3.4. Conclusion 

In summary, we have successfully synthesized 3D CoP nanowire and nanowire arrays on 

a carbon cloth. The detailed characterizations revealed the transformation of the single crystal 

Co(CO3)0.5(OH)·0.11H2O nanowire or Co(OH)2 nanosheet to the polycrystalline CoP nanowire 

and nanosheet with a negligibly thin oxidation layer on the surface. As a binder-free supercapacitor 

negative electrode, the as-synthesized CoP nanowire arrays demonstrated high areal capacitance 

and good rate capabilities. The solid-state flexible ASC based on the CoP nanowire array negative 
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electrode and MnO2 nanowire array positive electrode exhibited a high volumetric capacitance of 

1.94 F/cm3, an energy density of 0.69 mWh/cm3, and a power density of 114.20 mW/cm3, in 

addition to excellent durability in a large potential window of up to 1.6 V. Moreover, the solid-

state ASC showed a significantly improved cycle stability with retention of more than 80% after 

5000 cycles. The CoP nanosheet arrays show a relative lower areal capacitance than CoP nanowire 

arrays owing to the lower mass loading, yet its performance can be significantly improved by 

sulfidation.
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 PEDOT Coated Iron Phosphide Nanorod Arrays as 

High-Performance Supercapacitor Negative Electrodes 

4.1. Introduction 

Among various negative electrode materials, iron-based materials, such as Fe2O3,193,235 

Fe3O4,236 and FeOOH,237 have recently attracted increasing attraction due to the various oxidation 

states, low cost, earth abundance, and non-toxicity.111–113,238 However, the poor electrical 

conductivity remains the key challenge for iron-based material.111 In order to address this issue, 

numerous efforts have been devoted in designing nanostructured iron-based materials, which 

provide short ion/electron diffusion path and high surface active area. On the other hand, metal 

phosphides are reported as one of the promising candidates for supercapacitor electrode materials 

as they often exhibit metalloid properties and superior electrical conductivity.148,155,239 However, 

most reported metal phosphides for supercapacitor applications are focused on the positive 

electrodes.240 In the last chapter, cobalt phosphide has been demonstrated as a high-performance 

negative electrode material for ASC. Therefore, we expect that by combining the various oxidation 

states of iron and the good electrical conductivity of metal phosphide, iron phosphide could be a 

suitable candidate for high-performance, low-cost supercapacitor negative electrode materials. 

Apart from the poor electrical conductivity, iron-based electrode materials usually suffer from the 

inferior cycling stability resulting from the physiochemical change/structural deformation during 

the long-time redox reaction,114,115 thus seriously limits their practical applications. In this regard, 

conducting polymer coating has been demonstrated as an efficient method to stabilize the 

supercapacitor electrodes.86,126,235,241 For example, Zeng et al. recently reported the PEDOT 

coating to improve the cycling stability as well as the capacitive properties of Ti-doped Fe2O3 
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core/shell nanorod arrays as the negative electrode material.126 The Ti-Fe2O3@PEDOT exhibits a 

remarkable areal capacitance of 1.15 F/cm2 at 1 mA/cm2 and capacitance retention of 96.1% after 

30000 cycles, which are significantly improved compared to that of bare Fe2O3 and Ti-Fe2O3 

electrodes. 

Based on those discussions, we herein report the first demonstration of FeP as the negative 

electrode material for supercapacitors. The as-synthesized FeP nanorod arrays present a high areal 

capacitance of 438.39 mF/cm2 at the current density of 1 mA/cm2. Furthermore, a FeP/PEDOT 

core/shell structure was designed to further boost the supercapacitance performance. The 

FeP/PEDOT exhibit an excellent areal capacitance of 790.59 mF/cm2 and significantly improved 

cycling stability of 82.12% after 5000 cycles. Moreover, an ASC device was fabricated using 

MnO2 positive and FeP/PEDOT negative electrodes. This work demonstrates FeP as a new 

material for high-performance supercapacitor negative electrode. 

4.2. Experiments 

4.2.1. Synthesis of FeP nanorod arrays 

The FeP nanorod arrays were synthesized on carbon cloth by a two-step method. First, 

FeOOH nanorod arrays were growth via a hydrothermal procedure.115 The reaction solution was 

prepared by dissolving 0.182 g FeCl36H2O, 0.107 g Na2SO4 into 15 mL DI water. The solution 

was then transferred to a 20 mL autoclave with a piece of carbon cloth immersed in. The autoclave 

was kept at 160 °C for 6 hours. The synthesized FeOOH nanorod arrays were converted to FeP 

nanorod arrays by a phosphidation process.242,243 The FeOOH sample and 0.5 g NaH2PO2 were 

placed in a tube furnace and heated to 300 °C and kept for 2 h under static Ar atmosphere. The 
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loading amount of FeP nanorod arrays was determined as 2.94 mg/cm2 by a high-precision 

microbalance. 

4.2.2. Synthesis of FeP/PEDOT nanorod arrays 

The PEDOT (Poly(3,4-ethylenedioxythiophene)) were coated on FeP nanorod arrays using 

an in-situ polymerization method.241 The coating process was performed in precursor solution 

consisting of 0.1 M LiClO4, 0.03 M EDOT (3,4-ethylenedioxythiophene), and 0.07 M sodium 

dodecyl sulfate (SDS) at 1 V for 1 min. The mass loading of PEDOT was 0.70 mg/cm2. 

4.2.3. Preparation of MnO2 electrode 

The MnO2 electrode was prepared by electrodeposition of MnO2 on carbon cloth.126 A 

three-electrode configuration was used with carbon cloth as the working electrode, Pt wire as the 

counter electrode, Ag/AgCl as the reference electrode a 0.1 M manganese acetate and 0.1 M 

Na2SO4 aqueous solution as the electrolyte. The MnO2 was obtained by applying a constant voltage 

of 1.0 V for 5 min. The mass loading of MnO2 was 1.60 mg/cm2. 

4.2.4. Fabrication of the ASC 

To fabricate the ASC, one FeP/PEDOT positive electrode and one MnO2 electrode was 

sandwiched together with a separator (TF4030, NKK) in between. The device was then warped 

with duct tape and the electrolyte (1 M Na2SO4 aqueous solution) was injected. The device was 

then sealed with epoxy gel to avoid leaking. 

4.2.5. Material Characterizations 
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The FESEM images were taken from a Hitachi S-4800 FESEM. The X-ray diffraction 

(XRD) was recorded on Rigaku MiniFlex II X-ray diffractometer. Raman spectra were collected 

by a Thermo-Fisher DXR dispersive Raman spectrometer with the excitation wavelengths of 532 

nm. 

4.2.6. Electrochemical Measurements 

For single electrode, the electrochemical measurements were performed in a 1 M Na2SO4 

aqueous electrolyte at ambient temperature. The conventional three-electrode configuration was 

used with a Pt wire and Ag/AgCl as the counter and the reference electrodes, respectively. The 

electrochemical impedance spectroscopy (EIS) measurements were conducted with a potential 

amplitude of 5 mV in the frequency range of 0.01 Hz to 100 kHz. For the ASC device, a two-

electrode configuration was used. 

4.3. Results and Discussion 

The FeP nanorod arrays were directly synthesized on carbon cloth by a two-step process. 

The FeOOH nanorod arrays were first synthesized (Figure 4.1a), followed by the phosphidation. 

The XRD pattern can be indexed as a pure orthorhombic phase FeOOH (JCPDS No. 29-0713). 

The hydrolysis and polymerization reactions of Fe3+ are:244 

 3 2
2Fe H O FeOH H       (4.1) 

 2
2FeOH H O FeOOH 2H      (4.2) 
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Figure 4.1. (a) FESEM image and (b) XRD patterns of FeOOH nanorod arrays. 

As shown in the FESEM image of Figure 4.2a. the as-synthesized FeP nanorod arrays cover 

uniformly on the entire carbon cloth. The nanorods are with the typical length of around 1 μm and 

width of around 100 nm. After the PEDOT coating, the nanorod array nanostructures kept intact 

and no obvious morphology change was observed, as shown in Figure 4.2b. By comparing the 

inserted high magnification SEM images of Figure 4.2a and 1b, it is clear that the surface of 

nanorod became rough after the PEDOT coating. Some of the neighbor nanorods are fused together 

due to the excess coating process. The XRD patterns of FeP and FeP/PEDOT are shown in Figure 

4.2c. All XRD peaks of FeP nanorod arrays, except two peaks around 25 and 43 degrees which 

belong to carbon cloth, can be indexed as orthorhombic FeP (JCPDS No. 65-2595). After PEDOT 

coating, the XRD patterns are similar to that of pure FeP, indicating that there is no phase change 

of FeP during the coating process. Moreover, the absence of extra peaks reveals the amorphous 

nature of PEDOT.245,246 The successful coating of PEDOT on the FeP nanorod arrays was further 

confirmed by Raman spectrum. As shown in Figure 4.2d, there are two broad peaks located at 

1356 and 1597 cm-1, corresponding to the D and G bands of carbon cloth, respectively.247 No peaks 

from FeP can be observed, which is consistent with previous reports.248,249 After coating, two 
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distinct Raman peaks located at 1441 and 1498 cm-1 emerged, which can be attributed to the 

symmetric and asymmetric C=C stretching of PEDOT, respectively.250 Additionally, two small 

shoulders are found at 1356 and 1597 cm-1. They are due to the overlaying of D and G bands of 

carbon cloth and the strong Raman peaks of PEDOT.251–253 Overall, the presence of those Raman 

peaks proves the successful coating of the PEDOT on the FeP nanorod arrays. 

 

Figure 4.2. FESEM images of (a) FeP and (b) FeP/PEDOT nanorod arrays. The insets are the high 

magnification FESEM images. (c) XRD patterns and (d) Raman spectra of FeP and FeP/PEDOT 

nanorod arrays. 

The PEDOT were coated on FeP nanorod arrays using an in-situ polymerization of EDOT. 

Figure 4.3 shows the chemical structures of EDOT and PEDOT. In the polymerization process, 
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LiClO4 serves as the oxidation agent. SDS was used to increase the solubility of EDOT and to 

lower the oxidation potential.254 

 

Figure 4.3. The chemical structures of (a) EDOT, and (b) PEDOT, respectively. 

The morphology and structures of the FeP and FeP/PEDOT nanorods were further 

characterized by using TEM. Figure 4.4a shows the TEM image of a single FeP nanorod with a 

diameter around 100 nm. The electron diffraction patterns in Figure 4.4b reveal the polycrystalline 

nature of the FeP nanorod, and can be indexed as orthorhombic FeP phase. The HRTEM, as shown 

in Figure 4.4c, matches well with the simulation results of [110] zone axis. Furthermore, the EDS 

mapping (Figure 4.4d) indicates the homogenous distribution of Fe and P elements, confirmed the 

successful synthesis of FeP nanorod. Similar to CoP nanowire as we discussed in the last chapter, 

the O element may come from the surface oxidation. 
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Figure 4.4. (a) TEM image, (b) SAED, and (c) HRTEM of FeP nanorod, (d) HAADF-STEM and 

corresponding EDS elemental mapping images of P, Fe, and O, respectively. 

As shown in Figure 4.5a, it is clear that on a layer of shell has been deposited on the surface 

of FeP nanorod after the PEDOT coating. Compared to that of FeP nanorod, no change can be 

observed on either SAED (Figure 4.5b) or HRTEM (Figure 4.5c), revealing that the PEDOT shell 

is amorphous and there is no phase change of FeP core. To understand the chemical composition, 

EELS and EDS were performed. Figure 4.5d and e show the EELS spectrum FeP/PEDOT nanorod. 

As a result, EELS can detect these unambiguous Fe and P signals with phosphorus L2,3-edge and 

iron L2,3-edge at 713 and 148 eV, respectively.248 In addition, carbon K-edge and oxygen K-edge 

at 564 and 540 eV from the PEDOT are also included. The EDS spectra Figure 4.5f also confirmed 

the existence of Fe, P, C and O. Most importantly, from the EDS mapping of P, Fe, O, C and S 

elements as shown in Figure 4.5g, it is evidenced that the area of C and S is wider than that of Fe 
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and P (the length of yellow arrow >> pink arrow). So, we can conclude FeP exist as the core and 

PEDOT as the shell. 

 

Figure 4.5. (a) TEM image, (b) SAED, and (c) HRTEM of FeP/PEDOT nanorod, (d,e) EELS 

spectrum and (f) EDS spectrum of FeP/PEDOT nanorods, (g) HAADF-STEM and corresponding 

EDS elemental mapping images of P, Fe, O, C and S, respectively. 

The electrochemical performance of FeP nanorod arrays was first measured by cyclic 

voltammetry (CV) and galvanostatic charge/discharge methods in a 1 M Na2SO4 aqueous 

electrolyte in a conventional three-electrode configuration. The CV curves display quasi-

rectangular shape, indicating the typical supercapacitance characteristic, as shown in Figure 4.6a. 

The galvanostatic charge/discharge curves of FeP/PEDOT are presenting in Figure 4.6b. All 
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curves display good symmetricity in terms of charge and discharge time, demonstrating the ideal 

capacitive behavior as well. 

 

Figure 4.6. (a) CV curves of FeP electrode collected at scan rates from 10 to 100 mV/s. (b) 

Galvanostatic charge/discharge curves of FeP electrode at current densities from 1 to 10 mA/cm2. 

After PEDOT coating, the electrochemical performance was also measured using the same 

parameters. Figure 4.7a compares the CV curves of FeP and FeP/PEDOT collected at the scan rate 

of 100 mV/s. As expected, the FeP/PEDOT shows a considerably higher current density of FeP, 

indicating the higher capacitance of FeP/PEDOT. The CV curves were also collected by varying 

the scan rate. The symmetrical quasi-rectangular shape of the CV curves at different scan rates up 

to 100 mV/s reveals a good rate capacity for FeP/PEDOT electrode, as shown in Figure 4.7b. The 

galvanostatic charge/discharge curves of FeP/PEDOT are presenting in Figure 4.7c. The areal 

capacitance of FeP and FeP/PEDOT electrodes calculated based on discharge curves are presented 

in Figure 4.7d. After PEDOT coating, the areal capacitance can be further improved up to 790.59 

mF/cm2 at the current density of 1 mA/cm2, which is almost twice as that of the FeP electrode 

(438.39 mF/cm2), and considerably higher than previously reported iron-based materials, such as 

Fe2O3 nanotubes (180.4 mF/cm2 at 1 mA/cm2),193 Fe2O3 nanoflakes (145.9 mF/cm2 at 1 
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mA/cm2),255 tectorum-like α-Fe2O3/PPy nanoarrays (382.4 mF/cm2 at 0.5 mA/cm2),235 α-

Fe2O3@PANI nanowires (103 mF/cm2 at 0.5 A/cm2),86 oxygen-deficient Fe2O3 nanorods (382.7 

mF/cm2 at 0.5 mA/cm2),85 and C@Fe3O4 nanosheets (127 mF/cm2 at 1 mA/cm2).256 The 

enhancement of supercapacitance performance by PEDOT coating was further studied by 

electrochemical impedance spectroscopy (EIS). Figure 4.7e shows the Nyquist plots of FeP and 

FeP/PEDOT electrodes. The measured impedance spectra are fitted by an equivalent circuit 

(Figure 3.7c). As a result, FeP/PEDOT electrode shows lower RS of 1.258 Ω and RCT of 5.788 Ω 

compared to those of the pure FeP electrode (RS = 4.065 Ω, RCT = 7.007 Ω). The EIS data indicates 

that the coating of high conductive PEDOT layer would benefit the charge transfer in the 

electrode/electrolyte interface and improve the electrode conductivity, thus boost the 

supercapacitance performance.86,126,235 More importantly, PEDOT coating not only improves the 

electrochemical performance, but also the stability of FeP electrode. As shown in Figure 4.7f, the 

pure FeP electrode suffered from the unsatisfied stability of only 24.19% retention after 5000 

cycles. After PEDOT coating, the stability can be greatly improved up to 82.12%.  
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Figure 4.7. (a) CV curves of FeP and FeP/PEDOT electrodes at the scan rate of 100 mV/s. (b) CV 

curves of FeP/PEDOT electrode collected at scan rates from 10 to 100 mV/s. (c) Galvanostatic 

charge/discharge curves of FeP/PEDOT electrode at current densities from 1 to 10 mA/cm2. (d) 

Comparison of the areal capacitance at different current densities of FeP and FeP/PEDOT 

electrodes. (e) Nyquist plots of FeP and FeP/PEDOT electrodes. The inset is the high-frequency 

part of the Nyquist plot. (f) Cycle stability of FeP and FeP/PEDOT electrodes. 

It is believed that the structure deformation is the main reason which caused the instability 

of most iron-based materials.111,115 Therefore, we have conducted FESEM of FeP and FeP/PEDOT 

electrodes after cycling test to better understand the role of PEDOT coating in the improvement of 

the cycling stability. Figure 4.8a shows the FESEM of FeP electrode after 5000 CV cycles. Clearly, 

the original vertically aligned nanorod arrays structure has been demolished into mesh-like 

morphology. On the contrast, there is no obvious morphology change of the FeP/PEDOT electrode 

after the cycling test (Figure 4.8b). Obviously, the PEDOT coating can serve as a protection to 

prevent the FeP nanorod arrays from structure deformation.115 Therefore, the excellent 

supercapacitance performance of the FeP/PEDOT electrode can be ascribed into three main 

aspects: 1) the three-dimensional nanorod array structure provided larger surface area as well as 

short path for both ions and electrons, 2) the high electric conductivity of FeP facilitated the charge 

transfer during the charge/discharge process, 3) the subsequent PEDOT coating further improved 

the supercapacitance performance by reducing the series resistance and charge transfer resistance, 

4) with the PEDOT serving as a protection layer, the mechanical durability and cycling stability 

of the FeP electrode were greatly enhanced. 
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Figure 4.8. FESEM images of (a) FeP and (b) FeP/PEDOT nanorod arrays after cycling test. 

To evaluate the practical application of FeP/PEDOT electrode, an aqueous asymmetric 

device was fabricated. MnO2 was chosen as the positive electrode due to its high performance, 

facile synthesis method, and good stability. The MnO2 thin film was synthesized on carbon cloth 

by electrodeposition method, as shown in the FESEM image of Figure 4.9a. The XRD pattern 

(Figure 4.9b), which can be indexed as δ-MnO2 (JCPDS No. 18-0802),257 confirmed the successful 

synthesis of MnO2.  

 

Figure 4.9. (a) FESEM image and (b) XRD patterns of MnO2 electrode. 
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The electrochemical performance of MnO2 electrode was also measured by in a 1 M 

Na2SO4 electrolyte (Figure 4.10). The MnO2 electrode exhibits a good areal capacitance of 652.49 

mF/cm2 at 1 mA/cm2.  

 

Figure 4.10. (a) CV curves of the MnO2 electrode collected at scan rates from 10 to 100 mV/s. (b) 

Galvanostatic charge/discharge curves of the MnO2 electrode at current densities from 1 to 10 

mA/cm2. 

Based on the CV curves of FeP/PEDOT negative electrode and MnO2 positive electrode 

as plotted in Figure 4.11a, the operation voltage of the ASC can be extended up to 1.6 V. The areal 

ratio of FeP/PEDOT negative electrode and MnO2 positive electrode were calculated based on the 

areal capacitance to be 1:1.2. The ASC demonstrated a typical supercapacitor behavior, evident by 

the nearly rectangular shape of all CV curves at different scan rates, as shown in Figure 4.11b. In 

addition, the galvanostatic charge/discharge curves also show good symmetricity (Figure 4.11c), 

indicating the good reaction reversibility. The areal and volumetric capacitance of the ASC device 

was calculated based on the galvanostatic charge/discharge curves, and the results are shown in 

Figure 4.11d. The maximum areal and volumetric capacitance reach up to 362.53 mF/cm2 and 4.53 

F/cm3, respectively. Furthermore, the ASC shows a good stability of 81.17 % capacitance retention 
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after 5000 cycles, as shown in Figure 4.11e. The Ragone plots are shown in Figure 4.11f. The 

maximum energy density of the ASC is 1.61 mWh/cm3 at a current density of 1 mA/cm2, which is 

higher than the recently reported values of ASCs, such as MnO2//Fe2O3 (0.55 and 0.41 

mWh/cm3),85,193 MnO2//Fe2O3/PPy (0.22 mWh/cm3),235 MnO2//Ti-Fe2O3@PEDOT (0.89 

mWh/cm3),126 PANI//α-Fe2O3@PANI (0.35 mWh/cm3),86 MnO2//CoSe2 (0.588 mWh/cm3),219 

Fe2N//TiN (0.61 mWh/cm3),258 MnO2/graphene//VOS@C (0.87 mWh/cm3),127 and 

Co9S8//Co3O4@RuO2 (1.44 mWh/cm3).259 

 

Figure 4.11. (a) CV curves of MnO2 and FeP/PEDOT electrodes at the scan rate of 100 mV/s. (b) 

CV curves of the asymmetric device collected at scan rates from 10 to 100 mV/s. (c) Galvanostatic 

charge/discharge curves of the asymmetric device at current densities from 1 to 10 mA/cm2. (d) 

Areal and volumetric capacitance of the asymmetric device at different current densities. (e) Cycle 

stability of the asymmetric device. (f) Ragone plots of the asymmetric device. 
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4.4. Conclusion 

In summary, FeP nanorod arrays have been synthesized on carbon cloth and demonstrated 

as a promising supercapacitor negative electrode material for the first time. The as-synthesized 

FeP nanorod arrays exhibit a high areal capacitance of 438.39 mF/cm2. A PEDOT coating has been 

adapted to further enhance the stability as well as capacitance performance. The FeP/PEDOT 

electrode represents an outstanding capacitance of 790.59 mF/cm2 and a good stability of 82.12% 

retention after 5000 cycles. In addition, a MnO2//FeP/PEDOT ASC was fabricated with an 

excellent volumetric capacitance of 4.53 F/cm3 and an energy density of 1.61 mWh/cm3. Our work 

shows that iron phosphide holds great promising as a new negative electrode material for 

supercapacitor applications. 
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 Conclusion and Perspective 

The design and development of more reliable energy storage is the key to reach the goal of 

sustainability society. Supercapacitors have attracted significant interest in both academia and 

industry during the past several decades owing to their superior power density, fast 

charge/discharge rate and long cycle life. Nanomaterials have some intrinsic properties that can 

significantly enhance the supercapacitance performance, such as, large surface area, direct 

electron/ion diffusion path, etc, thus are widely applied in supercapacitors. Therefore, this 

dissertation puts main efforts into on the investigation of various nanostructured materials for 

supercapacitor applications, with a special emphasis on materials synthesis and structure analysis. 

TiO2 was first studied as an example of the metal oxide for supercapacitor electrode. A 

novel synthesis method has been developed to grow TiO2 nanorod arrays on Ti substrate and the 

“dissolve and growth” mechanism was discussed. The as-synthesized TiO2 nanorod arrays show 

good areal capacitance, great stability as well as good flexibility. It provides a simple and low-cost 

technique for high-performance flexible energy storage applications. On the other hand, two case 

studies have been done to successfully demonstrate metal phosphides as high-performance 

negative electrode materials for supercapacitor. Different nanostructured CoP and FeP have been 

synthesized and demonstrated high areal capacitance. However, it is observed that metal 

phosphides suffer from the low stability due to the irreversible electrochemical reaction or 

structural deformation. Nevertheless, we have successfully solved this issue by using gel 

electrolyte and PEDOT coating. In addition, both solid-state and aqueous asymmetric 

supercapacitor have been fabricated and shown great performance, which suggests that metal 

phosphides are promising negative electrode materials for high-performance supercapacitor 

applications. 
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Though great progress has been made in supercapacitors, lots of work still need to be done. 

Above all, the charge storage mechanism, especially for pseudocapacitance, must be deeply 

understood. Both advanced experimental and theoretical studies are necessary to provide a 

fundamental understanding of ion adsorption and charge storage on the nanoscale.    
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